

Schalltechnisches Gutachten für die Errichtung und den Betrieb von drei Windenergieanlagen am Standort Mörsdorf-Süd

Bericht-Nr.: 2887-14-L4

Ingenieurbüro für Energietechnik und Lärmschutz

Schalltechnisches Gutachten für die Errichtung und den Betrieb von drei Windenergieanlagen am Standort Mörsdorf-Süd

Bericht-Nr.:

2887-14-L4

Auftraggeber:

Auftragnehmer:

IEL GmbH

Kirchdorfer Straße 26

26603 Aurich

Telefon: 04941 - 9558-0

Telefax: 04941 - 9558-11 email:

mail@iel-gmbh.de

Bearbeiter:

Prüfer:

Textteil:

Anhang:

Datum:

18. September 2014

Messstelle nach § 26 BlmSchG

lni	haltsverzeichnis	Seite
1.	Einleitung	4
2.	Örtliche Beschreibung	4
3.	Kartengrundlage	5
4.	Aufgabenstellung	6
5.	Beurteilungsgrundlagen5.1 Berechnungs- und Beurteilungsverfahren5.2 Meteorologie5.3 Schalltechnische Anforderungen	6 7
6.	Beschreibung der geplanten Windenergieanlagen	
7.	Vorbelastung / Windenergieanlagen	11
8.	Ermittlung der maßgeblichen Immissionspunkte	13
9.	Rechenergebnisse und Beurteilung 9.1 Zusatzbelastung 9.2 Vor-, Zusatz- und Gesamtbelastung	15
10.	Qualität der Prognose	18
11.	Zusammenfassung	19
Anh	nang	

1. Einleitung

Am Standort Mörsdorf-Süd plant der Auftraggeber die Errichtung von drei Windenergieanlagen des Anlagentyps Nordex N117/2400 mit 141 m Nabenhöhe und einer Nennleistung von jeweils 2.400 kW.

Als genehmigungsbedürftige Anlagen im Sinne des Bundes-Immissionsschutzgesetzes (BImSchG) sind Windenergieanlagen so zu errichten und zu betreiben, dass schädliche Umwelteinwirkungen und sonstige Gefahren, erhebliche Nachteile und erhebliche Belästigungen für die Allgemeinheit und die Nachbarschaft nicht hervorgerufen werden können. Dies ist insbesondere dann der Fall, wenn zur Vorsorge Maßnahmen getroffen werden, die dem Stand der Technik entsprechen.

Dieses Gutachten dient dem Lärmschutznachweis im Rahmen des Genehmigungsverfahrens. Für die maßgeblichen Immissionspunkte werden die Beurteilungspegel rechnerisch ermittelt und den dort geltenden Immissionsrichtwerten gegenübergestellt.

2. Örtliche Beschreibung

Der Standort befindet sich im Bundesland Rheinland-Pfalz, im Rhein-Hunsrück-Kreis, auf dem Gebiet der Ortsgemeinde Mörsdorf (Verbandsgemeinde Kastellaun).

Die drei geplanten Windenergieanlagen (WEA 42 - WEA 44) sollen südlich der Ortschaft Mörsdorf, beidseitig der Landesstraße L 204 errichtet werden.

Die nächstgelegene Wohnbebauung befindet sich in den umliegenden Ortschaften. Weitere Wohnbebauung befindet sich an der Landesstraße L 204, am Dünnbach, am Mörsdorfer Bach und am Mastershausener Bach.

Der Standort der geplanten Windenergieanlagen befindet sich auf einem Höhenniveau von ca. 345 m bis 365 m ü. NN. Die Immissionspunkte liegen auf Höhen zwischen ca. 255 - 400 m ü. NN. Zur Berücksichtigung der Höhenunterschiede und der daraus teilweise vorhandenen schallabschirmenden Wirkung der Geländestruktur bzw. zur Ermittlung der Bodendämpfung wird ein digitales Geländemodell verwendet.

Nördlich, östlich und südlich des Standortes befinden sich insgesamt 41 weitere Windenergieanlagen in Planung bzw. in Betrieb, die bei den Berechnungen als schalltechnische Vorbelastung berücksichtigt werden.

Im Süden der Ortschaft Mörsdorf befindet sich am Ringelweg das Betriebsgelände der Diel GmbH (Transporte und Baustoffe). Gemäß Baugenehmigung vom 17.01.2007 ist in Bezug auf den Schallimmissionsschutz die Stellungnahme der Struktur- und Genehmigungsdirektion Nord (SGD Nord) vom 09.01.2007 zu beachten. In Punkt 1 dieser Stellungnahme wird ausgeführt, dass im Nachtzeitraum zwischen 22.00 bis 06:00 Uhr keine betriebsbedingten Tätigkeiten einschließlich Fahr- und Verladetätigkeiten auf dem Betriebsgelände zulässig sind. Für die Nachtzeit muss dieser Betrieb daher nicht berücksichtigt werden.

In der Ortschaft Mörsdorf befinden sich am nördlichen Ortsrand gewerblich genutzte Flächen (Gewerbegebiet Windorfer Straße). Derzeit sind in diesem Gewerbegebiet (Gewerbefläche 1) keine Betriebe ansässig, die als relevante schalltechnische Vorbelastung für die Nachtzeit einzustufen wären. Da die Festsetzungen im Bebauungsplan aber eine relevante schalltechnische Vorbelastung nicht ausschließen, ist von einer plangegebenen Vorbelastung auszugehen, welche den Immissionsrichtwert am nächstgelegenen Wohnhaus ausschöpft.

In der Ortschaft Mastershausen befinden sich am nördlichen Ortsrand gewerblich genutzte Flächen (Gewerbefläche 2). Hier ist die Firma "Möbelwerke Mastershausen GmbH" ansässig. Es wird davon ausgegangen, dass die Möbelwerke den Immissionsrichtwert ausschöpfen.

In der nachfolgenden Karte ist das Untersuchungsgebiet dargestellt.

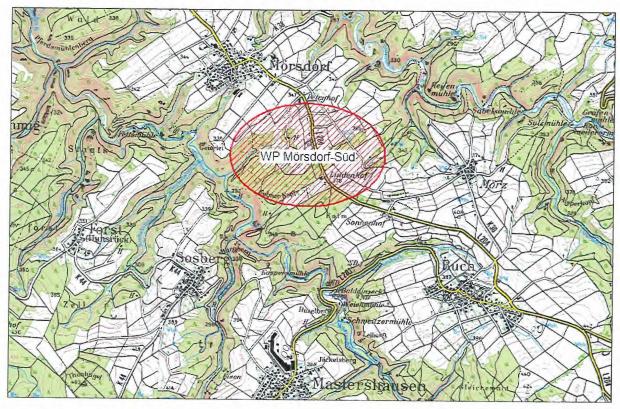


Bild 1: Übersichtskarte

3. Kartengrundlage

Die Koordinaten der geplanten Windenergieanlagen wurden vom Auftraggeber zur Verfügung gestellt. Die Koordinaten der als Vorbelastung zu berücksichtigenden Windenergieanlagen sind aus vorherigen Untersuchungen bekannt bzw. wurden aktuell vom Auftraggeber zur Verfügung gestellt. Die Koordinaten der Immissionspunkte sind den digitalen Topographischen Karten (DTK5) entnommen.

Alle Programm-Koordinaten sind UTM-Koordinaten (UTM WGS84, Zone 32) und ermöglichen somit eine Kontrolle mit dem amtlichen Kartenmaterial. Das vom Auftraggeber zur Verfügung gestellte und für die Berechnungen verwendete Kartenmaterial ist der Tabelle 1 zu entnehmen.

	Kartengrundlage	
1	Rasterdaten DTK5 - © GeoBasis-DE/LVermGeoRP	
2	Auszüge aus den Topographischen Karten TK 25	

Tabelle 1: Kartengrundlage

Aufgabenstellung 4.

Die drei geplanten Windenergieanlagen sollen zu allen Tag- und Nachtzeiten betrieben werden. Als Beurteilungssituation gilt für den Betrieb von Windenergieanlagen daher i. d. R. die lauteste Stunde der Nacht, da hier die niedrigsten Richtwerte gelten. Sofern die Windenergieanlagen während der Nachtzeit schallreduziert betrieben werden müssen, erfolgt auch eine Berechnung und Beurteilung für die Tageszeit.

Die geplanten Windenergieanlagen (WEA 42 - WEA 44) werden der Zusatzbelastung gemäß TA-Lärm Nr. 2.4, Absatz 23., zugeordnet.

Gemäß TA-Lärm Nr. 3.2.1, Abs. 6^{3.)} ist die Bestimmung der Vorbelastung (hier: 41 weitere geplante und bestehende Windenergieanlagen) in der Regel nach Nr. A.1.2 des Anhangs zur TA-Lärm durchzuführen. Die Nr. A.1.2 des Anhangs der TA-Lärm legt fest, dass die Vorbelastung nach Nr. A.3 zu ermitteln ist (Immissionsmessung an dem maßgeblichen Immissionsort). Unter bestimmten Bedingungen sind Ersatzmessungen nach Nr. A.3.4 zulässig. Möglichkeiten für Ersatzmessungen sind Rundummessungen und Schallleistungsmessungen mit anschließender Schallausbreitungsrechnung. Für die 41 weiteren Windenergieanlagen (WEA 01 - WEA 41) wird zur rechnerischen Ermittlung der Vorbelastung auf vorliegende schalltechnische Messberichte und Daten zurückgegriffen.

Ziel dieses Gutachtens ist es, die aus Sicht des Lärmschutzes resultierenden Umwelteinwirkungen aus dem Betrieb der Windenergieanlagen zu berechnen und hinsichtlich immissionsschutzrechtlicher Kriterien zu beurteilen.

Beurteilungsgrundlagen 5.

Berechnungs- und Beurteilungsverfahren 5.1

Die schalltechnischen Berechnungen werden gemäß der TA-Lärm^{3.)} durchgeführt. In der TA-Lärm sind grundsätzlich zwei Prognoseverfahren, die überschlägige und die detaillierte Prognose, angegeben. Die überschlägige Prognose vernachlässigt die Luftabsorption, das Boden- und Meteorologiedämpfungsmaß und weitgehend alle Abschirmungseffekte. Die Berechnungen erfolgen bei der überschlägigen Prognose

frequenzunabhängig. Für eine detaillierte Prognose kann neben einer frequenzabhängigen Berechnung auch eine frequenzunabhängige Berechnung mit A-bewerteten Schalldruckpegeln erfolgen.

Die Berechnungen erfolgen frequenzunabhängig als detaillierte Prognose für freie Schallausbreitung. Die Bodendämpfung A_{gr} wird dabei gemäß DIN ISO 9613-2^{4.)}, Nr. 7.3.2 "Alternatives Verfahren zur Berechnung A-bewerteter Schalldruckpegel" berechnet. Abschirmung und Dämpfung durch Bewuchs bleiben unberücksichtigt. Die durch die Höhenunterschiede teilweise vorhandene schallabschirmende Wirkung der Geländestruktur wird bei den Berechnungen berücksichtigt. Die schalltechnischen Berechnungen werden mit dem Programmsystem IMMI[®] (Version 2013) durchgeführt, welches die Anwendung der erforderlichen Berechnungsmethoden ermöglicht.

Für die schalltechnische Beurteilung werden die vom Länderausschuss für Immissionsschutz (LAI) empfohlenen "Hinweise zum Schallimmissionsschutz bei Windenergie-anlagen"^{10.)}, das "Windenergiehandbuch"^{25.)} (Windenergiehandbuch, M. Agatz, Stand Dezember 2013), der "Windenergie-Erlass Nordrhein-Westfalen"^{11.)}, die "Hinweise zur Beurteilung der Zulässigkeit von Windenergieanlagen"^{30.)} des MULEWF Rheinland-Pfalz sowie das "Merkblatt für Vorhaben zur Errichtung von Windenergieanlagen hinsichtlich immissionsschutzrechtlicher und arbeitsschutzrechtlicher Anforderungen an die Antragsunterlagen im Genehmigungsverfahren" ^{35.)} der Struktur- und Genehmigungsdirektion Nord berücksichtigt.

5.2 Meteorologie

Für die Berechnungen werden folgende meteorologische Parameter berücksichtigt:

Temperatur $T = 10^{\circ} \text{ C}$ Luftfeuchte F = 70 %Mitwind-Wetterlage

5.3 Schalltechnische Anforderungen

Gemäß TA-Lärm sind für die schalltechnische Beurteilung außerhalb von Gebäuden folgende Immissionsrichtwerte heranzuziehen:

Nutzung	Immissionsrichtwert [dB(A)]			
	Tag (06.00 - 22.00 Uhr)	Nacht (22.00 - 06.00 Uhr)		
Gewerbegebiete (GE)	65	50		
Kern- (MK), Dorf- (MD) und Mischgebiete (MI)	60	45		
Allgemeine Wohngebiete (WA) und Kleinsiedlungsgebiete (WS)	55	40		
Reine Wohngebiete (WR)	50	35		

Tabelle 2: Immissionsrichtwerte

Während der Beurteilungszeit "Tag" ist der Beurteilungspegel auf einen Zeitraum von 16 Stunden zu beziehen, während der Beurteilungszeit "Nacht" auf eine Stunde. Der Beurteilungspegel L_r ist der aus dem Schallimmissionspegel L_s des zu beurteilenden Geräusches und gegebenenfalls aus Zuschlägen für Ton- und Informationshaltigkeit und für Impulshaltigkeit gebildete Wert zur Kennzeichnung der mittleren Geräuschbelastung während der Beurteilungszeit. Zusätzlich müssen für Immissionsorte, die bezüglich der Schutzbedürftigkeit als "Kleinsiedlungsgebiet (WS)" "Allgemeines Wohngebiet (WA)" bzw. "Reines Wohngebiet (WR)" oder "Kurgebiet" eingestuft werden, Zuschläge für Tageszeiten mit erhöhter Empfindlichkeit (Werktage: 06.00 - 07.00 Uhr und 20.00 - 22.00 Uhr; Sonn- und Feiertage: 06.00 - 09.00 Uhr, 13.00 - 15.00 Uhr und 20.00 - 22.00 Uhr) vorgenommen werden (TA-Lärm Nr. 6.5).

Gemäß TA-Lärm dürfen kurzzeitige Geräuschspitzen die Immissionsrichtwerte am Tag um nicht mehr als 30 dB und in der Nacht um nicht mehr als 20 dB überschreiten.

Die zulässigen Immissionsrichtwerte für die Wohnbebauung dürfen durch die Gesamtbelastung nicht überschritten werden. Diese setzt sich aus der Vor- und der Zusatzbelastung zusammen. Die Vorbelastung ist die Belastung eines Ortes mit Geräuschimmissionen von Anlagen für die die TA-Lärm gilt, allerdings ohne den Immissionsbeitrag der zu beurteilenden Anlage. Die Zusatzbelastung ist der Immissionsbeitrag, der an einem Immissionsort durch die zu beurteilende Anlage hervorgerufen wird.

6. Beschreibung der geplanten Windenergieanlagen

6.1 Anlagenbeschreibung

Der Auftraggeber plant am Standort Mörsdorf-Süd die Errichtung und den Betrieb von drei Windenergieanlagen des Herstellers Nordex. Nachfolgend werden die Hauptabmessungen und schalltechnischen Daten des geplanten Anlagentyps zusammengefasst:

Anlagentyp: Nordex N117/2400

Nabenhöhe: 141 m

Rotordurchmesser: 117 m

Nennleistung: 2.400 kW

Leistungsregelung: pitch

Der Anlagentyp Nordex N117/2400 wurde mehrfach schalltechnisch vermessen. Für drei Betriebsvarianten liegen Auszüge aus Messberichten vor. Die kompletten Messberichte wurden vom Hersteller nicht zur Verfügung gestellt. In der nachfolgenden Tabelle sind die Messwerte (jeweils höchster gemessener Schallleistungspegel) und die vom Hersteller angegebenen Schallleistungspegel für unterschiedliche Betriebsvarianten zusammengefasst.

Messbericht	Leistung [kW]	Höchster Messwert [dB(A)]	Herstellerangabe [dB(A)]
GLGH-4286 12 08939 258-A-0001-A	0.400	103,7	
WICO 074SE513/01	2.400	104,5	105,0
WICO 074SE513/08	2.190	102,4	103,0
WICO 074/SE513/02	1.910	100,8	101,0

Tabelle 3: Schalltechnische Daten des Anlagentyps Nordex N117/2400

Die vermessenen Windenergieanlagen haben Nabenhöhen von 91 m und 120 m. Für die einzelnen Betriebsvarianten liegen teilweise Umrechnungen auf eine Nabenhöhe von 141 m vor. Die sich hieraus ergebenden Schallleistungspegel liegen unterhalb der Herstellerangaben.

Für den Betrieb während der Tageszeit wird für die drei geplanten Windenergieanlagen jeweils ein Schallleistungspegel von $L_{wA,90}$ = 107,5 dB(A) (Herstellerangabe für den Betrieb mit 2.400 kW zzgl. 2,5 dB Zuschlag für den oberen Vertrauensbereich) berücksichtigt.

Wie Vorabberechnungen gezeigt haben, müssen die drei geplanten Windenergie-anlagen während der Nachtzeit schallreduziert mit einer Leistung von 2.190 kW betrieben werden. Für diese Betriebsvariante wird für die Berechnungen ein Schallleistungspegel von $L_{wA,90}$ = 105,5 dB(A) (Herstellerangabe für den Betrieb mit 2.190 kW zzgl. 2,5 dB Zuschlag für den oberen Vertrauensbereich) berücksichtigt.

Der Zuschlag von 2,5 dB ergibt sich aus folgenden Parametern:

- Unsicherheit des Prognosemodells mit σ_{prog} = 1,5 dB
- die Serienstreuung mit σ_P = 1,2 dB
- die Ungenauigkeit der Schallemissions-Vermessung mit σ_R = 0,5 dB (Standardwert bei FGW-konform vermessenen Windenergieanlagen)

und berechnet sich wie folgt:

$$z = 1,28 * \sigma_{ges} \tag{1}$$

mit

$$\sigma_{ges} = \sqrt{\sigma_{prog}^2 + \sigma_P^2 + \sigma_R^2} \tag{2}$$

Hinweis 1:

In der Regel wird im Genehmigungsbescheid ein maximal zulässiger Schallleistungspegel für jede geplante Windenergieanlage festgesetzt, der aus dem schalltechnischen Gutachten hervorgeht. Es wird an dieser Stelle darauf hingewiesen, dass die für die nachfolgenden Berechnungen verwendeten Schallleistungspegel $L_{WA,90}$ jeweils einen

Zuschlag für den oberen Vertrauensbereich beinhaltet, der die Unsicherheit des Prognosemodells für die Schallausbreitungsberechnung berücksichtigt.

Gemäß "Windenergie-Erlass Nordrhein-Westfalen" ergibt sich der zulässige Emissionswert $L_{e,max}$ aus dem in der Prognose verwendeten Schallleistungspegel L_{wA} unter ausschließlicher Berücksichtigung der Serienstreuung.

Der zulässige Emissionswert $L_{e,max}$ der geplanten Windenergieanlagen errechnet sich hiernach wie folgt:

$$L_{e,max} = L_{wA} + 1,28 * \sigma_P \tag{3}$$

Für den Anlagentyp Nordex N117/2400 ergibt sich gemäß (3) hieraus für den Betrieb mit 2.400 kW ein maximal zulässiger Schallleistungspegel von $L_{e,max}$ = 106,5 dB(A) und für den schallreduzierten Betrieb mit einer Leistung von 2.190 kW ein maximal zulässiger Schallleistungspegel von $L_{e,max}$ = 104,5 dB(A).

6.2 Ton-, Impuls- und Informationshaltigkeit

Nach Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen $^{10.)\text{``}}$ können im Nahbereich auftretende Tonhaltigkeiten von $K_{TN} \leq 2$ dB unberücksichtigt bleiben. Gemäß "Hinweise für die Beurteilung der Zulässigkeit der Errichtung von Windenergieanlagen in Rheinland-Pfalz (Rundschreiben Windenergie)" können im Nahbereich auftretende Tonhaltigkeiten von $K_{TN} < 2$ dB unberücksichtigt bleiben.

Gemäß den vorliegenden Auszügen aus den Messberichten für den Anlagentyp Nordex N117/2400 treten unabhängig von den o.g. Vorgehensweisen bei dem Betrieb des Anlagentyp Nordex N117/2400 keine immissionsrelevanten ton- und impulshaltigen Geräusche auf. Zusätzlich wird als sachgerecht vorausgesetzt, dass Windenergie-anlagen mit einer immissionsrelevanten Tonhaltigkeit nicht dem Stand der Lärmminderungstechnik entsprechen und daher nicht genehmigungsfähig sind. Hierzu gibt es jedoch auch einzelne abweichende Auffassungen.

Bei dem Betrieb von WEA treten keine informationshaltigen Geräusche auf, so dass eine besondere Berücksichtigung nicht notwendig ist.

6.3 Tieffrequente Geräusche

Allgemein kann gesagt werden, dass WEA keine Geräusche im Infraschallbereich (vergl. DIN 45680)^{5.)} hervorrufen, die hinsichtlich möglicher schädlicher Umwelteinwirkungen gesondert zu prüfen wären. Die von modernen WEA hervorgerufenen Schallpegel im Infraschallbereich liegen unterhalb der Wahrnehmungsschwelle des Menschen. Auch neuere Empfehlungen zur Beurteilung von Infraschalleinwirkungen der Größenordnung, wie sie in der Nachbarschaft von WEA bislang nachgewiesen wurden, gehen davon aus, dass sie ursächlich nicht zu Störungen, erheblichen Belästigungen oder Geräuschbeeinträchtigungen führen ^{18.) 24.) 25.) 26.) 32.) 34.)}

6.4 Kurzzeitige Geräuschspitzen

Spitzenpegel von WEA können u. U. durch kurzzeitig auftretende Vorgänge beim Gieren (Betrieb der Windnachführung) oder Bremsen (z. B. wegen Überdrehzahl) auftreten. Sie dürfen gem. TA-Lärm 6.1 in der Nacht die Richtwerte um nicht mehr als 20 dB überschreiten. Üblicherweise sind bei WEA keine Spitzenpegel zu erwarten, die zu einer Überschreitung dieser Vorgabe führen.

6.5 Zusammenfassung der schalltechnischen Kennwerte

Die Lage der geplanten Windenergieanlagen ist den Übersichts- und Detailkarten des Anhangs zu entnehmen.

In der Tabelle 4 werden die Koordinaten und die schalltechnischen Kennwerte der Windenergieanlagen zusammengefasst.

Windenergieanlage	Naben- höhe	UTM WGS84 Zone 32		UTM WGS84 Zone 32 Schallleistungs [dB(A)]	
	[m]	Rechtswert	Hochwert	Tag	Nacht
WEA 42 N117/2400	141,0	383.394	5.550.939	107,5	105,5
WEA 43 N117/2400	141,0	382.761	5.550.429	107,5	105,5
WEA 44 N117/2400	141,0	382.148	5.549.725	107,5	105,5

Tabelle 4: Schalltechnische Kennwerte der geplanten Windenergieanlagen / Zusatzbelastung

7. Vorbelastung / Windenergieanlagen

Als schalltechnische Vorbelastung müssen 41 weitere Windenergieanlagen (WEA 01 - WEA 41) berücksichtigt werden. Die Daten dieser Windenergieanlagen wurden im Vorfeld vom Auftraggeber mit den zuständigen Genehmigungsbehörden abgestimmt (Anlage B zum Genehmigungsverfahren, Stand: 05.09.2014).

Die Lage der berücksichtigten Windenergieanlagen ist den Übersichtskarten im Anhang zu entnehmen. In der nachfolgenden Tabelle werden die WEA-Daten, die Koordinaten und die Schallleistungspegel (inkl. Zuschlag für den oberen Vertrauensbereich) der als Vorbelastung berücksichtigten Windenergieanlagen zusammengefasst.

Damaiahaaaa	Naben-	UTM WGS84 Zone 32		Schallleistungspegel* [dB(A)	
Bezeichnung	höhe [m]	Rechtswert	Hochwert	Tag	Nacht
WEA 01 E-82 E2	138,4	388.684	5.553.146	106,2	106,2
WEA 02 E-82 E2	138,4	388.836	5.552.950	106,2	106,2
WEA 03 E-82 E2	138,4	389.093	5.552.785	106,2	106,2
WEA 04 E-82 E2	138,4	389.415	5.552.602	106,2	106,2
WEA 05 Vestas V44	63	389.257	5.552.243	105	105

^{*} inkl. 2,5 dB Zuschlag für den oberen Vertrauensbereich

	Naben-	UTM WGS8	4 Zone 32	Schallleistung	gspegel* [dB(A)]
Bezeichnung	höhe [m]	Rechtswert	Hochwert	Tag	Nacht
WEA 06 Vestas V90	105	386.023	5.550.257	105,4	105,4
WEA 07 Vestas V90	105	386.227	5.550.062	105,4	105,4
WEA 08 Vestas V90	105	386.258	5.549.780	105,4	105,4
WEA 09 Vestas V-112	140	385.889	5.549.084	109,1	109,1
WEA 10 Vestas V112	140	386.239	5.548.843	109,1	109,1
WEA 11 Vestas V112	140	386.373	5.548.572	109,1	109,1
WEA 12 3.2M114	143	383.232	5.552.826	107,8	107,8
WEA 13 E-82 E2 2,0	108,4	380.713	5.545.796	105,9	105,9
WEA 14 E-82 E2 2,0	108,4	380.735	5.545.541	105,9	105,9
WEA 15 E-82 E2 2,0	98,4	380.764	5.545.266	105,9	105,9
WEA 16 E-82 E2	98,4	381.024	5.545.326	106,2	106,2
WEA 17 E-70 E4 2,0	113,5	381.552	5.545.435	103,8	103,8
WEA 18 E-82 E2	108,4	381.710	5.545.260	106,2	106,2
WEA 19 E-70 E4 2,0	86	381.443	5.545.072	103,8	103,8
WEA 20 E-70 E4 2,0	98,2	381.381	5.544.773	103,8	103,8
WEA 21 E-70 E4 2,0	86	381.352	5.544.468	103,8	103,8
WEA 22 E-70 E4 2,0	98,2	381.337	5.544.162	103,8	103,8
WEA 23 E-82 E2	108,4	381.614	5.544.128	106,2	106,2
WEA 24 E-70 E4 2,0	98,2	381.381	5.543.860	103,8	103,8
WEA 25 E-70 E4 2,0	98,2	381.439	5.543.561	103,8	103,8
WEA 26 E-82 E2	98,4	381.625	5.543.405	106,2	106,2
WEA 27 N117 (N01)	141	379.480	5.553.326	107,5	107,5
WEA 28 N117 (N02)	141	379.995	5.553.242	107,5	107,5
WEA 29 N117 (N04)	141	380.019	5.552.826	107,5	107,5
WEA 30 N117 (N05)	141	380.324	5.552.644	107,5	107,5
WEA 31 N117 (N08)	141	379.855	5.552.259	107,5	107,5
WEA 32 N117 (N09)	141	380.207	5.552.091	107,5	107,5
WEA 33 N117 (N10)	141	380.683	5.552.122	107,5	103,5
WEA 34 N117 (N11)	141	380.212	5.551.403	107,5	107,5
WEA 35 N117	141	380.586	5.554.529	107,5	107,5
WEA 36 N117	141	380.591	5.554.883	107,5	107,5
WEA 37 N117	141	380.922	5.555.007	107,5	107,5
WEA 38 E-101	135,4	383.507	5.544.818	107,3	107,3
WEA 39 E-101	135,4	383.835	5.544.518	107,3	107,3
WEA 40 E-101	135,4	382.750	5.544.946	107,3	107,3
WEA 41 E-101	135,4	383.215	5.545.014	107,3	107,3

Tabelle 5: Schalltechnische Kennwerte der weiteren Windenergieanlagen / Vorbelastung

^{*} inkl. Zuschlag für den oberen Vertrauensbereich, ersichtlich aus dem Datensatz im Anhang

8. Ermittlung der maßgeblichen Immissionspunkte

8.1 Einwirkungsbereiche der geplanten WEA gemäß TA-Lärm

Gemäß TA-Lärm Nr. 2.2 sind die Flächen dem Einwirkungsbereich zuzuordnen, in denen die von der Anlage ausgehenden Geräusche einen Beurteilungspegel verursachen, der weniger als 10 dB unter dem für diese Fläche maßgebenden Immissionsrichtwert (IRW) liegt. Das zusätzliche Kriterium der Geräuschspitzen muss im vorliegenden Fall nicht berücksichtigt werden.

Im Anhang sind die Einwirkungsbereiche (berechnet für den Nachtbetrieb) der drei geplanten Windenergieanlagen für MI/MD-Gebiete (Misch-Dorfgebiete), WA-Gebiete (Allgemeine Wohngebiete) und WR-Gebiete (Reine Wohngebiete) dargestellt.

Bei den Berechnungen werden 17 Immissionspunkte berücksichtigt. Die Immissionspunkte befinden sich teilweise bereits außerhalb des Einwirkungsbereiches der drei geplanten Windenergieanlagen. Die Lage der Immissionspunkte (IP) wurde im Rahmen einer Standortaufnahme vor Ort geprüft. Bei der Standortaufnahme wurde festgestellt, dass keine Gebäudeanordnungen gegeben sind, die zu möglichen Schallreflexionen führen.

Die Abstände zwischen den Immissionspunkten und den einzelnen Windenergieanlagen sind den Berechnungsergebnissen des Anhangs zu entnehmen.

8.2 Berücksichtigte Immissionspunkte

Die Immissionspunkte IP 01 und IP 02 befinden sich östlich der geplanten WEA 42, am Dünnbach. Es handelt sich um die Reifenmühle und die Sabelsmühle. Die Immissionspunkte liegen im Außenbereich.

Der Immissionspunkt IP 03 befindet sich am westlichen Ortsrand der Ortschaft Mörz. Nach Kenntnisstand des Gutachters gibt es für die Ortschaft Mörz keine Bebauungspläne. Im Flächennutzungsplan ist die gesamte Ortschaft als "Mischbaufläche" dargestellt.

Der Immissionspunkt IP 04 liegt an der Landesstraße L 204, am Sonnenhof. Er befindet im Außenbereich.

Der Immissionspunkt IP 05 befindet sich am westlichen Ortsrand der Ortschaft Buch. Von der Verbandsgemeinde Kastellaun wurde mitgeteilt, dass die Wohnbebauung hier bezüglich der Schutzbedürftigkeit einem "Allgemeinen Wohngebiet" gleichzusetzen ist.

Der Immissionspunkt IP 06 befindet sich südlich der drei geplanten Windenergieanlagen, in der Ortschaft Mastershausen. Dieser Immissionspunkt befindet sich in einem "Allgemeinen Wohngebiet". Er repräsentiert das zu den Möbelwerken nächstgelegene Wohnhaus in einem "Allgemeinen Wohngebiet". Für diesen Immissionspunkt kann davon ausgegangen werden, dass der Immissionsrichtwert bereits durch die Möbelwerke bereits ausgeschöpft wird. Die Immissionspunkte IP 07 bis IP 09 befinden sich ebenfalls südlich der geplanten Windenergieanlagen, am Mastershausener Bach. Diese drei Immissionspunkte liegen im Außenbereich.

Der Immissionspunkt IP 10 befindet sich am nordöstlichen Rand der Ortschaft Sosberg. Er liegt in einem im Flächennutzungsplan als Mischbaufläche dargestellten Gebiet. "Allgemeine Wohngebiete" und "Reine Wohngebiete" gibt es in der Ortschaft Sosberg nicht.

Der Immissionspunkt IP 11 befindet sich westlich der geplanten WEA 44, am Mörsdorfer Bach, im Außenbereich. Bei der Standortaufnahme wurde dieser Immissionspunkt nicht aufgenommen, da die Zuwegung nicht gefunden wurde. Ob hier eine wohnliche Nutzung stattfindet konnte somit nicht abschließend geklärt werden.

Die Immissionspunkte IP 12 und IP 13 befinden sich am südlichen Ortsrand von Mörsdorf, in einem "Allgemeinen Wohngebiet". Der Immissionspunkt IP 13 liegt in unmittelbarer Nähe des Betriebsgeländes der Firma Diel GmbH.

Der Immissionspunkt IP 14 befindet sich am nördlichen Ortsrand der Ortschaft Mörsdorf. Für diesen Immissionspunkt ist davon auszugehen, dass der Immissionsrichtwert durch das nördlich angrenzende Gewerbegebiet und die als Vorbelastung berücksichtigten Windenergieanlagen bereits ausgeschöpft bzw. um das zulässige Maß von 1 dB überschritten wird.

Der Immissionspunkt IP 15 befindet sich nördlich der geplanten WEA 43, am Petryhof. Er liegt im Außenbereich.

Die Immissionspunkte IP 16 und IP 17 befinden sich am Lindenhof. Dieser liegt im Außenbereich, an der Landesstraße L 204, zwischen den geplanten Windenergie-anlagen. Der Immissionspunkt IP 15 liegt im Nordwesten und der Immissionspunkt IP 16 im Nordosten des Wohngebäudes.

Für die Immissionspunkte IP 05, IP 06, IP 12 und IP 13 wird für die Nachtzeit ein Immissionsrichtwert von 40 dB(A), entsprechend der Schutzbedürftigkeit von "Allgemeinen Wohngebieten (WA)", berücksichtigt.

Für alle weiteren Immissionspunkte wird für die Nachtzeit ein Immissionsrichtwert von 45 dB(A), entsprechend der Schutzbedürftigkeit von "Misch-, Dorfgebieten (MI/MD)", berücksichtigt.

Während der Tageszeit gelten für alle Immissionspunkte 15 dB höhere Immissionsrichtwerte.

Die Bezeichnung der Immissionspunkte, die dazugehörigen Koordinaten und die Immissionsrichtwerte (IRW) sind in der nachfolgenden Tabelle zusammengefasst.

Bezeichnung	UTM WGS	84 Zone 32	Höhe über Gelände	IRW [dB(A)]
	Rechtswert	Hochwert	[m]	Tag / Nacht
IP 01 Reifenmühle	384.523	5.551.036	5,0	60 / 45
IP 02 Sabelsmühle	384.851	5.550.870	5,0	60 / 45
IP 03 Brunnenweg 4	384.526	5.550.028	5,0	60 / 45
IP 04 Sonnenhof 3	383.547	5.549.460	5,0	60 / 45
IP 05 Balduinsecker Weg 14	384.113	5.548.470	5,0	55 / 40
IP 06 Pfingstweg 1	382.472	5.547.310	5,0	55 / 40
IP 07 Schweitzermühle	383.058	5.548.073	5,0	60 / 45
IP 08 Weienmühle	383.046	5.548.336	5,0	60 / 45
IP 09 Kaspersmühle	382.546	5.548.569	5,0	60 / 45
IP 10 lm Acker 19	381.267	5.548.742	5,0	60 / 45
IP 11 Petry-Mühle	381.612	5.549.674	5,0	60 / 45
IP 12 Auf der Lex 5	381.628	5.551.147	5,0	55 / 40
IP 13 Bucher Weg 16	381.894	5.551.212	2,5	55 / 40
IP 14 Windorfer Str. 7	381.395	5.551.578	5,0	60 / 45
IP 15 Petryhof	382.491	5.550.940	5,0	60 / 45
IP 16 Lindenhof (NO)	382.786	5.549.946	7,5	60 / 45
IP 17 Lindenhof (NW)	382.762	5.549.931	5,0	60 / 45

Tabelle 6: Immissionspunkte

9. Rechenergebnisse und Beurteilung

Gemäß TA-Lärm muss zur schalltechnischen Beurteilung die Gesamtbelastung an dem jeweiligen Immissionspunkt ermittelt werden (Abschnitt 2.4 der TA-Lärm). Sie setzt sich aus der Vorbelastung und der Zusatzbelastung zusammen.

9.1 Zusatzbelastung

Nach TA-Lärm Nr. 2.2 liegen nur diejenigen Immissionspunkte im Einwirkungsbereich der geplanten Windenergieanlagen, an denen die geplanten Windenergieanlagen den Immissionsrichtwert um weniger als 10 dB unterschreiten. Gemäß dem Artikel "Geräuschemissionen und - immissionen von Windenergieanlagen^{33.)} kann in Einzelfällen ein "erweiterter Einwirkungsbereich" erforderlich sein. Hierbei wird davon ausgegangen, dass durch Anlagen, welche den Immissionsrichtwert um mehr als 15 dB unterschreiten, keine wahrnehmbaren zusätzlichen schädlichen Umwelteinwirkungen hervorgerufen werden.

Um die maßgeblichen Immissionspunkte zu ermitteln werden zunächst die Beurteilungspegel der Zusatzbelastung aufgelistet und den zulässigen Immissionsrichtwerten gegenübergestellt.

lmmissionspunkt	IRW-Nacht [dB(A)]	Zusatz- belastung [dB(A)]	∆L IRW-Zusatz- belastung [dB]
IP 01 Reifenmühle	45	24,5	20,5
IP 02 Sabelsmühle	45	24,9	20,1
IP 03 Brunnenweg 4	45	31,1	13,9
IP 04 Sonnenhof 3	45	34,1	10,9
IP 05 Balduinsecker Weg 14	40	26,2	13,8
IP 06 Pfingstweg 1	40	23,8	16,2
IP 07 Schweitzermühle	45	26,8	18,2
IP 08 Weienmühle	45	25,3	19,7
IP 09 Kaspersmühle	45	27,6	17,4
IP 10 Im Acker 19	45	32,1	12,9
IP 11 Petry-Mühle	45	39,2	5,8
IP 12 Auf der Lex 5	40	32,8	7,2
IP 13 Bucher Weg 16	40	34,0	6,0
IP 14 Windorfer Str. 7	45	29,4	15,6
IP 15 Petryhof	45	41,7	3,3
IP 16 Lindenhof (NO)	45	44,2	0,8
IP 17 Lindenhof (NW)	45	44,1	0,9

Tabelle 7: Beurteilungspegel L_{r,090} der Zusatzbelastung

Wie den Berechnungsergebnissen zu entnehmen ist, liegt der Beurteilungspegel an den Immissionspunkten IP 01, IP 02, IP 06 bis IP 09 und IP 14 um mindestens 15 dB unter dem jeweiligen Immissionsrichtwert. Diese Immissionspunkte befinden sich somit außerhalb des "erweiterten Einwirkungsbereiches" und werden nicht weiter untersucht.

Der Immissionspunkt IP 06 repräsentiert das zu den Möbelwerken Mastershausen nächstgelegene Wohnhaus in einem "Allgemeinen Wohngebiet". Dieser Immissionspunkt befindet sich, wie auch alle weiteren Wohnhäuser in dem "Allgemeinen Wohngebiet", außerhalb des "erweiterten Einwirkungsbereiches". Eine detaillierte Untersuchung der Vorbelastung ist daher nicht erforderlich.

Für den Immissionspunkt IP 14, welcher sich in unmittelbarer Nähe des Gewerbegebietes "Windorfer Straße" befindet, muss keine detaillierte Ermittlung der Vorbelastung erfolgen, da sich dieser bereits außerhalb des "erweiterten Einwirkungsbereiches" der geplanten Windenergieanlagen befindet.

9.2 Vor-, Zusatz- und Gesamtbelastung

Für die maßgeblichen Immissionspunkte werden nachfolgend die Berechnungsergebnisse für die Vor-, Zusatz- und Gesamtbelastung aufgelistet werden.

lmmissionspunkt	IRW Nacht [dB(A)]	Vor- belastung WEA [dB(A)]	Zusatz- belastung [dB(A)]	Gesamt- belastung [dB(A)]
IP 03 Brunnenweg 4	45	35,3	31,1	36,7
IP 04 Sonnenhof 3	45	31,6	34,1	36,0
IP 05 Balduinsecker Weg 14	40	33,6	26,2	34,4
IP 10 lm Acker 19	45	30,0	32,1	34,1
IP 11 Petry-Mühle	45	30,1	39,2	39,7
IP 12 Auf der Lex 5	40	36,0	32,8	37,7
IP 13 Bucher Weg 16	40	35,1	34,0	37,6
IP 15 Petryhof	45	32,8	41,7	42,2
IP 16 Lindenhof (NO)	45	30,5	44,2	44,4
IP 17 Lindenhof (NW)	45	30,5	44,1	44,3

Tabelle 8: Beurteilungspegel L_{r,o90}

In Tabelle 9 werden die Beurteilungspegel (gerundet) den jeweiligen Immissionsrichtwerten gegenübergestellt

lmmissionspunkt	IRW / Nacht [dB(A)]	Gesamtbelastung [dB(A)]	∆L IRW-Gesamt- belastung [dB]
IP 03 Brunnenweg 4	45	37	8
IP 04 Sonnenhof 3	45	36	9
IP 05 Balduinsecker Weg 14	40	34	6
IP 10 Im Acker 19	45	34	11
IP 11 Petry-Mühle	45	40	5
IP 12 Auf der Lex 5	40	38	2
IP 13 Bucher Weg 16	40	38	2
IP 15 Petryhof	45	42	3
IP 16 Lindenhof (NO)	45	44	1
IP 17 Lindenhof (NW)	45	44	1

Tabelle 9: Vergleich mit den zulässigen Immissionsrichtwerten

Wie die Berechnungsergebnisse zeigen, wird der jeweilige Immissionsrichtwert während der Nachtzeit an den zehn maßgeblichen Immissionspunkten nicht überschritten. Die Beurteilungspegel der Gesamtbelastung liegen an allen Immissionspunkten um mindestens 1 dB unter dem jeweiligen Immissionsrichtwert.

Die Immissionspunkte IP 12 und IP 13 befinden sich im Süden der Ortschaft Mörsdorf. Aufgrund der Entfernung zum nördlich von Mörsdorf liegenden Gewerbegebiet

Windorfer Straße wird davon ausgegangen, dass keine immissionsrelevante Vorbelastung durch das Gewerbegebiet hervorgerufen wird.

Während der Tageszeit liegen die Beurteilungspegel der Gesamtbelastung (alle Windenergieanlagen) an allen Immissionspunkten um mindestens 12 dB unter dem jeweiligen Immissionsrichtwert (siehe Zusammenfassung im Anhang).

Aus Sicht des Schallimmissionsschutzes bestehen unter den dargestellten Bedingungen keine Bedenken gegen die Errichtung und den Betrieb der acht geplanten Windenergieanlagen.

10. Qualität der Prognose

Für eine Schallimmissionsprognose fordert die TA-Lärm eine Aussage zur Prognosequalität. Anforderungen an Art und Umfang der Prognosequalität werden nicht näher beschrieben. Dies hat zur Konsequenz, dass die Beurteilung einer Schallimmissionsprognose bei Genehmigungsbehörden unterschiedlich gehandhabt wird.

Aus diesem Grund wird in ^{10.)} gefordert, dass bei einer Schallimmissionsprognose der Nachweis zu führen ist, dass die obere Vertrauensbereichsgrenze aller Unsicherheiten (Emissionsdaten und Ausbreitungsrechnung) der nach TA-Lärm ermittelten Beurteilungspegel mit einer Wahrscheinlichkeit von 90 % den jeweils zulässigen Immissionsrichtwert einhält. Die Ermittlung der oberen Vertrauensbereichsgrenze erfolgt entsprechend der in dem "Windenergiehandbuch"^{25.)} (Windenergiehandbuch, M. Agatz, Stand Dezember 2013) beschriebenen Vorgehensweise für das Standardverfahren (Merkblatt "Qualität der Prognose").

Für den geplanten Anlagentyp Nordex N117/2400 liegen schalltechnische Messberichte für die berücksichtigten Betriebsvarianten vor (vgl. Abschnitt 6) vor. Die im Rahmen der Messungen ermittelten Schallleistungspegel liegen unterhalb der vom Hersteller angegebenen Schallleistungspegel. Grundlage der schalltechnischen Berechnungen sind die vom Hersteller angegebenen Schallleistungspegel zzgl. 2,5 dB Zuschlag für den oberen Vertrauensbereich.

Für die als Vorbelastung berücksichtigten Windenergieanlagen wurden ebenfalls Zuschläge für den oberen Vertrauensbereich berücksichtigt (vgl. Abschnitt 7).

Unter den dargestellten Bedingungen ist von einer ausreichenden Prognosesicherheit auszugehen.

Bericht-Nr. 2887-14-L4 Mörsdorf-Süd

11. Zusammenfassung

Am Standort Mörsdorf-Süd plant der Auftraggeber die Errichtung und den Betrieb von drei Windenergieanlagen des Anlagentyps Nordex N117/2400. Die drei Windenergieanlagen sind mit einer Nabenhöhe von 141 m geplant und haben jeweils eine Nennleistung von 2.400 kW.

In der näheren Umgebung des Standortes befinden sich insgesamt 41 weitere Windenergieanlagen in Planung bzw. in Betrieb, die als schalltechnische Vorbelastung berücksichtigt wurden. Die Daten dieser Windenergieanlagen sind in Abschnitt 7 zusammengefasst.

Für den geplanten Anlagentyp Nordex N117/2400 liegen für unterschiedliche Betriebsvarianten schalltechnische Messberichte und Herstellerangaben vor (siehe Abschnitt 6.1).

Für den Betrieb während der Tageszeit (06.00 - 22.00 Uhr) wurde für die drei geplanten Windenergieanlagen jeweils ein Schallleistungspegel von $L_{WA,90}$ = 107,5 dB(A) (Herstellerangabe L_{WA} = 105,0 dB(A) für den Betrieb mit 2.400 kW zzgl. 2,5 dB Zuschlag von für den oberen Vertrauensbereich) berücksichtigt.

Während der Nachtzeit (22.00 - 06.00 Uhr) müssen die drei geplanten Windenergieanlagen schallreduziert mit einer Leistung von 2.190 kW betrieben werden. Für diese Betriebsvariante wurde für die schalltechnischen Berechnungen jeweils ein Schallleistungspegel von $L_{WA,90}$ = 105,5 dB(A) (Herstellerangabe L_{WA} = 103,0 dB(A) zzgl. 2,5 dB Zuschlag für den oberen Vertrauensbereich) berücksichtigt.

Unter Berücksichtigung der o.g. Schallleistungspegel wurde für insgesamt 17 Immissionspunkte die durch die drei geplanten Windenergieanlagen bewirkte Zusatzbelastung prognostiziert. Die Berechnungsergebnisse zeigen, dass sich sieben von 17 Immissionspunkten bereits außerhalb des "erweiterten Einwirkungsbereichs" befinden (vgl. Abschnitt 9.1). Für die zehn verbleibenden maßgeblichen Immissionspunkte wurde rechnerisch die Vorbelastung ermittelt und die Gesamtbelastung bestimmt.

Während der Tageszeit liegen die Beurteilungspegel der Gesamtbelastung (alle Windenergieanlagen) an allen Immissionspunkten um mindestens 12 dB (vgl. Zusammenfassung im Anhang) unter dem jeweiligen Immissionsrichtwert.

Während der Nachtzeit liegen sieben der 17 Immissionspunkte außerhalb des "erweiterten Einwirkungsbereiches" der drei geplanten Windenergieanlagen. An den verbleibenden zehn maßgeblichen Immissionspunkten liegen die Beurteilungspegel der Gesamtbelastung um mindestens 1 dB unter dem jeweiligen Immissionsrichtwert (vgl. Abschnitt 9.2).

Damit ist der Nachweis geführt, dass unter den dargestellten Bedingungen aus Sicht des Schallimmissionsschutzes keine Bedenken gegen die Errichtung und den Betrieb der drei geplanten Windenergieanlagen bestehen.

Alle Berechnungsergebnisse und Beurteilungen gelten nur für die gewählte Konfiguration. Dieses Gutachten (Textteil und Anhang) darf nur in seiner Gesamtheit verwendet werden.

Aurich, den 18. September 2014

Bericht verfasst durch

Geprüft und freigegeben durch

Anhang

Übersichtskarten

Darstellung der Einwirkungsbereiche der geplanten WEA gemäß TA-Lärm (1 Seite) Windenergieanlagen und Immissionspunkte (1 Seite) Geplante Windenergieanlagen und Immissionspunkte (1 Seite)

Detailkarten Windenergieanlagen (11 Seiten)

Datensatz (7 Seiten)

Berechnungsergebnisse

Zusammenfassung (1 Seite)
Zusatzbelastung (4 Seiten)
Schallimmissionsraster / Zusatzbelastung (1 Seite)
Gesamtbelastung (17 Seiten)
Schallimmissionsraster / Gesamtbelastung (1 Seite)

Legende zu den Berechnungsergebnissen (1 Seite)

Schalltechnische Daten Nordex N117 / 2.400 kW

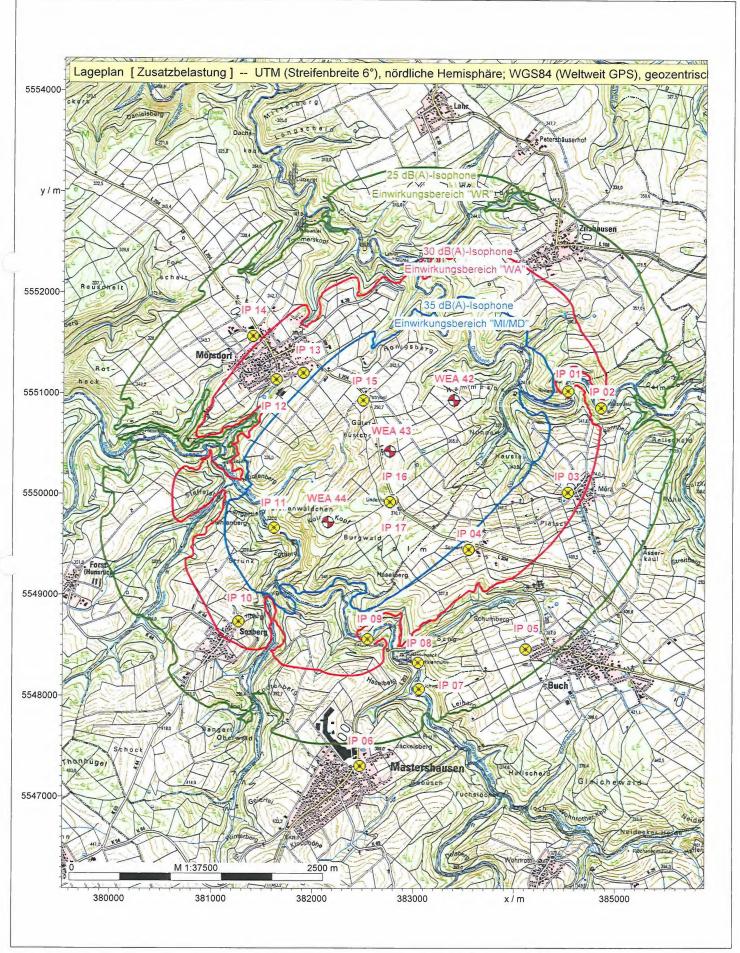
Herstellerangabe Nordex N117 / 2.400 kW (4 Seiten) Auszug aus dem Prüfbericht Nordex N117 / 2.400 kW (2 Seiten) Auszug aus dem Prüfbericht WICO 074SE513/01 (2 Seiten)

Schalltechnische Daten Nordex N117 / 2.400 kW / schalloptimierter Betrieb

Herstellerangabe Nordex N117 / 2.400 kW (2 Seiten) Auszug aus dem Prüfbericht WICO 074SE513/08 (3 Seiten) Auszug aus dem Prüfbericht WICO 074SE513/10 (3 Seiten)

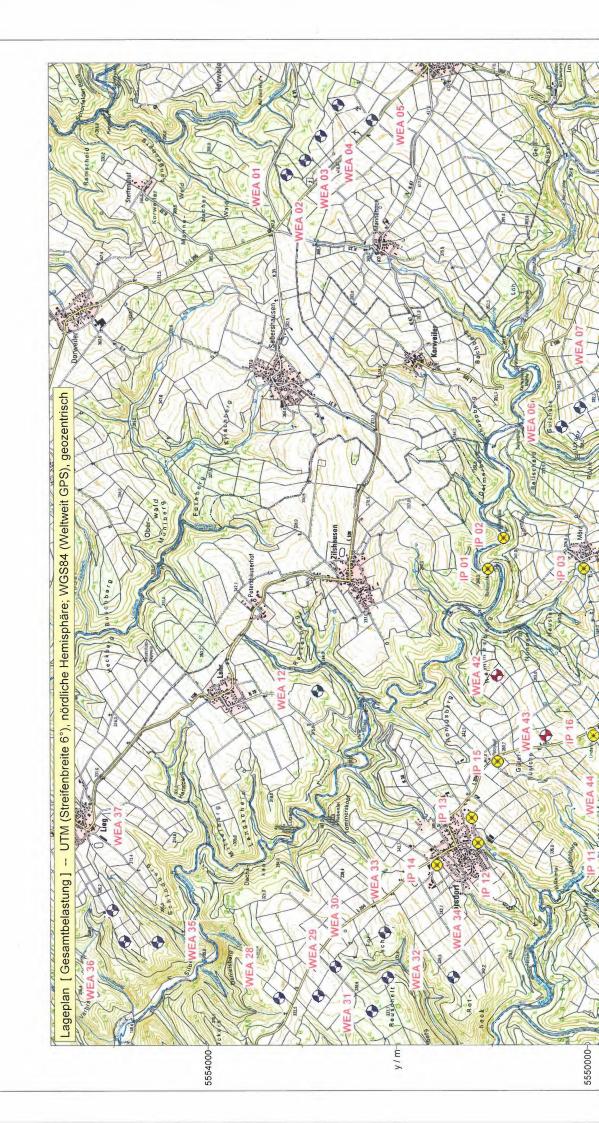
Literaturverzeichnis (2 Seiten)

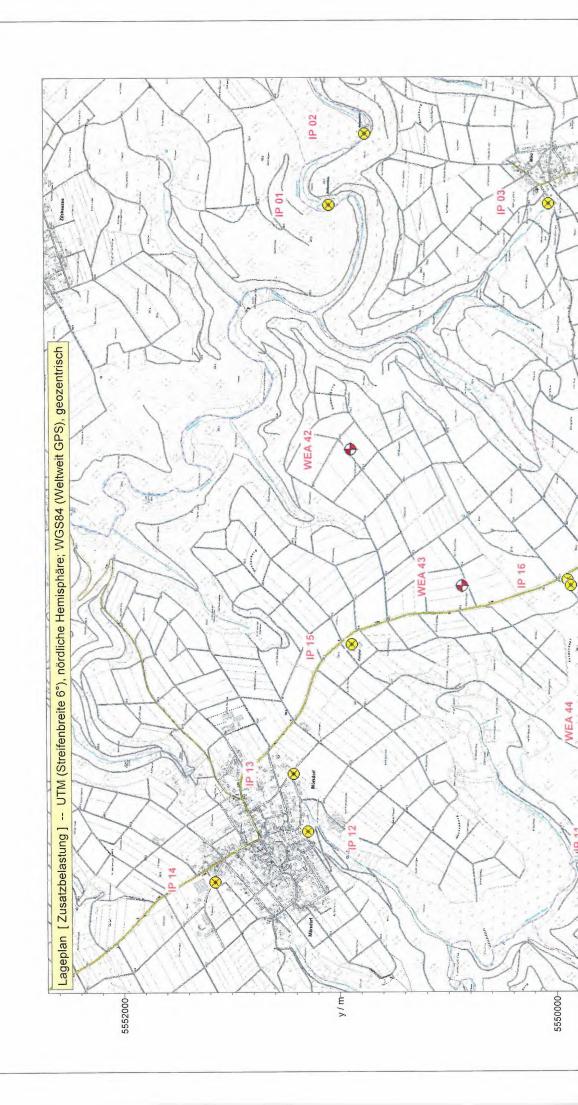
Bericht-Nr. 2887-14-L4 Mörsdorf-Süd



Übersichtskarten

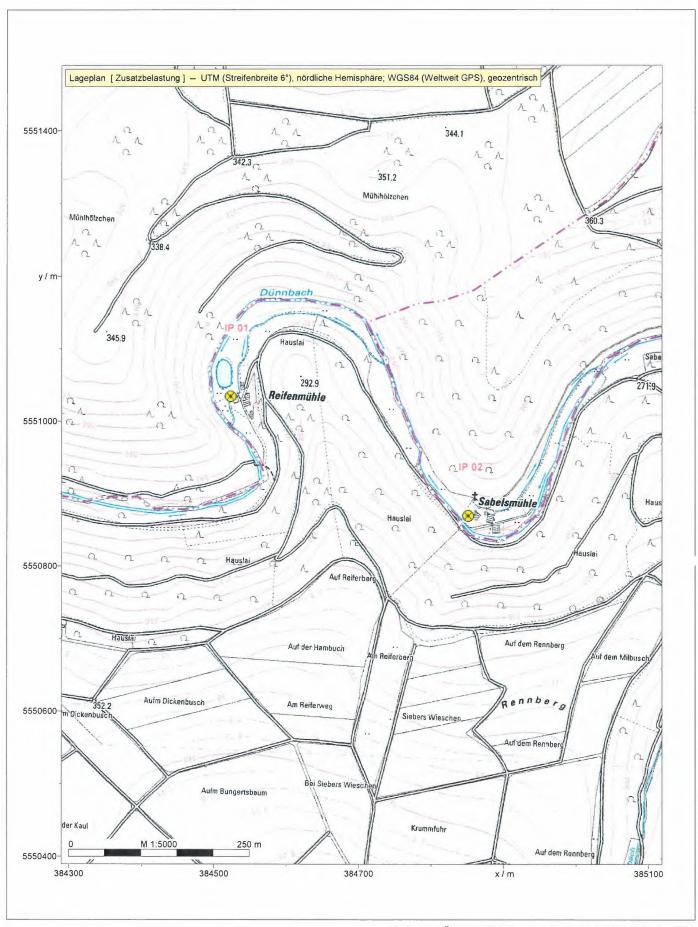
Ingenieurbüro für Energietechnik und Lärmschutz


Standort: Mörsdorf-Süd Übersichtskarte: Darstellung der Einwirkungsbereiche der geplanten WEA gemäß TA-Lärm



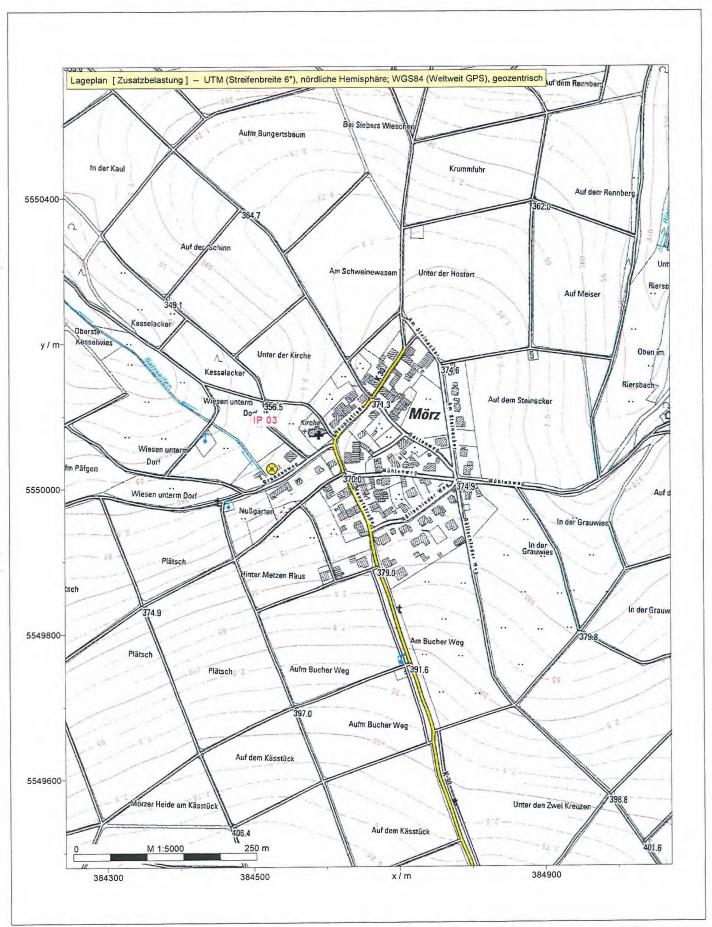
Standort: Mörsdorf-Süd Übersichtskarte: Windenergieanlagen und Immissionspunkte

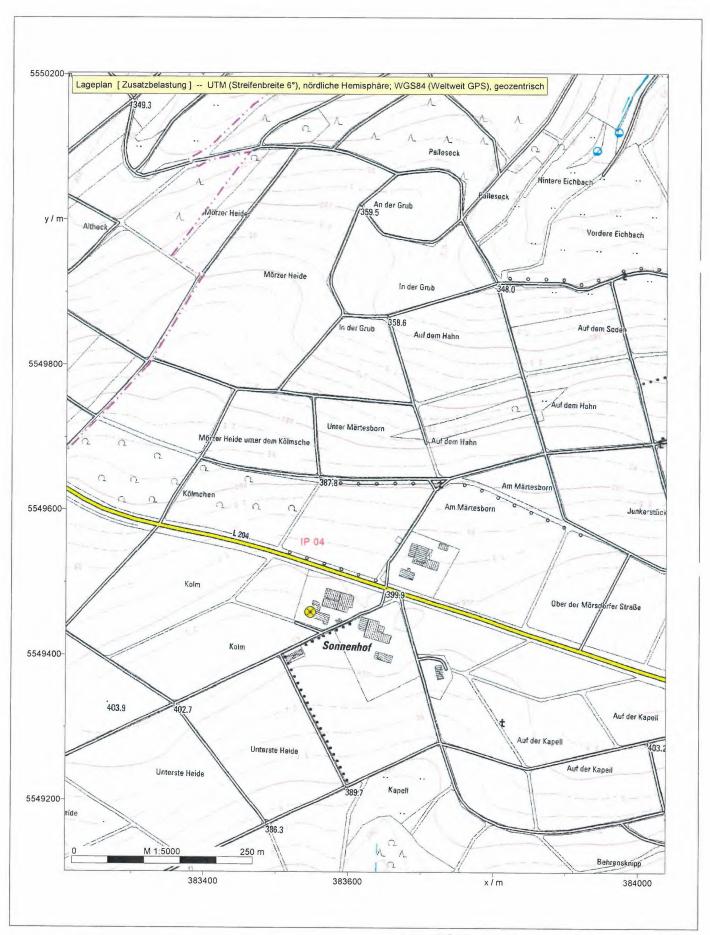
Standort: Mörsdorf-Süd Übersichtskarte: Geplante Windenergieanlagen und Immissionspunkte

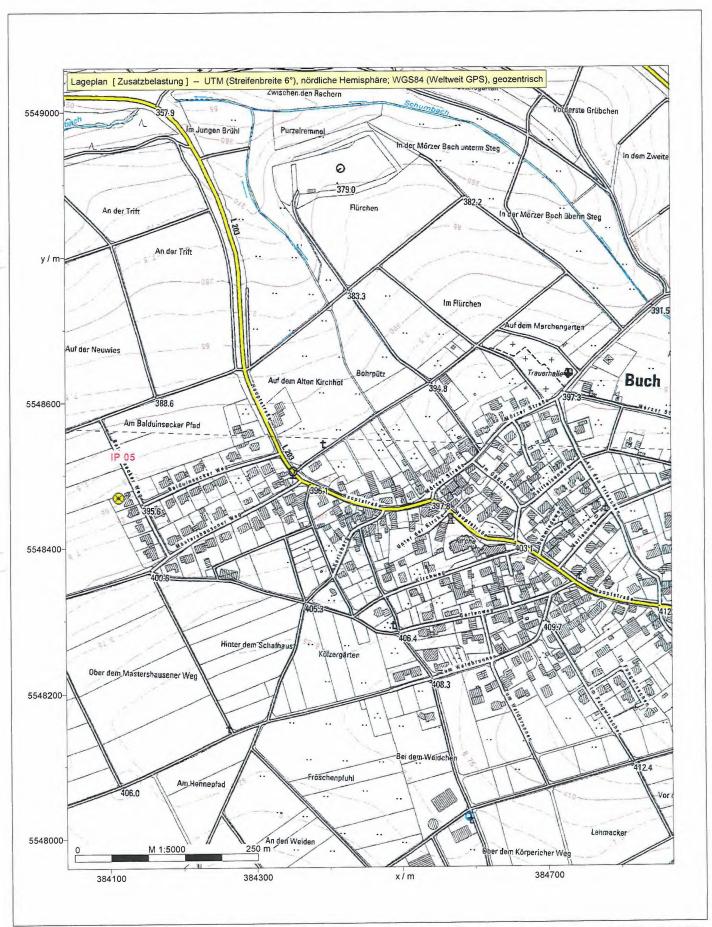


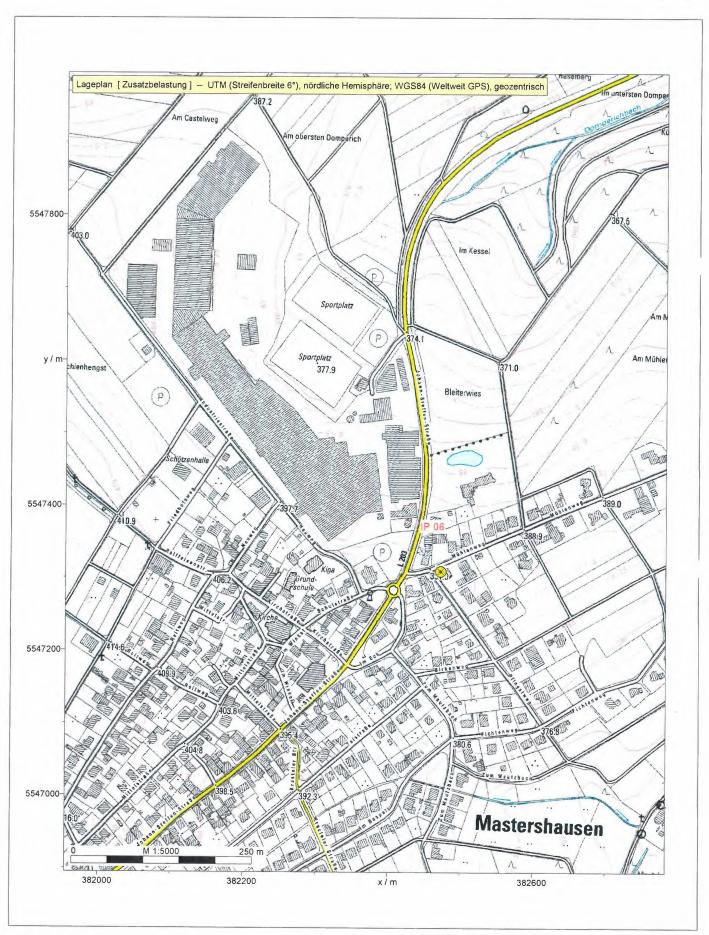
Detailkarten Windenergieanlagen

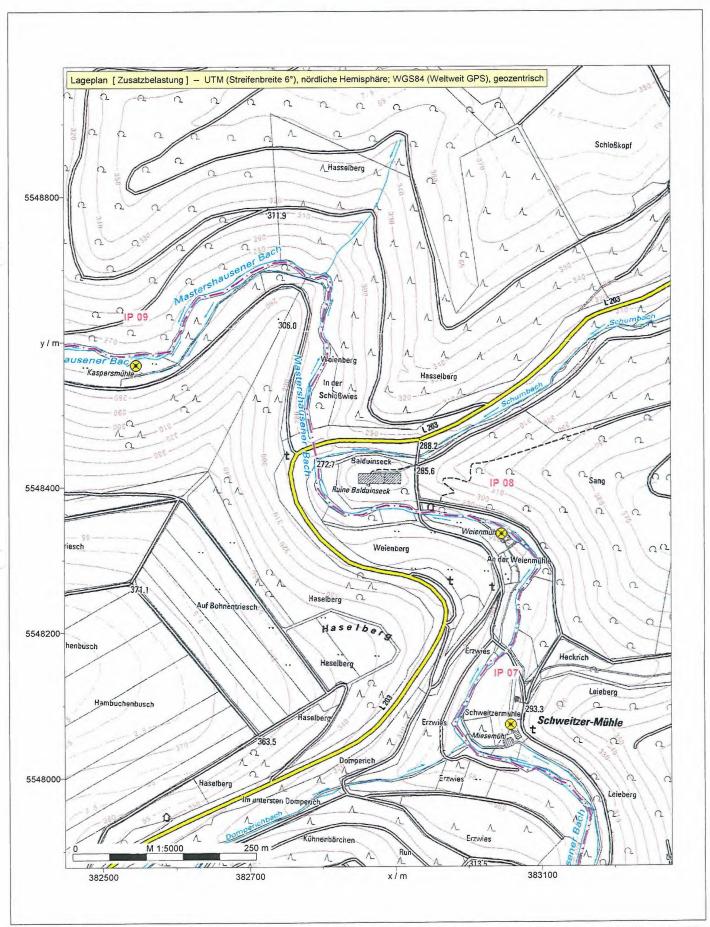
Ingenieurbüro für Energietechnik und Lärmschutz

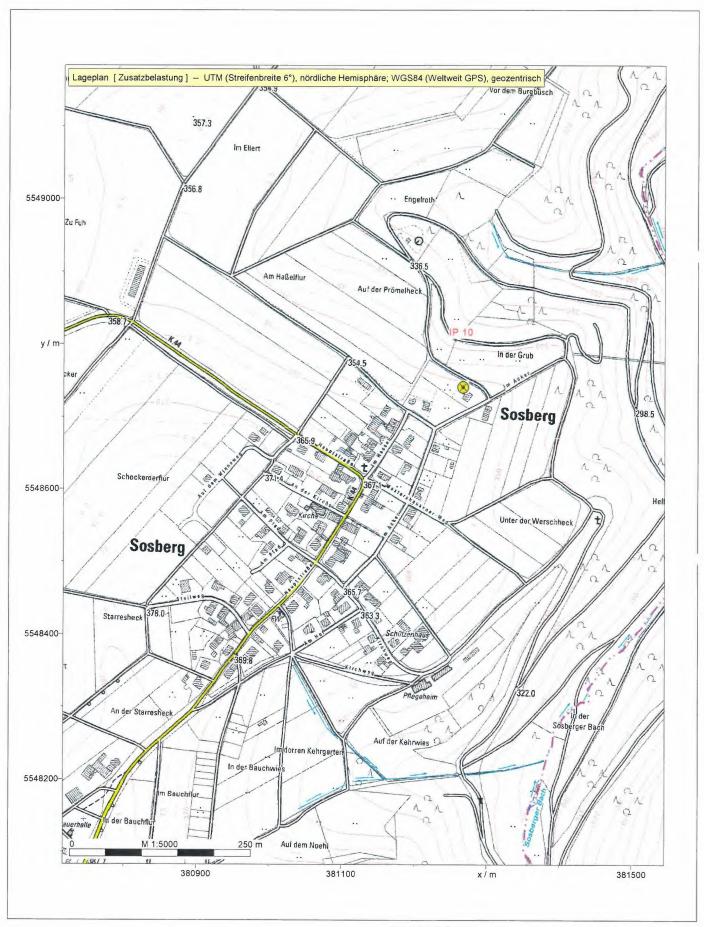

Standort: Mörsdorf-Süd Detailkarte 1: Immissionspunkte IP 01 und IP 02

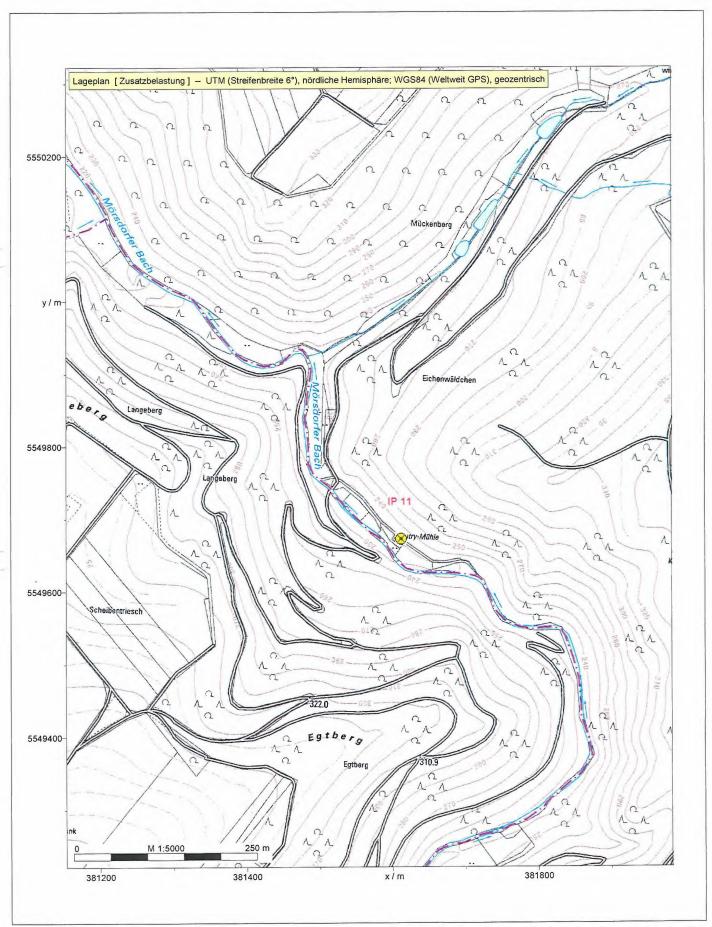

Standort: Mörsdorf-Süd Detailkarte 2: Immissionspunkt IP 03

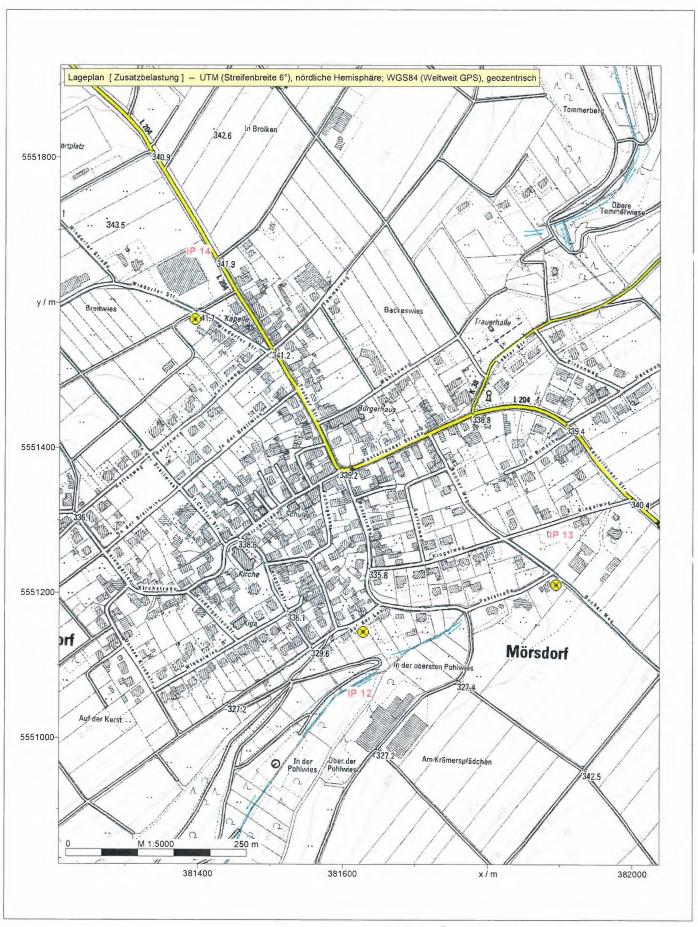

Standort: Mörsdorf-Süd Detailkarte 3: Immissionspunkt IP 04

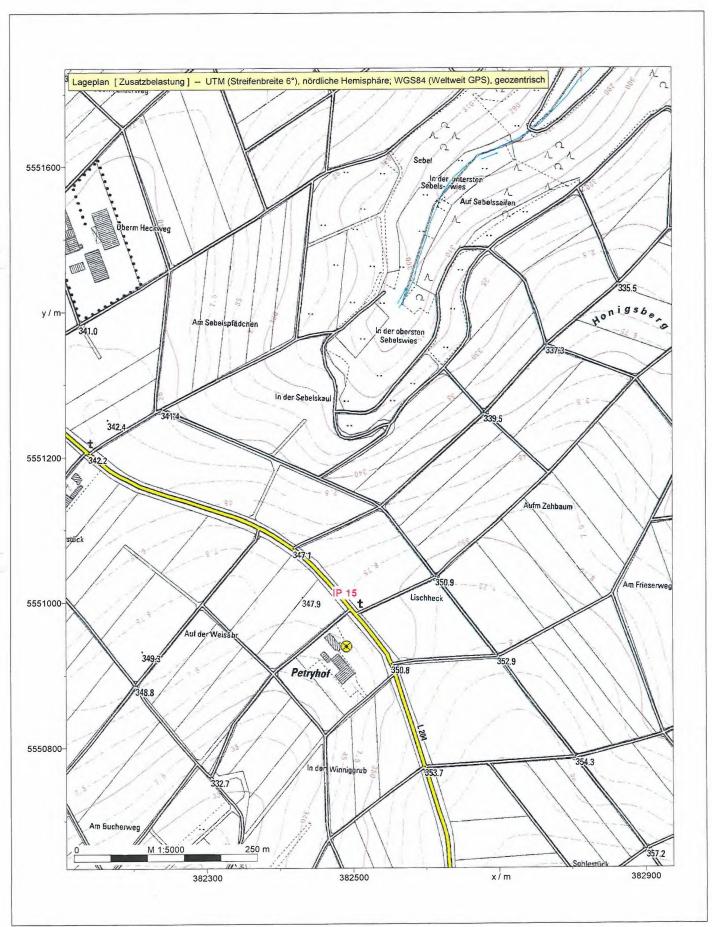

Standort: Mörsdorf-Süd Detailkarte 4: Immissionspunkt IP 05

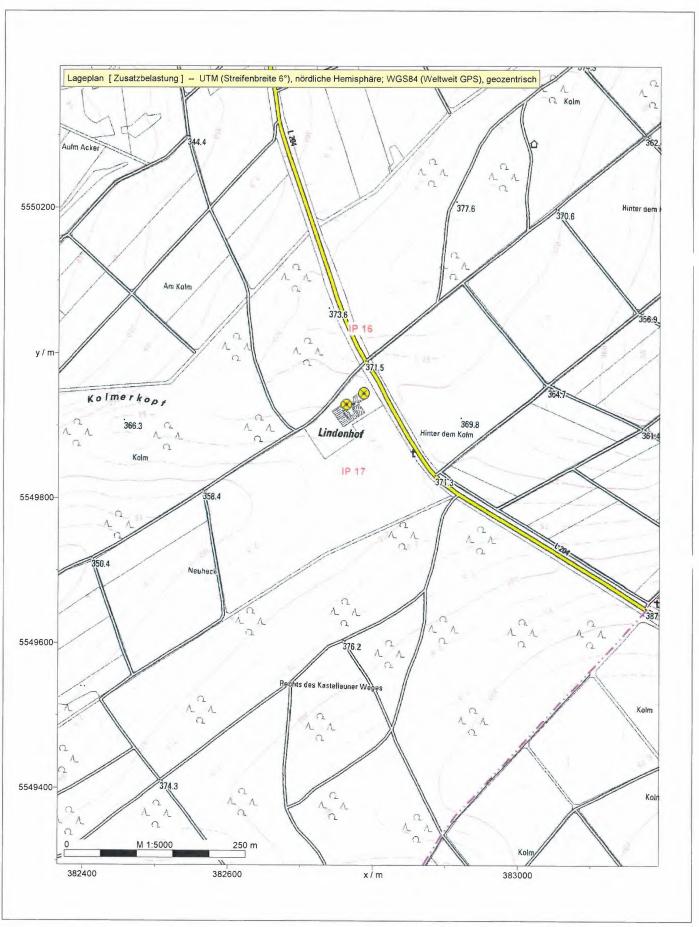

Standort: Mörsdorf-Süd Detailkarte 5: Immissionspunkt IP 06


Standort: Mörsdorf-Süd Detailkarte 6: Immissionspunkte IP 07 bis IP 09


Standort: Mörsdorf-Süd Detailkarte 7: Immissionspunkt IP 10


Standort: Mörsdorf-Süd Detailkarte 8: Immissionspunkt IP 11


Standort: Mörsdorf-Süd Detailkarte 9: Immissionspunkte IP 12 bis IP 14


Standort: Mörsdorf-Süd Detailkarte 10: Immissionspunkt IP 15

Standort: Mörsdorf-Süd Detailkarte 11: Immissionspunkte IP 16 und IP 17

Datensatz

Ingenieurbüro für Energietechnik und Lärmschutz

Projekt Eigenschaften									
Prognosetyp:	Lärm								
Prognoseart:	Lärm (nationale Normen)								
Beurteilung nach:	TA Lärm (1998)								

Elementgruppen	Basislastfall	Vorbelastung	Zusatzbelastung	Gesamtbelastung	
Immissionspunkte	+	+	+	+	
geplante WEA	+		+	+	
weitere WEA	+	+		+	
Höhenlinien	+	+	+	+	

Globale Parameter		Letzt	e direkte Eingabe	Astronomer (201		
Temperatur /°			10			
relative Feuchte /%		***************************************	70		***************************************	
Pauschale Meteorologie (Directive 2002/49/EC):	Tag	Abend	Nacht			
Pauschale Meteorologie (Directive 2002/49/EC):	0,00	0,00	0,00		***************************************	-

Parameter der Bibliothek: ISO 9613	Letzte direkte Eingabe	
Mit-Wind Wetterlage	Ja	
Vereinfachte Formel (Nr. 7.3.2) für Bodendämpfung bei		
frequenzabhängiger Berechnung	Nein	
frequenzunabhängiger Berechnung	Ja	- The state of the

Beurteilu	ngszeiträume	
T1	Werktag (6h-22h)	
T2	Sonntag (6h-22h)	
T3	Nacht (22h-6h)	

	Bezeichnung	Gruppe	Richtwerte /dB(A)	Nutzung	T1	T2	Т3	
			Geometrie: x /m	y /m		z(abs) /m		z(rel) /m
IPkt001	IP 01 Reifenmühle	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	384523.00	5551036.00		261.14		5.00
IPkt002	IP 02 Sabelsmühle	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	384851.00	5550870.00		265.00		5.00
IPkt003	IP 03 Brunnenweg 4	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	384526.00	5550028.00		366.39		5.00
IPkt004	IP 04 Sonnenhof 3	Immissionspunkte	Richtwerte /dB(A)	Kem/Dorf/ M isch	60.00	60.00	45.00	
		Geometrie:	383547.00	5549460.00		406.15		5.00
IPkt005	IP 05 Balduinseck.14	Immissionspunkte	Richtwerte /dB(A)	Allg. Wohngebiet	55.00	55.00	40.00	
		Geometrie:	384113.00	5548470.00	1	400.83		5.00
IPkt006	IP 06 Pfingstweg 1	Immissionspunkte	Richtwerte /dB(A)	Allg. Wohngebiet	55.00	55.00	40.00	
		Geometrie:	382472.00	5547310.00		395.00		5.00
IPkt007	IP 07 Schweitzermühl	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	383058.00	5548073.00	-	293.15	-	5.00
IPkt008	IP 08 Weienmühle	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	383046.00	5548336.00		285.00	-	5.00
IPkt009	IP 09 Kaspersmühle	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	382546.00	5548569.00		275.00		5.00
IPkt010	IP 10 Im Acker 19	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	******
		Geometrie:	381267.00	5548742.00		356.39	-	5.00
Pkt011	IP 11 Petry-Mühle	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	381612.00	5549674.00		238.38		5.00
Pkt012	IP 12 Auf der Lex 5	Immissionspunkte	Richtwerte /dB(A)	Allg. Wohngebiet	55.00	55.00	40.00	
		Geometrie:	381628.00	5551147.00		332.49		5.00
Pkt013	IP 13 Bucher Weg 16	Immissionspunkte	Richtwerte /dB(A)	Allg. Wohngebiet	55.00	55.00	40.00	
		Geometrie:	381894.00	5551212.00		335.09	**	2.50
Pkt014	IP 14 Windorf.Str. 7	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	381395.00	5551578.00	-	346.87		5.00
Pkt015	IP 15 Petryhof	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	382491.00	5550940.00		352.26		5.00
Pkt016	IP 16 Lindenhof (NO)	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	382786.00	5549946.00		376.98		7.50
Pkt017	IP 17 Lindenhof (NW)	Immissionspunkte	Richtwerte /dB(A)	Kern/Dorf/Misch	60.00	60.00	45.00	
		Geometrie:	382762.00	5549931.00		373.29		5.00

Punkt-SQ /IS	Control of the Contro	lo		Geometrie: x /m	y,	m	z(abs) /m		z(rel) /ı
	Bezeichnung	Gruppe		Geometrie. X/III	y ,		2(000) 111		2(101)
70:004	Beneichnung	WEA 01 E-82 E2		Wirkradius /m		99999.0	20	l	
ZQi001	Bezeichnung	weitere WEA		Emission ist		-	eistungspege	l (I w)	
	Gruppe	Weitere WEA	Tem: V	ariante	Emission	Dămmun	Zuschlag	Lw	
	Knotenzahl	1	EIIIV	anante		dB	dB	dB(A)	
	Länge /m				dB(A)	ав			
	Länge /m (2D)		Tag		104.00	-	2.20	106.20	
	Fläche /m²		Nacht		104.00	-	2.20	106.20	
			Ruhe		104.00	-	2.20	106.20	
			Geometrie:	388684.00	5553146.	00	546.13		138.
ZQi002	Bezeichnung	WEA 02 E-82 E2		Wirkradius /m	99999.	00			
	Gruppe	weitere WEA		Emission ist		Schalle	eistungspege	l (Lw)	
-	Knotenzahl	1	EmiV	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		104.00	-	2.20	106.20	
			Nacht		104.00		2.20	106.20	
	Fläche /m²						2.20	106.20	_
			Ruhe	1	104.00			100.20	420
			Geometrie:		5552950.		548.11	L	138.
ZQi003	Bezeichnung	WEA 03 E-82 E2		Wirkradius /m		99999.			
	Gruppe	weitere WEA		Emission ist			eistungspege		
	Knotenzahl	1	EmiV	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		104.00	-	2.20	106.20	
	Fläche /m²		Nacht		104.00	_	2.20	106.20	
EZQi004 Bezeio Grupp	i idone /III	<u> </u>	Ruhe		104.00		2.20	106.20	
			Geometrie:	390003 00	5552785.	not	544.80		138.4
			Geometre.					130.	
	Bezeichnung				Wirkradius /m		99999.00		
	Gruppe	weitere WEA		Emission ist			eistungspege		
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)	<u> </u>	Tag		104.00	-	2.20	106.20	
	Fläche /m²		Nacht		104.00	-	2.20	106.20	
			Ruhe	·····	104.00	_	2.20	106.20	
			Geometrie	389415.00	5552602.	00	562.67	7	138.4
	Bassishawa	IMEA OF Voctor VAA	WEA 05 Vestas V44 Wirkradius /n			99999.		J	
EZQi005	Bezeichnung			Emission ist			eistungspege	al /l w/)	
	Gruppe	weitere WEA	T=		Terror	Dämmun	Zuschlag	Lw	
	Knotenzahl	1	Emi\	/ariante	Emission		-		
	Länge /m				dB(A)	dB	-	dB(A)	
	Länge /m (2D)		Tag		100.40	-	4.60	105.00	
	Fläche /m²		Nacht		100.40	-	4.60	105.00	
			Ruhe		100.40	-	4.60	105.00	
			Geometrie	389257.00	5552243.	00	490.94	1	63.
EZQi006	Bezeichnung	WEA 06 Vestas V90		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist		Schall	eistungspege	el (Lw)	
		Weitere VVEA	Emi \	/ariante	Emission		Zuschlag	Lw	
	Knotenzahl		- EIIII\	. a.rance	dB(A)	dB	-	dB(A)	
	Länge /m	-			_	ub			
	Länge /m (2D)		Tag		103.40	-	2.00	105.40	
	Fläche /m²		Nacht		103.40	-	2.00	105.40	
			Ruhe		103.40		2.00	105.40	
			Geometrie	386023.00	5550257.	00	471.43	3	105.
EZQi007	Bezeichnung	WEA 07 Vestas V90		Wirkradius /m		99999	.00		
	Gruppe	weitere WEA		Emission ist		Schall	eistungspege	el (Lw)	
	Knotenzahl	1	Emi	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	1	dB(A)	
			Tag		103.40		2.00	105.40	-
	Länge /m (2D)				103.40		2.00	105.40	
	Fläche /m²		Nacht					105.40	
			Ruhe	1	103.40	-	2.00		105.
			Geometrie		5550062				
EZQi008	Bezeichnung	WEA 08 Vestas V90		Wirkradius /m		99999			
	Gruppe	weitere WEA		Emission ist		Schall	eistungspeg	el (Lw)	
<u> </u>	Knotenzahl	1	Emi	Variante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		103.40		2.00	105.40	
			lay		1,55.40				
			B14		102.40		. 2001	105.40	
	Fläche /m²		Nach Ruhe		103.40 103.40		2.00	105.40 105.40	

EZQi009	Bezeichnung	WEA 09 Vestas V-112		Wirkradius /m		99999	.00		
	Gruppe	weitere WEA		Emission ist			eistungspege	el (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun		Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		106.50	40	2.60	109.10	
	Fläche /m²		Nacht		106.50		2.60		
			Ruhe	-4	106.50	-		109.10	
				205000 001		00	2.60	109.10	
EZQi010	Danaiahawaa	1454 40 14 14 14 14	Geometrie	 	5549084.	-	526.33	3]	140.00
EZQIVIV	Bezeichnung	WEA 10 Vestas V112		Wirkradius /m		99999			
	Gruppe	weitere WEA		Emission ist			eistungspege	el (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		106.50	-	2.60	109.10	
	Fläche /m²		Nacht		106.50	-	2.60	109.10	
			Ruhe		106.50	-	2.60	109.10	
			Geometrie:	386239.00	5548843.	00	533.43		140.00
EZQi011	Bezeichnung	WEA 11 Vestas V112		Wirkradius /m		99999.	00	-	
	Gruppe	weitere WEA		Emission ist		Schall	eistungspege	el (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun		Lw	
	Länge /m)	dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag	***************************************	106.50	чD	2.60	109.10	7
	Fläche /m²		Nacht						
	r wone /III				106.50	-	2.60	109.10	
			Ruhe	T	106.50	-	2.60	109.10	
E70:046	BI-I		Geometrie:	386373.00	5548572.		552.30	1	140.00
EZQi012	Bezeichnung	WEA 12 3.2M114		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist			eistungspege	l (Lw)	
	Knotenzahl	1	EmiV	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.20		2.60	107.80	
	Fläche /m²		Nacht		105.20	-	2.60	107.80	
			Ruhe	······································	105.20	-	2.60	107.80	-
			Geometrie:	383232.00	5552826	20	465.03		143.00
EZQi013	Bezeichnung	WEA 13 E-82 E2 2,0		Wirkradius /m	0002020	99999.			140.00
	Gruppe	weitere WEA		Emission ist				5 (1 144)	
	Knotenzahl	1	Emi V	ariante	[Emissian]	Dämmun	eistungspege		
	Länge /m		EIIIIV	anante	Emission		2000	LW	
					dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		103.80	-	2.10	105.90	
	Fläche /m²		Nacht		103.80	-	2.10	105.90	
			Ruhe		103.80	-	2.10	105.90	
			Geometrie:	380713.00	5545796.	00	563.87		108.40
EZQi014	Bezeichnung	WEA 14 E-82 E2 2,0		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist		Schallle	eistungspege	l (Lw)	
	Knotenzahl	1	EmiV	ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		103.80	_	2.10	105.90	
	Fläche /m²		Nacht	· · · · · · · · · · · · · · · · · · ·	103.80	-	2.10	105.90	
			Ruhe		103.80		2.10	105.90	
			Geometrie:	380735.00	5545541.0	00	571.13		108.40
EZQi015	Bezeichnung	WEA 15 E-82 E2 2,0		Wirkradius /m	30,3041.0	99999.0		l · .	100.40
	Gruppe	weitere WEA		Emission ist					
	Knotenzahl	1	Irmi V	<u> </u>	I Facilities		eistungspege		
		· · · · · · · · · · · · · · · · · · ·	EINIV	ariante	Emission	Dämmun	Eddo: Ndg	Lw	
	Länge /m		-		dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		103.80	-	2.10	105.90	
	Fläche /m²		Nacht		103.80	-	2.10	105.90	
			Ruhe		103.80	-	2.10	105.90	
			Geometrie:	380764.00	5545266.0	00	571.45	1 2 1 2	98.40
EZQi016	Bezeichnung	WEA 16 E-82 E2		Wirkradius /m		99999.0	00		
	Gruppe	weitere WEA		Emission ist		Schallle	istungspegel	(Lw)	
	Knotenzahl	1	EmiV	ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		104.00		2.20	106.20	
	Fläche /m²		Nacht		104.00		2.20	106.20	
			Ruhe		104.00				
			Geometrie:	381024.00		-1	2.20	106.20	20.15
EZQi017	Bezeichnung		Ceometre.		5545326.0	_	566.27		98.40
		WEA 17 E-70 E4 2,0		Wirkradius /m		99999.0			
						1 Caballa	int mannage	(1)	
	Gruppe Knotenzahl	weitere WEA	EmiV	Emission ist	Emission		istungspegel Zuschlag	(LW)	

	Länge /m	_			dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		101.80		2.00	103.80	
	Fläche /m²		Nacht	30.00	101.80	-	2.00	103.80	
			Ruhe		101.80	-	2.00	103.80	
			Geometrie:	381552.00	5545435.0	00	575.72		113.50
EZQi018	Bezeichnung	WEA 18 E-82 E2		Wirkradius /m		99999.	00	- A - A - A - A - A - A - A - A - A - A	
	Gruppe	weitere WEA		Emission ist		Schalle	eistungspege	l (Lw)	
	Knotenzahl	1	FmiV	ariante	Emission	Dämmun	Zuschlag	Lw	
					dB(A)	dB	dB	dB(A)	
	Länge /m		Ton		104.00	QD.	2.20	106.20	
	Länge /m (2D)		Tag				2.20	106.20	
	Fläche /m²		Nacht		104.00		-		
			Ruhe	· · · · · · · · · · · · · · · · · · ·	104.00		2.20	106.20	
			Geometrie:	381710.00	5545260.0		571.66		108.40
EZQi019	Bezeichnung	WEA 19 E-70 E4 2,0		Wirkradius /m		99999.			
	Gruppe	weitere WEA		Emission ist			eistungspege		
	Knotenzahl	1	EmiV	'ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
, , , , , , , , , , , , , , , , , , , ,	Länge /m (2D)		Tag		101.80	_	2.00	103,80	
	Fläche /m²		Nacht		101.80	_	2.00	103.80	
			Ruhe	£ mount	101.80	-	2.00	103.80	
			Geometrie:	381443.00	5545072.0	00	569.07	1	86.00
E70/000	Pozoiohanna	WEA 20 E-70 E4 2.0	Sconicule.	Wirkradius /m	30,3072.	99999.			
EZQi020	Bezeichnung						eistungspege	al (I w/)	
	Gruppe	weitere WEA	1=	Emission ist	Emission	Dämmun		Lw Lw	
	Knotenzahl	1	EmiV	/ariante			3		
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		101.80	-	2.00	103.80	
	Fläche /m²	_	Nacht		101.80	-	2.00	103.80	
			Ruhe		101.80	-	2.00	103.80	
			Geometrie:	381381.00	5544773.0	00	577.91		98.20
EZQi021	Bezeichnung	WEA 21 E-70 E4 2,0		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist		Schall	eistungspege	el (Lw)	
	Knotenzahl	1	EmiV	/ariante	Emission	Dämmun	Zuschlag	Lw	
-	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		101.80		2.00	103.80	
			Nacht		101.80		2.00	103.80	
	Fläche /m²		Ruhe		101.80		2.00	103.80	
				204050.00	5544468.	001	574.33		86.00
	V		Geometrie:	381352.00 Wirkradius /m	5544468.	99999		2	00.00
EZQi022	Bezeichnung	WEA 22 E-70 E4 2,0	WEA 22 E-70 E4 2,0						
	Gruppe	weitere WEA		Emission ist			eistungspege		
	Knotenzahl	1	EmiV	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB		dB(A)	
	Länge /m (2D)		Tag		101.80	-	2.00	103.80	
	Fläche /m²		Nacht		101.80	-	2.00	103.80	
			Ruhe		101.80	-	2.00	103.80	
			Geometrie:	381337.00	5544162.	00	576.24	1	98.20
EZQi023	Bezeichnung	WEA 23 E-82 E2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Wirkradius /m		99999	.00		
	Gruppe	weitere WEA	-	Emission ist		Schall	eistungspege	el (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m			<u> </u>	dB(A)	dB		dB(A)	
	Länge /m (2D)		Tag	· · · · · · · · · · · · · · · · · · ·	104.00		2.20	106.20	-
-			Nacht		104.00	A., 6644	2.20	106.20	
	Fläche /m²				104.00		2.20	106.20	
			Ruhe	001011.00		001		_	108.40
			Geometrie:		5544128.		569.12	- 1	108.40
EZQi024	Bezeichnung	WEA 24 E-70 E4 2,0		Wirkradius /m		99999			
	Gruppe	weitere WEA		Emission ist			eistungspege		
		1	Emi\	/ariante	Emission	Dämmun	-	Lw	
	Knotenzahl		1		dB(A)	dB		dB(A)	
	Knotenzahl Länge /m						1	103.80	
			Tag	. ,	101.80		2.00		
	Länge /m		Tag Nacht				2.00	103.80	
	Länge /m Länge /m (2D)				101.80			103.80 103.80	
	Länge /m Länge /m (2D)		Nacht Ruhe		101.80 101.80	-	2.00	103.80	98.20
EZOI025	Länge /m Länge /m (2D) Fläche /m²		Nacht	: 381381.00	101.80 101.80 101.80	00 99999	2.00 2.00 575.9	103.80	98.20
EZQi025	Länge /m Länge /m (2D) Fläche /m² Bezeichnung	 WEA 25 E-70 E4 2,0	Nacht Ruhe	381381.00 Wirkradius /m	101.80 101.80 101.80	99999	2.00 2.00 575.9	103.80	98.20
EZQi025	Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe	WEA 25 E-70 E4 2,0 weitere WEA	Nacht Ruhe Geometrie	381381.00 Wirkradius/m Emission ist	101.80 101.80 101.80 5543860.	99999 Schall	2.00 2.00 575.9 .00	103.80	98.20
EZQI025	Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl	 WEA 25 E-70 E4 2,0	Nacht Ruhe Geometrie	381381.00 Wirkradius /m	101.80 101.80 101.80 5543860.	99999 Schall	2.00 2.00 575.9 .00 leistungspeg	103.80 7 el (Lw)	98.20
EZQi025	Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m	WEA 25 E-70 E4 2,0 weitere WEA	Ruhe Geometrie	381381.00 Wirkradius/m Emission ist	101.80 101.80 101.80 5543860. Emission dB(A)	99999 Schall	2.00 2.00 575.9 .00 leistungspeg Zuschlag dB	103.80 7 el (Lw) Lw dB(A)	98.20
EZQi025	Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl	WEA 25 E-70 E4 2,0 weitere WEA	Nacht Ruhe Geometrie	: 381381.00 Wirkradius /m Emission ist Variante	101.80 101.80 101.80 5543860.	99999 Schall	2.00 2.00 575.9 .00 leistungspeg	103.80 7 el (Lw)	98.20

E701020			Ruhe		101.80	-	2.00	103.80	
E70:020			Geometrie:	381439.00	5543561	.00	577.86		98.20
EZQi026	Bezeichnung	WEA 26 E-82 E2		Wirkradius /m		99999			
	Gruppe	weitere WEA		Emission ist			eistungspege	el (I w)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun		Lw	
	Länge /m				dB(A)	dB	-	dB(A)	
	Länge /m (2D)		Tag		104.00	40	2.20	106.20	
	Fläche /m²		Nacht		104.00		2.20	106.20	
			Ruhe		104.00	_	-		
			Geometrie:	381625.00	5543405	001	2.20	106.20	
EZQi027	Bezeichnung	M/EA 27 NI447 (NI04)	Geometrie.		5545405		573.87		98.40
LZQIOZI		WEA 27 N117 (N01)		Wirkradius /m		99999			
	Gruppe	weitere WEA	le	Emission ist	I e e e	Dämmun	eistungspege		
	Knotenzahl	1	EmiV	/ariante	Emission		Lucornug	Lw	
	Länge /m				dB(A)	dB		dB(A)	
	Länge /m (2D)		Tag		105.00	-	2.50	107.50	
	Fläche /m²		Nacht		105.00		2.50	107.50	
			Ruhe		105.00	-	2.50	107.50	
			Geometrie:	379480.00	5553326	00	472.77	<u>'</u>	141.00
EZQi028	Bezeichnung	WEA 28 N117 (N02)		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist			eistungspege	el (Lw)	
	Knotenzahl	1	EmiV	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00	-	2.50	107.50	
	Fläche /m²		Nacht		105.00	-	2.50	107.50	
			Ruhe		105.00	-	2.50	107.50	
			Geometrie:	379995.00	5553242.	00	464.90		141.00
EZQi029	Bezeichnung	WEA 29 N117 (N04)		Wirkradius /m	**************************************	99999.	00	· .	
	Gruppe	weitere WEA		Emission ist			eistungspege	l (Lw)	
	Knotenzahl	1	EmiV	'ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m		-		dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00		2.50		
	Fläche /m²		Nacht		105.00		2.50	107.50	
	Theore ///		Ruhe			-		107.50	
			Geometrie:	380019.00	105.00	001	2.50	107.50	
EZQi030	Bezeichnung	IA/E A 20 N/447 (N/05)	WEA 30 N117 (N05) V		5552826.		486.94	<u> </u>	141.00
LEGIOOU	Gruppe					99999.			
	Knotenzahl	Weitere VVCA	le	Emission ist	T = T	Dämmun	eistungspege		
			EmiV	ariante	Emission dB(A)		Zuschlag	Lw	
	Länge /m					dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00	-	2.50	107.50	
	Fläche /m²		Nacht		105.00				
					-		2.50	107.50	
			Ruhe		105.00		2.50	107.50	
			Ruhe Geometrie:	380324.00	-	_	2.50 480.87		141.00
EZQI031	Bezeichnung	WEA 31 N117 (N08)	Geometrie:	Wirkradius /m	105.00	99999.	2.50 480.87	107.50	141.00
EZQi031	Gruppe	WEA 31 N117 (N08) weitere WEA	Geometrie:		105.00	99999.	2.50 480.87 00 eistungspege	107.50	141.00
EZQI031	Gruppe Knotenzahi		Geometrie:	Wirkradius /m	105.00	99999.	2.50 480.87 00 eistungspege	107.50	141.00
EZQI031	Gruppe Knotenzahl Länge /m		Geometrie:	Wirkradius /m Emission ist	105.00 5552644.	99999.	2.50 480.87 00 eistungspege	107.50	141.00
EZQI031	Gruppe Knotenzahl Länge /m Länge /m (2D)	weitere WEA	Geometrie:	Wirkradius /m Emission ist	105.00 5552644.	99999. Schallle Dämmun	2.50 480.87 00 eistungspege Zuschlag	107.50	141.00
EZQI031	Gruppe Knotenzahl Länge /m	weitere WEA	Geometrie:	Wirkradius /m Emission ist	105.00 5552644. Emission dB(A)	99999. Schallle Dämmun	2.50 480.87 00 eistungspege Zuschlag dB	107.50 I (Lw) Lw dB(A)	141.00
EZQI031	Gruppe Knotenzahl Länge /m Länge /m (2D)	weitere WEA 1	Geometrie: EmiV	Wirkradius /m Emission ist	105.00 5552644. Emission dB(A) 105.00	99999. Schallle Dämmun	2.50 480.87 00 eistungspege Zuschlag dB 2.50	107.50 I (Lw) Lw dB(A) 107.50	141.00
EZQI031	Gruppe Knotenzahl Länge /m Länge /m (2D)	weitere WEA 1	Geometrie: EmiV Tag Nacht	Wirkradius /m Emission ist	105.00 5552644. Emission dB(A) 105.00	99999. Schallle Dämmun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50	107.50 Lw dB(A) 107.50 107.50	141.00
EZQI031	Gruppe Knotenzahl Länge /m Länge /m (2D)	weitere WEA 1	EmiV Tag Nacht Ruhe	Wirkradius /m Emission ist ariante	105.00 5552644. Emission dB(A) 105.00 105.00	99999. Schallle Dämmun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 2.50 476.39	107.50 Lw dB(A) 107.50 107.50	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	weitere WEA 1	EmiV Tag Nacht Ruhe	Wirkradius /m Emission ist ariante 379855.00	105.00 5552644. Emission dB(A) 105.00 105.00	99999.0 Schallle Dämmun dB - - - - - - - - 99999.0	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 2.50 476.39	107.50 Lw dB(A) 107.50 107.50	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung	weitere WEA 1 WEA 32 N117 (N09)	EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m	105.00 5552644. Emission dB(A) 105.00 105.00 105.00 5552259.	99999.0 Schallle Dämmun dB - - - - - - - - 99999.0	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 2.50 476.39 00 eistungspegel	107.50 LW LW dB(A) 107.50 107.50 107.50 L(LW)	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe	weitere WEA 1 WEA 32 N117 (N09) weitere WEA	EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist	105.00 5552644. Emission dB(A) 105.00 105.00 105.00 5552259.	99999. Schallle Dammun dB	2.50 480.87 00 eistungspege Zuschlag 48 2.50 2.50 476.39 00 eistungspegel Zuschlag	107.50 Lw dB(A) 107.50 107.50 107.50 LV LV LV LV LV LV LV	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1	EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist	105.00 5552644. Emission dB(A) 105.00 105.00 105.00 5552259. Emission dB(A)	99999.0 Schallle Dämmun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag	107.50 Lw dB(A) 107.50 107.50 107.50 LV LW dB(A)	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1	EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist	105.00 5552644. Emission dB(A) 105.00 105.00 5552259. Emission dB(A) 105.00	99999. Schallle Dammun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 476.39	107.50 Lw dB(A) 107.50 107.50 107.50 L(Lw) Lw dB(A) 107.50	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1	EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist	Emission 4B(A) 105.00 5552644. Emission 4B(A) 105.00 105.00 5552259. Emission 4B(A) 105.00 105.00 105.00	99999. Schallle Dammun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 2.50 476.39	107.50 Lw dB(A) 107.50 107.50 107.50 Lw dB(A) 107.50 107.50 107.50	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1	EmiV Tag Nacht Ruhe Geometrie: EmiV Tag Nacht Ruhe	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante	Emission dB(A) 105.00 5552644. Emission dB(A) 105.00 105.00 5552259. Emission dB(A) 105.00 105.00 105.00 105.00 105.00	99999. Schallle 00 99999. Schallle Dammun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 2.50 476.39	107.50 Lw dB(A) 107.50 107.50 107.50 L(Lw) Lw dB(A) 107.50	141.00
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m Länge /m (2D) Fläche /m²	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1	EmiV Tag Nacht Ruhe Geometrie: EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00	Emission 4B(A) 105.00 5552644. Emission 4B(A) 105.00 105.00 5552259. Emission 4B(A) 105.00 105.00 105.00	99999. Schallle 000 99999. Schallle Dammun 0B Schallle Dammun dB	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4	107.50 Lw dB(A) 107.50 107.50 107.50 Lw dB(A) 107.50 107.50 107.50	
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m Länge /m Bezeichnung	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1 WEA 33 N117 (N10)	EmiV Tag Nacht Ruhe Geometrie: EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m	Emission dB(A) 105.00 5552644. Emission dB(A) 105.00 105.00 5552259. Emission dB(A) 105.00 105.00 105.00 105.00 105.00	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 476.39 00 615409 488.79 00	107.50 Lw dB(A) 107.50 107.50 107.50 LW dB(A) 107.50 107.50 107.50 107.50	141.00
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m Länge /m Bezeichnung Gruppe Gruppe Gruppe Gruppe Gruppe	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1	EmiV Tag Nacht Ruhe Geometrie: EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m Emission ist	Emission dB(A) 105.00 1	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 468.79	107.50 Lw dB(A) 107.50 107.50 107.50 LW dB(A) 107.50 107.50 107.50 107.50 107.50	141.00
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m (AD) Fläche /m²	weitere WEA 1 WEA 32 N117 (N09) weitere WEA 1 WEA 33 N117 (N10)	EmiV Tag Nacht Ruhe Geometrie: EmiV Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m Emission ist	Emission dB(A) 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 468.79 00 eistungspegel Zuschlag	107.50 Lw dB(A) 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50	141.00
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m²	weitere WEA 1	EmiV. EmiV. Tag Nacht Ruhe Geometrie: EmiV. Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m Emission ist	Emission dB(A) 105.00	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag dB 2.50 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 476.39 00 eistungspegel Zuschlag dB 2.50 2.50 468.79 00 eistungspegel Zuschlag dB 2.50 468.79	107.50 Lw dB(A) 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50	141.00
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	weitere WEA 1	EmiV. Tag Nacht Ruhe Geometrie: EmiV. Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m Emission ist	Emission dB(A) 105.00	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag 476.39 00 eistungspegel Zuschlag 476.39 00 eistungspegel Zuschlag 488 2.50 2.50 468.79 00 eistungspegel Zuschlag 468.79 00 eistungspegel Zuschlag 468.79	107.50 Lw dB(A) 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50	141.00
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m²	weitere WEA 1	EmiV. Tag Nacht Ruhe Geometrie: EmiV. Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m Emission ist	Emission dB(A) 105.00	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag 476.39 00 eistungspegel Zuschlag 476.39 00 eistungspegel Zuschlag 488 2.50 2.50 468.79 00 eistungspegel Zuschlag 468.79 00 cistungspegel Zuschlag 468.79 00 cistungspegel Zuschlag 488 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50	I (Lw) Lw dB(A) 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50	141.00
EZQI032	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	weitere WEA 1	EmiV. Tag Nacht Ruhe Geometrie: EmiV. Tag Nacht Ruhe Geometrie:	Wirkradius /m Emission ist ariante 379855.00 Wirkradius /m Emission ist ariante 380207.00 Wirkradius /m Emission ist	Emission dB(A) 105.00	99999.00 Schallle Dammun	2.50 480.87 00 eistungspege Zuschlag 476.39 00 eistungspegel Zuschlag 476.39 00 eistungspegel Zuschlag 488 2.50 2.50 468.79 00 eistungspegel Zuschlag 468.79 00 eistungspegel Zuschlag 468.79	107.50 Lw dB(A) 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50 107.50	141.00

		1		Emission ist	·	Coholile	oist ingenoge	d (1 ve)	
,	Gruppe	weitere WEA	le:)	Emission ist		Dämmun	eistungspege		-
	Knotenzahl	1	EmiV	/ariante	Emission		Zuschlag	LW	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00	-	2.50	107.50	
	Fläche /m²		Nacht		105.00		2.50	107.50	
			Ruhe		105.00		2.50	107.50	
			Geometrie:	380212.00	5551403.0	00	472.48	3	141.00
EZQi035	Bezeichnung	WEA 35 N117		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist		Schalle	eistungspege	l (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00	-	2.50	107.50	0
	Fläche /m²		Nacht		105.00	-	2.50	107.50	
			Ruhe	\$	105.00	-	2.50	107.50	
			Geometrie:	380586.00	5554529.0	00	432.85	i	141.00
EZQi036	Bezeichnung	WEA 36 N117	-	Wirkradius /m	-	99999.		1	
EZQ1030		weitere WEA		Emission ist			eistungspege	ol (1 w/)	
	Gruppe		Emi 1	/ariante	Emission	Dämmun	Zuschlag	Lw	*****
	Knotenzahl	1		ranante					
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00		2.50	107.50	
	Fläche /m²		Nacht	-, -, -, -, -, -, -, -, -, -, -, -, -, -	105.00		2.50	107.50	
			Ruhe		105.00	-	2.50	107.50	
			Geometrie:	380591.00	5554883.		461.00		141.00
EZQi037	Bezeichnung	WEA 37 N117		Wirkradius /m		99999.	00		
	Gruppe	weitere WEA		Emission ist			eistungspege	el (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		105.00	-	2.50	107.50	
	Fläche /m²		Nacht		105.00	-	2.50	107.50	
			Ruhe		105.00	-	2.50	107.50	
			Geometrie:	380922.00	5555007.0	00	471.00		141.00
EZQi038	Bezeichnung	WEA 38 E-101	Comound	Wirkradius /m		99999.		-	
EZQIOSO		weitere WEA		Emission ist			eistungspege	al (I w)	
	Gruppe		Emi 1	/ariante	Emission	Dämmun		Lw	****
	Knotenzahl	1	EmiV	ranante	+				
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		104.80		2.50	107.30	
	Fläche /m²		Nacht		104.80		2.50	107.30	
			Ruhe		104.80		2.50	107.30	
			Geometrie:	383507.00	5544818.		540.39	9	135.40
EZQi039	Bezeichnung	WEA 39 E-101		Wirkradius /m		99999.	00	-	
	Gruppe	weitere WEA		Emission ist			eistungspege	el (Lw)	
	Knotenzahl	1	Emi\	/ariante	Emission	Dämmun	Zuschlag	Lw	
	Länge /m				dB(A)	dB	dB	dB(A)	
	Länge /m (2D)		Tag		104.80	-	2.50	107.30	
	Fläche /m²		Nacht		104.80	_	2.50	107.30	
			Ruhe		104.80	-	2.50	107.30	
			Geometrie:	383835.00	5544518.	00	557.24	1	135.40
EZQi040	Bezeichnung	WEA 40 E-101		Wirkradius /m		99999.		<u></u>	
							eistungspege	el (Lw)	***************************************
		weitere WFA				Schaill		1/	
	Gruppe	weitere WEA	Fmi -\	Emission ist	Emission	Dämmun	Zuschlag	L.w	
	Gruppe Knotenzahl	1	Emi\		Emission dB(A)	Dämmun		dB(A)	
	Gruppe Knotenzahl Länge /m	weitere WEA		Emission ist	dB(A)		dB	dB(A)	
	Gruppe Knotenzahl Länge /m Länge /m (2D)	1	Tag	Emission ist /ariante	dB(A) 104.80	Dämmun	dB 2.50	dB(A)	
	Gruppe Knotenzahl Länge /m	1	Tag Nacht	Emission ist /ariante	dB(A) 104.80 104.80	Dämmun	dB 2.50 2.50	dB(A) 107.30 107.30	
	Gruppe Knotenzahl Länge /m Länge /m (2D)	1	Tag Nacht Ruhe	Emission ist /ariante	dB(A) 104.80 104.80 104.80	Dämmun dB -	dB 2.50 2.50 2.50	dB(A) 107.30 107.30 107.30	405.15
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	1	Tag Nacht	Emission ist /ariante	dB(A) 104.80 104.80	Dämmun dB - - -	dB 2.50 2.50 2.50 2.50 555.40	dB(A) 107.30 107.30 107.30	135.40
EZQi041	Gruppe Knotenzahl Länge /m Länge /m (2D)	1	Tag Nacht Ruhe	Emission ist /ariante 382750.00 Wirkradius /m	dB(A) 104.80 104.80 104.80	Dämmun dB 00 99999	dB 2.50 2.50 2.50 555.40	dB(A) 107.30 107.30 107.30	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	1	Tag Nacht Ruhe Geometrie	Emission ist /ariante 382750.00 Wirkradius /m Emission ist	dB(A) 104.80 104.80 104.80 5544946	Dämmun dB - - - 00 99999. Schalli	dB 2.50 2.50 2.50 555.40 00 eistungspege	dB(A) 107.30 107.30 107.30	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung	1 WEA 41 E-101	Tag Nacht Ruhe Geometrie	Emission ist /ariante 382750.00 Wirkradius /m	dB(A) 104.80 104.80 104.80	Dämmun dB 00 99999 Schalll Dämmun	dB 2.50 2.50 2.50 555.40 00 eistungspege Zuschlag	dB(A) 107.30 107.30 107.30	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe	1 WEA 41 E-101 weitere WEA	Tag Nacht Ruhe Geometrie	Emission ist /ariante 382750.00 Wirkradius /m Emission ist	dB(A) 104.80 104.80 104.80 5544946	Dämmun dB - - - 00 99999. Schalli	dB 2.50 2.50 2.50 555.40 00 eistungspege Zuschlag	dB(A) 107.30 107.30 107.30	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl	1 WEA 41 E-101 weitere WEA	Tag Nacht Ruhe Geometrie	Emission ist /ariante 382750.00 Wirkradius /m Emission ist	dB(A) 104.80 104.80 104.80 5544946.	Dämmun dB 00 99999 Schalll Dämmun	dB 2.50 2.50 2.50 555.40 00 eistungspege Zuschlag	dB(A) 107.30 107.30 107.30	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m	1 WEA 41 E-101 weitere WEA	Tag Nacht Ruhe Geometrie:	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante	dB(A) 104.80 104.80 104.80 5544946.	Dämmun dB 00 99999 Schalll Dämmun	dB 2.50 2.50 2.50 555.40 00 eistungspege Zuschlag dB	dB(A) 107.30 107.30 107.30 0 107.30 b) cl (Lw) Lw dB(A)	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	1 WEA 41 E-101 weitere WEA	Tag Nacht Ruhe Geometrie. Emi\	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante	dB(A) 104.80 104.80 5544946. Emission dB(A) 104.80	Dämmun dB 00 99999 Schalll Dämmun	dB 2.50 2.50 2.50 555.40 00 eistungspege Zuschlag dB 2.50	dB(A) 107.30 107.30 107.30 0 bl (Lw) Lw dB(A) 107.30	135.40
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D)	1 WEA 41 E-101 weitere WEA	Tag Nacht Ruhe Geometrie. Emi\ Tag Nacht	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante	dB(A) 104.80 104.80 104.80 5544946. Emission dB(A) 104.80	Dammun dB	dB 2.50 2.50 2.50 555.40 00 eistungspege Zuschlag dB 2.50 2.50	dB(A) 107.30 107.30 107.30 0] el (Lw) Lw dB(A) 107.30 107.30	
EZQi041	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m²	1	Tag Nacht Ruhe Geometrie: Emi\ Tag Nacht Ruhe	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante	dB(A) 104.80 104.80 104.80 5544946. Emission dB(A) 104.80 104.80	Dammun dB	dB 2.50 2.50 555.40 00 eistungspege dB 2.50 2.50 2.50 2.50 553.50	dB(A) 107.30 107.30 107.30 0] el (Lw) Lw dB(A) 107.30 107.30	
	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m Länge /m (2D) Fläche /m²	1	Tag Nacht Ruhe Geometrie: Emi\ Tag Nacht Ruhe	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante 383215.00 Wirkradius /m	dB(A) 104.80 104.80 104.80 5544946. Emission dB(A) 104.80 104.80	Dammun dB	dB 2.50 2.50 555.40 00 eistungspege dB 2.50 2.50 2.50 2.50 553.50 00	dB(A) 107.30 107.30 107.30 0 107.30 0 107.30 107.30 107.30	
EZQi041	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung	1	Tag Nacht Ruhe Geometrie: Emi\ Tag Nacht Ruhe Geometrie	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante 383215.00 Wirkradius /m Emission ist	dB(A) 104.80 104.80 104.80 5544946. Emission dB(A) 104.80 104.80 5545014.	Dammun dB	dB 2.50 2.50 555.40 00 eistungspeg dB 2.50 2.50 2.50 553.50 00 eistungspegegeestung	dB(A) 107.30 107.30 107.30 0 107.30 0 107.30 107.30 107.30 107.30	
EZQi041	Gruppe Knotenzahl Länge /m Länge /m (2D) Fläche /m² Bezeichnung Gruppe Knotenzahl Länge /m Länge /m Länge /m (2D) Fläche /m²	1	Tag Nacht Ruhe Geometrie: Emi\ Tag Nacht Ruhe Geometrie	Emission ist /ariante 382750.00 Wirkradius /m Emission ist /ariante 383215.00 Wirkradius /m	dB(A) 104.80 104.80 104.80 5544946. Emission dB(A) 104.80 104.80	Dammun dB	dB 2.50 2.50 555.40 00 eistungspege	dB(A) 107.30 107.30 107.30 0 107.30 0 107.30 107.30 107.30	135.40

	Länge /m (2D)		Tag		105.00	-	2.50	107.50		
	Fläche /m²		Nacht		103.00		2.50	105.50		
			Ruhe		105.00	-	2.50	107.50		
		G	Seometrie:	383394.00	5550939.	00	489.29		141.00	
EZQi043	Bezeichnung	WEA 43 N117/2400		Wirkradius /m		99999.	99999.00			
	Gruppe	geplante WEA		Emission ist		Schalle	Schallleistungspegel (Lw)			
	Knotenzahl	1	EmiV	ariante	Emission	Dämmun	Zuschlag	Lw		
	Länge /m	MAR.		***************************************	dB(A)	₫B	dB	dB(A)		
	Länge /m (2D)		Tag		105.00	_	2.50	107.50		
	Fläche /m²		Nacht		103.00	-	2.50	105.50		
			Ruhe		105.00	-	2.50	107.50		
		G	eometrie:	382761.00	5550429.	00	504.41		141.00	
EZQi044	Bezeichnung	WEA 44 N117/2400		Wirkradius /m		99999.00				
	Gruppe	geplante WEA		Emission ist		Schalle	Schallleistungspegel (Lw)			
	Knotenzahl	1	EmiV	ariante	Emission	Dämmun	Zuschlag	Lw		
	Länge /m				dB(A)	dB	dB	dB(A)		
100	Länge /m (2D)		Tag		105.00	-	2.50	107.50		
	Fläche /m²		Nacht		103.00	-	2.50	105.50		
			Ruhe		105.00	-	2.50	107.50		
		G	Seometrie:	382148.00	5549725.	00	497.68		141.00	

Berechnungsergebnisse

Ingenieurbüro für Energietechnik und Lärmschutz

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Zusammenfassung (Windenergie)

Immissionsberechnung [Let	Lie anonto Enigabo				Werktag	(6h-22h)	Sonntag	(6h-22h)	Nacht (2	22h-6h)
1		, , , , , , , , , , , , , , , , , , ,	Z	Variante	IRW	Ges-Peg.	IRW	Ges-Peg.	IRW	Ges-Peg.
Immissionspunkt	x /m	y /m	/m	Valiante	/dB(A)	/dB(A)	/dB(A)	/dB(A)	/dB(A)	/dB(A)
D Od Deiferenüble		5551036,00	261,14	Vorbelastung	60,0	31,4	60,0	31,4	45,0	31,4
P 01 Reifenmühle	384851,00	1	265,00	Vorbelastung	60,0	31,3	60,0	31,3	45,0	31,3
P 02 Sabelsmühle	384526,00	1	366,39		60,0	35,4	60,0	35,4	45,0	35,3
P 03 Brunnenweg 4	383547,00	1	406,15	1	60,0	31,7	60,0	31,7	45,0	31,6
IP 04 Sonnenhof 3		5548470,00		Vorbelastung	55,0	35,6	55,0	37,3	40,0	33,6
IP 05 Balduinseck.14	382472,00	1	395,00		55,0	35,4	55,0	37,1	40,0	33,4
IP 06 Pfingstweg 1	1			Vorbelastung	60,0	29,5	60,0	29,5	45,0	29,5
P 07 Schweitzermühl	383058,00	4	285,00	1	60,0	28,4	60,0	28,4	45,0	28,3
IP 08 Weienmühle		5548336,00		1	60,0	28,5	60,0	28,5	45,0	28,4
IP 09 Kaspersmühle		5548569,00	275,00		60,0	30,1	60,0	30,1	45,0	30,0
IP 10 lm Acker 19	1	5548742,00	356,39	1		30,4	60,0	30,4	45,0	30,1
IP 11 Petry-Mühle	1	5549674,00	238,38		60,0		55,0	40,4	40,0	36,0
IP 12 Auf der Lex 5	1	5551147,00	332,49	1	55,0	38,7		39,4	40,0	35,3
IP 13 Bucher Weg 16		5551212,00	335,09		55,0	37,7	55,0			39,
IP 14 Windorf,Str. 7	381395,00	5551578,00	346,87	Vorbelastung	60,0	40,7	60,0	40,7	45,0	
IP 15 Petryhof	382491,00	5550940,00	352,26	1	60,0	33,2	60,0	33,2	45,0	32,
IP 16 Lindenhof (NO)	382786,00	5549946,00	376,98	Vorbelastung	60,0	30,8	60,0	30,8	45,0	30,
IP 17 Lindenhof (NW)	382762,00	5549931,00	373,29	Vorbelastung	60,0	30,7	60,0	30,7	45,0	30,
IP 01 Reifenmühle	384523,00	5551036,00	261,14	Zusatzbelastung	60,0	26,5	60,0	26,5	45,0	24,
IP 02 Sabelsmühle	384851,00	5550870,00	265,00	Zusatzbelastung	60,0	26,9	60,0	26,9	45,0	24,
IP 03 Brunnenweg 4	384526,00	5550028,00	366,39	Zusatzbelastung	60,0	33,1	60,0	33,1	45,0	31,
IP 04 Sonnenhof 3	383547,00	5549460,00	406,15	Zusatzbelastung	60,0	36,1	60,0	36,1	45,0	34,
IP 05 Balduinseck.14		5548470,00	400,83	Zusatzbelastung	55,0	30,2	55,0	31,9	40,0	26,
IP 06 Pfingstweg 1		5547310,00	395,00	Zusatzbelastung	55,0	27,7	55,0	29,4	40,0	23,
IP 07 Schweitzermühl		5548073,00	293,15	_	60,0	28,8	60,0	28,8	45,0	26,
IP 08 Weienmühle	1	5548336,00	285,00	- · · · · · ·	60,0	27,3	60,0	27,3	45,0	25,
	1	5548569,00	275,00	1	60,0	29,6	60,0	29,6	45,0	27,
IP 09 Kaspersmühle		5548742,00	356,39	1	60,0	34,1	60,0	34,1	45,0	32,
IP 10 Im Acker 19		5549674,00	238,38		60,0	41,2	60,0	41,2	45,0	39,
IP 11 Petry-Mühle		5551147,00	332,49		55,0	36,7	55,0	38,4	40,0	32,
IP 12 Auf der Lex 5		5551212,00	335,09	-	55,0	38,0	55,0	39,7	40,0	34,
IP 13 Bucher Weg 16			346,87		60,0	31,4	60,0	31,4	45,0	29,
IP 14 Windorf.Str. 7		5551578,00			60,0	43,7	60,0	43,7	45,0	41,
IP 15 Petryhof		5550940,00	352,26 376,98		60,0	46,2	60,0	46,2	45,0	44,
IP 16 Lindenhof (NO)		5549946,00		1	60,0	46,1	60,0	46,1	45,0	44,
IP 17 Lindenhof (NW)	382762,00	1		Zusatzbelastung	60,0	32,6	60,0	32,6	45,0	32,
IP 01 Reifenmühle		5551036,00	261,14		60,0	32,7	60,0	32,7	45,0	32,
IP 02 Sabelsmühle		5550870,00	265,00			1	60,0	37,4	45,0	36,
IP 03 Brunnenweg 4		5550028,00	366,39	1	60,0	37,4	60,0	37,4	45,0	36,
IP 04 Sonnenhof 3		5549460,00	406,15	1	60,0	37,4		1 1	40,0	1
IP 05 Balduinseck.14		5548470,00	400,83		55,0	1	55,0	38,4		33,
IP 06 Pfingstweg 1	382472,00	5547310,00	395,00	1	55,0	1	55,0	37,8	40,0	
IP 07 Schweitzermühl	383058,00	5548073,00	293,15	Gesamtbelastung	60,0	32,2	60,0	32,2	45,0	1
IP 08 Weienmühle	383046,00	5548336,00	285,00	Gesamtbelastung	60,0	30,9	60,0	30,9	45,0	1
IP 09 Kaspersmühle	382546,00	5548569,00	275,00	Gesamtbelastung	60,0	1 1	60,0	32,1	45,0	1
IP 10 Im Acker 19	381267,00	5548742,00	356,39		60,0	1 1	60,0	35,5	45,0	1
IP 11 Petry-Mühle	381612,00	5549674,00	238,38	Gesamtbelastung	60,0	1	60,0	41,6	45,0	
IP 12 Auf der Lex 5	381628,00	5551147,00	332,49	Gesamtbelastung	55,0	40,9	55,0	42,6	40,0	1
IP 13 Bucher Weg 16	1	5551212,00	335,09		55,0	40,8	55,0	42,5	40,0	1
IP 14 Windorf, Str. 7	1	5551578,00	346,8	-	60,0	41,2	60,0	41,2	45,0	l .
IP 15 Petryhof		5550940,00	352,26		60,0	44,0	60,0	44,0	45,0	42,
IP 16 Lindenhof (NO)		5549946,00	376,98		60,0	46,3	60,0	46,3	45,0	44,
IP 17 Lindenhof (NW)	1	5549931,00		Gesamtbelastung	60,0	1 1	60,0	1	45,0	44,

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Einzelpunktberechnung	Immissionsort: IP 01 Reifenmühle	Emissionsvariante: Nacht
	X = 384523,00 Y = 5551036,00	Z = 261,14
	Variante: Zugatzholochung	

Elementtyp:	Einzelschallquelle (ISO 9613)												*****	
Schallimmis	sionsberechnung nach ISO 9613								IfT=	lw+Dc-	Adiv - Aatm	- Agr - Afo	I - Ahous - A	har Cmot
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm /dB	Agr / dB	Afol / dB	Ahous /dB	Abar / dB	Cmet / dB	LfT /dB	LfT / dB(A)	LAT ges / dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1155,9		2.2	2.6	0.0	0.0	9.6	0.0	700	21,8	/ UD(A)
EZQi043	WEA 43 N117/2400	105,5	3,0	1879,4	76,5	3,6	3,8	0.0	0.0	5.3	0.0		19,3	
EZQi044	WEA 44 N117/2400	105,5	3,0	2723,1	79,7	5,2	4,3	0,0	0,0	3,0	0,0		16,3	
														24.5

Einzelpunktberechnung	Immissionsort: IP 02 Sabelsmühle	Emissionsvariante: Nacht
	X = 384851,00 Y = 5550870,00	Z = 265.00
	Variante: Zusatzbelastung	

Schallimmis	sionsberechnung nach ISO 9613								LfT =	Lw + Dc - A	Adiv - Aatm	- Agr - Afol	- Ahous - A	har - Cme
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LIT	LfT	LAT ges
		/ dB(A)	/dB	/m	/dB	/dB	/dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1475,8	74,4	2,8	2,9	0,0	0.0	4.0	0.0		24.5	7 20(7.)
EZQi043	WEA 43 N117/2400	105,5	3,0	2149,4	77,6	4,1	4.0	0.0	0.0	10.7	0.0		12,0	
EZQi044	WEA 44 N117/2400	105,5	3,0	2944,7	80,4	5,7	4,4	0.0	0,0	6.1	0,0		12,0	

Einzelpunktberechnung	Immissionsort: IP 03 Brunnenweg 4	Emissionsvariante: Nacht
	X = 384526,00 Y = 5550028,00	Z = 366,39
	Variante: Zusatzbelastung	

Elementtyp:														
Schallimmis	sionsberechnung nach ISO 9613								LfT =	Lw + Dc -	Adiv - Aatm	- Agr - Afo	- Ahous - A	har - Cme
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
		/ dB(A)	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1458,2	74,3	2,8	2,5	0,0	0,0	0.0	0.0		29,0	
EZQi043	WEA 43 N117/2400	105,5	3,0	1815,2	76,2	3,5	3,2	0,0	0.0	0.0	0.0		25.7	
EZQi044	WEA 44 N117/2400	105,5	3,0	2400,8	78,6	4,6	3,8	0,0	0,0	0,0	0,0		21,5	
														31,1

Einzelpunktberechnung	Immissionsort: IP 04 Sonnenhof 3	Emissionsvariante: Nacht
	X = 383547,00 Y = 5549460,00	Z = 406,15
	Variante: Zusatzbelastung	

Elementtyp:	Einzelschallquelle (ISO 9613)													
Schallimmis	sionsberechnung nach ISO 9613								Iff=	lw+Dc-	Adiv - Aatm	- Agr - Afo	I - Ahous - A	har - Cmet
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Crnet	LfT	LfT	LAT ges
		/ dB(A)	/ dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1489,2	74,5	2,9	2,8	0.0	0.0	0.0	0.0		28,4	1 40(1)
EZQi043	WEA 43 N117/2400	105,5	3,0	1251,6	72,9	2,4	2,6	0,0	0,0	0,0	0.0		30,6	
EZQi044	WEA 44 N117/2400	105,5	3,0	1426,8	74,1	2,7	3,0	0,0	0,0	0,0	0,0		28,7	
												VII.		34.1

Einzelpunktberechnung	Immissionsort: IP 05 Balduinseck.14		Emissionsvariante: Nacht
	X = 384113,00	Y = 5548470,00	Z = 400,83
	Variante: Zusatzbelastung		

Elementtyp:	Einzelschallquelle (ISO 9613)					***************************************								
Schallimmis	sionsberechnung nach ISO 9613								IfT=	Lw+Dc-	Adiy - Aatm	- Agr - Afo	I - Ahous - A	har - Cmet
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv /dB	Aatm / dB	Agr / dB	Afol / dB	Ahous /dB	Abar / dB	Cmet /dB	LfT /dB	LfT /dB(A)	LAT ges / dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	2573,1	79,2	5.0	3,8	0.0	0.0	0.0	0.0		20,6	
EZQi043	WEA 43 N117/2400	105,5	3,0	2382,5	78,5	4.6	3.7	0.0	0.0	0.0	0.0		21,7	
EZQi044	WEA 44 N117/2400	105,5	3,0	2333,6	78,4	4,5	3,7	0,0	0,0	0,0	0,0		22,0	
											***************************************			26.2

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Einzelpunktberechnung	Immissionsort: IP 06 Pfin X = 3824		Emissionsvariante: Nacht Z = 395,00
	Marianta: Zucatzho	dactura	

Elementtyp:	Einzelschallquelle (ISO 9613)								167-	I Da .	Adiv - Aatm	Agr. Afai	About A	har - Cmet
	sionsberechnung nach ISO 9613	1	Do	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar Abar	Cmet	LfT	LfT	LAT ges
Element	Bezeichnung	/ dB(A)	Dc /dB	/m	/dB	/dB	/dB	/dB	/dB	/ dB	/dB	/ dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	3745,5	82,5	7,2	4,0	0,0	0,0	0,0	0,0		14,8	
EZQI042 EZQI043	WEA 43 N117/2400	105,5	3,0	3134,3	80,9	6,0	3,8	0,0	0,0	0,0	0,0		17,7	
EZQI043 EZQi044	WEA 44 N117/2400	105,5	3,0	2438,8	78,7	4,7	3,3	0,0	0,0	0,0	0,0		21,8	23,8

Einzelp	ounktberechnung	Immissionsort	IP 07 Schweitzermühl X = 383058,00	Y = 5548073,00	Emissionsvariante: Nacht Z = 293,15
		Variante:	Zusatzbelastung		

Elementtyp:	Einzelschallquelle (ISO 9613)								16-	Luci Do	Adiv - Aatm	Agr. Afol	- Ahous - A	har - Cmel
	sionsberechnung nach ISO 9613 Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
Element	Bezeichnung	/ dB(A)	/dB	/m	/dB	/dB	/dB	/ dB	/dB	/dB	/dB	/ dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	2892,3	80,2	5,6	4,4	0,0	0,0	0,4	0,0		18,0	i
EZQI042	WEA 43 N117/2400	105.5	3,0	2384,0	78,5	4,6	4,2	0,0	0,0	0,6	0,0		20,6	i
EZQI043 EZQi044	WEA 44 N117/2400	105,5	3,0	1897,1	76,6	3,7	3,5	0,0	0,0	0,0	0,0		24,8	26,8
EZQIU44	VVEA 44 N 1 1/1/2400	1 230/01		1			,							

Einzelpunktberechnung	Immissionsort	IP 08 Weienmühl X = 383046,00	le Y = 5548336,00	Emissionsvariante: Nacht Z = 285,00
	Variante:	Zusatzbelastung		

Elementtyp:	Einzelschallquelle (ISO 9613)										A AC-1	Abarra 6	h Cmai
Schallimmis	sionsberechnung nach ISO 9613										Adiv - Aatm			
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
Liomont		/ dB(A)	/ dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/ dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	2634,1	79,4	5,1	4,5	0,0	0,0	13,1	0,0		6,5	
EZQi042	WEA 43 N117/2400	105.5	3,0	2123,7	77,5	4,1	4,3	0,0	0,0	6,8	0,0		15,8	
EZQI043 EZQI044	WEA 44 N117/2400	105.5	3,0	1667,6	75,4	3,2	3,6	0,0	0,0	1,5	0,0		24,7	
EZQIV44	VVCA 44 V 1/12400	1		لـــــــل										25,3

Einzelpunktberechnung	Immissionsort	IP 09 Kaspersmühle X = 382546,00	Y = 5548569,00	Emissionsvariante: Nacht Z = 275,00
	Variante:	Zusatzbelastung		

Elementtyp:	Einzelschallquelle (ISO 9613)										P. A.L.	A A6-1	Abaua A	har Cmat
Schallimmis	sionsberechnung nach ISO 9613												- Ahous - A	
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar /dB	Cmet / dB	LfT /dB	LfT / dB(A)	LAT ges / dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	2526,2	79,0	4,9	4,5	0,0	0,0	0,6	0,0		19,5	1
EZQI042 EZQI043	WEA 43 N117/2400	105,5	3,0	1886,4	76,5	3,6	4,2	0,0	0,0	4,8	0,0		19,4	
EZQi043	WEA 44 N117/2400	105,5	3,0	1242,7	72,9	2,4	3,2	0,0	0,0	4,0	0,0		26,0	27,6
LZQIOTI	TEST TO THE TOTAL STATE OF THE			-										i

Einzelpunktberechnung	Immissionsort: IP 10 Im Acker 19 X = 381267,00	Y = 5548742,00	Emissionsvariante: Nacht Z = 356,39
	Variante: Zusatzbelastung		

Einzelschallquelle (ISO 9613)													0
sionsberechnung nach ISO 9613								LfT =	Lw + Dc - A	Adiv - Aatm			
	l w	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
Dezeicilliding		/ dB	/m	/dB	/dB	/dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
WFA 42 N117/2400	105,5	3,0	3060,8	80,7	5,9	3,8	0,0	0,0	0,0	0,0		1	1
	105,5	3,0	2258,3	78,1	4,3	3,1	0,0	0,0	0,0	0,0			1
1	105,5	3,0	1327,6	73,5	2,6	1,2	0,0	0,0	0,0	0,0		31,3	32.
-	ionsberechnung nach ISO 9613 Bezeichnung WEA 42 N117/2400 WEA 43 N117/2400 WEA 44 N117/2400	ionsberechnung nach ISO 9613 Bezeichnung	Bezeichnung nach ISO 9613 Lw Dc // dB(A) // dB WEA 42 N117/2400 105, 5 3, 0 WEA 43 N117/2400 105, 5 3, 0	Bezeichnung nach ISO 9613 Lw	Bezeichnung nach ISO 9613 Lw Dc Abstand / dB(A) / dB / m / dB / m / dB	New Page 2017 New Page 2018 New Page 201	Bezeichnung nach ISO 9613 Lw	Bezeichnung nach ISO 9613 Lw Dc Abstand / dB /	Bezeichnung nach ISO 9613 Lw	Bezeichnung Lw Dc Abstand Adiv Aatm Agr Afol Afol Adar Adar Agr Afol Adar Ada	New Page New Page	New Page New Page	New Column New

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

C:		
Einzelpunktberechnung	Immissionsort: IP 11 Petry-Mühle	Emissionsvariante: Nacht
	X = 381612,00 Y = 5549674,00	Z = 238,38
	Variante: Zusatzbelastung	

Elementtyp:	Einzelschallquelle (ISO 9613)									*******				
Schallimmis	sionsberechnung nach ISO 9613						****	-10	Iff =	Lw + Dc -	Adiv - Aatm	- Agr - Afo	About 1	har Cmat
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm /dB	Agr / dB	Afol / dB	Ahous /dB	Abar /dB	Cmet / dB	LfT /dB	LfT	LAT ges
EZQi042	WEA 42 N117/2400	105,5		2199,7	77.8	4.2	4.4	0.0	0.0	15.2	0,0	/ 08	/dB(A) 6,9	/ dB(A)
EZQi043	WEA 43 N117/2400	105,5	3,0	1400,4	73,9	2,7	3,7	0,0	0,0	12,8	0,0		15,4	1
EZQi044	WEA 44 N117/2400	105,5	3,0	597,6	66,5	1,1	1,6	0,0	0,0	0,0	0,0		39,2	l .
									1					39.2

Einzelpunktberechnung	Immissionsort IP 12 Auf der Lex 5	Emissionsvariante: Nacht
	X = 381628,00 Y = 5551147,00	Z = 332,49
	Variante: Zusatzbelastung	

Schallimmis	sionsberechnung nach ISO 9613								LfT =	lw+Dc-A	Adiv - Aatm	- Agr - Afo	- Ahous - A	har - Cmet
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
		/ dB(A)	/ dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1785,1	76,0	3,4	3,5	0,0	0.0	0.0	0.0		25,6	
EZQi043	WEA 43 N117/2400	105,5	3,0	1352,3	73,6	2,6	2.9	0.0	0.0	0.0	0.0		29,4	
EZQi044	WEA 44 N117/2400	105,5	3,0	1523,1	74,6	2,9	2.7	0.0	0,0	0.0	0,0		28.2	i

Einzelpunktberechnung	Immissionsort: IP 13 Bucher Weg 16	Emissionsvariante: Nacht
	X = 381894,00 Y = 5551212,00	Z = 335.09
	Variante: Zusatzbelastung	

Elementtyp:	Einzelschallquelle (ISO 9613)						***************************************							
Schallimmis	sionsberechnung nach ISO 9613				***************************************				IfT=	lw+Dc-	Adiv - Aatm	- Agr - Afo	I - Ahous - A	har - Cmol
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand /m	Adiv / dB	Aatm /dB	Agr / dB	Afol / dB	Ahous /dB	Abar / dB	Cmet /dB	LfT /dB	LfT	LAT ges
EZQi042	WEA 42 N117/2400	105.5		1532,4	74.7	2.9	3,3	0.0	0.0	0.0	0,0	/ 45	/dB(A)	/ dB(A)
EZQi043	WEA 43 N117/2400	105,5		1180,4	72,4	2,3	2,6	0.0	0.0	0.0	0.0		31,2	
EZQi044	WEA 44 N117/2400	105,5	3,0	1517,3	74,6	2,9	2,8	0,0	0,0	0,0	0.0		28,2	
										·	, , ,			34,0

Einzelpunktberechnung	Immissionsort	IP 14 Windorf.Str. 7		Emissionsvariante: Nacht
		X = 381395,00	Y = 5551578,00	Z= 346,87
	Variante:	Zusatzbelastung		

Schallimmis	sionsberechnung nach ISO 9613								IfT =	Lw + Dc - 4	Adiv - Aatm	Agr. Afol	About A	har Cma
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous	Abar	Cmet	ហ	LfT	LAT ges
EZQi042	WEA 42 N117/2400	105,5		2103.5	77.5	4,0	3.5	0.0	/dB	/dB	/dB	/dB	/dB(A) 23,5	/ dB(A)
EZQi043	WEA 43 N117/2400	105,5		1791,9	76,1	3,4	3.2	0.0	0.0	0.0	0.0		25,8	
EZQi044	WEA 44 N117/2400	105,5	3,0	2005,8	77,0	3,9	3.2	0.0	0.0	0.0	0.0		24,5	

Einzelpunktberechnung			
Linzerpankwerechnung	Immissionsort: IP 15 Petryh	of	Emissionsvariante: Nacht
	X = 382491,	00 Y = 5550940,00	Z = 352,26
	Variante: Zusatzbelas	ung	

Elementtyp:	Einzelschallquelle (ISO 9613)										***			
Schallimmis	sionsberechnung nach ISO 9613								LfT =	Lw+Dc-	Adiv - Aatm	- Agr - Afo	I - Ahous - A	har - Cme
Element	Bezeichnung	Lw /dB(A)	Dc /dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
EZQi042	WEA 42 N117/2400	105,5	3.0	913.3	70.2	1,8	2.0	/dB 0,0	/dB	/dB	/dB 0,0	/dB	/dB(A) 34,5	/ dB(A)
EZQi043	WEA 43 N117/2400	105,5	3,0		66.5	1.1	0.5	0.0	0.0	0,0	0.0		40.3	
EZQi044	WEA 44 N117/2400	105,5	3,0	1270,8	73,1	2,4	2,3	0,0	0,0	0,0	0.0		30.7	
				-							-,,-			41.7

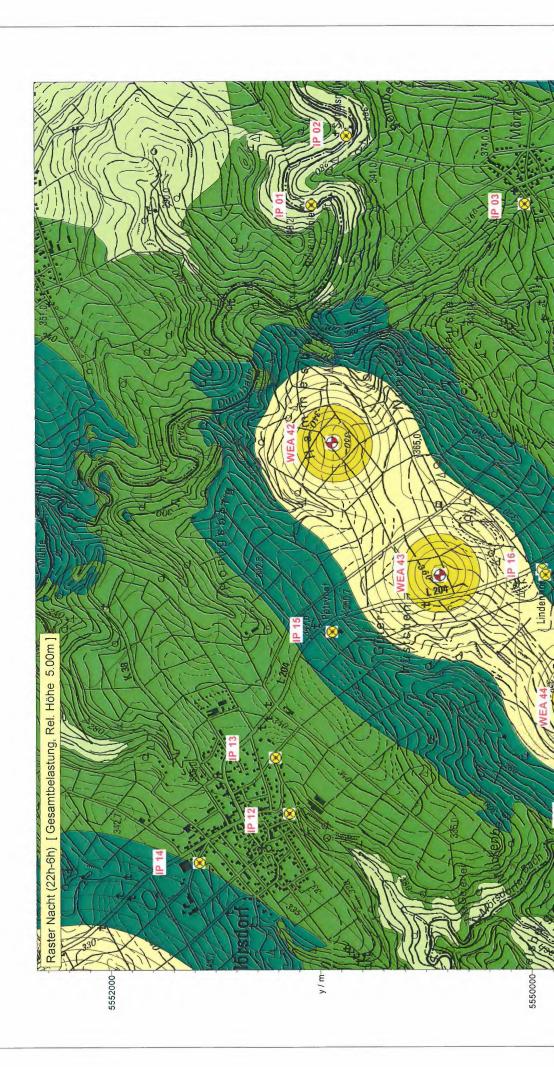
Projekt: Mörsdorf-Süd

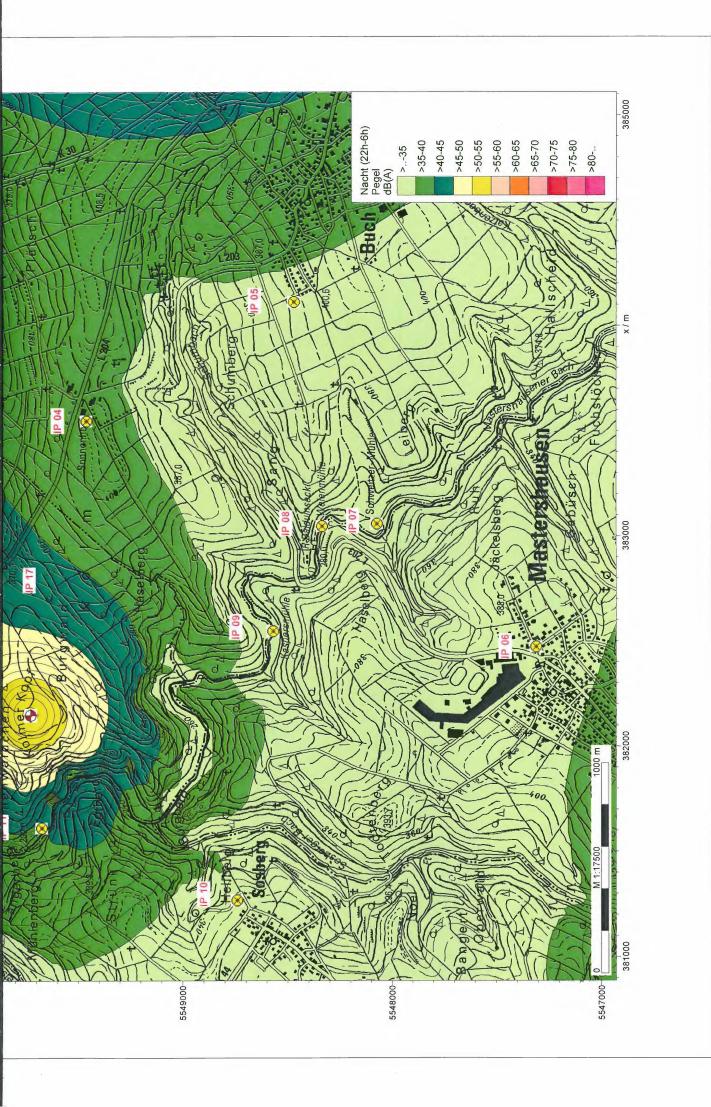
Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Einzelpunktberechnung	Immissionsort	IP 16 Lindenhof (NO) X = 382786,00	Y = 5549946,00	Emissionsvariante: Nacht Z = 376,98
	Variante:	Zusatzbelastung		


Elementtyp:	Einzelschallquelle (ISO 9613)								165 -	I De	Adia Anton	Agr Afo	I - Ahous - A	har . Cmet
	sionsberechnung nach ISO 9613	I (]	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar Abar	Cmet	LfT	LfT	LAT ges
Element	Bezeichnung	/ dB(A)	/ dB	/m	/dB	/dB	/ dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1169,8	72,4	2,3	2,9	0,0	0,0	0,0	0,0		31,0	
EZQi042	WEA 43 N117/2400	105,5	3,0	500,2	65,0	1,0	0,0	0,0	0,0	0,0	0,0		42,5	
EZQI043 EZQI044	WEA 44 N117/2400	105,5	3,0	685,9	67,7	1,3	1,0	0,0	0,0	0,0	0,0		38,5	44,2


Einzelpunktberechnung	Immissionsort	IP 17 Lindenhof (NW) X = 382762,00	Y = 5549931,00	Emissionsvariante: Nacht Z = 373,29
	Variante:	Zusatzbelastung		

Elementtyp:	Einzelschallquelle (ISO 9613)								LET -	Lui Da	Adiu Antm	Agr. Afol	- Ahous - A	har - Cme
Schallimmis	sionsberechnung nach ISO 9613													LAT ges
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	
Licition	Dozdioinang	/ dB(A)	/dB	/m	/ dB	/dB	/dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi042	WEA 42 N117/2400	105,5	3,0	1195,4	72,5	2,3	3,0	0,0	0,0	0,0	0,0		30,7	
EZQi042	WEA 43 N117/2400	105.5	3,0	515,0	65,2	1,0	0,0	0,0	0,0	0,0	0,0		42,3	
EZQI043 EZQI044	WEA 44 N117/2400	105,5	3,0	659,5	67,4	1,3	0,9	0,0	0,0	0,0	0,0		39,0	44,1

Standort: Mörsdorf-Süd Schallimmissionsraster / Gesamtbelastung

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort IP 01 Reifenmühle Emissionsvariante: Nacht X = 384523,00 Y = 5551036,00 Z = 261,14

Variante: Gesamtbelastung

lementtyp:	Einzelschallquelle (ISO sionsberechnung nach ISO 9613								LfT =	Lw + Dc - A	Adiv - Aatm	- Agr - Afol	I - Ahous - A	bar - Cme
lement	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
lement	Dezeichidig	/ dB(A)	/dB	/m	/dB	/dB	/dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
ZQi001	WEA 01 E-82 E2	106,2	3,0	4674,1	84,4	9,0	4,5	0,0	0,0	0,7	0,0		10,7	
ZQi002	WEA 02 E-82 E2	106,2	3,0	4727,3	84,5	9,1	4,5	0,0	0,0	0,7	0,0		10,4	
ZQi003	WEA 03 E-82 E2	106,2	3.0	4901,5	84,8	9,4	4,5	0,0	0,0	0,6	0,0		9,9	
ZQi004	WEA 04 E-82 E2	106,2	3,0	5145,4	85,2	9,9	4,5	0,0	0,0	0,5	0,0		9,1	
ZQi005	WEA 05 Vestas V44	105.0	3,0	4890,9	84,8	9,4	4,7	0,0	0,0	0,3	0,0		8,8	
ZQi006	WEA 06 Vestas V90	105.4	3,0	1703,3	75,6	3,3	3,8	0,0	0,0	1,3	0,0		24,4	
2Qi007	WEA 07 Vestas V90	105,4	3,0	1975,8	76,9	3,8	4,0	0,0	0,0	1,1	0,0		22,6	
ZQi008	WEA 08 Vestas V90	105,4	3,0	2154.0	77,7	4,1	4,2	0,0	0,0	1,1	0,0		21,3	
ZQi009	WEA 09 Vestas V-112	109.1	3,0	2397,2	78,6	4,6	4,3	0,0	0,0	1,0	0,0		23,6	
ZQi010	WEA 10 Vestas V112	109,1	3,0	2797,9	79,9	5,4	4,3	0,0	0,0	0,7	0,0		21,8	
ZQi011	WEA 11 Vestas V112	109,1	3,0	3094,9	80,8	6,0	4,3	0,0	0,0	0,6	0,0		20,4	
ZQi012	WEA 12 3.2M114	107.8	3,0	2216,4	77,9	4,3	4,0	0,0	0,0	5,0	0,0		19,6	
ZQi012	WEA 13 E-82 E2 2.0	105,9	3,0	6485,8	87,2	12,5	4,6	0,0	0,0	0,5	0,0		4,1	
ZQi014	WEA 14 E-82 E2 2,0	105,9	3.0	6681,3	87,5	12,9	4,6	0,0	0,0	0,7	0,0		3,3	
ZQi015	WEA 15 E-82 E2 2.0	105,9	3.0	6893,4	87,8	13,3	4,6	0,0	0,0	0,5	0,0		2,7	
ZQi015 ZQi016	WEA 16 E-82 E2	106,2	3,0		87,5	12.9	4,6	0.0	0,0	0,6	0,0		3,6	
ZQi017	WEA 17 E-70 E4 2.0	103,8	3.0		87,0	12,2	4,5	0,0	0,0	0,4	0,0		2,6	
ZQi018	WEA 18 E-82 E2	106,2	3.0	6432.1	87,2	12,4	4,6	0,0	0,0	0,2	0,0		4,9	
Qi010 2Qi019	WEA 19 E-70 E4 2,0	103,8	3,0	6719,4	87,5	12.9	4,6	0,0	0,0	0,5	0,0		1,3	
ZQi019 ZQi020	WEA 20 E-70 E4 2.0	103,8	3,0		87.9	13.5	4.6	0.0	0,0	0,2	0,0		0,6	
ZQi020 ZQi021	WEA 21 E-70 E4 2,0	103,8	3.0	7300,1	88,3	14,0	4,6	0.0	0,0	0,1	0,0		-0,3	
ZQi021 ZQi022	WEA 22 E-70 E4 2,0	103,8	3,0		88,6	14.6	4,6	0,0	0.0	0,1	0,0		-1,1	
ZQi022 ZQi023	WEA 23 E-82 E2	106,2	3.0	7501.8	88,5	14.4	4.6	0.0	0.0	0,1	0,0		1,5	
ZQi023 ZQi024	WEA 24 E-70 E4 2,0	103,8	3,0		88,9	15,1	4,7	0,0	0,0	0,1	0,0		-1,9	1
ZQi024 ZQi025	WEA 25 E-70 E4 2,0	103,8	3,0	1	89,2	15.6	4.7	0.0	0.0	0,1	0,0		-2,7	
	WEA 25 E-70 E4 2,0	106,2		8168.7	89,2	15.7	4,7	0.0	0.0	0,1	0,0		-0,5	
ZQi026		107,5	3.0		85,9	10,7	4,4	0,0	0,0	1,4	0,0		8,2	
ZQi027	WEA 27 N117 (N01)	107,5	3,0		85,0	9,7	4,4	0.0	0,0	1,9	0,0		9,5	
ZQi028	WEA 28 N117 (N02)	107,5	3,0		84.7	9.3	4,3	0.0	0.0	2,4	0.0		9,8	
ZQi029	WEA 29 N117 (N04)	107,5	3,0		84,1	8,7	4,3	0,0	0,0	3,1	0,0		10,4	
ZQi030	WEA 30 N117 (N05)	107,5	3,0		84.7	9,3	4,4	0.0	0,0	2,0	0,0		10,1	
ZQi031	WEA 31 N117 (N08)	107,5		4447,9	84,0	8,6	4,4	0,0	0.0	3,5	0,0		10,1	
ZQi032	WEA 32 N117 (N09)	103,5	3,0		83.0	7.7	4,3	0,0	0,0	3,8	0,0		7,6	
ZQi033	WEA 33 N117 (N10)	107,5		4331,8	83,7	8,3	4,5	0,0	0.0	2,5	0,0		11,5	
ZQi034	WEA 34 N117 (N11)	107,5	3.0	1	85,4	10.1	4,3	0,0	0.0	0,8	0,0		9,9	
ZQi035	WEA 35 N117	107,5	3,0	1 ' 1	85,8	10,6	4,3	0,0	0,0	0,6	0,0		9,2	
ZQi036	WEA 36 N117	107,5	3,0	1 1	85,6	10,3	4,4	0,0	0,0	0,5	0,0		9,7	1
ZQi037	WEA 37 N117	107,3	3.0)	87,0	12,1	4,6	0,0	0.0	0,1	0,0		6,4	
ZQi038	WEA 38 E-101	107,3	3,0	6560,9	87,3	12,6	4,6	0.0	0,0	0,1	0,0		5,6	
ZQi039	WEA 39 E-101	107,3	3,0		87,0	12,2	4,6	0.0	0,0	0,2	0,0		6,3	
ZQi040	WEA 40 E-101	1			86.8	11,9	4,6	0,0	0,0	0,2	0,0		6,9	
ZQi041	WEA 41 E-101	107,3	3,0		72.3	2,2	2,6	0,0	0,0	9,6	0,0		21,8	
ZQi042	WEA 42 N117/2400	105,5	3,0		76,5	3,6	3,8	0,0	0,0	5,3	0,0		19,3	1
ZQi043	WEA 43 N117/2400	105,5	3,0			5,2	4,3	0.0	0.0	3,0	0,0		16,3	
ZQi044	WEA 44 N117/2400	105,5	3,0	2723,1	79,7	3,2	4,3	0,0	0,0		0,0	L	10,3	32

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort: IP 02 Sabelsmühle Emissionsvariante: Nacht X = 384851,00 Y = 5550870,00 Z = 265,00 Variante: Gesamtbelastung

Schallimmis	sionsberechnung nach ISO 9613								LfT =	Lw + Dc	Adiv - Aatm	- Agr - Afo	- Ahous - A	Abar - Cme
Element	Bezeichnung	/ dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar /dB	Cmet / dB	LfT / dB	LfT / dB(A)	LAT ges
EZQi001	WEA 01 E-82 E2	106,2	3,0	4466,7	84,0	8,6	4,4	0,0	0,0	0,3	0,0		11,9	
EZQi002	WEA 02 E-82 E2	106,2	3,0	4504,1	84,1	8,7	4,4	0,0	0,0	0,3	0,0		11,7	İ
EZQi003	WEA 03 E-82 E2	106,2	3,0	4662,6	84,4	9,0	4,5	0,0	0,0	0,3	0,0		11,1	
EZQi004	WEA 04 E-82 E2	106,2	3,0	4890,7	84,8	9,4	4,4	0,0	0,0	0,3	0,0		10,2	
EZQi005	WEA 05 Vestas V44	105,0	3,0	4620,5	84,3	8,9	4,6	0,0	0,0	0,1	0,0		10,1	
EZQi006	WEA 06 Vestas V90	105,4	3,0	1338,6	73,5	2,6	3,8	0,0	0,0	3,4	0,0		25,2	
EZQi007	WEA 07 Vestas V90	105,4	3,0	1611,3	75,1	3,1	4,0	0,0	0,0	3,0	0,0		23,3	
EZQi008	WEA 08 Vestas V90	105,4	3,0	1793,8	76,1	3,5	4,2	0,0	0,0	6,3	0,0		18,4	
EZQi009	WEA 09 Vestas V-112	109,1	3,0	2082,2	77,4	4,0	4,2	0,0	0,0	4,9	0,0		21,6	
EZQi010	WEA 10 Vestas V112	109,1	3,0	2471,3	78,9	4,8	4,2	0,0	0,0	3,5	0,0		20,8	
EZQi011	WEA 11 Vestas V112	109,1	3,0	2771,3	79,8	5,3	4,2	0,0	0,0	2,7	0,0		20,0	
ZQi012	WEA 12 3.2M114	107,8	3,0	2547,0	79,1	4,9	4,0	0,0	0,0	0.8	0,0		22,0	
EZQi013	WEA 13 E-82 E2 2,0	105,9	3,0	6554,2	87,3	12,6	4,6	0.0	0,0	0.6	0,0		3,7	
EZQi014	WEA 14 E-82 E2 2,0	105,9	3,0	6740,4	87,6	13,0	4.6	0.0	0,0	0.5	0,0		3,2	
EZQi015	WEA 15 E-82 E2 2,0	105,9	3,0	6942,8	87,8	13,4	4,6	0,0	0,0	0.4	0.0		2,7	
ZQi016	WEA 16 E-82 E2	106,2	3,0	1	87,6	13,0	4,6	0,0	0.0	0,8	0,0		3,2	
ZQi017	WEA 17 E-70 E4 2.0	103,8	3,0		87,1	12,2	4.6	0.0	0.0	0.5	0.0		2,4	
ZQi018	WEA 18 E-82 E2	106,2		6436,8	87,2	12,4	4,6	0,0	0,0	1,4	0.0		3,6	
ZQi019	WEA 19 E-70 E4 2,0	103,8		6732,3	87,6	13.0	4.6	0.0	0.0	0,5	0,0		1,1	
ZQi020	WEA 20 E-70 E4 2.0	103,8	3.0		87,9	13,5	4,6	0,0	0,0	0,4	0,0		0,4	
ZQi021	WEA 21 E-70 E4 2.0	103,8	3,0	7302,3	88,3	14.1	4,7	0,0	0,0	0.7	0.0		-0.9	
ZQi022	WEA 22 E-70 E4 2,0	103,8	3,0	7579,1	88,6	14,6	4,7	0,0	0,0	0,5	0,0		-1,5	
ZQi023	WEA 23 E-82 E2	106,2	3,0	7485,0	88,5	14,4	4,7	0,0	0,0	0,5	0,0		1,1	
ZQi024	WEA 24 E-70 E4 2,0	103,8	3,0	7828,0	88,9	15,1	4,7	0,0	0,0	0,4	0,0		-2,2	
ZQi025	WEA 25 E-70 E4 2,0	103,8	3,0	8072,2	89,1	15,5	4,7	0,0	0,0	0,3	0,0		-2,9	1
ZQi026	WEA 26 E-82 E2	106,2		8138,1	89,2	15,7	4,7	0,0	0,0	0,3	0,0		-0,6	1
EZQi027	WEA 27 N117 (N01)	107,5		5909,5	86,4	11,4	4,4	0,0	0,0	0,3	0,0		7,9	1
ZQi021 ZQi028	WEA 28 N117 (N02)	107,5	3.0	5408,1	85,7	10,4	4,4	0,0	0,0	0,3	0.0		9,7	ĺ
ZQi026 ZQi029	WEA 29 N117 (N04)	107,5		5217,6	85,3	10,4	4,4	0,0	0,0	0,4	0,0		10.4	ĺ
ZQi029 ZQi030	WEA 30 N117 (N05)	107,5	3,0	4867,0	84,7	9,4	4,3	0,0	0,0	0,4	0,0			l
ZQi030 ZQi031	WEA 31 N117 (N08)	107,5	3,0		85,3	10,0	4,4	0,0	0,0	0,4	0,0		11,6	1
ZQi031	WEA 32 N117 (N09)	107,5	3,0		84,6	9,2	4,4	0,0	0,0	0,3	0,0		10,5	ĺ
ZQ1032 ZQ1033	WEA 33 N117 (N10)	103,5		4356,9	83,8	8,4	4,4	0,0	0,0	0,3	0.0		11,9	
ZQi033	WEA 34 N117 (N11)	107,5			84,4	9,0	4,4	0,0	0.0	0,4	0,0		9,6	
ZQi034 ZQi035	WEA 35 N117	107,5		5622,0	86,0	10,8	4,4	0,0	0,0	0,3	0,0		12,2 8,9	
ZQi035 ZQi036	WEA 36 N117	107,5		5855,8	86,3	11,3								ĺ
ZQ1036 ZQ1037	WEA 37 N117	107,5		5709,1			4,3	0,0	0,0	0,4	0,0		8,1	ĺ
ZQ1037 ZQ1038	WEA 38 E-101	107,3		6205,6	86,1	11,0	4,4	0,0	0,0	0,4	0,0		8,6	i
ZQ1038 ZQ1039	1	1 1				11,9	4,7	0,0	0,0	0,4	0,0		6,4	ĺ
	WEA 39 E-101	107,3		6439,4	87,2	12,4	4,6	0,0	0,0	0,4	0,0		5,7	Í
ZQi040	WEA 40 E-101	107,3		6292,2	87,0	12,1	4,6	0,0	0,0	1,5	0,0		5,1	i
ZQi041	WEA 41 E-101	107,3		6087,1	86,7	11,7	4,6	0,0	0,0	0,9	0,0		6,4	
ZQi042	WEA 42 N117/2400	105,5		1475,8	74,4	2,8	2,9	0,0	0,0	4,0	0,0		24,5	
ZQi043	WEA 43 N117/2400	105,5		2149,4	77,6	4,1	4,0	0,0	0,0	10,7	0,0		12,0	
ZQi044	WEA 44 N117/2400	105,5	3,0	2944,7	80,4	5,7	4,4	0,0	0,0	6,1	0,0		12,0	1

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort: IP 03 Brunnenweg 4 Emissionsvariante: Nacht X = 384526,00 Y = 5550028,00 Z = 366,39

Variante: Gesamtbelastung

Elementtyp:	Einzelschallquelle (ISO sionsberechnung nach ISO 9613	5010/							Iff=	Lw + Dc - /	Adiv - Aatm	- Agr - Afol	- Ahous - A	bar - Cme
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
Elettiettt	Dezeichlidig	/ dB(A)	/ dB	/m	/dB	/dB	/dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
ZQi001	WEA 01 E-82 E2	106,2		5200,3	85,3	10,0	4,1	0,0	0,0	0,6	0,0		9,2	
ZQi001 ZQi002	WEA 02 E-82 E2	106,2	3.0	5210,3	85,3	10,0	4,2	0,0	0,0	0,6	0,0		9,1	
ZQi002 ZQi003	WEA 03 E-82 E2	106,2		5337,6	85,5	10,3	4,2	0,0	0,0	0,6	0,0		8,6	
ZQi003	WEA 04 E-82 E2	106,2		5528,7	85,8	10,6	4,2	0,0	0,0	0,6	0,0		8,0	
ZQi005	WEA 05 Vestas V44	105.0	3.0	5225,3	85,4	10,1	4,4	0,0	0,0	0,4	0,0		7,8	i
ZQi006	WEA 06 Vestas V90	105,4	3.0	1518,1	74,6	2,9	3,4	0,0	0,0	0,0	0,0		27,5	ĺ
ZQi007	WEA 07 Vestas V90	105.4	3.0		75,6	3,3	3,6	0,0	0,0	0,0	0,0		25,9	1
ZQi007	WEA 08 Vestas V90	105,4	3.0	1753,9	75,9	3,4	3,6	0,0	0,0	0,0	0,0		25,6	
ZQi008	WEA 09 Vestas V-112	109,1	3.0		75,4	3,2	3,5	0,0	0,0	0,0	0,0		30,0	
ZQi009 ZQi010	WEA 10 Vestas V112	109.1	3,0		77.4	4,0	3,7	0,0	0,0	0,3	0,0		26,7	
ZQi010	WEA 11 Vestas V112	109.1	3.0	1 1	78,4	4,5	3,8	0,0	0,0	0,4	0,0		24,9	
ZQi011	WEA 12 3.2M114	107,8	3,0	1 . 1	80,8	5,9	3,6	0,0	0,0	0,0	0,0		20,5	
ZQi012 ZQi013	WEA 13 E-82 E2 2.0	105,9	3,0	1	86,1	11,0	4,3	0,0	0,0	0,5	0,0		7,1	
ZQi013 ZQi014	WEA 14 E-82 E2 2,0	105,9	3.0	1 1	86.4	11,3	4,3	0,0	0,0	0,4	0,0		6,5	
ZQi014 ZQi015	WEA 15 E-82 E2 2.0	105,9	3,0		86,7	11,7	4.4	0,0	0,0	0,4	0,0		5,8	
ZQi015 ZQi016	WEA 16 E-82 E2 2,0	106,2	3,0		86,4	11,3	4,4	0,0	0.0	0.4	0,0		6,8	
ZQI016 ZQi017	WEA 17 E-70 E4 2.0	103,8	3,0		85,8	10,5	4,3	0,0	0,0	0,5	0,0		5,7	
ZQI017 ZQi018	WEA 18 E-82 E2	106,2	3,0		85,9	10,7	4,3	0,0	0,0	0.5	0,0		7,9	
	iii iii ii i	103,8	3,0		86,3	11,2	4,4	0,0	0,0	0.4	0,0		4,5	
ZQi019	WEA 19 E-70 E4 2,0	103,8	3,0	1 1	86,7	11,8	4,4	0,0	0,0	0,4	0,0		3,5	
ZQi020	WEA 20 E-70 E4 2,0	103,8	3,0	1 1	87,1	12,3	4,4	0,0	0,0	0,4	0,0		2,6	
ZQi021	WEA 21 E-70 E4 2,0	103,8	3,0	1 1	87,5	12,9	4,4	0,0	0.0	0,3	0,0		1,7	
ZQi022	WEA 22 E-70 E4 2,0	106,2	3,0	1 1	87,4	12,7	4,4	0,0	0,0	0,4	0,0		4,4	
ZQi023	WEA 23 E-82 E2	103,8	-	1 1	87,8	13,3	4,4	0,0	0,0	0,3	0.0		0,9	
ZQi024	WEA 24 E-70 E4 2,0	1 1	3,0	1 3	88.1	13,8	4,5	0,0	0.0	0,3	0,0		0,1	
ZQi025	WEA 25 E-70 E4 2,0	103,8		7169,1	88,2	13,0	4,5	0,0	0,0	0,3	0,0		2,3	
ZQi026	WEA 26 E-82 E2	106,2	3,0				4,3	0.0	0,0	0,0	0,0		8,0	
ZQi027	WEA 27 N117 (N01)	107,5	3,0	1 1	86,6	11,6		0,0	0,0	0,0	0.0		9,6	
ZQi028	WEA 28 N117 (N02)	107,5	-	5556,0	85,9	10,7	4,3	0,0	0,0	0,0	0,0		10,6	
ZQi029	WEA 29 N117 (N04)	107,5	•	5306,3	85,5	10,2	4,2		0,0	0,0	0,0		11,9	
ZQi030	WEA 30 N117 (N05)	107,5		4951,1	84,9	9,5	4,2	0,0		0.0	0,0		11,0	
ZQi031	WEA 31 N117 (N08)	107,5		5177,6	85,3	10,0	4,2	0,0	0,0		0,0		12,5	
ZQi032	WEA 32 N117 (N09)	107,5		4787,5	84,6	9,2	4,2	0,0	0,0	0,0			10,1	
ZQi033	WEA 33 N117 (N10)	103,5	3,0	1 1	83,8	8,4	4,2	0,0	0,0	0,0	0,0		13,5	
ZQi034	WEA 34 N117 (N11)	107,5	3,0		84,1	8,7	4,2	0,0	0,0	0,0	0,0		8,4	
ZQi035	WEA 35 N117	107,5	3,0		86,5	11,5	4,0	0,0	0,0	0,0	0,0			
ZQi036	WEA 36 N117	107,5	3,0	1	86,9	12,0	4,0	0,0	0,0	0,0	0,0		7,5	
ZQi037	WEA 37 N117	107,5	3,0		86,8	11,8	4,0	0,0	0,0	0,0	0,0		7,9	
ZQi038	WEA 38 E-101	107,3	3,0		85,5	10,2	4,3	0,0	0,0	0,4	0,0		9,8	
ZQi039	WEA 39 E-101	107,3	3,0	1 1	85,9	10,7	4,3	0,0	0,0	0,4	0,0		9,0	
ZQi040	WEA 40 E-101	107,3	3,0	1 1	85,6	10,4	4,3	0,0	0,0	0,5	0,0		9,6	
ZQi041	WEA 41 E-101	107,3	3,0	5185,9	85,3	10,0	4,3	0,0	0,0	0,5	0,0		10,3	
ZQi042	WEA 42 N117/2400	105,5	3,0	1458,2	74,3	2,8	2,5	0,0	0,0	0,0	0,0		29,0	
ZQi043	WEA 43 N117/2400	105,5	3,0	1815,2	76,2	3,5	3,2	0,0	0,0	0,0	0,0		25,7	
ZQi044	WEA 44 N117/2400	105,5	3,0	2400,8	78,6	4,6	3,8	0,0	0,0	0,0	0,0		21,5	
	<u> </u>													36

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung	Immissionsort:	IP 04 Sonnenhof 3		 Emissionsvariante: Nacht
		X = 383547,00	Y = 5549460,00	Z = 406,15
	Variante:	Gesamthelastung		

Schallimmis	sionsberechnung nach ISO 9613								LfT =	Lw + Dc -	Adiv - Aatm	- Agr - Afol	- Ahous - A	Abar - Cm
Element	Bezeichnung	/ dB(A)	Dc /dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous /dB	Abar / dB	Cmet / dB	LfT / dB	LfT / dB(A)	LAT ge
ZQi001	WEA 01 E-82 E2	106,2	3,0	6324,2	87,0	12,2	4,1	0,0	0,0	0,0	0,0		5,9	
ZQi002	WEA 02 E-82 E2	106,2	3,0	6338,3	87,0	12,2	4,2	0,0	0,0	0,0	0,0		5,8	
ZQi003	WEA 03 E-82 E2	106,2	3,0	6467,8	87,2	12,4	4,2	0,0	0,0	0,0	0,0		5,3	
ZQi004	WEA 04 E-82 E2	106,2	3,0	6658,1	87,5	12,8	4,2	0,0	0,0	0,0	0,0		4,7	
ZQi005	WEA 05 Vestas V44	105,0	3,0	6352,7	87,1	12,2	4,4	0,0	0,0	0,0	0,0		4,4	1
ZQi006	WEA 06 Vestas V90	105,4	3,0	2601,9	79,3	5,0	4,0	0,0	0,0	0,0	0,0		20,1	
ZQi007	WEA 07 Vestas V90	105,4	3,0	2748,0	79,8	5,3	4,0	0,0	0,0	0,0	0,0		19,4	
ZQi008	WEA 08 Vestas V90	105,4	3,0	2731,1	79,7	5,3	4,1	0,0	0,0	0,0	0,0		19,4	
ZQi009	WEA 09 Vestas V-112	109,1	3,0	2375,0	78,5	4,6	3,8	0,0	0,0	0,0	0,0		25,2	
ZQi010	WEA 10 Vestas V112	109,1	3,0	2764,7	79,8	5,3	3,9	0,0	0,0	0,0	0,0		23,0	1
ZQi011	WEA 11 Vestas V112	109,1	3,0	2965,8	80,4	5,7	3,9	0.0	0.0	0.0	0,0		22,1	
ZQi012	WEA 12 3.2M114	107,8	3,0	3381,2	81,6	6,5	3,6	0.0	0,0	0,0	0,0		19,1	
ZQi013	WEA 13 E-82 E2 2.0	105,9	3,0	4634,8	84,3	8,9	4.1	0.0	0.0	0.0	0.0		11,6	
ZQi014	WEA 14 E-82 E2 2,0	105,9	3.0		84,7	9,3	4,2	0,0	0,0	0,0	0,0		10,8	
ZQi015	WEA 15 E-82 E2 2.0	105,9	3,0		85,0	9,7	4,2	0.0	0.0	0.0	0.0		10,0	
ZQi016	WEA 16 E-82 E2	106,2	3.0		84.7	9,3	4,2	0,0	0,0	0,0	0,0		11,0	1
ZQi017	WEA 17 E-70 E4 2,0	103,8	,	4495,5	84.0	8,7	4,0	0,0	0,0	0.0	0.0		10,1	
ZQi018	WEA 18 E-82 E2	106,2		4587,2	84,2	8.8	4,0	0.0	0,0	0,0	0,0		12,1	
ZQi019	WEA 19 E-70 E4 2.0	103,8	3.0	1 1	84,7	9.4	4,1	0.0	0.0	0.0	0.0		8.6	
ZQi020	WEA 20 E-70 E4 2,0	103,8		5166,1	85,3	9,9	4,2	0.0	0,0	0,0	0,0		7,4	
ZQi020	WEA 21 E-70 E4 2,0	103,8		5455,9	85,7	10.5	4,2	0,0	0.0	0.0	0,0		6,4	
ZQi021	WEA 22 E-70 E4 2,0	103,8		5743,0	86,2	11,1	4,3	0,0	0,0	0,0				
ZQi022 ZQi023	WEA 23 E-82 E2	106,2		5673,9	86,1	10,9	4,3	0,0	0,0	0,0	0,0		5,3	
ZQi023 ZQi024	WEA 24 E-70 E4 2,0	103,8	3,0		86,6	11.6	4,2	0,0		, ,	0,0		8,0	İ
ZQi024 ZQi025	WEA 25 E-70 E4 2.0	103,8	3,0	6266,7	86.9	12,1			0,0	0,0	0,0		4,4	
ZQI023 ZQi026	WEA 26 E-82 E2	106,2	3,0	6354,9	87,1	12,1	4,3	0,0	0,0	0,0	0,0		3,5	
		1					4,3	0,0	0,0	0,0	0,0		5,6	
ZQi027	WEA 27 N117 (N01)	107,5	3,0	5611,7	86,0	10,8	4,2	0,0	0,0	0,0	0,0		9,5	
ZQi028	WEA 28 N117 (N02)	107,5	3,0		85,3	10,0	4,2	0,0	0,0	0,0	0,0		11,0	1
ZQi029	WEA 29 N117 (N04)	107,5	3,0		84,8	9,4	4,1	0,0	0,0	0,0	0,0		12,3	
ZQi030	WEA 30 N117 (N05)	107,5		,-	84,1	8,7	4,1	0,0	0,0	0,0	0,0		13,6	
ZQi031	WEA 31 N117 (N08)	107,5			84,3	8,9	4,1	0,0	0,0	0,0	0,0		13,2	ĺ
ZQi032	WEA 32 N117 (N09)	107,5	3,0		83,6	8,2	4,0	0,0	0,0	0,0	0,0		14,7	
ZQi033	WEA 33 N117 (N10)	103,5		3910,6	82,8	7,5	4,0	0,0	0,0	0,0	0,0		12,1	ĺ
ZQi034	WEA 34 N117 (N11)	107,5	3,0		82,7	7,4	3,9	0,0	0,0	0,0	0,0		16,4	
ZQi035	WEA 35 N117	107,5		5870,5	86,4	11,3	4,2	0,0	0,0	0,0	0,0		8,6	
ZQi036	WEA 36 N117	107,5	3,0	6176,6	86,8	11,9	4,1	0,0	0,0	0,0	0,0		7,7	i
ZQi037	WEA 37 N117	107,5		6137,1	86,8	11,8	4,0	0,0	0,0	0,0	0,0		7,9	1
ZQi038	WEA 38 E-101	107,3	3,0	4644,1	84,3	8,9	4,0	0,0	0,0	0,0	0,0		13,0	
ZQi039	WEA 39 E-101	107,3			84,9	9,5	4,0	0,0	0,0	0,0	0,0		11,8	
ZQi040	WEA 40 E-101	107,3			84,2	8,8	4,0	0,0	0,0	0,0	0,0		13,3	
ZQI041	WEA 41 E-101	107,3		4460,8	84,0	8,6	3,9	0,0	0,0	0,0	0,0		13,8	1
ZQi042	WEA 42 N117/2400	105,5		1489,2	74,5	2,9	2,8	0,0	0,0	0,0	0,0		28,4	1
ZQi043	WEA 43 N117/2400	105,5	3,0	1251,6	72,9	2,4	2,6	0,0	0,0	0,0	0,0		30,6	
ZQi044	WEA 44 N117/2400	105,5	3,0	1426,8	74,1	2,7	3,0	0,0	0,0	0,0	0.0		28,7	(

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

 Einzelpunktberechnung
 Immissionsort:
 IP 05 Balduinseck.14
 Emissionsvariante: Nacht

 X = 384113,00
 Y = 5548470,00
 Z = 400,83

 Variante:
 Gesamtbelastung

or Cmo	I - Ahous - A	Age Afol	Mir Anton	1 Da . /	LeT =)	Einzelschallquelle (ISO 961	Elementtyp:
LAT ges	LfT	- Agr - Aloi LfT	Cmet	Abar Abar	Ahous	26.1		1					sionsberechnung nach ISO 9613	
/dB(A)	/ dB(A)	/dB	/ dB	/dB	/dB	Afol / dB	Agr / dB	Aatm / dB	Adiv / dB	Abstand / m	Dc / dB	Lw /dB(A)	Bezeichnung	Element
	5,1		0,0	0,0	0,0	0,0	4,3	12,6	87,3			106,2	WEA 01 E-82 E2	EZQi001
	5,2		0,0	0,0	0,0	0,0	4,2	12,5	87,3	6511,4		106,2	WEA 02 E-82 E2	EZQi002
	4,9		0,0	0,0	0,0	0,0	4,3	12,7	87,4	6590,9	3.0	106,2	WEA 03 E-82 E2	EZQi002
	4,4		0,0	0,0	0,0	0,0	4,3	12,9	87,5			106.2	WEA 04 E-82 E2	EZQi003
	4,2		0,0	0,0	0,0	0,0	4,5	12,3	87,1	6380,0	3,0	105,0	WEA 05 Vestas V44	EZQi005
	19,9		0,0	0,0	0,0	0,0	4,1	5,0	79,3			105,4	WEA 06 Vestas V90	EZQi006
	19,9		0,0	0,0	0,0	0,0	3,9	5,1	79,4	2647,9		105,4	WEA 07 Vestas V90	EZQi007
	20,6		0,0	0,0	0,0	0,0	4,0	4,8	79,0	2514.9	3.0	105,4	WEA 08 Vestas V90	EZQi008
	28,4		0,0	0,0	0,0	0,0	3,6	3,6	76,5	1883,3	3.0	109,1	WEA 09 Vestas V-112	EZQi000
	26,5		0,0	0,0	0,0	0,0	3,7	4,2	77,7	2162,5		109,1	WEA 10 Vestas V112	EZQi010
	25,9		0,0	0,0	0,0	0,0	3,8	4,4	78,1	2267,4		109,1	WEA 11 Vestas V112	EZQi010
	14,3		0,0	0,0	0,0	0,0	4.0	8,6	83,9	4444,7	-	107,8	WEA 12 3.2M114	EZQi011
	12,7		0,0	0,0	0,0	0.0	4,1	8,3	83,7	4328,6		105.9	WEA 13 E-82 E2 2,0	EZQi012 EZQi013
	12,1		0,0	0,0	0,0	0,0	4,2	8,6	84,0	4474,3	,	105,9	WEA 14 E-82 E2 2,0	EZQI013 EZQi014
	11,5		0.0	0,0	0.0	0,0	4,2	8,9	84,3	1		105,9	WEA 14 E-82 E2 2,0	EZQI014 EZQi015
	12,7		0.0	0.0	0,0	0.0	4,2	8.5	83,9	4410,7		106,2	WEA 16 E-82 E2 2,0	EZQI015 EZQi016
	12,2		0,0	0,0	0,0	0.0	4,0	7,6	83,0	1		103,8		
	14,4		0.0	0,0	0,0	0,0	4,0	7,7	83,1	4013,4		106,2	WEA 17 E-70 E4 2,0	EZQi017
	10,7		0,0	0.0	0,0	0,0	4,1	8,3	83,7		3,0	103.8	WEA 18 E-82 E2	EZQi018
	9,5		0,0	0.0	0,0	0,0	4,2	8,9	84,2	1 1		103,8	WEA 19 E-70 E4 2,0	EZQi019
	8,5		0,0	0,0	0.0	0.0	4,2	9,4	84,7			103,8	WEA 20 E-70 E4 2,0	EZQi020
	7,5		0,0	0.0	0,0	0,0	4,3	9,9	85,2	1 1	3,0	103,8	WEA 21 E-70 E4 2,0	EZQi021
	10,3		0,0	0.0	0,0	0.0	4,2	9,6	85.0	1 1		1 1	WEA 22 E-70 E4 2,0	EZQi022
	6,6		0,0	0,0	0,0	0,0	4,3	10.3	85,6		3,0	106,2	WEA 23 E-82 E2	EZQi023
	5,8		0,0	0,0	0,0	0,0	4,3	10,8	85,9	5361,6		103,8	WEA 24 E-70 E4 2,0	EZQi024
	8,0		0,0	0,0	0.0	0,0	4,3	10,8				103,8	WEA 25 E-70 E4 2,0	EZQi025
	5,7		0,0	0,0	0,0	0,0	4,3	- 1	86,0	5645,7		106,2	WEA 26 E-82 E2	EZQi026
	7,0		0,0	0,0	0,0	0,0		12,9	87,5	6712,0	3,0	107,5	WEA 27 N117 (N01)	EZQi027
	8,2		0,0	0,0	0,0	0.0	4,4	12,1	87,0		3,0	107,5	WEA 28 N117 (N02)	EZQi028
	9,4		0.0	0,0	0,0		4,3	11,5	86,5	1 1	3,0	107,5	WEA 29 N117 (N04)	EZQi029
	9,2		0,0	0,0	0.0	0,0	4,3	10,8	86,0	5637,8		107,5	WEA 30 N117 (N05)	EZQi030
	10,5		0,0	0,0		0,0	4,2	11,0	86,1	1	3,0	107,5	WEA 31 N117 (N08)	EZQi031
	7,6		0,0	0,0	0,0	0,0	4,2	10,2	85,5	5326,6		107,5	WEA 32 N117 (N09)	EZQi032
	12,2		0,0	0,0	0,0	0,0	4,2	9,6	85,0	5010,7		103,5	WEA 33 N117 (N10)	EZQi033
	4,7		0,0		0,0	0,0	4,1	9,4	84,8	4881,1		107,5	WEA 34 N117 (N11)	EZQi034
	3,9			0,0	0,0	0,0	4,4	13,5	87,9		3,0	107,5	WEA 35 N117	EZQi035
			0,0	0,0	0,0	0,0	4,3	14,1	88,3		3,0	107,5	WEA 36 N117	EZQi036
	4,1		0,0	0,0	0,0	0,0	4,2	14,0	88,2		3,0	107,5	WEA 37 N117	EZQi037
	16,9		0,0	0,0	0,0	0,0	4,0	7,1	82,4		3,0	107,3	WEA 38 E-101	EZQi038
	15,7		0,0	0,0	0,0	0,0	4,0	7,6	83,0	1 1	3,0	107,3	WEA 39 E-101	EZQi039
	16,6		0,0	0,0	0,0	0,0	3,9	7,3	82,5	3781,6		107,3	WEA 40 E-101	EZQi040
	17,6		0,0	0,0	0,0	0,0	3,8	6,9	82,1	3574,0		107,3	WEA 41 E-101	EZQi041
	20,6		0,0	0,0	0,0	0,0	3,8	5,0	79,2	2573,1		105,5	WEA 42 N117/2400	EZQi042
	21,7		0,0	0,0	0,0	0,0	3,7	4,6	78,5	2382,5		105,5	WEA 43 N117/2400	EZQi043
	22,0		0,0	0,0	0,0	0,0	3,7	4,5	78,4	2333,6	3,0	105,5	WEA 44 N117/2400	EZQi044

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

 Einzelpunktberechnung
 Immissionsort
 IP 06 Pfingstweg 1
 Emissionsvariante: Nacht

 X = 382472,00
 Y = 5547310,00
 Z = 395,00

 Variante:
 Gesamtbelastung

	sionsberechnung nach ISO 9613								LfT =	Lw + Dc - /	Adiv - Aatm	- Agr - Afol	- Ahous - A	hbar - Cm
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar /dB	Cmet /dB	LfT / dB	LfT /dB(A)	LAT ges / dB(A)
EZQi001	WEA 01 E-82 E2	106,2	3,0	8524,7	89,6	16,4	4,4	0,0	0,0	0,0	0,0		-1,2	1 (-,7
ZQi002	WEA 02 E-82 E2	106,2	3,0	8504,9	89,6	16,4	4,4	0,0	0,0	0,0	0,0		-1,1	
EZQi003	WEA 03 E-82 E2	106,2	3,0	8592,8	89,7	16,5	4,4	0,0	0,0	0,0	0,0		-1,4	
ZQi004	WEA 04 E-82 E2	106,2	3,0	8731,5	89,8	16,8	4,4	0,0	0,0	0,0	0,0		-1,8	
ZQi005	WEA 05 Vestas V44	105,0	3,0	8389,3	89,5	16,1	4,5	0,0	0,0	0,0	0,0		-2,1	
ZQi006	WEA 06 Vestas V90	105,4	3,0	4615,2	84,3	8,9	4,4	0,0	0,0	0,0	0,0		10,9	
ZQi007	WEA 07 Vestas V90	105,4	3,0	4656,4	84,4	9,0	4,3	0,0	0,0	0,0	0,0		10,8	
ZQi008	WEA 08 Vestas V90	105,4	3,0	4521,4	84,1	8,7	4,3	0,0	0,0	0,0	0,0		11,3	
ZQi009	WEA 09 Vestas V-112	109,1	3,0	3852,3	82,7	7,4	4,2	0,0	0,0	0,0	0.0		17,8	
ZQi010	WEA 10 Vestas V112	109,1	3,0	4069,3	83,2	7,8	4,2	0,0	0,0	0,0	0,0		16,9	
ZQi011	WEA 11 Vestas V112	109,1	3,0	4103,1	83,3	7,9	4,2	0,0	0,0	0,0	0,0		16,8	
ZQi012	WEA 12 3.2M114	107,8	3,0	5568,6	85,9	10,7	4,2	0,0	0.0	0.0	0,0		10,0	
ZQi013	WEA 13 E-82 E2 2.0	105,9	3,0	2327,0	78,3	4,5	3,9	0,0	0,0	0,0	0.0		22,2	
ZQi014	WEA 14 E-82 E2 2,0	105,9	3,0	2485,5	78,9	4,8	4,0	0,0	0,0	0,0	0.0		21,2	
ZQi015	WEA 15 E-82 E2 2,0	105,9	3,0		79.5	5,1	4,1	0,0	0,0	0,0	0,0		20,1	1
ZQi016	WEA 16 E-82 E2	106,2	3.0	2462,2	78,8	4,7	4,1	0,0	0,0	0,0	0,0		21,5	1
ZQi017	WEA 17 E-70 E4 2,0	103,8	3.0	2096,4	77,4	4,0	3,8	0.0	0,0	0.0	0,0		21,6	1
ZQi018	WEA 18 E-82 E2	106,2		2194,2	77,8	4,2	3,8	0,0	0,0	0.0	0,0		23,4	1
ZQi019	WEA 19 E-70 E4 2,0	103,8		2469,4	78,8	4,8	4,1	0,0	0,0	0.0	0,0		19,1	ĺ
Qi020	WEA 20 E-70 E4 2,0	103,8	3,0	2767.7	79.8	5,3	4,2	0,0	0,0	0,0	0,0		17,5	ĺ
ZQi021	WEA 21 E-70 E4 2.0	103,8		3060,0	80,7	5,9	4,3	0,0	0,0	0,0	0,0		16,0	
Qi022	WEA 22 E-70 E4 2,0	103,8	3,0	3351,3	81,5	6,4	4,3	0,0	0,0	0,0	0.0		14,6	
Qi023	WEA 23 E-82 E2	106,2			81,4	6,4	4,2	0,0	0,0	0,0	0,0		17,3	
ZQi024	WEA 24 E-70 E4 2.0	103,8		3622,9	82,2	7,0	4,3	0,0	0.0	0,0	0,0		13,3	
Qi025	WEA 25 E-70 E4 2,0	103,8		3893.0	82,8	7,5	4,3	0,0	0,0	0,0	0,0			į
ZQi026	WEA 26 E-82 E2	106,2		3999,8	83,0	7,7	4,3	0,0	0,0	0,0	0,0		12,2	
ZQi027	WEA 27 N117 (N01)	107,5		6719,4	87,5	12.9			- 1	,			14,2	
Qi027 ZQi028	1 , ,	107,5	3,0	6428,8			4,2	0,0	0,0	0,0	0,0		5,8	
ZQi028	WEA 28 N117 (N02) WEA 29 N117 (N04)	107,5		6037,5	87,2	12,4	4,2	0,0	0,0	0,0	0,0		6,8	
Qi029	WEA 30 N117 (N05)	107,5		5750,9	86,2	11,1		0,0	0,0	0,0	0,0		8,2	
Qi030	WEA 30 N117 (N08)	107,5	' '	5598,9	86,0	10,8	4,1	. 1		0,0	0,0		9,2	
Qi031	WEA 32 N117 (N09)	107,5		5290,9	85,5	10,8	4,1	0,0	0,0	0,0	0,0		9,7	
Qi032	, ,	107,5		5134,4	85,2			,		0,0	0,0		10,8	
Qi033	WEA 33 N117 (N10)					9,9	4,1	0,0	0,0	0,0	0,0		7,4	
Qi034 Qi035	WEA 34 N117 (N11) WEA 35 N117	107,5		4676,1	84,4	9,0	4,0	0,0	0,0	0,0	0,0		13,1	
Qi036	WEA 35 N117 WEA 36 N117	1 1		7461,4	88,4	14,4	4,4	0,0	0,0	0,0	0,0		3,3	
Qi036		107,5		7803,4	88,8	15,0	4,3	0,0	0,0	0,0	0,0		2,3	
Qi037	WEA 37 N117 WEA 38 E-101	107,3		7851,9	88,9	15,1	4,3	0,0	0,0	0,0	0,0		2,2	
Qi038	WEA 38 E-101 WEA 39 E-101	107,3		2702,3 3111,2	79,6	5,2	3,8	0,0	0,0	0,0	0,0		21,7	
Qi039 Qi040	WEA 39 E-101 WEA 40 E-101	107,3		2385,7	80,9	6,0	3,8	0,0	0,0	0,0	0,0		19,6	
	1				78,5	4,6	3,6	0,0	0,0	0,0	0,0		23,5	
Qi041	WEA 41 E-101	107,3		2418,4	78,7	4,7	3,5	0,0	0,0	0,0	0,0		23,5	
ZQi042	WEA 42 N117/2400	105,5		3745,5	82,5	7,2	4,0	0,0	0,0	0,0	0,0		14,8	
Qi043	WEA 43 N117/2400	105,5		3134,3	80,9	6,0	3,8	0,0	0,0	0,0	0,0		17,7	
Qi044	WEA 44 N117/2400	105,5	3,0	2438,8	78,7	4,7	3,3	0,0	0,0	0,0	0.0		21,8	

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort IP 07 Schweitzermühl Emissionsvariante: Nacht X = 383058,00 Y = 5548073,00 Z = 293,15

Variante: Gesamtbelastung

	- Ahous - A												sionsberechnung nach ISO 9613	
LAT g	LfT	LfT	Cmet	Abar	Ahous	Afol	Agr	Aatm	Adiv	Abstand	Dc	Lw	Bezeichnung	Element
/ dB(A	/ dB(A)	/ dB	/dB	/dB	/dB	/ dB	/dB	/ dB	/ dB	/m	/ dB	/ dB(A)		
	1,3		0,0	0,2	0,0	0,0	4,6	14,6	88,6		3,0	106,2	WEA 01 E-82 E2	ZQi001
	1,3		0,0	0,2	0,0	0,0	4,6	14,6	88,6		3,0	106,2	WEA 02 E-82 E2	ZQi002
	1,0		0,0	0,2	0,0	0,0	4,6	14,7	88,7		3,0	106,2	WEA 03 E-82 E2	ZQi003
	0,5		0,0	0,2	0,0	0,0	4,6	15,0	88,8	7810,0	3,0	106,2	WEA 04 E-82 E2	ZQi004
	0,3		0,0	0,1	0,0	0,0	4,7	14,4	88,5	7473,7	3,0	105,0	WEA 05 Vestas V44	ZQi005
	11,6		0,0	2,6	0,0	0,0	4,7	7,1	82,3	3686,9	3,0	105,4	WEA 06 Vestas V90	ZQi006
	9,0		0,0	5,0	0,0	0,0	4,7	7,2	82,5	3746,6	3,0	105,4	WEA 07 Vestas V90	ZQi007
	11,6		0,0	3,0	0,0	0,0	4,7	7,0	82,2	3632,1	3,0	105,4	WEA 08 Vestas V90	ZQi008
	18,4		0,0	2,8	0,0	0,0	4,5	5,8	80,6	3015,1	3,0	109,1	WEA 09 Vestas V-112	ZQi009
	15,5		0,0	4,4	0,0	0,0	4,6	6,3	81,3	3281,7	3,0	109,1	WEA 10 Vestas V112	ZQi010
	13,5		0,0	6,0	0,0	0,0	4,6	6,5	81,5	3362,3	3,0	109,1	WEA 11 Vestas V112	ZQi011
	12,3		0,0	0,4	0,0	0,0	4,4	9,2	84,5	4759,3	3,0	107,8	WEA 12 3.2M114	ZQi012
	16,5		0,0	0,3	0,0	0,0	4,5	6,3	81,3	3279,8	3,0	105,9	WEA 13 E-82 E2 2,0	ZQi012 ZQi013
	15,8		0,0	0,2	0,0	0,0	4,6	6,6	81,7	3447,4	3,0	105,9	WEA 14 E-82 E2 2,0	EZQi014
	14,9		0,0	0,2	0,0	0,0	4,6	7,0	82,2	3635,8	3,0	105,9	WEA 15 E-82 E2 2,0	EZQI015
	16,1		0,0	0,2	0,0	0,0	4,6	6,6	81,7	3429,0	3,0	106,2	WEA 16 E-82 E2	ZQi016
	15,5		0,0	0,4	0,0	0,0	4,4	5,9	80,7	3050,7	3,0	103,8	WEA 17 E-70 E4 2,0	ZQi017
	17,5		0,0	0,4	0,0	0,0	4,4	6,0	80,9	3131,7	3,0	106,2	WEA 18 E-82 E2	ZQi018
	13,8		0,0	0,2	0,0	0,0	4,6	6.6	81,7		3,0	103,8	WEA 19 E-70 E4 2,0	ZQi018 ZQi019
	12,5		0,0	0,2	0,0	0,0	4.6	7,1	82,4		3,0	103,8	WEA 20 E-70 E4 2,0	ZQi019 ZQi020
	11,3		0,0	0,2	0,0	0,0	4,6	7,7	83.0		3,0	103,8	WEA 21 E-70 E4 2,0	ZQi020 ZQi021
	10,2		0.0	0,1	0,0	0.0	4,6	8,2	83,6	1 1	3.0	103,8	WEA 21 E-70 E4 2,0	ZQ1021 ZQ1022
	12,9		0,0	0,2	0.0	0,0	4,6	8,1	83,5		3,0	106,2	WEA 23 E-82 E2	ZQ1022 ZQi023
	9,2		0,0	0,1	0.0	0,0	4,6	8,7	84,1		3,0	103.8	1	
	8,2		0,0	0,1	0,0	0,0	4,6	9,2	84,6		3,0	103,8	WEA 24 E-70 E4 2,0	ZQi024
	10,2		0,0	0,1	0.0	0,0	4,6	9,4	84,8	1	3,0	106,2	WEA 25 E-70 E4 2,0	ZQi025
	6,4		0,0	0,3	0,0	0,0	4,5	12,2	87,1		3,0	107,5	WEA 26 E-82 E2	ZQi026
	7,6		0,0	0,3	0.0	0,0	4,5	11,6	86,6	1 1	3,0	107,5	WEA 27 N117 (N01)	ZQi027
	8,9		0,0	0,4	0,0	0,0	4.4	10,9	86,0	1 1	3,0	107,5	WEA 28 N117 (N02)	ZQi028
	10,0		0,0	0,4	0,0	0,0	4,4	10,3	85,5	1 1	3.0	107,5	WEA 29 N117 (N04)	ZQi029
	10,2		0,0	0,5	0,0	0,0	4,3	10,3	85,4	1 '	3,0	107,5	WEA 30 N117 (N05)	ZQi030
	11.4		0,0	0,4	0,0	0,0	4,3	9,5	84,8		3,0		WEA 31 N117 (N08)	ZQi031
	8,3		0,0	0,4	0.0	0,0	4,4	1				107,5	WEA 32 N117 (N09)	ZQi032
	13,5		0,0	0,4	0,0	0,0	4,4	9,0 8,4	84,4		3,0	103,5	WEA 33 N117 (N10)	EZQi033
	4,6		0,0	0.2	0,0	0.0	4,6				3,0	107,5	WEA 34 N117 (N11)	ZQi034
	3,6		0,0	0,2	0,0	0,0	4,6	13,3	87,8	1	3,0	107,5	WEA 35 N117	EZQi035
Ì	3,6		0,0	0,2	0,0	0,0		13,9	88,2	1	3,0	107,5	WEA 36 N117	ZQi036
	17,8		0,0	0,5			4,4	14,0	88,2		3,0	107,5	WEA 37 N117	ZQi037
	16,3		0,0	0,5	0,0	0,0	4,3	6,3	81,3	3295,1		107,3	WEA 38 E-101	ZQi038
	18,5		0,0		0,0	0,0	4,2	7,0	82,2		3,0	107,3	WEA 39 E-101	ZQi039
	18,9			0,5	0,0	0,0	4,3	6,1	81,0		3,0	107,3	WEA 40 E-101	ZQi040
	1		0,0	0,6	0,0	0,0	4,2	5,9	80,7		3,0	107,3	WEA 41 E-101	EZQi041
	18,0		0,0	0,4	0,0	0,0	4,4	5,6	80,2		3,0	105,5	WEA 42 N117/2400	EZQi042
	20,6		0,0	0,6	0,0	0,0	4,2	4,6	78,5	2384,0		105,5	WEA 43 N117/2400	EZQi043
31	24,8		0,0	0,0	0,0	0,0	3,5	3,7	76,6	1897,1	3,0	105,5	WEA 44 N117/2400	EZQi044

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort: IP 08 Weienmühle Emissionsvariante: Nacht X = 383046,00 Y = 5548336,00 Z = 285,00 Variante: Gesamtbelastung

	sionsberechnung nach ISO 9613								Lff =	Lw + Dc -	Adiv - Aatm	- Agr - Afol	- Ahous - A	Abar - Cm
Element	Bezeichnung	/ dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar / dB	Cmet / dB	LfT / dB	LfT /dB(A)	LAT ge:
ZQi001	WEA 01 E-82 E2	106,2	3,0	7415,6	88,4	14,3	4,6	0,0	0,0	1,1	0,0		0,8	
ZQi002	WEA 02 E-82 E2	106,2	3,0	7408,3	88,4	14,3	4,6	0,0	0,0	1,1	0,0		0,9	
ZQi003	WEA 03 E-82 E2	106,2	3,0	7511,8	88,5	14,5	4,6	0,0	0,0	1,0	0,0		0,6	
ZQi004	WEA 04 E-82 E2	106,2	3,0	7670,7	88,7	14,8	4,6	0,0	0,0	0,8	0,0		0,4	1
ZQi005	WEA 05 Vestas V44	105,0	3,0	7340,5	88,3	14,1	4,7	0,0	0,0	1,1	0,0		-0,3	
ZQi006	WEA 06 Vestas V90	105,4	3,0	3547,9	82,0	6,8	4,7	0,0	0,0	7,0	0,0		7,8	
ZQi007	WEA 07 Vestas V90	105,4	3,0	3624,8	82,2	7,0	4,7	0,0	0,0	6,7	0,0		7,9	
ZQi008	WEA 08 Vestas V90	105,4	3,0	3527,5	81,9	6,8	4,7	0,0	0,0	6,4	0,0		8,6	
ZQi009	WEA 09 Vestas V-112	109,1	3,0	2949,6	80,4	5,7	4,6	0,0	0,0	8,4	0,0		13,1	1
ZQi010	WEA 10 Vestas V112	109,1	3,0	3242,5	81,2	6,2	4,6	0,0	0,0	7,0	0,0		13,0	
ZQi011	WEA 11 Vestas V112	109,1	3,0	3346,1	81,5	6,4	4,6	0,0	0.0	5,7	0,0		13,9	1
ZQi012	WEA 12 3.2M114	107,8	3,0	4497,5	84,1	8,7	4,4	0,0	0,0	4,5	0.0		9,2	
ZQi013	WEA 13 E-82 E2 2,0	105,9	3,0	3460,1	81,8	6,7	4,5	0.0	0.0	0,2	0,0		15,7	
ZQi014	WEA 14 E-82 E2 2,0	105,9	3,0	3637,9	82,2	7,0	4,5	0,0	0.0	0.2	0,0		14,9	
ZQi015	WEA 15 E-82 E2 2.0	105,9	3,0	3835,9	82,7	7.4	4.6	0,0	0.0	0,2	0,0		14,1	
ZQi016	WEA 16 E-82 E2	106,2	3,0	3637,0	82,2	7,0	4,6	0,0	0,0	0,2	0.0		15,2	
2Qi017	WEA 17 E-70 E4 2,0	103,8	3,0	3276,0	81,3	6.3	4.4	0,0	0,0	0,3	0,0		14,4	
Qi018	WEA 18 E-82 E2	106,2		3365,8	81,5	6,5	4,4	0,0	0,0	0,3	0,0		16,4	
Qi019	WEA 19 E-70 E4 2.0	103,8		3647.5	82,2	7,0	4,6	0.0	0,0	0,2	0,0		12,8	
Qi020	WEA 20 E-70 E4 2.0	103,8	- 1	3943,7	82,9	7,6	4,6	0,0	0,0	0,2	0,0		11,5	
Qi021	WEA 21 E-70 E4 2.0	103,8		4232,6	83,5	8.1	4,6	0,0	0.0	0,1	0,0		10,4	
Qi022	WEA 22 E-70 E4 2.0	103.8	3.0	4519,7	84,1	8,7	4,7	0,0	0,0	0,1	0,0		9,2	
Qi023	WEA 23 E-82 E2	106,2		4454,1	84,0	8,6	4.6	0,0	0.0	0,2	0.0		11,9	
Qi024	WEA 24 E-70 E4 2,0	103,8		4784.5	84,6	9,2	4,7	0,0	0,0	0,1	0,0		8,2	
Qi025	WEA 25 E-70 E4 2,0	103,8	. 1	5046,7	85,1	9,7	4,6	0,0	0.0	0,1	0,0		7,3	
Qi026	WEA 26 E-82 E2	106,2		5139,8	85,2	9,9	4,6	0,0	0,0	0,1	0,0		9,3	
Qi027	WEA 27 N117 (N01)	107,5		6136,1	86.7	11,8	4,5	0.0	0,0	0,3	0,0		7,2	
Qi028	WEA 28 N117 (N02)	107.5		5780,1	86,2	11.1	4,5	0,0	0,0	0,3	0,0		8,3	
Qi029	WEA 29 N117 (N04)	107,5		5418,8	85,7	10,4	4,4	0,0	0,0	0,3	0,0		9,6	1
Qi030	WEA 30 N117 (N05)	107,5	1	5099,7	85.1	9,8	4,4	0,0	0,0	0,6	0,0		10,6	1
Qi031	WEA 31 N117 (N08)	107,5		5060,5	85,1	9,7	4,4	0,0	0,0	0,4	0,0		10,8	
Qi032	WEA 32 N117 (N09)	107,5	. 1	4711,0	84,5	9.1	4,4	0,0	0.0	0,4	0.0		12,2	
Qi033	WEA 33 N117 (N10)	103.5		4466,8	84,0	8,6	4,4	0,0	0,0	0,5	0,0		9,0	1
Qi034	WEA 34 N117 (N11)	107,5	' 1	4180,1	83,4	8,0	4,2	0,0	0.0	0,6	0,0		14,3	
Qi035	WEA 35 N117	107,5	- 1	6665,3	87,5	12,8	4,6	0,0	0,0	0,7	0,0		4,9	1
Qi036	WEA 36 N117	107,5	. 1	6994,4	87,9	13,5	4,6	0.0	0.0	0,3	0,0			l
Qi037	WEA 37 N117	107,5		7003,4	87.9	13,5	4,4	0,0	0,0	0,3			4,3	i
Qi038	WEA 38 E-101	107,3		3557,3	82.0	6,8	4,3	0.0	0,0	0,5	0,0		4,1	i
Qi039	WEA 39 E-101	107,3		3908.2	82,8	7,5	4,3	0,0	0,0		. 1		16,7	ĺ
Qi040	WEA 40 E-101	107,3		3413,6	81,7	6,6	4,3	0,0	0,0	0,5	0,0		15,2	1
Qi040 Qi041	WEA 41 E-101	107,3		3337,1	81,5	6,4	4,3	0.0		0,5	0,0		17,3	ı
Qi041	WEA 42 N117/2400	105,5		2634,1	79,4				0,0	0,6	0,0		17,7	1
Qi042	WEA 43 N117/2400	105,5		2123,7	77,5	5,1	4,5	0,0	0,0	13,1	0,0		6,5	
Qi043	WEA 44 N117/2400	105,5		. 1	. 1	4,1	4,3	0,0	0,0	6,8	0,0		15,8	
-WIU44	VVEA 44 N 1 1//2400	100,5	3,0	1667,6	75,4	3,2	3,6	0,0	0,0	1,5	0,0		24,7	

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

 Einzelpunktberechnung
 Immissionsort
 IP 09 Kaspersmühle
 Emissionsvariante: Nacht

 X = 382546,00
 Y = 5548569,00
 Z = 275,00

 Variante:
 Gesamtbelastung

Elementtyp: Schallimmissi	Einzelschallquelle (ISC ionsberechnung nach ISO 9613								Lff =	Lw + Dc - /	Adiv - Aatm	- Agr - Afol	I - Ahous - A	bar - Cme
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
		/ dB(A)	/ dB	/m	/ dB	/dB	/dB	/ dB	/dB	/dB	/dB	/dB	/ dB(A)	/ dB(A)
EZQi001	WEA 01 E-82 E2	106,2	3,0		88,7	14,7	4,6	0,0	0,0	0,2	0,0		1,0	
EZQi002	WEA 02 E-82 E2	106,2	3,0		88,7	14,8	4,6	0,0	0,0	0,2	0,0		1,0	
ZQi003	WEA 03 E-82 E2	106,2	3,0		88,8	15,0	4,6	0,0	0,0	0,2	0,0		0,6	
ZQi004	WEA 04 E-82 E2	106,2	3,0	1	89,0	15,3	4,6	0,0	0,0	0,2	0,0		0,1	
ZQi005	WEA 05 Vestas V44	105,0	3,0		88,7	14,7	4,7	0,0	0,0	0,0	0,0		-0,2	
ZQi006	WEA 06 Vestas V90	105,4	3,0		82,7	7,4	4,8	0,0	0,0	0,0	0,0		13,4	
ZQi007	WEA 07 Vestas V90	105,4	3,0		83,0	7,7	4,7	0,0	0,0	0,1	0,0		13,0	
EZQi008	WEA 08 Vestas V90	105,4	3,0		82,8	7,5	4,6	0,0	0,0	0,2	0,0		13,3	
EZQi009	WEA 09 Vestas V-112	109,1	3,0		81,6	6,5	4,4	0,0	0,0	0,3	0,0		19,2	
ZQi010	WEA 10 Vestas V112	109,1	3,0		82,4	7,1	4,5	0,0	0,0	0,3	0,0		17,8	
ZQi011	WEA 11 Vestas V112	109,1	3,0	3837,0	82,7	7,4	4,5	0,0	0,0	0,3	0,0		17,3	
ZQi012	WEA 12 3.2M114	107,8	3,0	4316,1	83,7	8,3	4,5	0,0	0,0	0,6	0,0		13,8	
ZQi013	WEA 13 E-82 E2 2,0	105,9	3,0	3336,6	81,5	6,4	4,6	0,0	0,0	4,0	0,0		12,5	
ZQi014	WEA 14 E-82 E2 2,0	105,9	3,0	3540,6	82,0	6,8	4,6	0,0	0,0	2,9	0,0		12,5	
EZQi015	WEA 15 E-82 E2 2.0	105,9	3,0	3764,7	82,5	7,2	4,7	0,0	0,0	1,2	0,0		13,2	
ZQi016	WEA 16 E-82 E2	106,2	3,0	3594,2	82,1	6,9	4,7	0,0	0,0	1,8	0,0		13,7	
ZQi017	WEA 17 E-70 E4 2,0	103,8	3,0	3301,6	81,4	6,4	4,6	0,0	0,0	3,0	0,0		11,5	
ZQi018	WEA 18 E-82 E2	106,2	3,0	3425,8	81,7	6,6	4,6	0,0	0,0	3,2	0,0		13,1	
ZQi019	WEA 19 E-70 E4 2.0	103,8	3,0	3678,6	82,3	7,1	4,7	0,0	0,0	2,4	0,0		10,3	İ
ZQi020	WEA 20 E-70 E4 2.0	103,8	3,0	3982,3	83,0	7,7	4,7	0,0	0,0	1,8	0,0		9,6	
ZQi021	WEA 21 E-70 E4 2,0	103,8	3,0	4281,8	83,6	8,2	4,8	0,0	0,0	1,4	0,0		8,7	
ZQi022	WEA 22 E-70 E4 2,0	103,8	3,0	4579,7	84,2	8,8	4,8	0,0	0,0	1,1	0,0		7,9	
ZQi023	WEA 23 E-82 E2	106,2	3,0	4547,3	84,1	8,7	4,7	0,0	0,0	1,4	0,0		10,2	
ZQi024	WEA 24 E-70 E4 2,0	103,8	3,0	4860,3	84,7	9,4	4,8	0,0	0,0	0,9	0,0		7,0	
ZQi025	WEA 25 E-70 E4 2,0	103,8	3.0	5137.8	85,2	9,9	4,8	0,0	0,0	0,8	0,0		6,2	
ZQi026	WEA 26 E-82 E2	106,2	3.0	5254,0	85,4	10,1	4,8	0,0	0,0	0,8	0,0		8,2	
ZQi027	WEA 27 N117 (N01)	107,5	3,0	5662,9	86,1	10,9	4,4	0,0	0,0	0,3	0,0		8,8	
ZQi027 ZQi028	WEA 28 N117 (N02)	107,5		5327,3	85,5	10,3	4.5	0.0	0.0	0.3	0.0		10,0	
ZQi020 ZQi029	WEA 29 N117 (N04)	107,5	3.0	1 1	84,9	9,5	4,3	0,0	0,0	0.4	0,0		11,3	
ZQi029 ZQi030	WEA 30 N117 (N05)	107,5	3,0	1 1	84,3	8,9	4,4	0,0	0,0	0.4	0.0		12,4	
ZQ1030 ZQ1031	WEA 31 N117 (N08)	107,5	3.0	4571,4	84.2	8,8	4,2	0,0	0,0	0,5	0,0		12,7	
ZQi031	WEA 32 N117 (N09)	107,5	- , -	4232,4	83,5	8,1	4,3	0,0	0,0	0,5	0,0		14,0	
ZQi032	WEA 33 N117 (N10)	103,5	3.0	4016,7	83,1	7,7	4,3	0,0	0,0	0,5	0,0		10,9	
ZQi033	WEA 34 N117 (N11)	107,5	3,0		82,3	7,1	3,9	0,0	0,0	0,9	0,0		16,4	
ZQi034 ZQi035	WEA 35 N117	107,5	3.0	6276,0	86.9	12,1	4.6	0,0	0.0	0.2	0,0		6,7	
ZQ1035 ZQ1036	WEA 36 N117	107,5	3,0		87,4	12,7	4,5	0,0	0,0	0,3	0,0		5,5	
ZQ1036 ZQ1037		107,5	3.0	6642,6	87.4	12,8	4,5	0,0	0.0	0.4	0,0		5,5	
	WEA 37 N117	107,3	3.0	3881.2	82,8	7,5	4,5	0,0	0,0	3,2	0,0		12,3	
ZQi038	WEA 38 E-101	107,3	3.0	4260,5	83,6	8,2	4,4	0,0	0,0	2,3	0,0		11,8	
ZQi039	WEA 39 E-101	107,3	3,0	1 1	82,2	7,0	4,4	0.0	0.0	3,8	0,0		12,8	
ZQi040	WEA 40 E-101	1						0,0	0,0	3,7	0,0		13,0	
ZQi041	WEA 41 E-101	107,3	3,0	3628,1	82,2	7,0	4,4	0,0	0.0	0,6	0,0		19,5	
ZQi042	WEA 42 N117/2400	105,5		2526,2	79,0	4,9		. 1		, ,	0,0		19,5	
EZQi043	WEA 43 N117/2400	105,5	,	1886,4	76,5	3,6	4,2	0,0	0,0	4,8	0,0		26,0	
EZQi044	WEA 44 N117/2400	105,5	3,0	1242,7	72,9	2,4	3,2	0,0	0,0	4,0	0,0		20,0	31,

IEL GmbH Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26 U:\ ... 2887-14-L4.IPR

26603 Aurich Gesamtbelastung

Schallimmis	sionsberechnung nach ISO 9613								LfT =	Lw + Dc -	Adiv - Aatm	- Agr - Afol	- Ahous - A	bar - Cm
Element	Bezeichnung	Lw /dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar / dB	Cmet / dB	LfT /dB	LfT / dB(A)	LAT ge
ZQi001	WEA 01 E-82 E2	106,2	3,0	8628,0	89,7	16,6	4,4	0,0	0,0	0,0	0,0		-1,5	
ZQi002	WEA 02 E-82 E2	106,2	3,0	8662,2	89,7	16,7	4,4	0,0	0,0	0,0	0,0		-1,6	
ZQi003	WEA 03 E-82 E2	106,2	3,0	8810,7	89,9	17,0	4,4	0,0	0,0	0,0	0,0		-2,1	
ZQi004	WEA 04 E-82 E2	106,2	3,0	9018,4	90,1	17,4	4,4	0,0	0,0	0,0	0,0		-2,7	
ZQi005	WEA 05 Vestas V44	105,0	3,0	8724,4	89,8	16,8	4,5	0,0	0,0	0,2	0,0		-3,4	
ZQi006	WEA 06 Vestas V90	105,4	3,0		85,0	9,6	4,4	0,0	0,0	0,2	0,0		9,2	
ZQi007	WEA 07 Vestas V90	105,4	3,0	5134,3	85,2	9,9	4,4	0,0	0,0	0,0	0,0		8,9	
ZQi008	WEA 08 Vestas V90	105,4	3,0	5099,5	85,1	9,8	4,4	0,0	0,0	0,0	0,0		9,1	
ZQi009	WEA 09 Vestas V-112	109,1	3,0	4637,8	84,3	8,9	4,2	0,0	0,0	0,0	0,0		14,7	
ZQi010	WEA 10 Vestas V112	109,1	3,0	4976,2	84,9	9,6	4,2	0,0	0,0	0,0	0,0		13,4	
ZQi011	WEA 11 Vestas V112	109,1	3.0		85,2	9,8	4,2	0,0	0,0	0,0	0,0		12,9	
ZQi012	WEA 12 3.2M114	107,8	3,0		84,1	8,7	4,0	0,0	0,0	0,0	0,0		14,0	
ZQi013	WEA 13 E-82 E2 2,0	105,9		3004,8	80,5	5,8	4,0	0,0	0,0	0,0	0,0		18,6	
ZQi014	WEA 14 E-82 E2 2.0	105,9		3252,0	81,2	6,3	4,1	0,0	0,0	0,0	0,0		17,3	
ZQi015	WEA 15 E-82 E2 2,0	105,9		3518,8	81,9	6,8	4,2	0,0	0,0	0,0	0,0		16,1	
ZQi016	WEA 16 E-82 E2	106,2		3431,1	81,7	6,6	4,1	0.0	0,0	0.0	0.0		16,8	
ZQi017	WEA 17 E-70 E4 2,0	103,8		3326,5	81,4	6,4	4,0	0,0	0,0	0,0	0,0		14,9	
ZQi018	WEA 18 E-82 E2	106,2	3,0		81,9	6,8	4,1	0,0	0,0	0,0	0,0		16,4	
ZQi019	WEA 19 E-70 E4 2,0	103,8	3,0		82,3	7,1	4,2	0,0	0,0	0,0	0,0		13,2	
ZQi020	WEA 20 E-70 E4 2,0	103.8	3.0		83,0	7,7	4,3	0.0	0,0	0.0	0,0		11,9	
ZQi021	WEA 21 E-70 E4 2,0	103,8	3,0		83,6	8,2	4,4	0,0	0,0	0,0	0,0		10,6	
ZQi021 ZQi022	WEA 22 E-70 E4 2,0	103,8	3.0	4585,8	84,2	8,8	4,4	0,0	0,0	0.0	0,0		9,4	
ZQi022 ZQi023	WEA 23 E-82 E2	106,2	3,0		84,3	8,9	4,4	0,0	0,0	0,0	0,0		11,5	
ZQi023 ZQi024	WEA 24 E-70 E4 2,0	103,8	3,0	4888,3	84.8	9,4	4,5	0,0	0,0	0,0	0,0		8,2	
ZQi024 ZQi025	WEA 25 E-70 E4 2,0	103,8	3,0		85,3	10,0	4,5	0,0	0,0	0.0	0,0		7,0	
ZQi025 ZQi026		106,2	3,0		85,6	10,3	4,5	0,0	0,0					
	WEA 26 E-82 E2	107,5			84.8					0,0	0,0		8,8	
ZQi027	WEA 27 N117 (N01)	107,5	3,0		,	9,5	4,1	0,0	0,0	0,0	0,0		12,1	
ZQi028 ZQi029	WEA 28 N117 (N02)	107,5		4677,6	84,4	9,0	4,1	0,0	0,0	0,0	0,0		13,0	
	WEA 29 N117 (N04)	107,5						0,0			0,0		14,8	
ZQi030	WEA 30 N117 (N05)	107,5	3,0	4016,3 3791,8	83,1	7,7	3,9	0,0	0,0	0,0	0,0		15,8	
ZQi031	WEA 31 N117 (N08)				82,6	7,3	3,8	0,0	0,0	0,0	0,0		16,8	į.
ZQi032	WEA 32 N117 (N09)	107,5		3514,5	81,9	6,8	3,8	0,0	0,0	0,0	0,0		18,1	
ZQi033	WEA 33 N117 (N10)	103,5		3432,0	81,7	6,6	3,7	0,0	0,0	0,0	0,0		14,5	
ZQi034	WEA 34 N117 (N11)	107,5		2864,9	80,1	5,5	3,5	0,0	0,0	0,0	0,0		21,4	(
ZQi035	WEA 35 N117	107,5		5827,4	86,3	11,2	4,3	0,0	0,0	0,0	0,0	1	8,7	(
ZQi036	WEA 36 N117	107,5	3,0	6179,0	86,8	11,9	4,2	0,0	0,0	0,0	0,0		7,6	
ZQi037	WEA 37 N117	107,5	3,0	6275,5	86,9	12,1	4,2	0,0	0,0	0,0	0,0		7,3	
ZQi038	WEA 38 E-101	107,3	3,0	4522,1	84,1	8,7	4,3	0,0	0,0	0,4	0,0		12,7	
ZQi039	WEA 39 E-101	107,3	3,0	4947,4	84,9	9,5	4,3	0,0	0,0	0,5	0,0		11,1	
ZQi040	WEA 40 E-101	107,3	3,0	4080,3	83,2	7,9	4,3	0,0	0,0	0,0	0,0		15,0	
ZQi041	WEA 41 E-101	107,3	3,0	4210,9	83,5	8,1	4,2	0,0	0,0	0,5	0,0		14,0	
ZQi042	WEA 42 N117/2400	105,5	3,0	3060,8	80,7	5,9	3,8	0,0	0,0	0,0	0,0		18,1	
ZQi043	WEA 43 N117/2400	105,5		2258,3	78,1	4,3	3,1	0,0	0,0	0,0	0,0		23,0	
ZQi044	WEA 44 N117/2400	105,5	3,0	1327,6	73,5	2,6	1,2	0,0	0,0	0,0	0,0		31,3	

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort: IP 11 Petry-Mühle Emissionsvariante: Nacht X = 381612,00 Y = 5549674,00 Z = 238,38 Variante: Gesamtbelastung

Elementtyp:	Einzelschallquelle (ISO	9613)							1.67	I De	Adir Anton	Amr Afo	I - Ahous - A	har Cmat
	onsberechnung nach ISO 9613						_					LfT	LfT	LAT ges
Element	Bezeichnung	/ dB(A)	Dc /dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar / dB	Cmet / dB	/dB	/ dB(A)	/dB(A)
EZQi001	WEA 01 E-82 E2	106,2		7884,3	88,9	15,2	4,6	0,0	0,0	0,8	0,0		-0,3	
EZQi001	WEA 02 E-82 E2	106,2	3,0	1	89,0	15,3	4,6	0,0	0,0	0,7	0,0		-0,4	
EZQI002 EZQI003	WEA 03 E-82 E2	106,2		8107,9	89,2	15,6	4,6	0,0	0,0	0,6	0,0		-0,8	
EZQi003	WEA 04 E-82 E2	106,2	3,0		89,4	16,0	4,6	0,0	0,0	1,3	0,0		-2,2	
EZQi004 EZQi005	WEA 05 Vestas V44	105,0	3,0	1	89,1	15,5	4,7	0,0	0,0	0,7	0,0		-2,0	
EZQi003	WEA 06 Vestas V90	105,4	3.0		84.0	8,6	4,8	0,0	0,0	7,6	0,0		3,5	
EZQI000 EZQI007	WEA 07 Vestas V90	105,4	3,0		84,3	8,9	4,8	0,0	0,0	6,4	0,0		4,0	
EZQi007	WEA 08 Vestas V90	105,4	3,0	1	84,3	9,0	4,8	0,0	0,0	1,7	0,0		8,6	
EZQI008	WEA 09 Vestas V-112	109,1		4327,1	83,7	8,3	4,8	0,0	0,0	0,0	0,0		15,3	
EZQi009 EZQi010	WEA 10 Vestas V112	109,1	3,0		84,5	9,1	4,8	0.0	0,0	0,0	0,0		13,8	
EZQi010 EZQi011	WEA 10 Vestas V112	109,1	3.0	1 1	84.8	9,4	4.7	0,0	0,0	0,1	0,0		13,1	
	WEA 12 3.2M114	107,8	3,0		82,0	6,8	4,3	0,0	0.0	7,7	0,0		9,9	
EZQi012	WEA 12 3.2M114 WEA 13 E-82 E2 2.0	105,9		3994,1	83,0	7,7	4,5	0,0	0,0	0,7	0,0		13,1	
EZQi013 EZQi014	WEA 14 E-82 E2 2,0	105,9	3,0		83,5	8,2	4,5	0.0	0,0	0,5	0,0		12,2	
		105,9	3,0	1 1	84,1	8,7	4,5	0,0	0,0	0,8	0,0		10,9	
EZQi015	WEA 15 E-82 E2 2,0	106,2	3,0		83.9	8,5	4,4	0,0	0,0	0,6	0,0		11,9	
EZQi016	WEA 16 E-82 E2	103,8		4252,8	83,6	8,2	4,5	0,0	0,0	0,4	0,0		10,1	
EZQi017	WEA 17 E-70 E4 2,0	106,2	3,0	1	83,9	8,5	4,6	0,0	0,0	0,3	0,0		11,9	
EZQi018	WEA 18 E-82 E2	103,8	3,0	1	84,3	8,9	4,6	0,0	0,0	0,3	0,0		8,7	
EZQi019	WEA 19 E-70 E4 2,0	103,8	3,0	1	84,8	9,5	4,6	0,0	0,0	0,2	0,0		7,7	
EZQi020	WEA 20 E-70 E4 2,0		,	5223,3	85,4	10,1	4,7	0,0	0,0	0,2	0,0		6,6	
EZQi021	WEA 21 E-70 E4 2,0	103,8		5529,2	85,8	10,1	4,7	0,0	0,0	0,1	0,0		5,5	
EZQi022	WEA 22 E-70 E4 2,0	103,8		1 1	85,9	10,0	4,8	0.0	0,0	0,1	0,0		7,7	
EZQi023	WEA 23 E-82 E2	106,2		5555,9	86,3	11,2	4,7	0,0	0,0	0,1	0,0		4,5	
EZQi024	WEA 24 E-70 E4 2,0	103,8		5828,4		11,2	4,8	0,0		0,1	0,0		3,5	
EZQi025	WEA 25 E-70 E4 2,0	103,8		6124,9	86,7	12,1	4,8	0,0	0,0	0,0	0,0		5,4	
EZQi026	WEA 26 E-82 E2	106,2		6278,0	86,9	8,1		0,0	0,0	0,4	0,0		14,1	
EZQi027	WEA 27 N117 (N01)	107,5		4235,3	83,5 82,9	7,6	4,4	0.0	0,0	0,3	0,0		15,3	
EZQi028	WEA 28 N117 (N02)	107,5	3,0	1				0.0		0,5	0,0		17,0	
EZQi029	WEA 29 N117 (N04)	107,5	3,0		82,0	6,8	4,3	0,0	1 1	0,5	0,0		18,3	
EZQi030	WEA 30 N117 (N05)	107,5	3,0	1 ' 1	81,2	6,2	4,3	1		0,0	0,0		19,5	
EZQi031	WEA 31 N117 (N08)	107,5	3,0	1	80,9	6,0	4,1	0,0		0,0	0,0		20,4	
EZQi032	WEA 32 N117 (N09)	107,5	3,0	1	80,0	5,4	4,1	1	1 .		0,0		16.7	
EZQi033	WEA 33 N117 (N10)	103,5	3,0		79,4	5,1	4,2	0,0		1,1	0,0		24,7	
EZQi034	WEA 34 N117 (N11)	107,5		2237,0	78,0	4,3	3,5	0,0			0,0		10,9	
EZQi035	WEA 35 N117	107,5	3,0		84,9	9,6	4,6	0,0	1	0,5			9,8	
EZQi036	WEA 36 N117	107,5		5312,8	85,5	10,2	4,5	0,0		0,4	0,0		9,8	
EZQi037	WEA 37 N117	107,5	3,0		85,6	10,4	4,5	0,0		0,4	0,0		9,7	
EZQi038	WEA 38 E-101	107,3		5221,4	85,3	10,0	4,6	0,0		0,4	0,0			
EZQi039	WEA 39 E-101	107,3	3,0	1	86,0	10,8	4,6	0,0		0,4	0,0		8,5	
EZQi040	WEA 40 E-101	107,3	3,0		84,7	9,4	4,6	0,0	1	0,2	0,0		11,3	
EZQi041	WEA 41 E-101	107,3	3,0	1 ' 1	84,9	9,5	4,5	0,0		0,3	0,0		11,1	
EZQi042	WEA 42 N117/2400	105,5	3,0	1	77,8	4,2	4,4	0,0		15,2	0,0		6,9	
EZQi043	WEA 43 N117/2400	105,5	3,0		73,9	2,7	3,7	0,0	1	12,8	0,0		15,4	
EZQi044	WEA 44 N117/2400	105,5	3,0	597,6	66,5	1,1	1,6	0,0	0,0	0,0	0,0		39,2	
														39,7

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Im	missionsort	IP 12 Auf der Lex 5		Emissionsvariante: Nacht
		X = 381628,00	Y = 5551147,00	Z = 332,49
	Variante:	Gesamtbelastung		

Schallimmics	sionsberechnung nach ISO 9613	O 9613)							LCT -	1 0				
Element		T 1		T T			. 1			Lw + Dc -			1	
ziement	Bezeichnung	/ dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm /dB	Agr / dB	Afol / dB	Ahous /dB	Abar /dB	Cmet /dB	LfT / dB	LfT /dB(A)	LAT ge
ZQi001	WEA 01 E-82 E2	106,2	3,0	7336,8	88,3	14,1	4,4	0,0	0,0	0,0	0,0		2,4	
ZQi002	WEA 02 E-82 E2	106,2	3,0	7433,2	88,4	14,3	4,4	0,0	0.0	0,0	0,0		2,1	
ZQi003	WEA 03 E-82 E2	106,2	3,0	7645,5	88,7	14,7	4,4	0,0	0,0	0.0	0,0		1,4	
ZQi004	WEA 04 E-82 E2	106,2	3,0	7925,1	89,0	15,2	4,4	0,0	0,0	0.0	0,0		0,6	
ZQi005	WEA 05 Vestas V44	105,0	3,0	7709,0	88,7	14,8	4,5	0,0	0,0	0,2	0,0		-0,3	
ZQi006	WEA 06 Vestas V90	105,4	3,0	4486,4	84,0	8,6	4,4	0,0	0,0	0.0	0,0		11,4	
ZQi007	WEA 07 Vestas V90	105,4	3,0	4727,8	84,5	9,1	4,3	0,0	0,0	0.0	0,0		10,5	
ZQi008	WEA 08 Vestas V90	105,4	3,0		84,7	9,3	4,4	0,0	0,0	0.0	0,0		10,1	
ZQi009	WEA 09 Vestas V-112	109,1	3,0	4738,1	84,5	9,1	4.3	0,0	0,0	0,0	0,0		14,2	
ZQi010	WEA 10 Vestas V112	109,1	3.0		85,2	9,9	4.4	0,0	0,0	0,0	0,0		12,6	
ZQi011	WEA 11 Vestas V112	109,1	3,0		85,6	10,4	4,4	0,0	0.0	0,0	0,0		11,7	
ZQi012	WEA 12 3.2M114	107,8	3,0		78,3	4,5	3,4	0,0	0,0	0.0	0.0		24,6	
ZQi013	WEA 13 E-82 E2 2.0	105,9	3.0		85,7	10,5	4,2	0,0	0,0	0,0	0,0		8,5	
ZQi014	WEA 14 E-82 E2 2,0	105,9	3,0		86,1	10,9	4,3	0,0	0,0	0,0	0,0		7,6	
ZQi015	WEA 15 E-82 E2 2.0	105,9	3,0	1 1	86,5	11,4	4,3	0,0	0,0	0,0	0,0		6,7	1
ZQi016	WEA 16 E-82 E2	106,2	3,0		86,3	11,3	4,2	0,0	0,0	0,0	0,0		7,4	
ZQi017	WEA 17 E-70 E4 2,0	103,8		5717,7	86,1	11,0	4,2	0,0	0,0	0,0	0,0		5,5	
ZQi018	WEA 18 E-82 E2	106,2			86,4	11,3	4,3	0,0	0,0	0,0	0,0		7,2	1
ZQi019	WEA 19 E-70 E4 2,0	103,8	3.0		86,7	11,7	4,3	0,0	0,0	0,0	0,0		4,2	
ZQi020	WEA 20 E-70 E4 2.0	103,8	3.0	6383,5	87,1	12,3	4,3	0,0	0,0	0,0	0,0		3,1	
ZQi021	WEA 21 E-70 E4 2,0	103,8	3,0	6689,1	87,5	12,9	4,4	0,0	0,0	0,0	0,0			
ZQi021	WEA 22 E-70 E4 2.0	103,8	3.0	6995,3	87.9	13,5	4,4	0,0	0,0	0.0	0,0		2,1	i
ZQi023	WEA 23 E-82 E2	106,2	3,0	7023,0	87,9	13,5	4,4	0,0	0,0	0,0	0,0		1,1	1
ZQi024	WEA 24 E-70 E4 2,0	103,8		7295,2	88,3	14,0	4,4	0,0	0,0	0.0	0,0		0,1	ĺ
ZQi025	WEA 25 E-70 E4 2,0	103,8	3,0	7592,3	88,6	14,6	4,5	0,0	0,0	0.0	0,0		-0,9	ĺ
ZQi026	WEA 26 E-82 E2	106,2	3,0	7745,8	88,8	14,9	4,5	0,0	0,0	0,0	0,0			(
ZQi020 ZQi027	WEA 27 N117 (N01)	107,5	3,0	3062,9	80.7	5,9			0,0				1,0	(
ZQ1027 ZQ1028	WEA 28 N117 (N02)	107,5		2659,6	' 1		4,0	0,0		0,7	0,0		19,1	1
ZQ1028 ZQ1029	WEA 29 N117 (N02)	107,5		, ,	79,5 78,3	5,1	4,0	0,0	0,0	0,7	0,0		21,2	1
ZQi029 ZQi030		107,5	3,0	1990,8		4,5	3,7	0,0	0,0	0,3	0,0		23,7	1
ZQi030 ZQi031	WEA 30 N117 (N05) WEA 31 N117 (N08)	107,5	, ,		77,0	3,8	3,6	0,0	0,0	0,0	0,0		26,1	
ZQi031 ZQi032	WEA 32 N117 (N09)	107,5		1711,4	75,7	4,0	3,6	0,0	0,0	0,0	0,0		25,5	
ZQ1032 ZQ1033	WEA 33 N117 (N10)	103,5		1365,0	73,7	2,6		0,0	0,0	0,0	0,0		28,2	
ZQi033	WEA 34 N117 (N11)	107,5		1445,7	74,2	2,8	3,1	0,0	0,0	0,0	0,0		27,1	
Qi034 Qi035	WEA 35 N117	107,5		3540,3			3,2	0,0	0,0	0,0	0,0		30,3	
ZQi035 ZQi036	WEA 35 N117 WEA 36 N117	107,5			82,0	6,8	4,1	0,0	0,0	0,7	0,0		17,0	
Qi036 Qi037	WEA 37 N117	107,5		3879,4	82,8	7,5	4,0	0,0	0,0	0,7	0,0		15,5	
		1	. 1		82,9	7,6	3,9	0,0	0,0	0,8	0,0		15,3	
Qi038	WEA 38 E-101	107,3	. 1	6605,3	87,4	12,7	4,4	0,0	0,0	0,0	0,0		5,8	
Qi039	WEA 39 E-101	107,3		6990,4	87,9	13,5	4,4	0,0	0,0	0,0	0,0		4,6	
ZQi040	WEA 40 E-101	107,3		6305,6	87,0	12,1	4,3	0,0	0,0	0,0	0,0		6,9	
Qi041	WEA 41 E-101	107,3		6338,9	87,0	12,2	4,3	0,0	0,0	0,0	0,0		6,8	
Qi042	WEA 42 N117/2400	105,5		1785,1	76,0	3,4	3,5	0,0	0,0	0,0	0,0		25,6	
ZQi043	WEA 43 N117/2400	105,5		1352,3	73,6	2,6	2,9	0,0	0,0	0,0	0,0		29,4	
ZQi044	WEA 44 N117/2400	105,5	3,0	1523,1	74,6	2,9	2,7	0,0	0,0	0,0	0,0		28,2	
														37,

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung	Immissionsort: IP 13 Bucher Weg 16 X = 381894,00	Y = 5551212,00	Emissionsvariante: Nacht Z = 335,09
	Variante: Gesamtbelastung		

Elementtyp:	Einzelschallquelle (ISO 9613)								107-	I D.	Adia Anton	Amr. Afai	I - Ahous - A	har Crast
	nsberechnung nach ISO 9613				1			***				- Agr - Atol	LfT	LAT ges
Element	Bezeichnung	Lw	Dc /dB	Abstand	Adiv / dB	Aatm / dB	Agr /dB	Afol / dB	Ahous / dB	Abar / dB	Cmet / dB	/dB	/ dB(A)	/dB(A)
E70'004	MEA 04 E 00 E0	/dB(A) 106,2	3,0	/m 7063,2	88,0	13,6	4,4	0,0	0,0	0,4	0,0	700	2,9	/ db(n)
EZQi001	WEA 01 E-82 E2	106,2		7159,4	88.1	13,8	4,4	0,0	0,0	0,4	0,0		2,6	
EZQi002	WEA 02 E-82 E2	106,2		7371,8	88,3	14,2	4,4	0,0	0,0	0,4	0,0		1,9	
EZQi003	WEA 03 E-82 E2	106,2	3,0		88,7	14,7	4,4	0,0	0,0	0,4	0,0		1,0	
EZQi004	WEA 04 E-82 E2	105,0	3,0		88,4	14,3	4,5	0,0	0,0	0,3	0,0		0,5	
EZQi005	WEA 05 Vestas V44	105,4	3,0		83,5	8,2	4,3	0,0	0,0	0,5	0,0		11,9	1
EZQi006	WEA 06 Vestas V90	105,4	3.0		84,0	8,6	4,3	0.0	0,0	0,5	0,0		11,0	1
EZQi007	WEA 07 Vestas V90	105,4	3,0	4595,5	84.2	8,8	4,3	0,0	0,0	0,4	0,0		10,6	
EZQi008	WEA 08 Vestas V90		3.0	4530,5	84,1	8,7	4,3	0,0	0,0	0,3	0,0		14,6	
EZQi009	WEA 09 Vestas V-112	109,1	3,0	4952,8	84,9	9,5	4,3	0,0	0,0	0,4	0,0		13,0	
EZQI010	WEA 10 Vestas V112				85,3	10,0	4,3	0,0	0,0	0,3	0,0		12,1	
EZQi011	WEA 11 Vestas V112	109,1	3,0	5203,7			3,3	0.0	0,0	0.0	0,0		26,0	
EZQi012	WEA 12 3.2M114	107,8		2100,5	77,4	4,0		0.0	0.0	0,0	0,0		8,2	
EZQi013	WEA 13 E-82 E2 2,0	105,9		5548,0	85,9	10,7	4,2	0,0	0.0	0.0	0,0		7,3	
EZQi014	WEA 14 E-82 E2 2,0	105,9		5793,0	86,3	11,1		0,0	0,0	0,0	0,0		6,4	
EZQi015	WEA 15 E-82 E2 2,0	105,9		6057,0	86,6	11,7	4,2						7,1	
EZQi016	WEA 16 E-82 E2	106,2		5954,4	86,5	11,5	4,2	0,0	0,0	0,0	0,0		5,2	
EZQi017	WEA 17 E-70 E4 2,0	103,8		5792,1	86,2	11,1	4,3	0,0	0,0	0,0	0,0			
EZQi018	WEA 18 E-82 E2	106,2		5959,5	86,5	11,5	4,3	0,0	0,0	0,0	0,0		6,9	
EZQi019	WEA 19 E-70 E4 2,0	103,8	3,0		86,8	11,9	4,3	0,0	0,0	0,0	0,0		3,8	
EZQi020	WEA 20 E-70 E4 2,0	103,8	3,0		87,2	12,4	4,4	0,0	0,0	0,0	0,0		2,8	
EZQi021	WEA 21 E-70 E4 2,0	103,8	3,0		87,6	13,0	4,4	0,0	0,0	0,0	0,0		1,8	
EZQi022	WEA 22 E-70 E4 2,0	103,8	3,0		88,0	13,6	4,4	0,0	0,0	0,0	0,0		0,8	
EZQi023	WEA 23 E-82 E2	106,2	3,0	7093,4	88,0	13,6	4,5	0,0	0,0	0,0	0,0		3,0	
EZQi024	WEA 24 E-70 E4 2,0	103,8	3,0		88,3	14,2	4,5	0,0	0,0	0,0	0,0		-0,2	
EZQi025	WEA 25 E-70 E4 2,0	103,8	3,0	7668,4	88,7	14,8	4,5	0,0	0,0	0,1	0,0		-1,2	
EZQi026	WEA 26 E-82 E2	106,2	3,0	7815,3	88,9	15,0	4,5	0,0	0,0	0,2	0,0		0,6	
EZQi027	WEA 27 N117 (N01)	107,5	3,0	3211,8	81,1	6,2	4,1	0,0	0,0	0,0	0,0		19,1	
EZQi028	WEA 28 N117 (N02)	107,5	3,0	2782,8	79,9	5,4	4,0	0,0	0,0	0,0	0,0		21,2	
EZQi029	WEA 29 N117 (N04)	107,5	3,0	2478,6	78,9	4,8	3,8	0,0	0,0	0,0	0,0		23,1	
EZQi030	WEA 30 N117 (N05)	107,5	3,0	2130,0	77,6	4,1	3,6	0,0	0,0	0,0	0,0		25,2	
EZQi031	WEA 31 N117 (N08)	107,5	3,0	2296,5	78,2	4,4	3,6	0,0	0,0	0,0	0,0		24,2	
EZQi032	WEA 32 N117 (N09)	107,5	3,0	1907,0	76,6	3,7	3,5	0,0	0,0	0,0	0,0		26,8	
EZQi033	WEA 33 N117 (N10)	103,5	3,0	1521,0	74,6	2,9	3,3	0,0	0,0	0,0	0,0		25,7	
EZQi034	WEA 34 N117 (N11)	107,5	3,0		75,6	3,3	3,5	0,0	0,0	0,0	0,0		28,2	
EZQi035	WEA 35 N117	107,5	3,0	3566,9	82,0	6,9	4,1	0,0	0,0	0,5	0,0		17,0	
EZQi036	WEA 36 N117	107,5	3,0	3897,4	82,8	7,5	4,0	0,0	0,0	0,3	0,0		15,9	
EZQi037	WEA 37 N117	107,5	3,0	3919,9	82,9	7,5	3,8	0,0	0,0	0,4	0,0		15,9	
EZQi038	WEA 38 E-101	107,3	3,0	6597,5	87,4	12,7	4,4	0,0	0,0	0,4	0,0		5,5	
EZQi039	WEA 39 E-101	107,3	3,0	6973,3	87,9	13,4	4,4	0,0	0,0	0,4	0,0		4,3	
EZQi040	WEA 40 E-101	107,3	3,0	6328,0	87,0	12,2	4,3	0,0	0,0	0,3	0,0		6,5	
EZQi041	WEA 41 E-101	107,3	3,0	6341,0	87,0	12,2	4,3	0,0	0,0	0,4	0,0		6,3	
EZQi042	WEA 42 N117/2400	105,5	3,0	1532,4	74,7	2,9	3,3	0,0	0,0	0,0	0,0		27,6	
EZQi043	WEA 43 N117/2400	105,5	3,0	1180,4	72,4	2,3	2,6	0,0	0,0	0,0	0,0		31,2	
EZQi044	WEA 44 N117/2400	105,5	3,0	1517,3	74,6	2,9	2,8	0,0	0,0	0,0	0,0		28,2	
														37,6

IEL GmbH Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26 U:\ ... 2887-14-L4.IPR

26603 Aurich Gesamtbelastung

 Einzelpunktberechnung
 Immissionsort:
 IP 14 Windorf.Str. 7
 Emissionsvariante: Nacht

 X = 381395,00
 Y = 5551578,00
 Z = 346,87

 Variante:
 Gesamtbelastung

Schallimmicei	ionsberechnung nach ISO 9613								J.FT -	Lucina	Adir Anton	Age Afa	I Abaua /	C
Element	Bezeichnung nach 150 96 13	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Adiv - Aatm Crnet	- Agr - Ato LfT	LfT	LAT des
Lienien	Dezelciniung	/ dB(A)	/dB	/m	/dB	/dB	/dB	/ dB	/dB	/ dB	/dB	/dB	/ dB(A)	/dB(A)
EZQi001	WEA 01 E-82 E2	106,2	3,0		88,4	14,4	4,4	0,0	0,0	0,0	0,0		2,0	
EZQi002	WEA 02 E-82 E2	106,2	3,0	7569,1	88,6	14,6	4,4	0,0	0,0	0,0	0,0		1,7	
EZQi003	WEA 03 E-82 E2	106,2	3,0	7794,6	88,8	15,0	4,4	0,0	0,0	0,0	0,0		1,0	
EZQi004	WEA 04 E-82 E2	106,2	3,0	8088,0	89,1	15,6	4,4	0,0	0,0	0,0	0,0		0,1	
EZQi005	WEA 05 Vestas V44	105,0	3,0	7891,4	88,9	15,2	4,5	0,0	0,0	0,0	0,0		-0,6	
EZQi006	WEA 06 Vestas V90	105,4	3,0	4814,5	84,6	9,3	4,3	0,0	0,0	0,0	0,0		10,2	
EZQi007	WEA 07 Vestas V90	105,4	3,0	5066,2	85,1	9,7	4,3	0,0	0,0	0,0	0,0		9,3	
EZQi008	WEA 08 Vestas V90	105,4	3,0	5186,7	85,3	10,0	4,3	0,0	0,0	0,0	0,0		8.8	
EZQi009	WEA 09 Vestas V-112	109,1	3,0	5142,8	85,2	9,9	4,3	0,0	0,0	0.0	0,0		12,7	
EZQi010	WEA 10 Vestas V112	109,1	3,0	5565,9	85,9	10,7	4,3	0,0	0,0	0.0	0,0		11,2	
EZQi011	WEA 11 Vestas V112	109,1	3,0	5818,8	86,3	11,2	4,3	0,0	0,0	0,0	0,0		10,3	
EZQi012	WEA 12 3.2M114	107,8	3,0	1 1	77,9	4,3	3,0	0,0	0,0	0,0	0,0		25,6	
EZQi013	WEA 13 E-82 E2 2.0	105,9	3,0		86,3	11,2	4,2	0,0	0,0	0,0	0,0		7,2	
EZQi014	WEA 14 E-82 E2 2.0	105,9	3,0		86,7	11,7	4,2	0,0	0,0	0,0	0.0		6,3	
EZQi015	WEA 15 E-82 E2 2,0	105,9	3,0		87,0	12,2	4,3	0.0	0,0	0,0	0.0		5,4	
EZQi016	WEA 16 E-82 E2	106,2	3.0		86,9	12,1	4,3	0.0	0.0	0,0	0,0		6,0	
EZQi017	WEA 17 E-70 E4 2.0	103,8	3,0	1	86.8	11.8	4,2	0,0	0.0	0.0	0.0		4,0	
EZQi018	WEA 18 E-82 E2	106,2	3,0	1 ' 1	87,0	12,2	4,2	0,0	0,0	0,0	0,0		5,8	
EZQi019	WEA 19 E-70 E4 2,0	103,8	3,0	1	87,3	12,5	4,3	0,0	0,0	0,0	0,0		2,7	
EZQi020	WEA 20 E-70 E4 2.0	103,8	3,0		87,7	13,1	4,3	0,0	0,0	0,0	0,0		1,7	
EZQi020	WEA 21 E-70 E4 2.0	103,8	3,0	' 1	88,0	13,7	4,4	0,0	0,0	0,0	0,0		0,7	
EZQi021	WEA 22 E-70 E4 2,0	103,8	3,0		88,4	14,3	4,4	0,0	0,0	0,0	0,0		-0,3	
EZQi022	WEA 23 E-82 E2	106,2		7456.5	88,4	14,3	4,4	0,0	0,0	0,0	0,0		2,0	
EZQi023	WEA 24 E-70 E4 2.0	103,8		7721,4	88,7	14,9	4,4	0,0	0,0	0,0	0,0		-1,2	
EZQI024 EZQI025	WEA 25 E-70 E4 2,0	103,8		8020,4	89,1	15,4	4,5	0,0	0,0	0,0	0,0		-2,2	İ
EZQi025	WEA 26 E-82 E2	106,2		8179,4	89,2	15,7	4,5	0,0	0,0	0,0	0,0		-0,2	
EZQ1020 EZQ1027		107,5	3.0		79,3	5,0	3,8	0.0	0,0	0,0	0,0		1	
EZQI027 EZQi028	WEA 27 N117 (N01)	107,5		2177,8	77,8	4,2	3,8	0,0	0.0	0,0	0.0		22,4	
EZQi026 EZQi029	WEA 28 N117 (N02)	107,5		1862,9	76.4	3,6	3,3	0,0	0,0	0,0	0,0		24,8	
EZQi029 EZQi030	WEA 29 N117 (N04) WEA 30 N117 (N05)	107,5		1517.0	74,6	2,9	3,0	0.0	0,0	0,0	0,0		30,0	
EZQI030 EZQI031	WEA 30 N117 (N03) WEA 31 N117 (N08)	107,5		1688,8	75,5	3,2	3,0	0,0	0,0	0,0	0,0		28,7	
EZQIO31 EZQI032	WEA 32 N117 (N09)	107,5	3,0		73,3	2,5	2,5	0,0	0.0	0.0	0,0		32,2	
EZQ1032 EZQ1033	WEA 32 N117 (N10)	103,5	3,0	904,8	70,1	1,7	1,9	0.0	0.0	0,0	0,0		32,7	
EZQI033 EZQi034		107,5	3,0		72,6	2,3	2,8	0,0	0,0	0,0	0,0			
EZQI034 EZQi035	WEA 34 N117 (N11) WEA 35 N117	107,5		3061,1	80,7	5,9	3,9	0,0	0,0	0,0	0,0		32,8	
EZQIU35 EZQI036	WEA 35 N117	107,5			81,6	6,5		0,0		0.0			20,1	
EZQIU36 EZQI037	WEA 37 N117	107,5		3463,7	81,8	6,7	3,8	0,0	0,0	0.0	0,0		18,5	ĺ
		107,3	3,0	7084,9	88,0	13,6		0.0		, ,	1 1		18,3	ĺ
EZQi038 EZQi039	WEA 38 E-101	107,3	3,0		. 1		4,4		0,0	0,0	0,0		4,3	
	WEA 39 E-101	1 . 1			88,5	14,4	4,3	0,0	0,0	0,0	0,0		3,1	1
EZQi040	WEA 40 E-101	107,3	3,0	6772,2	87,6	13,0	4,3	0,0	0,0	0,0	0,0		5,4	ĺ
EZQi041	WEA 41 E-101	107,3		6814,8	87,7	13,1	4,3	0,0	0,0	0,0	0,0		5,2	
EZQI042	WEA 42 N117/2400	105,5	3,0	2103,5	77,5	4,0	3,5	0,0	0,0	0,0	0,0		23,5	
EZQi043	WEA 43 N117/2400	105,5		1791,9	76,1	3,4	3,2	0,0	0,0	0,0	0,0		25,8	
EZQi044	WEA 44 N117/2400	105,5	3,0	2005,8	77,0	3,9	3,2	0,0	0,0	0,0	0,0		24,5	

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

Einzelpunktberechnung Immissionsort: IP 15 Petryhof Emissionsvariante: Nacht X = 382491,00 Y = 5550940,00 Z = 352,26 Variante: Gesamtbelastung

Elementtyp:	Einzelschallquelle (ISO sionsberechnung nach ISO 9613								1fT =	Iw+Dc-	Adiv - Aatm	- Agr - Afol	- Ahous - A	bar - Cme
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT	LfT	LAT ges
Jement	Dezeichlung	/ dB(A)	/ dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/ dB(A)	/dB(A)
ZQi001	WEA 01 E-82 E2	106,2	3,0		87,4	12,7	4,3	0,0	0,0	0,0	0,0		4,9	·
ZQi002	WEA 02 E-82 E2	106,2	3,0	6658,6	87,5	12,8	4,3	0,0	0,0	0,0	0,0		4,7	
ZQi003	WEA 03 E-82 E2	106,2	3,0	6857,7	87,7	13,2	4,3	0,0	0,0	0,0	0,0		4,0	
ZQi003 ZQi004	WEA 04 E-82 E2	106,2	3,0	7123,8	88,0	13,7	4,3	0,0	0,0	0,0	0,0		3,1	
ZQi005	WEA 05 Vestas V44	105,0	3.0	6891.7	87,8	13,3	4,5	0,0	0,0	0,0	0,0		2,5	
ZQi006	WEA 06 Vestas V90	105.4	3,0	3599,4	82,1	6,9	4,2	0,0	0,0	0,0	0,0		15,2	
ZQi007	WFA 07 Vestas V90	105,4	3,0		82,7	7,4	4,2	0,0	0,0	0,0	0,0		14,2	
ZQi008	WEA 08 Vestas V90	105,4	3,0		82,9	7,6	4,2	0,0	0,0	0,0	0,0		13,7	
ZQi000 ZQi009	WEA 09 Vestas V-112	109,1	3,0	1 1	82,8	7,5	4,2	0,0	0,0	0,0	0,0		17,7	
ZQi010	WEA 10 Vestas V112	109,1		4298,6	83,7	8,3	4,2	0,0	0,0	0,0	0,0		16,0	
ZQi010 ZQi011	WEA 11 Vestas V112	109,1	3,0		84.2	8,8	4,2	0,0	0,0	0,0	0,0		15,0	
ZQi011 ZQi012	WEA 12 3.2M114	107,8	3,0	. 1	77,1	3,9	2,9	0,0	0,0	0,0	0,0		26,9	
ZQi012 ZQi013	WEA 13 E-82 E2 2.0	105,9	3,0		85,7	10,5	4,1	0,0	0,0	0,0	0,0		8,6	1
ZQI013 ZQi014	WEA 14 E-82 E2 2,0	105,9		5681.6	86.1	10,9	4,2	0.0	0.0	0,0	0,0		7,7	
		105,9	3,0		86,5	11,4	4,2	0,0	0,0	0,0	0,0		6,8	
ZQi015	WEA 15 E-82 E2 2,0	106,2		5806.5	86,3	11.2	4,3	0.0	0,0	0.0	0.0		7,5	
ZQi016	WEA 16 E-82 E2	103,8	3,0		85,9	10,8	4,3	0.0	0,0	0,0	0,0		5,8	
ZQi017	WEA 17 E-70 E4 2,0	106,2		5737,6	86,2	11,0	4,3	0,0	0,0	0,0	0,0		7,7	
Qi018	WEA 18 E-82 E2	103,8	3,0	1 ' 1	86,5	11,5	4,4	0.0	0,0	0.0	0.0		4,4	1
ZQi019	WEA 19 E-70 E4 2,0	103,8	3,0	1 1	86,9	12.1	4,4	0.0	0.0	0,0	0,0		3,4	
ZQi020	WEA 20 E-70 E4 2,0		3.0	1 1	87.4	12,7	4,5	0,0	0,0	0,0	0,0		2,4	
ZQi021	WEA 21 E-70 E4 2,0	103,8		1 1	87,7	13.2	4,5	0,0	0.0	0,0	0.0		1,3	
ZQi022	WEA 22 E-70 E4 2,0	103,8	3,0		87,7	13.2	4,5	0.0	0.0	0,0	0,0		3,8	
ZQi023	WEA 23 E-82 E2	106,2	3,0	1 1		13,8	4,5	0,0	0,0	0,0	0,0		0.4	
ZQi024	WEA 24 E-70 E4 2,0	103,8	3,0		88,1		4,5	0,0	0,0	0,0	0,0		-0.5	
ZQi025	WEA 25 E-70 E4 2,0	103,8	3,0		88,4	14,3		0.0	0,0	0.0	0,0		1,5	
ZQi026	WEA 26 E-82 E2	106,2	3,0		88,6	14,6	4,5			0,0	0,0		16,3	
ZQi027	WEA 27 N117 (N01)	107,5	3,0		82,7	7,4	4,1	0,0	0,0	0.0	0,0		18,3	
ZQi028	WEA 28 N117 (N02)	107,5		3397,3	81,6	6,5	4,1	0,0	0,0		0,0		19,8	
ZQi029	WEA 29 N117 (N04)	107,5	3,0	1 1	80,9	6,0	3,9	0,0	0,0	0,0			21,6	
ZQi030	WEA 30 N117 (N05)	107,5	3,0	1	79,8	5,3	3,8	0,0	0,0	0,0	0,0			
ZQi031	WEA 31 N117 (N08)	107,5	3,0		80,4	5,7	3,8	0,0	0,0	0,0	0,0		20,6	1
ZQi032	WEA 32 N117 (N09)	107,5	3,0	1 1	79,2	4,9	3,7	0,0	0,0	0,0	0,0		22,7	
ZQi033	WEA 33 N117 (N10)	103,5	3,0		77,7	4,2	3,6	0,0	0,0	0,0	0,0		21,0	
ZQi034	WEA 34 N117 (N11)	107,5	3,0	1 1	78,3	4,5	3,7	0,0	0,0	0,0	0,0		24,0	1
ZQi035	WEA 35 N117	107,5	3,0		83,2	7,8	4,0	0,0	0,0	0,0	0,0		15,5	
ZQi036	WEA 36 N117	107,5	3,0		83,8	8,4	3,9	0,0	0,0	0,0	0,0		14,4	
ZQi037	WEA 37 N117	107,5	3,0	1 1	83,8	8,4	3,7	0,0	0,0	0,0	0,0		14,6	
ZQi038	WEA 38 E-101	107,3	3,0		86,9	11,9	4,3	0,0	0,0	0,0	0,0		7,2	E
ZQi039	WEA 39 E-101	107,3	3,0		87,3	12,6	4,3	0,0	0,0	0,0	0,0		6,0	1
ZQi040	WEA 40 E-101	107,3	3,0	6003,0	86,6	11,6	4,3	0,0	0,0	0,0	0,0		7,9	
ZQi041	WEA 41 E-101	107,3	3,0	5973,5	86,5	11,5	4,3	0,0	0,0	0,0	0,0		8,0	1
ZQi042	WEA 42 N117/2400	105,5	3,0	913,3	70,2	1,8	2,0	0,0	0,0	0,0	0,0		34,5	1
ZQi043	WEA 43 N117/2400	105,5	3,0	597,6	66,5	1,1	0,5	0,0	0,0	0,0	0,0		40,3	1
ZQi044	WEA 44 N117/2400	105,5	3,0	1270,8	73,1	2,4	2,3	0,0	0,0	0,0	0,0		30,7	
	1													42

Projekt: Mörsdorf-Süd

Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

 Einzelpunktberechnung
 Immissionsort.
 IP 16 Lindenhof (NO)
 Emissionsvariante: Nacht

 X = 382786,00
 X = 382786,00
 Y = 5549946,00
 Z = 376,98

 Variante:
 Gesamtbelastung

	sionsberechnung nach ISO 9613								FII -	LW + UC -	Adiv - Aatm	 Agr - Afol 	- Ahous - A	4bar - Cm€
Element	Bezeichnung	Lw / dB(A)	Dc /dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar / dB	Cmet / dB	LfT /dB	LfT / dB(A)	LAT ges / dB(A)
EZQi001	WEA 01 E-82 E2	106,2	3,0	6712,3	87,5	12,9	4,2	0,0	0,0	0,0	0,0	-	4,5	
EZQi002	WEA 02 E-82 E2	106,2	3,0	6756,9	87,6	13,0	4,2	0,0	0,0	0,0	0,0		4,4	
EZQi003	WEA 03 E-82 E2	106,2	3,0	6918,5	87,8	13,3	4,3	0,0	0,0	0,0	0,0		3,8	
EZQi004	WEA 04 E-82 E2	106,2	3,0	7143,7	88,1	13,7	4,3	0,0	0,0	0,0	0,0		3,1	
EZQi005	WEA 05 Vestas V44	105,0	3,0	6867,5	87,7	13,2	4,4	0,0	0,0	0,0	0,0		2,7	
EZQi006	WEA 06 Vestas V90	105,4	3,0	3253,3	81,2	6,3	4,1	0,0	0,0	0,0	0,0		16,8	
EZQi007	WEA 07 Vestas V90	105,4	3,0	3444,8	81,7	6,6	4,1	0,0	0,0	0,0	0,0		16,0	1
EZQi008	WEA 08 Vestas V90	105,4	3,0	3477,8	81,8	6,7	4,2	0,0	0,0	0,0	0,0		15,7	
EZQi009	WEA 09 Vestas V-112	109,1	3,0	3224,0	81,2	6,2	4,1	0.0	0,0	0.0	0,0		20,6	
EZQi010	WEA 10 Vestas V112	109,1	3,0	3628,3	82,2	7,0	4,2	0,0	0,0	0,0	0,0		18,7	
EZQi011	WEA 11 Vestas V112	109,1	3,0	3845,2	82,7	7,4	4,2	0,0	0,0	0.0	0,0		17,8	
EZQi012	WEA 12 3,2M114	107,8	3,0		80,3	5,6	3,5	0,0	0,0	0,0	0,0		21,4	
EZQi013	WEA 13 E-82 E2 2.0	105,9	3,0		84.3	8,9	4.1	0,0	0.0	0.0	0.0		11,6	
EZQi014	WEA 14 E-82 E2 2,0	105,9	3,0		84,7	9,4	4,1	0,0	0,0	0,0	0,0		10,7	
EZQi015	WEA 15 E-82 E2 2.0	105,9	3,0	1	85.1	9,8	4.2	0.0	0.0	0.0	0,0		9,7	
EZQI016	WEA 16 E-82 E2	106,2	3,0	1 1	84.9	9,5	4,2	0.0	0,0	0,0	0,0		10,6	
EZQI010	WEA 17 E-70 E4 2.0	103,8	3.0	4681,0	84,4	9.0	4,2	0,0	0.0	0,0	0,0		9,2	
EZQi018	WEA 18 E-82 E2	106,2	,	4811,9	84,6	9,3	4,2	0,0	0.0	0,0	0,0			
EZQi018	WEA 19 E-70 E4 2.0	103,8	3,0	5059.3	85.1	9,7	4,3	0.0	0.0				11,1	
EZQIO19 EZQI020		103,8	3,0	1 ' 1	85,6					0,0	0,0		7,7	
	WEA 20 E-70 E4 2,0	103,8	,			10,3	4,3	0,0	0,0	0,0	0,0		6,6	
EZQi021	WEA 21 E-70 E4 2,0	1 ' 1		. 1	86,1	10,9	4,4	0,0	0,0	0,0	0,0		5,5	
EZQi022	WEA 22 E-70 E4 2,0	103,8	3,0		86,5	11,5	4,4	0,0	0,0	0,0	0,0		4,4	
EZQi023	WEA 23 E-82 E2	106,2	3,0		86,5	11,4	4,4	0,0	0,0	0,0	0,0		6,9	
EZQi024	WEA 24 E-70 E4 2,0	103,8	3,0		86,9	12,0	4,4	0,0	0,0	0,0	0,0		3,4	
EZQi025	WEA 25 E-70 E4 2,0	103,8	3,0		87,3	12,6	4,4	0,0	0,0	0,0	0,0		2,5	
EZQi026	WEA 26 E-82 E2	106,2	3,0		87,4	12,8	4,4	0,0	0,0	0,0	0,0		4,5	
ZQi027	WEA 27 N117 (N01)	107,5	3,0	4729,0	84,5	9,1	4,2	0,0	0,0	0,0	0,0		12,8	
EZQi028	WEA 28 N117 (N02)	107,5			83,7	8,3	4,2	0,0	0,0	0,0	0,0		14,3	
EZQi029	WEA 29 N117 (N04)	107,5		3995,3	83,0	7,7	4,0	0,0	0,0	0,0	0,0		15,8	
EZQi030	WEA 30 N117 (N05)	107,5		3654,0	82,2	7,0	3,9	0,0	0,0	0,0	0,0		17,3	
EZQi031	WEA 31 N117 (N08)	107,5		3735,1	82,4	7,2	3,9	0,0	0,0	0,0	0,0		17,0	
EZQi032	WEA 32 N117 (N09)	107,5		3355,7	81,5	6,5	3,9	0,0	0,0	0,0	0,0		18,7	1
EZQi033	WEA 33 N117 (N10)	103,5			80,6	5,8	3,8	0,0	0,0	0,0	0,0		16,3	1
EZQi034	WEA 34 N117 (N11)	107,5		2959,3	80,4	5,7	3,7	0,0	0,0	0,0	0,0		20,7	1
EZQi035	WEA 35 N117	107,5		5084,0	85,1	9,8	4,2	0,0	0,0	0,0	0,0		11,4	
EZQi036	WEA 36 N117	107,5	3,0	5403,6	85,6	10,4	4,1	0,0	0,0	0,0	0,0		10,4	
EZQi037	WEA 37 N117	107,5	3,0	5394,2	85,6	10,4	3,9	0,0	0,0	0,0	0,0		10,6	
ZQi038	WEA 38 E-101	107,3		5181,0	85,3	10,0	4,1	0,0	0,0	0,0	0,0		10,9	
ZQi039	WEA 39 E-101	107,3	3,0	5531,4	85,8	10,6	4,1	0,0	0,0	0,0	0,0		9,7	1
ZQi040	WEA 40 E-101	107,3	3,0	5003,3	85,0	9,6	4,1	0,0	0,0	0,0	0,0		11,6	1
ZQi041	WEA 41 E-101	107,3	3,0	4953,8	84,9	9,5	4,1	0,0	0,0	0,0	0,0		11,8	i
ZQi042	WEA 42 N117/2400	105,5	3,0	1169,8	72,4	2,3	2,9	0,0	0,0	0,0	0,0		31,0	1
ZQi043	WEA 43 N117/2400	105,5	3,0	500,2	65,0	1,0	0,0	0,0	0,0	0,0	0,0		42,5	I
ZQi044	WEA 44 N117/2400	105,5	3,0	685,9	67,7	1,3	1,0	0.0	0,0	0.0	0,0		38,5	ı

Projekt: Mörsdorf-Süd

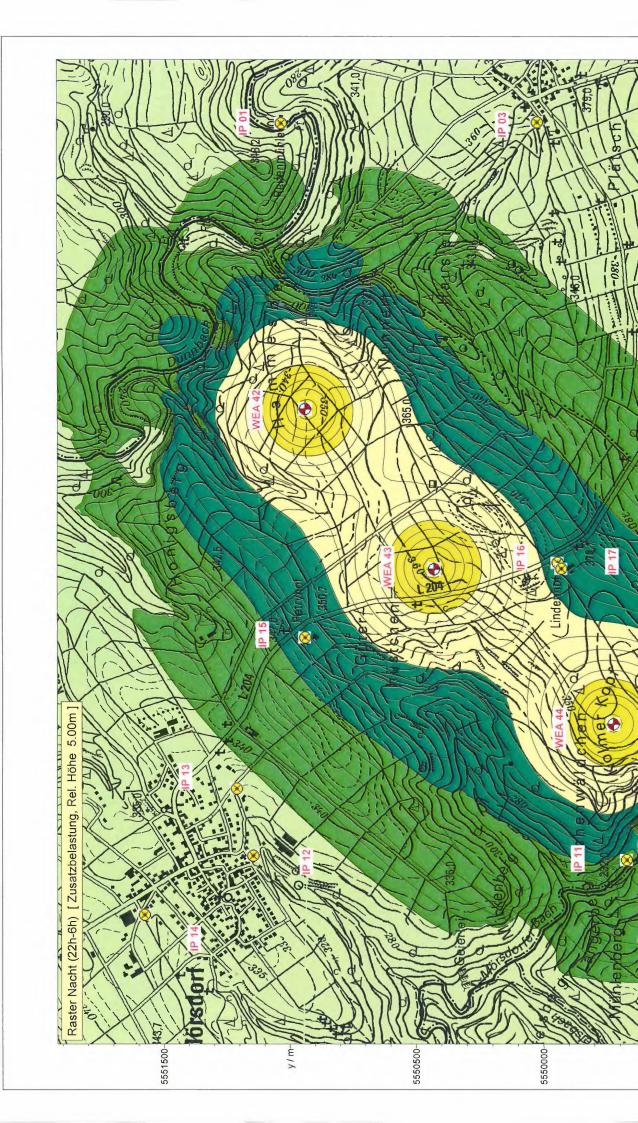
Kirchdorfer Straße 26

U:\ ... 2887-14-L4.IPR

26603 Aurich

Gesamtbelastung

 Einzelpunktberechnung
 Immissionsort
 IP 17 Lindenhof (NW)
 Emissionsvariante: Nacht


 X = 382762,00
 Y = 5549931,00
 Z = 373,29

 Variante:
 Gesamtbelastung

Schallimmiss	sionsberechnung nach ISO 9613								LfT =	Lw + Dc - /	Adiv - Aatm	- Agr - Afol	- Ahous - A	bar - Cm
Element	Bezeichnung	Lw / dB(A)	Dc / dB	Abstand / m	Adiv / dB	Aatm / dB	Agr / dB	Afol / dB	Ahous / dB	Abar / dB	Cmet / dB	LfT / dB	LfT /dB(A)	LAT ge
ZQi001	WEA 01 E-82 E2	106,2	3,0	6740,6	87,6	13,0	4,2	0,0	0,0	0,0	0,0		4,4	
ZQi002	WEA 02 E-82 E2	106,2	3,0	6785,2	87,6	13,1	4,2	0,0	0,0	0,0	0,0		4,3	
ZQi003	WEA 03 E-82 E2	106,2	3,0	6946,7	87,8	13,4	4,3	0,0	0,0	0,0	0,0		3,7	1
ZQi004	WEA 04 E-82 E2	106,2	3,0	7171,6	88,1	13,8	4,3	0,0	0,0	0,0	0,0		3,0	
ZQi005	WEA 05 Vestas V44	105,0	3,0	6895,2	87,8	13,3	4,4	0,0	0,0	0,0	0,0		2,6	
ZQi006	WEA 06 Vestas V90	105,4	3,0	3278,7	81,3	6,3	4,1	0,0	0,0	0,0	0,0		16,7	
ZQi007	WEA 07 Vestas V90	105,4	3,0	3469,4	81,8	6,7	4,1	0,0	0,0	0,0	0,0		15,8	i
ZQi008	WEA 08 Vestas V90	105,4	3,0	3501,2	81,9	6,7	4,2	0,0	0.0	0,0	0,0		15,6	
ZQi009	WEA 09 Vestas V-112	109,1	3,0	3243,3	81,2	6,2	4,2	0.0	0.0	0,0	0,0		20,5	
ZQi010	WEA 10 Vestas V112	109,1	3,0	3646,8	82,2	7,0	4,2	0,0	0,0	0,0	0,0		18,6	
Qi011	WEA 11 Vestas V112	109,1	3,0	3862,4	82,7	7,4	4,2	0,0	0.0	0.0	0,0		17,7	
Qi012	WEA 12 3.2M114	107,8	3,0		80,3	5,6	3,6	0,0	0,0	0,0	0,0		21,2	
Qi013	WEA 13 E-82 E2 2.0	105,9	3,0	4618,8	84,3	8,9	4,1	0,0	0,0	0,0	0,0		11,7	
ZQi014	WEA 14 E-82 E2 2,0	105.9	3,0	1 1	84,7	9,3	4,1	0,0	0.0	0,0	0,0		10,8	
ZQi015	WEA 15 E-82 E2 2.0	105,9	3,0	5078,7	85,1	9,8	4,2	0,0	0.0	0,0	0,0		9,8	
Qi016	WEA 16 E-82 E2	106,2		4925,8	84.8	9,5	4,2	0,0	0,0	0,0	0,0		10,7	
Qi017	WEA 17 E-70 E4 2,0	103,8	3,0	4660,4	84,4	9,0	4,2	0,0	0,0	0,0	0,0		9,3	1
Qi017	WEA 18 E-82 E2	106,2		4792,1	84,6	9,2	4,2	0,0	0.0	0,0	0.0		11,2	
Qi019	WEA 19 E-70 E4 2,0	103,8	3,0		85.0	9,7	4,3	0,0	0,0	0,0	0,0		7,8	ĺ
Qi019	WEA 20 E-70 E4 2,0	103,8	3,0		85,5	10.3	4,3	0,0	0,0	0.0	0,0		6,6	
		103,8	3,0		86,0	10,3		0,0	0.0	0,0			5,5	
Qi021	WEA 21 E-70 E4 2,0	103,8	3,0		86,5	11.4	4,4		. (0,0			1
Qi022	WEA 22 E-70 E4 2,0	1					4,4	0,0	0,0	0,0	0,0		4,5	
Qi023	WEA 23 E-82 E2	106,2	3,0		86,4	11,4	4,4	0,0	0,0	0,0	0,0		7,0	
Qi024	WEA 24 E-70 E4 2,0	103,8	3,0		86,9	12,0	4,4	0,0	0,0	0,0	0,0		3,5	ĺ
Qi025	WEA 25 E-70 E4 2,0	103,8	3,0		87,3	12,5	4,5	0,0	0,0	0,0	0,0		2,6	
Qi026	WEA 26 E-82 E2	106,2	3,0		87,4	12,8	4,4	0,0	0,0	0,0	0,0		4,6	
Qi027	WEA 27 N117 (N01)	107,5	3,0	4723,1	84,5	9,1	4,2	0,0	0,0	0,0	0,0		12,8	
Qi028	WEA 28 N117 (N02)	107,5	3,0		83,7	8,3	4,2	0,0	0,0	0,0	0,0		14,3	
Qi029	WEA 29 N117 (N04)	107,5		3989,7	83,0	7,7	4,0	0,0	0,0	0,0	0,0		15,8	
Qi030	WEA 30 N117 (N05)	107,5		3649,1	82,2	7,0	4,0	0,0	0,0	0,0	0,0		17,3	i
Qi031	WEA 31 N117 (N08)	107,5		3725,7	82,4	7,2	3,9	0,0	0,0	0,0	0,0		17,0	ı
Qi032	WEA 32 N117 (N09)	107,5		3347,1	81,5	6,4	3,9	0,0	0,0	0,0	0,0		18,7	i
Qi033	WEA 33 N117 (N10)	103,5		3022,0	80,6	5,8	3,8	0,0	0,0	0,0	0,0		16,3	
Qi034	WEA 34 N117 (N11)	107,5	3,0	2946,0	80,4	5,7	3,7	0,0	0,0	0,0	0,0		20,8	
Qi035	WEA 35 N117	107,5		5087,3	85,1	9,8	4,2	0,0	0,0	0,0	0,0	1	11,4	ı
Qi036	WEA 36 N117	107,5		5407,7	85,7	10,4	4,1	0,0	0,0	0,0	0,0		10,3	
Qi037	WEA 37 N117	107,5		5400,1	85,6	10,4	3,9	0,0	0,0	0,0	0,0		10,5	
Qi038	WEA 38 E-101	107,3	3,0	5169,7	85,3	9,9	4,2	0,0	0,0	0,5	0,0	İ	10,4	
Qi039	WEA 39 E-101	107,3	3,0	5521,4	85,8	10,6	4,2	0,0	0,0	0,5	0,0		9,2	
Qi040	WEA 40 E-101	107,3	3,0	4988,3	85,0	9,6	4,2	0,0	0,0	0,0	0,0		11,6	
Qi041	WEA 41 E-101	107,3	3,0	4941,1	84,9	9,5	4,1	0,0	0,0	0,0	0,0		11,8	
Qi042	WEA 42 N117/2400	105,5	3,0	1195,4	72,5	2,3	3,0	0,0	0,0	0,0	0,0		30,7	
Qi043	WEA 43 N117/2400	105,5	3,0	515,0	65,2	1,0	0,0	0,0	0,0	0,0	0,0		42,3	
Qi044	WEA 44 N117/2400	105,5	3,0	659,5	67,4	1,3	0,9	0,0	0,0	0,0	0,0		39,0	
									- '		-			44

Standort: Mörsdorf-Süd Schallimmissionsraster / Zusatzbelastung

Legende zu den Berechnungsergebnissen

Ingenieurbüro für Energietechnik und Lärmschutz

Legende zu den Berechnungsergebnissen:

Dä	mpfung des Schalls bei der	Legende zur Ergebnisliste						
150 9613	Ausbreitung im Freien	(Lange Liste)						
LfT = Lw + Dc -	- Adiv – Aatm – Agr – Afol – Ahous – Abar - Cmet							
"Abschnitt 1":	Bezeichnung des Teilstücks ein	er Linienschallquelle						
"Teil 1":	Bezeichnung einer Teilschallqu	elle, die durch Unterteilung						
	einer Linien- oder Flächenschal	lquelle entstanden ist						
REFL001/WAND001":	Reflexionsanteil infolge des bez	eichneten Elements						
Lw:	Schallleistungspegel							
Do = DO + DI + Domogo:	Raumwinkelmaß + Richtwirkung	gsmaß + Bodenreflexion						
Dc = D0 + DI + Domega:	(frqunabh. Berechnung)							
Abstand:	Abstand s des Immissionsortes von der Schallquelle							
Adiv:	Abstandsmaß							
Aatm:	Luftabsorptionsmaß							
Agr:	Boden- und Meteorologiedämpt	fungsmaß						
Afol:	Bewuchsdämpfungsmaß							
Ahous:	Bebauungsdämpfungsmaß							
Abar:	Einfügungsdämpfungsmaß eine Geländemodells	es Schallschirms bzw. eines						
Cmet:	Meteorologische Korrektur							
LfT /dB:	Schalldruckpegel am Immission	sort für ein Teilstück						
LfT /dB(A)	Schalldruckpegel (A-bewertet) a Teilstück	am Immissionsort für ein						
LAT ges:	Schalldruckpegel am Immissior Schallquellen	nsort, summiert über alle						

Schalltechnische Daten Nordex N117 / 2.400 kW

Ingenieurbüro für Energietechnik und Lärmschutz

Schallemissionsparameter

Nordex N117/2400

© Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg Alle Rechte vorbehalten. Schutzvermerk ISO 16016 beachten.

Schallemission Nordex N117/2400

Schallemissionswerte entsprechend IEC 61400-11: 2002 [1]

Nabenhöhe: 91 m

Standardisierte Windgeschwindigkeit (in 10 m ü. G.)	Schallleistungs- pegel
v _s [m/s]	L _{WA} [dB(A)]
3	97,0
4	100,0
5	104,0
6	104,5
7	105,0
8	105,0
9	105,0
10	105,0
11	105,0
12	105,0

Die Bestimmung der standardisierten Windgeschwindigkeit in 10 m über Grund nach IEC 61400-11 [1] basiert auf einer Rauhigkeitslänge z_0 = 0,05 m. Die tatsächliche Windgeschwindigkeit in 10 m über Grund kann sich in Abhängigkeit der tatsächlichen Rauhigkeitslänge am jeweiligen Standort von der standardisierten Windgeschwindigkeit unterscheiden.

Die Geräusche im Nahbereich von Windenergieanlagen können Tonhaltigkeiten aufweisen. Die spezifizierten Schallleistungspegel sind inklusive eventueller Tonzuschläge K_{TN} entsprechend Technischer Richtlinie für Windenergieanlagen [2] zu verstehen, wobei Tonzuschläge $K_{TN} \le 2$ dB nicht berücksichtigt werden.

Der angegebene Schallleistungspegel ist ein Erwartungswert im Sinne der Statistik. Ergebnisse von Einzelvermessungen werden innerhalb des Vertrauensbereiches gemäß IEC 61400-14 [4] liegen.

Messungen der Schallleistung sind an der Referenzposition nach Methode 1 der IEC 61400-11 [1] von einem nach ISO/IEC 17025 [3] für Schallemissionsmessungen an Windenergieanlagen akkreditierten Messinstitut durchzuführen. Die Bestimmung von Tonzuschlägen K_{TN} im Nahbereich der WEA aus diesen Messungen ist entsprechend der Technischen Richtlinie für Windenergieanlagen [2] durchzuführen.

- [1] IEC 61400-11 ed. 2: Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques; 2002-12
- [2] Technische Richtlinie für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18; FGW 2008-02
- [3] ISO/IEC 17025: Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien; 2005-08
- [4] IEC 61400-14, Wind turbines Part 14: Declaration of apparent sound power level and tonality values, first edition, 2005-03

Schallemission Nordex N117/2400

Schallemissionswerte entsprechend IEC 61400-11: 2002 [1] Nabenhöhe: 120 m

Standardisierte Windgeschwindigkeit (in 10 m ü. G.)	Schallleistungs- pegel				
v _S [m/s]	L _{WA} [dB(A)]				
3	97,2				
4	100,8				
5	104,1				
6	104,6				
7	105,0				
8	105,0				
9	105,0				
10	105,0				
11	105,0				
12	105,0				

Die Bestimmung der standardisierten Windgeschwindigkeit in 10 m über Grund nach IEC 61400-11 [1] basiert auf einer Rauhigkeitslänge z_0 = 0,05 m. Die tatsächliche Windgeschwindigkeit in 10 m über Grund kann sich in Abhängigkeit der tatsächlichen Rauhigkeitslänge am jeweiligen Standort von der standardisierten Windgeschwindigkeit unterscheiden.

Die Geräusche im Nahbereich von Windenergieanlagen können Tonhaltigkeiten aufweisen. Die spezifizierten Schallleistungspegel sind inklusive eventueller Tonzuschläge K_{TN} entsprechend Technischer Richtlinie für Windenergieanlagen [2] zu verstehen, wobei Tonzuschläge $K_{TN} \le 2$ dB nicht berücksichtigt werden.

Der angegebene Schallleistungspegel ist ein Erwartungswert im Sinne der Statistik. Ergebnisse von Einzelvermessungen werden innerhalb des Vertrauensbereiches gemäß IEC 61400-14 [4] liegen.

Messungen der Schallleistung sind an der Referenzposition nach Methode 1 der IEC 61400-11 [1] von einem nach ISO/IEC 17025 [3] für Schallemissionsmessungen an Windenergieanlagen akkreditierten Messinstitut durchzuführen. Die Bestimmung von Tonzuschlägen K_{TN} im Nahbereich der WEA aus diesen Messungen ist entsprechend der Technischen Richtlinie für Windenergieanlagen [2] durchzuführen.

- [1] IEC 61400-11 ed. 2: Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques; 2002-12
- [2] Technische Richtlinie für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18; FGW 2008-02
- [3] ISO/IEC 17025: Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien; 2005-08
- [4] IEC 61400-14, Wind turbines Part 14: Declaration of apparent sound power level and tonality values, first edition, 2005-03

Schallemission Nordex N117/2400

Schallemissionswerte entsprechend IEC 61400-11: 2002 [1] Nabenhöhe: 140 m

Napennone. 140 m

Standardisierte Windgeschwindigkeit (in 10 m ü. G.)	Schallleistungs- pegel				
v _s [m/s]	L _{WA} [dB(A)]				
3	97,3				
4	101,2				
5	104,1				
6	104,7				
7	105,0				
8	105,0				
9	105,0				
10	105,0				
11	105,0				
12	105,0				

Die Bestimmung der standardisierten Windgeschwindigkeit in 10 m über Grund nach IEC 61400-11 [1] basiert auf einer Rauhigkeitslänge z_0 = 0,05 m. Die tatsächliche Windgeschwindigkeit in 10 m über Grund kann sich in Abhängigkeit der tatsächlichen Rauhigkeitslänge am jeweiligen Standort von der standardisierten Windgeschwindigkeit unterscheiden.

Die Geräusche im Nahbereich von Windenergieanlagen können Tonhaltigkeiten aufweisen. Die spezifizierten Schallleistungspegel sind inklusive eventueller Tonzuschläge K_{TN} entsprechend Technischer Richtlinie für Windenergieanlagen [2] zu verstehen, wobei Tonzuschläge $K_{TN} \le 2$ dB nicht berücksichtigt werden.

Der angegebene Schallleistungspegel ist ein Erwartungswert im Sinne der Statistik. Ergebnisse von Einzelvermessungen werden innerhalb des Vertrauensbereiches gemäß IEC 61400-14 [4] liegen.

Messungen der Schallleistung sind an der Referenzposition nach Methode 1 der IEC 61400-11 [1] von einem nach ISO/IEC 17025 [3] für Schallemissionsmessungen an Windenergieanlagen akkreditierten Messinstitut durchzuführen. Die Bestimmung von Tonzuschlägen K_{TN} im Nahbereich der WEA aus diesen Messungen ist entsprechend der Technischen Richtlinie für Windenergieanlagen [2] durchzuführen.

- [1] IEC 61400-11 ed. 2: Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques; 2002-12
- [2] Technische Richtlinie für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18; FGW 2008-02
- [3] ISO/IEC 17025: Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien; 2005-08
- [4] IEC 61400-14, Wind turbines Part 14: Declaration of apparent sound power level and tonality values, first edition, 2005-03

Auszug GLGH-4286 12 08939 258-S-0002-A aus dem Prüfbericht GLGH-4286 12 08939 258-A-0001-C zur Schallemission der Windenergieanlage vom Typ Nordex N117/2400

Messdatum: 2012-06-05

Standort bzw. Messort:	Stadum, Nordfries	land, Deutschland	
Auftraggeber:	Nordex Energy Gn Langenhorner Cha 22419 Hamburg		
Auftragnehmer:	GL Garrad Hassar Sommerdeich 14 t 25709 Kaiser-Wilh Deutschland		
Datum der Auftragserteilung:	2012-05-09	Auftragsnummer:	42 86 12 08939 258

Kaiser-Wilhelm-Koog, 2012-11-02

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der GL Garrad Hassan Deutschland GmbH vervielfältigt werden. Es umfasst 2 Seiten. Auszug GLGH-4286 12 08939 258-S-0002-A aus dem Prüfbericht GLGH-4286 12 08939 258-A-0001-C zur Schallemission der Windenergieanlage vom Typ Nordex N117/2400

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerangab	en)				
Anlagenhersteller:	Nordex Energy GmbH	Nennleistung (Generator):	2500 kW				
	Langenhorner Chaussee 600	Rotordurchmesser:	117 m				
	22419 Hamburg	Nabenhöhe über Grund:	91 m				
Seriennummer	82100	Turmbauart:	zyl./kon. Rohrturm				
WEA-Standort (ca.)	RW: - HW: -	Leistungsregelung:	pitch				
Ergänzende Daten zum Rotor	(Herstellerangaben)	Erg. Daten zu Getriebe und Generat	Erg. Daten zu Getriebe und Generator (Herstellerangaben)				
Rotorblatthersteller:	Nordex Energy GmbH	Getriebehersteller:	Bosch Rexroth				
Typenbezeichnung Blatt:	NR58.5	Typenbezeichnung Getriebe:	GPV535D				
Blatteinstellwinkel:	variabel	Generatorhersteller:	VEM				
Rotorblattanzahl:	3	Typenbezeichnung Generator:	DAKAA 6330-6U				
Rotordrehzahlbereich:	7,5 - 13,2 U/min	Generatornenndrehzahl:	1300 U/min				

	Referenzp	ounkt	Schallemiss	ions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig-keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel L _{WA,P}	5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹	1077 kW 1794 kW 2307 kW 2401 kW 2400 kW	101,8 dB(A) 103,2 dB(A) 103,6 dB(A) 103,7 dB(A) 103,6 dB(A)		
Tonzuschlag für den Nahbereich K _{TN}	5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹	1077 kW 1794 kW 2307 kW 2401 kW 2400 kW	0 dB 1 dB 1 dB 1 dB 1 dB	bei 372 Hz bei 192 Hz bei 396 Hz bei 394 Hz bei 384 Hz	
lmpulszuschlag für den Nahbereich K _{IN}	5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹	1077 kW 1794 kW 2307 kW 2401 kW 2400 kW	(() dB) dB) dB) dB) dB	

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2012-07-30. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Es wurde eine rechnerische Tieffrequenzanalyse durchgeführt. Es konnte konnten keine Auffälligkeiten festgestellt werden. Die Ergebnisse sind im Detail dem Prüfbericht GLGH-4286 12 08938 258-A-0001-C zu entnehmen. Im vorliegenden Fall wurden durch den Gutachter subjektiv keine impulshaltigen Auffälligkeiten festgestellt. Die ermittelte Impulshaltigkeit ist nicht unmittelbar auf den Fernbereich übertragbar.

Gemessen durch:

GL Garrad Hassan Deutschland GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog

Datum:

2012-11-02

-11134-01-00

Auszug aus dem Prüfbericht

Seite 1/2

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 1. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 074SE513/01

zur Schallemission der Windenergieanlage vom Typ Nordex N117/2400 Mode MaxPowerPoint

Allgemeine Angabe	n		Technische Daten (Herstellerangab	en)			
Anlagenhersteller:	Nordex Er	ergy GmbH	Nennleistung (Generator):	2400 kW			
	Langenho	rner Chaussee 600	Betriebsweise	MaxPowerPoint	kW		
	D-22419 H	AMBURG	Rotordurchmesser:	116,8	m		
Seriennummer:	NX 82382		Nabenhöhe über Grund:	120	m		
WEA-Standort:	Hohen Luc	ckow, MV	Turmbauart:	kon. Stahlrohrturm			
Koordinaten			Leistungsregelung:	Pitch/Stall/Aktiv-Stall			
Ergänzende Daten z	um Rotor (H	erstellerangaben)	Erg. Daten zu Getriebe und Generat	tor (Herstellerangaben)			
Rotorblatthersteller	:	Nordex Energy GmbH	Getriebehersteller:	Eickhoff			
Typenbezeichnung	Blatt:	NR58.8	Typenbezeichnung Getriebe:	EBN 2145 A12 R00A			
Blatteinstellwinkel:		Variabel	Generatorhersteller:	Winergy			
Rotorblattanzahl		3	Typenbezeichnung Generator:	JFD-560MR-06A			
Rotornenndrehzahl	-bereich:	11 8 / 7 5 - 13 2 U/min	Generatornenndrehzahl/-bereich	1160 / 740 - 1300 H/m	in		

Leistungskurve: berechnete Kurve: F008_237_A05_DE (Quelle: garantierte Leistungskurve des Herstellers vom 15.06.2012)

	Referenz	punkt	Schallemissions-Parameter	Bemerkungen
	Standardisierte	Elektrische		
	Windgeschwindigkeit in 10 m Höhe	Wirkleistung		
	5 ms ⁻¹	1109 kW	102,8 dB (A)	
	6 ms ⁻¹	1833 kW	104,2 dB (A)	
Schallleistungs-	7 ms ⁻¹	2327 kW	104,4 dB (A)	
Pegel	8 ms ⁻¹	2400 kW	103,9 dB (A)	
L _{WA,P}	9 ms ⁻¹	2400 kW	-	1)
	10 ms ⁻¹	2400 kW	-	1)
	6,9 ms ⁻¹	2280 kW	104,5 dB (A)	2)
	5 ms ⁻¹	1109 kW	0 dB bei 1328 Hz	
	6 ms ⁻¹	1833 kW	0 dB bei 1360 Hz	
Tonzuschlag für	7 ms ⁻¹	2327 kW	0 dB bei 1380 Hz	
den Nahbereich	8 ms ⁻¹	2400 kW	0 dB bei 1402 Hz	
K _{TN}	9 ms ⁻¹	2400 kW		1)
	10 ms ⁻¹	2400 kW	-	1)
	6,9 ms ⁻¹	2280 kW	0 dB bei 1372 Hz	2)
	5 ms ⁻¹	1109 kW	0 dB	
	6 ms ⁻¹	1833 kW	0 dB	
Impulszuschlag	7 ms ⁻¹	2327 kW	0 dB	
für den Nahbereich	8 ms ⁻¹	2400 kW	0 dB	
K _{IN}	9 ms ⁻¹	2400 kW	-	1)
	10 ms ⁻¹	2400 kW	-	1)
	6,9 ms ⁻¹	2 280 kW	0 dB	2)

Fortsetzung Seite 2

		Te	rz-/ Oktav	-Schallleis	stungspeg	el Referer	zpunkt v1	0 = 6,9 m/	s in dB(A)				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA, P}	76,6	79,6	82,3	84,6	86,4	85,9	88,0	89,9	90,7	92,3	92,9	93,7	
L _{WA, P}	84,9			90,5			94,4			97,8			
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA, P}	94,2	94,7	94,0	94,2	93,4	92,9	91,7	89,0	86,4	83,7	80,7	77,5	
L _{WA, P}	99,1				98,3 94,3						86,1		
L _{WA, P} total						104,5	dB(A)						

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 25.06.2013. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen)!

Bemerkungen:

In den Windklassen 9 ms⁻¹ und 10 ms⁻¹ liegen keine Messwerte vor. Betriebspunkt der 95%-igen Nennleistung entsprechend den Messbedingungen und der verwendeten Leistungskurve.

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 03.07.2013

Der Auszug wurde elektronisch unterschrieben.

Schalltechnische Daten Nordex N117 / 2.400 kW (schalloptimierter Betrieb)

Ingenieurbüro für Energietechnik und Lärmschutz

Schallemissionsparameter

Nordex N117/2400 schalloptimierter Betrieb 103,0 dB(A)

© Nordex Energy GmbH, Langenhorner Chaussee 600, D-22419 Hamburg, Germany Alle Rechte vorbehalten. Schutzvermerk ISO 16016 beachten.

Schallemission Nordex N117/2400 schalloptimiert 103,0 dB(A)

Schallemission entsprechend IEC 61400-11: 2002 [1]

Maximaler Schallleistungspegel über den gesamten Betriebsbereich der WEA

 $L_{WA} = 103,0 \text{ dB(A)}$

Die Geräusche im Nahbereich von Windenergieanlagen können Tonhaltigkeiten aufweisen. Der spezifizierte Schallleistungspegel ist inklusive eventueller Tonzuschläge K_{TN} entsprechend Technischer Richtlinie für Windenergieanlagen [2] zu verstehen, wobei Tonzuschläge $K_{TN} \le 2$ dB nicht berücksichtigt werden.

Der angegebene Schallleistungspegel ist ein Erwartungswert im Sinne der Statistik. Ergebnisse von Einzelvermessungen werden innerhalb des Vertrauensbereiches gemäß IEC 61400-14 [4] liegen.

Messungen der Schallleistung sind an der Referenzposition nach Methode 1 der IEC 61400-11 [1] von einem nach ISO/IEC 17025 [3] für Schallemissionsmessungen an Windenergieanlagen akkreditierten Messinstitut durchzuführen. Die Bestimmung von Tonzuschlägen K_{TN} im Nahbereich der WEA aus diesen Messungen ist entsprechend der Technischen Richtlinie für Windenergieanlagen [2] durchzuführen.

- [1] IEC 61400-11 ed. 2: Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques; 2002-12
- [2] Technische Richtlinie für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18; FGW 2008-02
- [3] ISO/IEC 17025: Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien; 2005-08
- [4] IEC 61400-14, Wind turbines Part 14: Declaration of apparent sound power level and tonality values, first edition, 2005-03

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 1. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel) /1/

Auszug aus dem Prüfbericht WICO 074SE513/08

zur Schallemission der Windenergieanlage vom Typ N117/2400

Allgemeine Angaben Technische Daten (Herstellerangaben)

Anlagenhersteller: Nordex Energy GmbH Nennleistung: 2400 kW

Anlagenhersteller: Nordex Energy GmbH Nennielstung: 2400 kW

Langenhorner Chaussee 600 Betriebsweise: Sound optimized Mode 103 dB(A)

D-22419 Hamburg Rotordurchmesser: (2190 kW)

82382 Gesamtnabenhöhe: 120 m

WEA-Standort: Hohen Luckow, Turmbauart: Konischer Stahlrohrturm

Mecklenburg-Vorpommern Leistungsregelung: pitch

Daten zum Rotor (Herstellerangaben)

Daten zu Getriebe und Generator (Herstellerangaben)

Rotorblatthersteller: Nordex Energy GmbH Getriebehersteller: Eickhoff

Typenbezeichnung Blatt: NR58.5 Typenbezeichnung Getriebe: EBN 2145 A12 R00A
Blatteinstellwinkel: Variabel Generatorhersteller: Winergy

Rotorblattanzahl: 3 Typenbezeichnung Generator: JFD-560MR-06A
Rotornenndrehzahl: 10,7 U/min Generatordrehzahlbereich: 740 - 1300 U/min

Leistungskurve: berechnete Kurve (Quelle: Nordex Energy GmbH, F008_237_A55_DE Revision 01, 30.11.2011)

		Schallemissions-Parameter					Bemerkungen			
	Standar Windgesch in 10 m	nwindigkeit	Elektrische Wirkleistung							
Schallleistungs- Pegel L _{WA,P}	7 r 8 r 9 r 10 r 6,8 r	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹	1721 2118 2190 2190 2190 2081	kW kW kW kW kW				dB (A) dB (A) dB (A) dB (A) dB (A)		2) 1)
Tonzuschlag für den Nahbereich K _{TN}	7 r 8 r 9 r	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹	1721 2118 2190 2190 2190 2081	kW kW kW kW kW	0 0 0 0	dB dB dB dB dB	bei bei bei bei bei	206 1256 1257 1255 1256 1256	Hz Hz	2) 1)
Impulszuschlag für den Nahbereich K _{IN}	6 r 7 r 8 r 9 r 10 r	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹	1721 2118 2190 2190 2190 2081	kW kW kW kW kW			0 dB 0 dB 0 dB 0 dB 0 dB 0 dB			2)

Fortsetzung Seite 2

Seriennummer:

		Terz-/ Ol	ctav-Scha	allleistung	spegel Ref	erenzpunl	kt v10 =	6 m/s in	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	28,1	33,9	40,3	45,0	52,9	57,5	62,9	68,3	71,9	77,2	79,4	79,9
L _{WA, P}	41,4				59,0			73,8			83,8	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	83,7	82,5	82,8	86,5	86,8	88,1	88,1	89,2	90,3	91,5	91,7	91,0
L _{WA, P}	ĺ	87,8		92,0			94,1			96,2		
Frequenz	1600	2000	2500	3150	150 4000 5000 6300 8000		000	10000				
L _{WA, P}	92,1	91,6	90,5	88,4	86,0	83,5	78,7 7		75	5,1	72	2,4
L _{WA, P}		96,2		91,2			80,9					
L _{WA, P} total					101,7 dB(A)						

		Terz-/ Ok	tav-Scha	lleistungs	pegel Refe	renzpunk	t v10 = 6	,8 m/s i	n dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	28,9	34,6	40,5	45,8	51,4	57,0	62,1	65,9	70,3	74,7	78,1	79,9
L _{WA, P}		41,7			58,3			72,1			82,8	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	84,6	82,9	82,7	86,2	86,1	87,0	87,1	88,4	89,6	90,7	91,6	92,8
L _{WA, P}		88,3			91,2			93,3			96,6	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	92,2 92,7 91,2			89,6	86,6	83,9	80	0,1	77	7,0	74	1,8
L _{WA, P}		96,8			92,1				82	2,6		
L _{WA, P} total					101,9 dB(A)						

		Terz-/ Ol	ktav-Scha	allleistung	spegel Ref	erenzpunl	kt v10 =	7 m/s in	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	32,5	37,8	42,1	46,5	52,7	56,9	62,4	67,3	71,0	75,5	78,4	80,7
L _{WA, P}		43,8			58,6			72,9			83,5	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	85,0	83,4	83,3	86,1	85,9	86,8	86,5	88,2	89,4	90,5	91,5	92,9
L _{WA, P}		88,7			91,1			93,0			96,5	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	92,0	92,8	91,4	89,9	86,7	83,8	80	0,0	76	5,9	74	1,6
L _{WA, P}		96,9			92,3				82	2,5	•	
L _{WA, P} total	101,9 dB(A)											

		Terz-/ OI	ktav-Scha	allleistung	spegel Ref	e re nzpunl	kt v10 =	8 m/s ir	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	33,3	38,2	43,2	47,7	52,7	56,8	61,7	66,9	69,8	74,2	77,8	78,9
L _{WA, P}		44,7		i i	58,6			72,0			82,2	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	84,4	82,5	82,0	85,5	84,6	85,7	86,1	87,7	89,3	90,5	91,5	93,0
L _{WA, P}		87,9			90,1			92,7			96,6	
Frequenz	1600	2000	2500	3150	4000	5000	63	800	80	000	100	000
L _{WA, P}	92,6	93,2	92,0	89,3	85,5	82,0	78	3,8	76	5,1	74	4,0
L _{WA, P}		97,4			91,3				8	1,5	1	
L _{WA, P} total	101,8 dB(A)											

Fortsetzung Seite 3

		Terz-/ Ok	ctav-Scha	Illeistung	spegel Refe	erenzpunk	t v10 =	9 m/s in	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	32,6	38,1	43,3	46,7	52,7	56,7	62,3	66,7	70,3	74,7	78,0	79,2
L _{WA, P}		44,7			58,5			72,3			82,4	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	82,8	82,3	82,2	85,4	84,7	85,6	85,4	87,4	88,7	90,3	91,2	92,9
L _{WA, P}		87,2			90,0			92,1			96,4	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	92,6	94,2	92,8	90,3	85,9	82,6	79	9,6	7	7,0	75	5,0
L _{WA, P}		98,0			92,2				82	2,4		
L _{WA, P} total	102,0 dB(A)											

		Terz-/ Ok	tav-Scha	Illeistungs	spegel Refe	renzpunk	t v10 = 1	10 m/s i	n dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	37,1	42,4	46,9	50,7	54,2	58,5	63,1	67,6	71,4	75,6	78,3	80,2
L _{WA, P}		48,5			60,4			73,3			83,2	
Frequenz	100 125 160		200	250	315	400	500	630	800	1000	1250	
L _{WA, P}	83,6	83,1	83,1	86,1	85,7	86,2	86,0	87,7	89,1	90,8	91,9	93,0
L _{WA, P}		88,0			90,8			92,6			96,8	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	93,3	94,1	93,6	90,3	85,5	82,8 79,9 7				7,3	75	5,2
L _{WA, P}		98,5			92,1				82	2,7		
L _{WA, P} total					102,4 dB(A)						

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 24.10.2013.

Bemerkungen:

Betriebspunkt der 95%igen Nennleistung entsprechend den Messbedingungen und der verwendeten Leistungskurve.

In der Windklasse 10 ms⁻¹ liegen lediglich 13 10-Sekunden-Mittelwerte für das Gesamtgeräusch und 10 10-Sekunden-Mittelwerte Fremdgeräusch vor.

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 21.11.2013

Der Auszug wurde elektronisch unterschrieben.

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 1. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel) /1/

Auszug aus dem Prüfbericht WICO 074SE513/10

zur Schallemission der Windenergieanlage vom Typ Nordex N117/2400

Allgemeine Angaben Technische Daten (Herstellerangaben)

Anlagenhersteller: Nordex Energy GmbH Nennleistung: 2400 kW

Langenhorner Chaussee 600 Betriebsweise: Sound optimized Mode 103 dB(A)

D-22419 Hamburg Rotordurchmesser: (2190 kW)

Seriennummer: 82382 Gesamtnabenhöhe: 141,0 m ³⁾

WEA-Standort: Hohen Luckow, Turmbauart: Konischer Stahlrohrturm

Mecklenburg-Vorpommern Leistungsregelung: pitch

Daten zum Rotor (Herstellerangaben)

Daten zu Getriebe und Generator (Herstellerangaben)

Rotorblatthersteller: Nordex Energy GmbH Getriebehersteller: Eickhoff

Typenbezeichnung Blatt: NR58.5 Typenbezeichnung Getriebe: EBN 2145 A12 R00A
Blatteinstellwinkel: Variabel Generatorhersteller: Winergy

Blatteinstellwinkel:VariabelGeneratorhersteller:WinergyRotorblattanzahl:3Typenbezeichnung Generator:JFD-560MR-06ARotornenndrehzahl:10,7 U/minGeneratordrehzahlbereich:740 - 1300 U/min

Leistungskurve: berechnete Kurve (Quelle: Nordex Energy GmbH, F008_237_A55_DE Revision 01, 30.11.2011)

		Referenz	zpunkt		Schalle	miss	sions-F	Paramete	er	Bemerkunger
	Windgeso in 10	ardisierte chwindigkeit m Höhe	Elektrische Wirkleistung							
Schallleistungs- Pegel L _{WA,P}	7 8 9 10	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹	1794 2146 2190 2190 2190	kW kW kW kW						2)
Tonzuschlag für den Nahbereich K _{TN}	6,7 6 7 8 9 10 6,7	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹	2081 1794 2146 2190 2190 2190 2081	kW kW kW kW kW	0 0 0 0	dB dB dB dB	bei bei bei bei bei	206 1256 1257 1255 1256 1256	Hz Hz	3) 3) 3)
Impulszuschlag für den Nahbereich K _{IN}	6 7 8 9 10	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹	1794 2146 2190 2190 2190 2081	kW kW kW kW			0 dB 0 dB 0 dB 0 dB 0 dB			2) 1)

Fortsetzung Seite 2

		Terz-/ Ol	ktav-Scha	allleistung	spegel Refe	erenzpunk	ct v10 =	6 m/s in	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	28,2	34,0	40,4	45,1	53,0	57,6	63,0	68,4	72,0	77,3	79,5	80,0
L _{WA, P}		41,5	•		59,1			73,9			83,9	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	83,8	82,6	82,9	86,6	86,9	88,2	88,2	89,3	90,4	91,6	91,8	91,1
L _{WA, P}		87,9			92,1			94,2			96,3	
Frequenz	1600	2000	2500	3150	4000	5000	63	300	80	000	100	000
L _{WA, P}	92,2	91,7	90,6	88,5	86,1	83,6	78	3,8	75	5,2	72	2,5
L _{WA, P}		96,3			91,3				81	1,0		
L _{WA, P} total					101,8 dB(A))						

		Terz-/ Ok	tav-Schal	llleistungs	pegel Refe	renzpunkt	t v10 = 6	,7 m/s i	n dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	28,9	34,6	40,5	45,8	51,4	57,0	62,1	65,9	70,3	74,7	78,1	79,9
L _{WA, P}		41,7			58,3			72,1			82,8	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	84,6	82,9	82,7	86,2	86,1	87,0	87,1	88,4	89,6	90,7	91,6	92,8
L _{WA, P}		88,3	,		91,2			93,3			96,6	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	92,2	92,7	91,2	89,6	86,6	83,9	80),1	7	7,0	74	1,8
L _{WA, P}		96,8			92,1				82	2,6		
L _{WA, P} total	101,9 dB(A)											

		Terz-/ Ol	ktav-Scha	Illeistung	spegel Ref	erenzpunl	kt v10 =	7 m/s ir	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	32,4	37,7	42,0	46,4	52,6	56,8	62,3	67,2	70,9	75,4	78,3	80,6
L _{WA, P}		43,7			58,5			72,8			83,4	
Frequenz	100	125	160	200	250	315	400	500	500 630		1000	1250
L _{WA, P}	84,9	83,3	83,2	86,0	85,8	86,7	86,4	88,1	89,3	90,4	91,4	92,8
L _{WA, P}		88,6			91,0			92,9			96,4	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	91,9	92,7	91,3	89,8	86,6	83,7	79	9,9	76	5,8	74	1,5
L _{WA, P}		96,8			92,2				82	2,4		
L _{WA, P} total	101,8 dB(A)											

		Terz-/ OI	ktav-Scha	allleistung	spegel Ref	erenzpunl	kt v10 =	8 m/s in	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	33,3	38,2	43,2	47,7	52,7	56,8	61,7	66,9	69,8	74,2	77,8	78,9
L _{WA, P}		44,7	^		58,6			72,0			82,2	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	84,4	82,5	82,0	85,5	84,6	85,7	86,1	87,7	89,3	90,5	91,5	93,0
L _{WA, P}		87,9		·	90,1			92,7			96,6	
Frequenz	1600	2000	2500	3150	4000	5000	63	300	80	000	100	000
L _{WA, P}	92,6 93,2 92,0 89,3 85,5 82,0 78,8 76,1								74	1,0		
L _{WA, P}		97,4			91,3				81	1,5		
L _{WA, P} total	101,8 dB(A)											

Fortsetzung Seite 3

		Terz-/ Ol	ktav-Scha	Illeistung	spegel Ref	erenzpunl	kt v10 =	9 m/s ir	dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	32,7	38,2	43,4	46,8	52,8	56,8	62,4	66,8	70,4	74,8	78,1	79,3
L _{WA, P}		44,8	-		58,6	•		72,4			82,5	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	82,9	82,4	82,3	85,5	84,8	85,7	85,5	87,5	88,8	90,4	91,3	93,0
L _{WA, P}		87,3			90,1			92,2			96,5	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	92,7	92,7 94,3 92,9 90,4 86,0 82,7 79,7 77,					7,1	75	5,1			
L _{WA, P}		98,1			92,3				82	2,5		
L _{WA, P} total	102,1 dB(A)											

V		Terz-/ Ok	tav-Scha	Illeistungs	spegel Refe	renzpunk	t v10 = 1	10 m/s i	n dB(A)			
Frequenz	6.3	8	10	12.5	16	20	25	31,5	40	50	63	80
L _{WA, P}	37,2	42,5	47,0	50,8	54,3	58,6	63,2	67,7	71,5	75,7	78,4	80,3
L _{WA, P}		48,6			60,5			73,4			83,3	
Frequenz	100	125	160	200	250	315	400	500	630	800	1000	1250
L _{WA, P}	83,7	83,2	83,2	86,2	85,8	86,3	86,1	87,8	89,2	90,9	92,0	93,1
L _{WA, P}		88,1			90,9			92,7			96,9	
Frequenz	1600	2000	2500	3150	4000	5000	63	00	80	000	100	000
L _{WA, P}	93,4	94,2	93,7	90,4	85,6	82,9	80	0,0	7	7,4	75	5,3
L _{WA, P}		98,6			92,2				82	2,8		
L _{WA, P} total	102,5 dB(A)											

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 24.10.2013.

Bemerkungen:

- Betriebspunkt der 95%igen Nennleistung entsprechend den Messbedingungen und der verwendeten Leistungskurve.
- In der Windklasse 10 ms⁻¹ liegen lediglich 13 10-Sekunden-Mittelwerte für das Gesamtgeräusch und 10 10-Sekunden-Mittelwerte Fremdgeräusch vor (Vermessung der Nabenhöhe von 120 m).
- Datenbasis ist eine Vermessung der Nabenhöhe von 120 m. Es kann davon ausgegangen werden, dass bei anderen Nabenhöhen keine Veränderung im tonalen Verhalten auftreten werden, wenn die WEA in der gleichen Betriebsweise betrieben wird.

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Der Auszug wurde elektronisch unterschrieben.

Literaturverzeichnis

Ingenieurbüro für Energietechnik und Lärmschutz

Literaturverzeichnis

1.)	BlmSchG	Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge; Bundes-Immissionsschutzgesetz - BImSchG
2.)	4. BlmSchV	Vierte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über genehmigungsbedürftige Anlagen)
3.)	TA-Lärm	Sechste Allgemeine Verwaltungsvorschrift zum Bundes- Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm, TA Lärm vom 26.08.1998)
4.)	DIN ISO 9613-2	Dämpfung des Schalls bei der Ausbreitung im Freien, Oktober 1999
5.)	DIN 45680	Messung und Bewertung tieffrequenter Geräuschimmissionen in der Nachbarschaft, März 1997
6.)	DIN 45681	Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Einzeltonzuschlages für die Beurteilung von Geräuschemissionen, März 2005
7.)	DIN EN 61400-11	Windenergieanlagen, Teil 11: Schallmessverfahren, November 2003
8.)	DIN EN 50376.Entwurf	Angabe des Schallleistungspegels und der Tonhaltigkeitswerte bei Windenergieanlagen, November 2001
9.)	FGW	Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Fördergesellschaft Windenergie e.V. (FGW), 01.02.2008
10.)	AKGerWEA	Hinweise zum Schallimmissionsschutz bei Windenergieanlagen 109. Sitzung des LAI am 08. / 09. März 2005
11.)	NRW	Grundsätze für Planung und Genehmigung von Windenergieanlagen (Windenergie-Erlass Nordrhein-Westfalen vom 11.07.2011)
12.)	Ministerium für Land- wirtschaft, Umweltschutz und Raumplanung	Erlass des Ministeriums für Landwirtschaft, Umweltschutz und Raumordnung des Landes Brandenburg zu Anforderungen an die Geräuschimmissionsprognose und an die Nachweismessung bei Windenergieanlagen, 31.07.2003 sowie Änderung des Erlasses vom 23.05.2013
13.)	Niedersächsisches Umweltministerium	Hinweise zur Beurteilung von Windenergieanlagen im Genehmigungsverfahren vom 19.05.2005
14.)	J. Kötter, Dr. Kühner	TA-Lärm `98: Erläuterungen/Kommentare in: Immissionsschutz 2 (2000) S54-63
15.)	B. Vogelsang	TA-Lärm oder wer muss eigentlich wem wie was sicher nachweisen? in: DAGA 2002, Bochum S. 298-299
16.)	Dr. Ing. Ulrich J. Kurze, Müller-BBM	Abschätzung der Unsicherheit von Immissionsprognosen in: Zeitschrift für Lärmbekämpfung / Heft 5 (2001)
17.)	DiplIng. Detlef Piorr, Landesumweltamt NRW	Zum Nachweis der Einhaltung von Geräuschimmissionsrichtwerten mittels Prognose in: Zeitschrift für Lärmbekämpfung / Heft 5 (2001)
18.)	Helmut Klug	Infraschall von Windenergieanlagen: Realität oder Mythos? in: DEWI Magazin Nr. 20, Februar 2002

19.)	Wolfgang Probst, Ulrich Donner	Die Unsicherheit des Beurteilungspegels bei der Immissionsprognose in: Zeitschrift für Lärmbekämpfung / Heft 3 (2002)
20.)		Baunutzungsverordnung, Kommentar unter besonderer Berücksichtigung der Umweltschutzes mit ergänzenden Rechts- und Verwaltungsvorschriften 8. Auflage (Fickert / Fieseler) 1995, Deutscher Gemeindeverlag Kohlhammer
21.)	Niedersachsen	Gemeinsamer Erlass des Niedersächsischen Umweltministeriums und des Niedersächsischen Ministeriums für Soziales, Frauen, Familie und Gesundheit Verfahren für die Genehmigung von Windkraftanlagen vom 05.11.2004
22.)	Niodorookaan	
22.)	Niedersachsen	Stellungnahme des Niedersächsischen Umweltministeriums zu 21.) vom 07. Dezember 2004
23.)	Nordrhein-Westfalen	Schreiben des Umweltministeriums vom 21. Dezember 2005 an die Bezirksregierungen und Staatlichen Umweltämter NRW
24.)	Landesumweltamt NRW	Materialien Nr. 63 "Windenergieanlagen und Immissionsschutz", 2002
25.)	Monika Agatz	Windenergie-Handbuch", 10. Ausgabe, Dezember 2013
26.)	KÖTTER Consulting Engineers	Vortrag "Infraschalluntersuchungen an Windenergieanlagen", 3. Rheiner Windenergie-Forum, 09./10. März 2005
27.)	Landesverwaltungsamt Sachsen-Anhalt	Hinweise zur schalltechnischen Beurteilung von Windenergieanlagen (WKA) bei immissionsschutzrechtlichen Genehmigungsverfahren im Landesverwaltungsamt Sachsen-Anhalt (LvwA LSA), 24.02.2009
28.)	DIN 18005-1	Schallschutz in Städtebau, Juli 2002
29.)	Landesumweltamt NRW	Empfehlungen zur Bestimmung der meteorologischen Dämpfung c $_{\rm met}$ gemäß DIN ISO 9613-2, 26.09.2012
30.)	MULEWF Rheinland-Pfalz	Hinweise zur Beurteilung der Zulässigkeit von Windenergieanlagen in Rheinland-Pfalz (Rundschreiben Windenergie); Rundschreiben des Ministeriums für Wirtschaft, Klimaschutz, Energie und Landesplanung, des Ministeriums der Finanzen, des Ministeriums für Umwelt, Landwirtschaft, Ernährung, Weinbau und Forsten und des Ministeriums des Innern, für Sport und Infrastruktur Rheinland-Pfalz, 28.05.2013
31.)	Baden-Württemberg	Windenergieerlass Baden-Württemberg, Gemeinsame Verwaltungsvorschrift des Ministeriums für Umwelt, Klima und Energiewirtschaft, des Ministeriums für Ländlichen Raum und Verbraucherschutz, des Ministeriums für Verkehr und Infrastruktur und des Ministeriums für Finanzen und Wirtschaft, 09. Mai 2012
32.)	Bayrisches Landesamt für Umwelt	Windkraftanlagen - beeinträchtigt Infraschall die Gesundheit? Februar 2012
33.)	Dipl -Ing. Detlef Piorr, Landesumweltamt NRW	Geräuschemissionen und -immissionen von Windenergieanlagen, Seminar BEW Duisburg 29. September 2011
34.)	Robert Koch-Institut	Infraschall und tieffrequenter Schall – ein Thema für den umweltbezogenen Gesundheitsschutz in Deutschland?, 30. November 2007
35.)	Merkblatt SGD Nord für RLP	Für Vorhaben zur Errichtung von Windenergieanlagen hinsichtlich immissions- und arbeitsschutzrechtlicher Anforderungen an die Antragsunterlagen in Genehmigungsverfahren

