Schalltechnische Immissionsprognose

zur Errichtung einer Windenergieanlage

in der Gemarkung von Laudert

(Projektbezeichnung: Laudert II)

Hauptsitz Boppard

Ingenieurbūro Pies Birkenstraße 34 56154 Boppard-Buchholz Tel. +49 (0) 6742 - 2299

Būro Mainz

Ingenieurbūro Pies über SCHOTT AG Hattenbergstraße 10 55120 Mainz Tel. +49 (0) 6131 - 9712 630

info@schallschutz-pies.de www.schallschutz-pies.de

Schalltechnische Immissionsprognose zur Errichtung einer Windenergieanlage in der Gemarkung von Laudert (Projektbezeichnung: Laudert II)

Auftraggeber:	
AUFTRAG VOM:	Mai 2013
Auftrag – Nr.:	15725 / 0513
FERTIGSTELLUNG:	17.05.2013
BEARBEITER:	
SEITENZAHL:	26
Anhänge:	10

INHALTSVERZEICHNIS

		Seite
1.	Aufgabenstellung	3
2.	Grundlagen	4
2.1	Beschreibung der örtlichen Verhältnisse	4
2.2	Anlagenbeschreibung	4
2.3	Nutzungszeiten	6
2.4	Verwendete Unterlagen	6
2.4.1	Vom Auftraggeber zur Verfügung gestellte Unterlagen	6
2.4.2	Richtlinien, Normen und Erlasse	6
2.4.3	Eigene Unterlagen	7
2.5	Anforderungen	7
2.6	Berechnungsgrundlagen	9
2.6.1	Berechnung der Geräuschimmissionen	9
2.6.2	Qualität der Prognose	10
2.7	Beurteilungsgrundlagen	13
2.8	Ausgangsdaten	14
2.8.1	Emissionsdaten der Windenergieanlagen	14
2.8.2	Standardabweichungen	15
2.8.3	Ermittlung des Zuschlages	15
2.8.4	Meteorologische Korrektur	16
2.8.5	Tieffrequente Geräusche bzw. Infraschall	16
3.	Immissionsberechnung und Beurteilung	16
3.1	Immissionsberechnung und Beurteilung der Zusatzbelastung	18
3.2	Immissionsberechnung und Beurteilung der Vorbelastung	19
3.3	Immissionsberechnung und Beurteilung der Gesamtbelastung	23
4.	Qualität der Prognose	24
5.	Zusammenfassung	25

1. Aufgabenstellung

In der Gemarkung von Laudert plant die Errichtung einer Windenergieanlage (Projektbezeichnung; Laudert II). Im Rahmen einer Immissionsprognose sind die zu erwartenden Geräuschimmissionen nach den Anforderungen der TA-Lärm und der gültigen Rechtsprechung zu ermitteln und zu beurteilen. Da sowohl in der Gemarkung von Laudert, als auch auf den benachbarten Flächen bereits Windenergieanlagen errichtet bzw. genehmigt sind, sind diese im Sinne der TA-Lärm als Vorbelastung zu beachten. Neben den bereits bestehenden und genehmigten Anlagen ist auch ein vorhandenes Industrie- und Gewerbegebiet im Rahmen der Vorbelastungsermittlung zu bewerten.

Zu den oben erwähnten Windenergieanlagen, die als Vorbelastung zu beachten sind, erfolgten durch unser Büro im Rahmen der Planung schalltechnische Untersuchungen. Auf die Erkenntnisse dieser Untersuchung wurde zurückgegriffen, wobei das vorliegende Gutachten für sich eigenständig und vollständig ist.

Sollte die Untersuchung zeigen, dass ggf. Richtwertüberschreitungen nicht ausgeschlossen werden können, so sind geeignete schallmindernde Maßnahmen aufzuzeigen.

2. Grundlagen

2.1 Beschreibung der örtlichen Verhältnisse

Die geplante Windenergieanlage soll im Nordosten zur Ortslage Laudert errichtet werden. Unmittelbar nördlich des geplanten Standortes bestehen bereits Windenergieanlagen bzw. es befinden sich Anlagen im Bau oder sind bereits genehmigt. Südlich des Standortes sind gewerbliche Flächen vorhanden. An diese Flächen grenzt die Ortsgemeinde Wiebelsheim. Neben den oben erwähnten bereits bestehenden Anlagen sind auch noch 4 Anlagen im Nordwesten zu Laudert in Betrieb. Im Umfeld zu allen Windenergieanlagen befinden sich neben den oben beiden genannten Ortsgemeinden noch die Ortslagen Birkheim, Nenzhäuserhof, Lingerhahn und Maisborn. Diese letztgenannten Ortslagen weisen zur Planung hin einen großen Abstand auf, wurden aber zur besseren Übersicht und Vergleichbarkeit, bezogen auf die bereits vorhandenen Untersuchungen, weiterhin berücksichtigt.

Einen Überblick über die örtlichen Verhältnisse vermittelt der Lageplan im Anhang 1 zum Gutachten.

2.2 Anlagenbeschreibung

In den nachstehenden Tabellen sind die geplanten, bestehenden Anlagen und die beantrage Anlage mit den Standortkoordinaten und den technischen Daten aufgeführt:

Tabelle 1 - Geplante Windenergieanlage Laudert II (Zusatzbelastung)

Kennzeich- nung	Anlagen- typ	Leistung in kW	Naben- höhe in m	Rotor- durch- messer in m	koord	dort- inaten // 32	koordi	dort- inaten Krüger
					Rechts- wert	Hoch- wert	Rechts- wert	Hoch- wert
WEA L2	E101	3 000	135,4	101	401352	5548913	3401387	5550692

Tabelle 2 - Im Bau befindliche Windenergieanlagen Oberwesel III (Vorbelastung)

belastarig)								
Kennzeich- nung	Anlagen- typ	Leistung in kW	Naben- Rotor- Standort- Standort- koordinaten koordinaten m messer UTM 32 Gauß/Krüg		koordinaten		inaten	
15 = 1					Rechts- wert	Hoch- wert	Rechts- wert	Hoch- wert
WEA OIII1	3.4M	3 370	128	104	401643	5550876	3401678	5552656
WEA OIII2	3.4M	3 370	128	104	401151	5550744	3401186	5552524
WEA OIII3	3.4M	3 370	128	104	401788	5550607	3401823	5552387
WEA OIII4	3.4M	3 370	128	104	401205	5550293	3401240	5552073
WEA OIII5	3.4M	3 370	128	104	401644	5550247	3401679	5552027
WEA OIII6	3.4M	3 370	128	104	401425	5549880	3401460	5551660

Tabelle 3 - Genehmigte Anlage Laudert (Vorbelastung)

Kennzeich- nung	Anlagen- typ	Leistung in kW	V höhe in durch- koordinaten koordina		Standort-		inaten	
			m	messer in m	Rechts- wert	Hoch- wert	Gauß/ Rechts- wert	Hoch- wert
WEA L3	E101	3 000	135,4	101	401031	5549084	3401066	5550864

Tabelle 4 - Bestehende Anlagen Oberwesel (Vorbelastung)

Kennzeich- nung	Anlagen- typ	Leistung in kW	9		Standort- koordinaten		dort- inaten	
				161311	Rechts- wert	Hoch- wert	Rechts- wert	Hoch- wert
WEA 01	E82 E2	2 300	138,38	82	400904	5549759	3400939	5551539
WEA O2	E82 E2	2 300	138,38	82	400728	5549933	3400763	5551713
WEA O3	E82 E2	2 300	138,38	82	400543	5550103	3400578	5551883
WEA 04	E82 E2	2 300	138,38	82	401084	5549591	3401119	5551371

Tabelle 5 - Bestehende Anlagen Lingerhahn (Vorbelastung)

Kennzeich- nung	Anlagen- typ	Leistung in kW	Naben- höhe in m	Rotor- durch- messer	Standort- koordinaten UTM 32		koord	dort- inaten Krüger
				in m	Rechts- wert	Hoch- wert	Rechts- wert	Hoch- wert
WEA Li1	MM92	2 050	100	92,5	399159	5550204	3399193	5551984
WEA Li2	MM92	2 050	100	92,5	398816	5549829	3398849	5551609
WEA Li3	MM92	2 050	100	92,5	398960	5549593	3398994	5551373
WEA Li4	MM92	2 050	100	92,5	399286	5549990	3399320	5551770

Die Standorte können auch dem Lageplan im Anhang 1 zu den Gutachten entnommen werden.

2.3 Nutzungszeiten

Die Windenergieanlagen werden kontinuierlich über die gesamte Tages- und Nachtzeit betrieben. Somit ist aus schalltechnischer Sicht, vor allem die ungünstigste Nutzungssituation zur Nachtzeit von 22.00 bis 06.00 Uhr und hier die "lauteste Stunde" relevant.

2.4 Verwendete Unterlagen

2.4.1 Vom Auftraggeber zur Verfügung gestellte Unterlagen

- Topografische Standortkarte, Maßstab 1: 25 000
- Standortkoordinaten der geplanten und der bestehenden Windenergieanlagen
- Auszüge aus der deutschen Grundkarte, Maßstab 1:5 000

2.4.2 Richtlinien, Normen und Erlasse

- Technische Richtlinie für Windenergieanlagen, Revision 18
 Stand 10.02.2008 Teil 1
 "Bestimmung der Schallemissionskennwerte"
 Herausgeber: Fördergesellschaft für Windenergie e.V.
- DIN EN 61400-11 Windenergieanlagen, Teil 11 "Schallmessverfahren"

- DIN ISO 9613-2
 "Dämpfung des Schalls bei der Ausbreitung im Freien"
- TA-Lärm
 "Technische Anleitung zum Schutz gegen Lärm"

2.4.3 Eigene Unterlagen

- Tagungsunterlagen Kötter Consult Engineers
- Auszug aus den Vermessungsberichten und Datenblättern der Anlagen
- LAI-Hinweise zum Schallimmissionsschutz bei Windenergieanlagen; 2005

2.5 Anforderungen

Im Zusammenhang mit der Wahl der Immissionsorte wurden die Aufpunkte aus vorangegangenen Untersuchungen übernommen, obwohl diese teils recht hohe Abstände zum Planungsvorhaben aufweisen. Dies erfolgt vor dem Hintergrund einer besseren Vergleichbarkeit der Ergebnisse und der Entwicklung der Geräuschsituation durch die Zunahme der Windenergieanlagen im gesamten Bereich.

Zur Ermittlung der Immissionspunkte erfolgten eine Ortsbegehung und eine Recherche hinsichtlich der Nutzungseinstufung bei den zuständigen Verbandsgemeindeverwaltungen. Die Auswahl der Immissionspunkte berücksichtigt neben den Abstandsverhältnissen zwischen den Windenergieanlagen und den nächstgelegenen Wohnhäusern auch deren Nutzungseinstufung mit den zugehörigen Immissionsrichtwerten. Hieraus ergeben sich folgende Aufpunkte:

Tabelle 6 - Immissionspunkte mit Nutzungseinstufung

IP	Ortslage	Straße/Haus-Nr.	Nutzungseinstufung
1	Nenzhäuserhof	Nenzhäuserhof 54	WA
2	Birkheim	Am Briel 6	WA
3	Laudert	Im Großen Stück 16	WA
4	Maisborn	Im Hopfengarten 11	WA
5	Lingerhahn	Stierswiese 5	WA
6	Lingerhahn	Campingplatz Parzelle 20	WA
7	Nenzhäuserhof	Nenzhäuserhof 2	WA
8	Wiebelsheim	Maisberg 26	WA
9	Wiebelsheim	Flur 9; Flurstück 35/1	WA

Die oben angegebenen Nutzungseinstufungen ergeben sich auf der Grundlage bestehender Bebauungspläne bzw. Flächennutzungspläne in Verbindung mit Angaben durch die zuständigen Behörden unter Beachtung der tatsächlichen Nutzung.

Die TA-Lärm gibt für die Ausweisung eines allgemeinen Wohngebietes (WA) folgende Immissionsrichtwerte an:

tags 55 dB(A) nachts 40 dB(A)

Diese sollen 0,5 m vor dem vom Lärm am stärksten betroffenen Fenster eines schutzbedürftigen Raumes eingehalten werden. Ferner soll vermieden werden, dass einzelne Pegelspitzen den Tagesimmissionsrichtwert um mehr als 30 dB und den Nachtimmissionsrichtwert um mehr als 20 dB überschreiten.

2.6 Berechnungsgrundlagen

2.6.1 Berechnung der Geräuschimmissionen

Gemäß der DIN ISO 9613-2 berechnet sich der äquivalente A-bewertete Dauerschalldruckpegel bei Mitwind nach folgender Gleichung:

$$L_{AT}$$
 (DW) = $L_W + D_c - A_{div} - A_{atm} - A_{gr} - A_{bar} - A_{misc}$

Dabei ist:

L_W - Schallleistungspegel einer Punktschallquelle in Dezibel (A)

D_c - Richtwirkungskorrektur in Dezibel

A_{div} - die Dämpfung aufgrund geometrischer Ausbreitung

(siehe 7.1 der DIN ISO 9613-2)

A_{atm} - die Dämpfung aufgrund von Luftabsorption (siehe 7.2

der DIN ISO 9613-2)

A_{or} - die Dämpfung aufgrund des Bodeneffekts (siehe 7.3

der DIN ISO 9613-2)

A_{bar} - die Dämpfung aufgrund von Abschirmung (siehe 7.4

der DIN ISO 9613-2)

A_{misc} - die Dämpfung aufgrund verschiedener anderer Effekte

(siehe Anhang A der DIN ISO 9613-2)

Die Berechnungen nach obiger Gleichung können zum einen in den 8 Oktavbändern mit Bandmittenfrequenzen von 63 Hz bis 8 kHz erfolgen. Zum anderen, insbesondere, wenn die Geräusche keine bestimmenden hoch- bzw. tieffrequenten Anteile aufweisen, kann die Berechnung auch für eine Mittenfrequenz von 500 Hz durchgeführt werden.

Sind mehrere Punktschallquellen vorhanden, so wird der jeweilige äquivalente A-bewertete Dauerschalldruckpegel nach obiger Gleichung oktavmäßig bzw. mit einer Mittenfrequenz berechnet und dann die einzelnen Werte energetisch addiert.

Aus dem äquivalenten A-bewerteten Dauerschalldruckpegel bei Mitwind L_{AT} (DW) errechnet sich unter Berücksichtigung der nachstehenden Beziehung der A-bewertete Langzeitmittelungspegel L_{AT}(LT):

$$L_{AT}(LT) = L_{AT}(DW)-C_{met}$$

C_{met} entspricht dem meteorologischen Korrekturmaß gemäß dem Abschnitt 8 der DIN ISO 9613-2.

2.6.2 Qualität der Prognose

Die TA-Lärm sieht unter Punkt A. 2.6 vor, dass die Geräuschimmissionsprognose Aussagen über die Qualität der Prognose enthalten soll.

Bei Windenergieanlagen bestimmen folgende Faktoren die Qualität der Prognose:

- Ungenauigkeit der Schallemissionsvermessung der WEA (σ_R)
- Produktionsstreuung der WEA (σ_P)
- prinzipielle Unsicherheit des der Ausbreitungsberechnung zugrunde liegenden Prognosemodels (σ_{Prog})

Dabei sind:

 $\sigma_{\text{Prog}} = 1,5 \text{ dB(A)}$

 σ_P = 1,2 dB(A) bei einer einfachen Vermessung, errechnet aus

Sicherheitszuschlag 2 dB(A)

 σ_R = 0,5 dB(A), wenn die WEA gemäß DIN 61400–11

vermessen wird

sonst

 σ_R = Ungenauigkeit, die im Vermessungsbericht durch

das Messinstitut angegeben wird

 σ_R = 3 dB(A) bei nicht vermessenen WEA

 σ_{Schirm} = 1,5 dB(A) als Abschätzung aus VDI 2720

Zur Bestimmung des Sicherheitszuschlages für die Serienstreuung σ_P einer 3-fach vermessenen Windenergieanlage wird der Arbeitsentwurf der EN 50376 "Declaration of sound power level and tonality values of wind turbines" herangezogen.

Danach soll zur Bestimmung der Produktionsstreuung aus der Mehrfachmessung des Schallleistungspegels folgende Abschätzung für σ_P angewendet werden:

 $\sigma_P = s$

Die Standardabweichung s berechnet sich nach EN 50376 wie folgt:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (L_{W_i} - \overline{L_W})^2}$$

mit

$$\overline{L}_W = \sum_{i=1}^n \frac{L_{Wi}}{n}$$

Die Gesamtunsicherheit der Schallimmissionsprognose berechnet sich dann:

$$\sigma_{\text{ges}} = \sqrt{\sigma_R^2 + \sigma_p^2 + \sigma_{prog}^2 + \sigma_{Schirm}^2}$$

In einer statistischen Betrachtung ergibt sich die obere Vertrauensbereichsgrenze L_o:

$$L_o$$
 = L_r + K
K = 1,28 · σ_{ges}

mit

L_r = Beurteilungspegel

K = Zuschlag

Der Richtwert nach TA-Lärm gilt als eingehalten, wenn L_{o} unter dem Richtwert nach TA-Lärm liegt.

2.7 Beurteilungsgrundlagen

Nach der 6. Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm – TA-Lärm) vom 26. August 1998 erfolgt die Beurteilung eines Geräusches bei nicht genehmigungsbedürftigen bzw. genehmigungsbedürftigen Anlagen anhand eines sog. Beurteilungspegels. Dieser berücksichtigt die auftretenden Schallpegel, die Einwirkzeit, die Tageszeit des Auftretens und besondere Geräuschmerkmale (z. B. Töne).

Das Einwirken des vorhandenen Geräusches auf den Menschen wird dem Einwirken eines konstanten Geräusches während des gesamten Bezugszeitraumes gleichgesetzt.

Zur Bestimmung des Beurteilungspegels wird die tatsächliche Geräuscheinwirkung (Wirkpegel) während des Tages auf einen Bezugszeitraum von 16 Stunden (06.00 bis 22.00 Uhr) und zur Nachtzeit (22.00 bis 06.00 Uhr) auf eine volle Stunde ("lauteste" Nachtstunde z. B. 01.00 bis 02.00 Uhr) bezogen.

Treten in einem Geräusch Einzeltöne und Informationshaltigkeit deutlich hörbar hervor, dann sind in den Zeitabschnitten, in denen die Einzeltöne bzw. Informationshaltigkeiten auftreten, dem maßgebenden Wirkpegel 3 dB(A) bzw. 6 dB(A) hinzuzurechnen.

Die nach dem oben beschriebenen Verfahren ermittelten Beurteilungspegel sollen bestimmte Immissionsrichtwerte, die in der TA-Lärm, Abschnitt 6.1 festgelegt sind, nicht überschreiten.

Zur Berücksichtigung der erhöhten Störwirkung von Geräuschen wird ein Zuschlag von 6 dB(A) für folgende Teilzeiten berücksichtigt:

An Werktagen		06.00 – 07.00 Uhr
		20.00 – 22.00 Uhr
An Sonn- und Feiertagen		06.00 – 09.00 Uhr
	. 11	13.00 – 15.00 Uhr
		20.00 – 22.00 Uhr

Die Berücksichtigung des Zuschlages von 6 dB(A) gilt nur für Wohn-, Kleinsiedlungs- und Kurgebiete; jedoch nicht für Kern-, Dorf-, Misch-, Gewerbe- und Industriegebiete.

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte, wie sie in Abschnitt 6.1 der TA-Lärm aufgeführt sind, am Tage um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten.

2.8 Ausgangsdaten

2.8.1 Emissionsdaten der Windenergieanlagen

In der nachstehenden Tabelle sind die jeweiligen immissionsrelevanten Schallleistungspegel der einzelnen Windenergieanlagen unter Referenzbedingungen aufgeführt:

Tabelle 7 - Schallleistungspegel

Anlagentyp	Immissionsrelevanter Schallleistungspegel L _W in dB(A)	Quelle		
Enercon E101	104,8	1 Messbericht		
Enercon E82 E2	104,0	3 Messberichte		
REpower MM92 103,9		1 Messbericht		
REpower 3.4M 103,9		3 Messberichte*		

^{*} der geplante Anlagentyp REpower 3.4M ist 3-fach vermessen. Jedoch liegen für den höchsten ermittelten Schallleistungspegel, der bereits bei einer Windgeschwindigkeit von 7 m/s in 10 m Höhe erreicht wird, nur 2 Messwerte vor.

Eine immissionsrelevante Ton- und Impulshaltigkeit liegt nach den Messberichten nicht vor.

Auszüge aus den Messberichten sind dem Anhang 2 zu entnehmen.

2.8.2 Standardabweichungen

Zur Ermittlung des oberen Vertrauensbereiches und somit zur Berechnung des Zuschlages K wurden folgende Standardabweichungen berücksichtigt.

Tabelle 8 - Standardabweichungen

Anlagentyp	$\begin{array}{c} \text{Mess-}\\ \text{unsicherheit}\\ \sigma_{\text{R}} \text{in dB} \end{array}$	Produktions- standardabweichung σ _P in dB	Prognose- standardabweichung σ _{prog} in dB
Enercon E101	0,5	1,2	1,5
Enercon E82 E2	0,5	0,6	1,5
REpower MM92	0,5	1,2	1,5
REpower 3.4M	0,5	1,2	1,5

2.8.3 Ermittlung des Zuschlages

Aus den in Abschnitt 2.8.2 aufgeführten Standardabweichungen errechnen sich bei einer Vertrauenswahrscheinlichkeit von 90 % folgende Zuschläge:

Enercon E101	K = 2,5 dB
Enercon E82 E2	K = 2,2 dB
REpower MM92	K = 2,5 dB
REpower 3.4M	K = 2,5 dB

Die oben aufgeführten Zuschläge wurden unmittelbar emissionsseitig in die Berechnung eingestellt, sodass die Berechnungsergebnisse bereits den oberen Vertrauensbereich L_{o} wiedergeben.

2.8.4 Meteorologische Korrektur

Gemäß der DIN ISO 9613-2 in Verbindung mit der TA-Lärm ist eine meteorologische Korrektur durch den Faktor C_{met} zu berücksichtigen. Dieser Korrekturfaktor wurde im Rahmen einer konservativen Betrachtung nicht in die Prognose eingestellt.

2.8.5 Tieffrequente Geräusche bzw. Infraschall

Im Zusammenhang mit tieffrequenten Geräuschen liegen bis heute keine Erkenntnisse vor, dass diese zu Überschreitungen der Anforderungen der TA-Lärm in Verbindung mit der DIN 45680 "Messung und Bewertung tieffrequenter Geräuschimmissionen in der Nachbarschaft" führen.

Untersuchungen zu Infraschall ergaben, dass die Infraschallanteile die Wahrnehmungsschwelle deutlich unterschreiten.

3. <u>Immissionsberechnung und Beurteilung</u>

Für die Berechnung der zu erwartenden Geräuschimmissionen wurden anhand der vorliegenden Planungsunterlagen die topografischen Gegebenheiten in Form eines digitalen Berechnungsmodells nachgebildet. Die Eingabedaten können dem Lageplan im Anhang 1 zum Gutachten entnommen werden.

Auf Grundlage der Kenntnisse aus der Ortsbegehung sind keine immissionsrelevanten Reflexionsanteile zu erwarten bzw. in das digitale Berechnungsmodell einzustellen. Relevante Abschirmungseffekte durch z. B. eigene Gebäude etc. wurden nicht berücksichtigt.

Die Berechnung erfolgte für die nachstehenden aufgeführten Immissionspunkte:

Tabelle 9 - Immissionspunkte

IP	Ortslage	Ortslage Straße/Haus-Nr.		dort- inaten // 32	Standort- koordinaten Gauß/Krüger		
			Rechts- Hoch- wert wert		Rechts- wert	Hoch- wert	
1	Nenzhäuserhof	Nenzhäuserhof 54	400042	5551176	3400076	5552957	
2	Birkheim	Am Briel 6	401335	5552408	3401370	5554189	
3	Laudert	Im Großen Stück 16	400456	5548304	3400491	5550083	
4	Maisborn	Im Hopfengarten 11	398559	5548874	3398593	5550654	
5	Lingerhahn	Stierswiese 5	397738	5549983	. 3397771	5551763	
6	Lingerhahn	Campingplatz Par- zelle 20	398205	5550485	33982 3 9	5552265	
7	Nenzhäuserhof	Nenzhäuserhof 2	399705	5550914	3399739	5552694	
8	Wiebelsheim	Maisberg 26	402403 5548249		3402438	5550028	
9	Wiebelsheim	Flur 9; Flurstück 35/1	402138 5547756		3402173 5549535		

Diese sind auch im Lageplan im Anhang 1 zum Gutachten gekennzeichnet.

Zu den Immissionspunkten ist anzumerken, dass diese die am ungünstigsten gelegenen Wohnhäuser der Ortslagen repräsentieren. Wenn an diesen die Anforderungen der TA-Lärm erfüllt werden, so kann davon ausgegangen werden, dass auch an allen weiteren Wohnhäusern bzw. möglichen Wohnhäusern die Anforderungen eingehalten werden.

Die Ermittlung der zu erwartenden Geräuschimmissionen wurde nach der DIN ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien" nach dem alternativen Verfahren mit einer Mittelfrequenz von 500 Hz durchgeführt. Die Beurteilung der Geräuschimmissionen erfolgt gemäß der TA-Lärm.

Danach ist die Untersuchung in folgende Abschnitte zu gliedern:

- Ermittlung der Zusatzbelastung (geplante Windenergieanlagen)
- Ermittlung der Vorbelastung (z.B. bestehende Windenergieanlagen)
- Bestimmung der Gesamtbelastung (Addition von Zusatz- und Vorbelastung)

3.1 Immissionsberechnung und Beurteilung der Zusatzbelastung

Unter der Berücksichtigung, dass die geplante Windenergieanlage unter Nennleistung kontinuierlich betrieben wird, berechnen sich folgende Beurteilungspegel für den oberen Vertrauensbereich:

Tabelle 10 - Zusatzbelastung

IP	Bezeichnung IP		ertrauensbe- in dB(A)	Immissionsrichtwert in dB(A)		
		tags	nachts	tags	nachts	
1	Nenzhäuserhof 54	26	22	55	40	
2	Birkheim; Am Briel 6	21	17	55	40	
3	Laudert; Im Großen Stück 16	38	34	55	40	
4	Maisborn; Im Hopfengarten 11	25	21	55	40	
5	Lingerhahn; Stierswiese 5	20	16	55	40	
6	Campingplatz Parzelle 20	21	17	55	40	
7	Nenzhäuserhof 2	26	22	55	40	
8	Wiebelsheim; Maisberg 26	36	33	55	40	
9	Wiebelsheim; Flur 9; Flurstück 35/1	35	31	55	40	

Die detaillierte Ausbreitungsberechnung zeigt der Anhang 3 zum Gutachten.

Für einen größeren Untersuchungsbereich erfolgte eine flächenhafte Berechnung für die aus schalltechnischer Sicht "lauteste" Nachtstunde. Das Ergebnis hierzu kann der Rasterlärmkarte im Anhang 4 zum Nachtrag entnommen werden.

Diese flächenhafte Berechnung dient dem Überblick und ersetzt nicht die detaillierte punktuelle Berechnung aus Anhang 3.

Die Berechnungsergebnisse zeigen, dass an allen Aufpunkten die Anforderungen der TA-Lärm deutlich unterschritten werden. Teils befinden sich die gewählten Immissionsorte nicht im Einwirkungsbereich des Planungsvorhabens.

Da diese jedoch bei den vorangegangenen Untersuchungen zu den bestehenden Standorten Berücksichtigung fanden, wurden diese auch hier weiterhin zur besseren Veranschaulichung in der Prognose aufgeführt.

3.2 Immissionsberechnung und Beurteilung der Vorbelastung

Als Vorbelastung wurde neben den bestehenden Anlagen, den im Bau befindlichen Anlagen auch eine genehmigte Anlage in der Gemarkung von Laudert berücksichtigt.

Die Berechnung der Vorbelastung durch für die oben erwähnten Windenergieanlagen ergibt folgende Ergebnisse:

Tabelle 11 - Vorbelastung durch die Windenergieanlagen

IP	Bezeichnung IP		rtrauensbe- in dB(A)	Immissionsrichtwert in dB(A)	
100		tags	nachts	tags	nachts
1	Nenzhäuserhof 54	44	40	55	40
2	Birkheim; Am Briel 6	38	35	55	40
3	Laudert; Im Großen Stück 16	43	39	55	40
4	Maisborn, Im Hopfengarten 11	43	39	55	40
5	Lingerhahn; Stierswiese 5	41	37	55	40
6	Campingplatz Parzelle 20	43	39	55	40
7	Nenzhäuserhof 2	45	41	55	40
8	Wiebelsheim; Maisberg 26	38	35	55	40
9	Wiebelsheim; Flur 9; Flurstück 35/1	37	33	55	40

Die Ausbreitungsberechnung der Vorbelastung durch die Windenergieanlagen kann auch den Anhängen 5 und 6 zum Gutachten entnommen werden.

Den Berechnungsergebnissen aus obiger Tabelle ist zu entnehmen, dass teils die Richtwerte bereits ausgeschöpft bzw. am Nenzhäuserhof um 1 dB überschritten werden. Eine solche Überschreitung ist grundsätzlich im Sinne der TA-Lärm unter Berücksichtigung der Vorbelastung zulässig.

Im Weiteren ist bei der Untersuchung der Vorbelastung auch das bestehende Industrie- und Gewerbegebiet zu beachten. Aufgrund der vorliegenden Abstandsverhältnisse ist diese Betrachtung nur für die Ortslagen Laudert und Wiebelsheim von Bedeutung.

Für das Gewerbegebiet in der Nähe der Autobahn (siehe Kennzeichnung im Lageplan Anhang 1), wurden im Bebauungsplan Emissionskontingente festgesetzt. Diese Emissionskontingente betragen für die aus schalltechnischer Sicht relevante Nachtzeit Lw´´= 54 dB(A)/m². Weiterhin sind auch richtungsbezogene Zusatzkontingente festgesetzt. Für das unmittelbar angrenzende größere Industriegebiet gibt es eine solche Festsetzung nicht.

Um dieses Gebiet aus schalltechnischer Sicht zu berücksichtigen, wurde geprüft, welche Emissionen abgestrahlt werden dürfen (ohne Beachtung der Windenergieanlagen als Vorbelastung), damit die Anforderungen der TA-Lärm an der benachbarten Wohnbebauung bzw. möglichen Wohnbebauung im angrenzenden GE-Gebiet eingehalten werden können. Der ungünstigste Aufpunkt ist ein mögliches Betreiberwohnhaus auf dem benachbarten Gewerbegebiet.

Vor dem Hintergrund, dass durch das Gewerbegebiet selbst bereits am möglichen Betreiberwohnhaus der Nachtimmissionsrichtwert von 50 dB(A) für ein Gewerbegebiet voll ausgeschöpft werden darf, muss das Industriegebiet dort den Richtwert um > 6 dB unterschreiten.

Hieraus resultiert für das Industriegebiet ein flächenbezogener Schallleistungspegel von $L_{W}^{\prime\prime}$ = 50,5 dB(A)/m² für die Nachtzeit. Dieser Wert wurde für die gesamte industrielle Fläche als Emissionskennwert für eine mögliche Nutzung angesetzt.

Hieraus errechnet sich aus dem Industriegebiet folgende Vorbelastung für die Nachtzeit:

Tabelle 12 - Vorbelastung durch das Industriegebiet

IP	Bezeichnung IP	Oberer Vertrauensbe- reich L _o in dB(A) nachts	Immissionsrichtwert in dB(A) nachts	
3	Laudert; Im Großen Stück 16	30	40	
8	Wiebelsheim, Maisberg 26	31	40	
9	Wiebelsheim; Flur 9; Flurstück 35/1	33	40	

Das Berechnungsergebnis zeigt auch der Anhang 7.

Zur Ermittlung der Vorbelastung durch das Gewerbegebiet ist eine Berechnung durchzuführen, die nur die Minderung aufgrund der Abstandsverhältnisse vorsieht.

Eine solche Form der Berechnung wurde bei der Kontingentierung im Rahmen der Aufstellung des Bebauungsplanes durchgeführt und ist auch im Folgenden bei der Ermittlung der Immissionskontingente zu beachten. Daraus ergeben sich durch das Gewerbegebiet folgende Berechnungsergebnisse:

Tabelle 13 - Vorbelastung durch das Gewerbegebiet

IP	Bezeichnung IP	Oberer Vertrauensbe- reich L _o in dB(A) nachts	Immissionsrichtwert in dB(A) nachts
3	Laudert; Im Großen Stück 16	21	40
8	Wiebelsheim; Maisberg 26	25	40
9	Wiebelsheim; Flur 9; Flurstück 35/1	32	40

Das Berechnungsergebnis kann dem Anhang 8 entnommen werden.

Bezogen auf den Immissionspunkt in Laudert wurde zudem im Bebauungsplan des Gewerbegebietes ein richtungsabhängiges Zusatzkontingent von 13 dB festgesetzt.

Die oben errechneten Immissionsrichtwertanteile sind um dieses Zusatzkontingent zu erhöhen. In der Gesamtheit der Vorbelastung durch das Industrie- und Gewerbegebiet ergeben sich folgende Berechnungswerte:

Tabelle 14 - Gesamte Vorbelastung durch das Industrie- und Gewebegebiet

IP	Bezeichnung IP	Oberer Vertrauensbe- reich L _o in dB(A) nachts	Immissionsrichtwert in dB(A) nachts	
3	Laudert; Im Großen Stück 16	30	40	
8	Wiebelsheim; Maisberg 26	32	40	
9	Wiebelsheim; Flur 9; Flurstück 35/1	36	40	

Zu den in den obigen Tabellen aufgeführten Werten ist anzumerken, dass diese jeweils nach den gültigen Regeln gerundet wurden. Bei der jeweiligen Berechnung wurde eine Kommastelle mitgeführt.

Anzumerken ist, dass im Rahmen von Messungen der jetzigen Nutzung des Industriegebietes in Wiebelsheim und Laudert keine relevanten Geräuschanteile feststellbar waren.

3.3 Immissionsberechnung und Beurteilung der Gesamtbelastung

Die Berechnung aller Windenergieanlagen führt zu folgenden Ergebnissen:

Tabelle 15 - Gesamtbelastung aller Windenergieanlagen

IP	Bezeichnung IP		rtrauensbe- in dB(A)	Immissionsrichtwert ir dB(A)	
1		tags	nachts	tags	nachts
1	Nenzhäuserhof 54	44	40	55	40
2	Birkheim; Am Briel 6	38	35	55	40
3	Laudert; Im Großen Stück 16	44	40	55	40
4	Maisborn; Im Hopfengarten 11	43	40	55	40
5	Lingerhahn; Stierswiese 5	41	37	55	40
6	Campingplatz Parzelle 20	43	39	55	40
7	Nenzhäuserhof 2	45	41	55	40
8	Wiebelsheim, Maisberg 26	40	37	55	40
9	Wiebelsheim; Flur 9; Flurstück 35/1	39	35	55	40

Die Ausbreitungsberechnungen zeigen auch die Anhänge 9 und 10 zum Gutachten.

Die Berechnungsergebnisse für alle Windenergieanlagen in obiger Tabelle zeigen, dass mit Ausnahme am Nenzhäuserhof die Richtwerte zur Tages- und Nachtzeit eingehalten werden. Die Überschreitung um 1 dB an diesem Immissionspunkt ist im Sinne der TA-Lärm unter Beachtung der Vorbelastung zulässig.

Im Zusammenhang mit der Ortslage Wiebelsheim und Laudert ist die Betrachtung der Gesamtbelastung noch um die Vorbelastung durch das Industrie- und das Gewebegebiet zu ergänzen.

Dies führt für die 3 Immissionspunkte zu folgender Gesamtbetrachtung:

Tabelle 16 - Gesamtbelastung aller gewerblichen Geräuschimmissionen

IP	Bezeichnung IP		rtrauensbe- in dB(A)	Immissionsrichtwert in dB(A)		
		tags	nachts	tags	nachts	
3	Laudert; Im Großen Stück 16	-	41	-	40	
8	Wiebelsheim; Maisberg 26	-	38	-	40	
9	Wiebelsheim; Flur 9; Flurstück 35/1	-	. 38	-	40	

Die Gesamtbetrachtung verdeutlicht, dass an den Immissionspunkten 8 und 9 der Richtwert eingehalten wird. An Immissionsort 3 wird der Richtwert um 1 dB überschritten, was laut TA Lärm bei Betrachtung der Vorbelastung zulässig ist.

4. Qualität der Prognose

Nach der gültigen Rechtsprechung ist eine Prognose auf der sicheren Seite zu erstellen. Dies beinhaltet, dass das Ausbreitungsberechnungsverfahren der DIN ISO 9613-2 "alternatives Verfahren" bei einer Mittenfrequenz von 500 Hz anzuwenden ist. Zudem sind Zuschläge in die Berechnung einzustellen, die nach einem anerkannten Verfahren ermittelt wurden, sodass die Rechenwerte unter Mitwindbedingungen den oberen Erwartungsbereich kennzeichnen.

Die o. g. Punkte wurden bei der vorliegenden Immissionsprognose umgesetzt, sodass die Anforderungen an die Qualität der Prognose erfüllt sind.

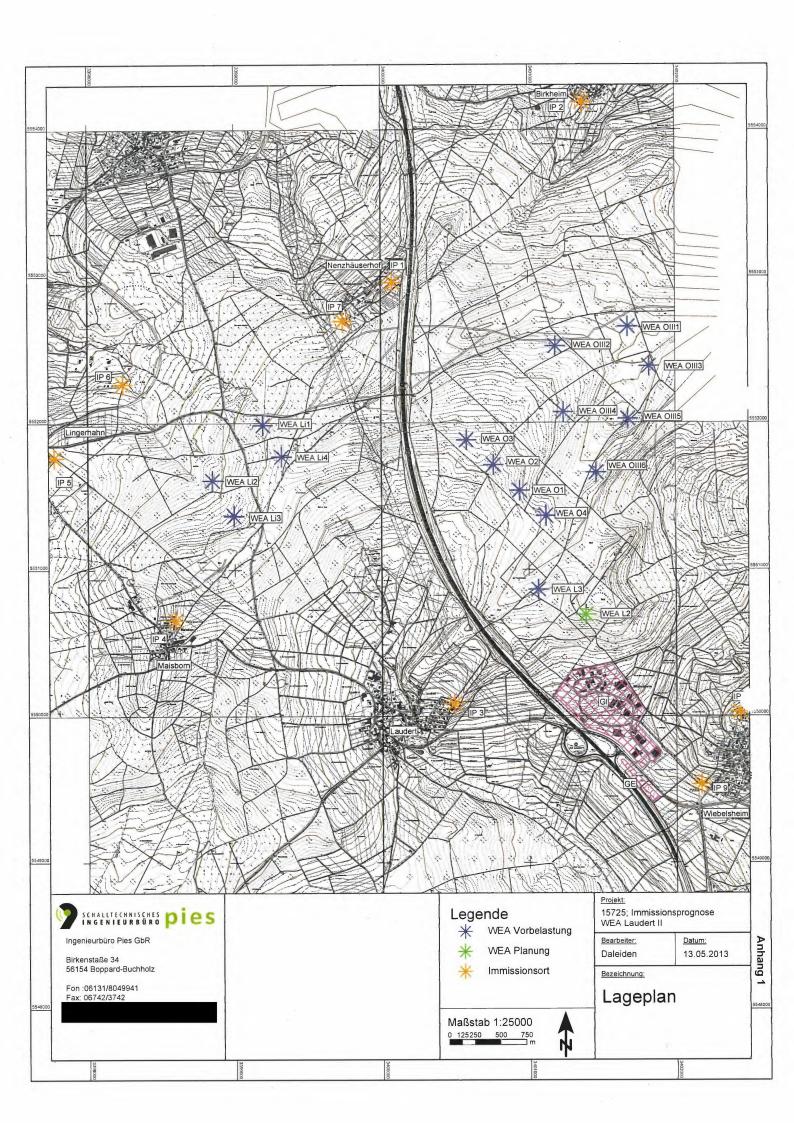
5. Zusammenfassung

Die beabsichtigt in der Gemarkung von Laudert (Projektbezeichnung: "Laudert II") eine Windenergieanlage vom Typ Enercon E101 mit einer Nennleistung von 3 MW zu errichten und zu betreiben.

Im Rahmen des Genehmigungsverfahrens sind die zu erwartenden Geräuschimmissionen nach den Kriterien der TA-Lärm zu ermitteln und zu beurteilen. Hierbei sind bestehende und genehmigte Anlagen als Vorbelastung mit zu berücksichtigen.

Im Zusammenhang mit den bereits bestehenden Windenergieanlagen erfolgten durch unser Büro schalltechnische Untersuchungen. Die Erkenntnisse aus diesen Untersuchungen wurden verwendet, wobei das vorliegende Gutachten eigenständig und vollständig ist.

Als Immissionspunkte wurden die ungünstigst gelegenen Wohnhäuser bzw. möglichen Wohnhäuser in den umliegenden Ortschaften gewählt, wobei diese den vorangegangenen Untersuchungen entsprechen.


Hierbei handelt es sich um die aus schalltechnischer Sicht ungünstigst gelegenen Wohnhäuser der verschiedenen Ortschaften. Diese sind im Lageplan im Anhang 1 gekennzeichnet.

Die Berechnung wurde entsprechend der TA-Lärm gegliedert in die Betrachtung der Zusatz-, Vor- und Gesamtbelastung. Als Vorbelastung wurden die bestehenden und genehmigten Anlagen berücksichtigt. Des Weiteren wurde für das bestehende Gewerbe- und Industriegebiet von Wiebelsheim ein Berechnungsmodell erstellt (siehe nähere Erläuterungen im Abschnitt 3.2) um diese zu bewerten.

So zeigt die Gesamtbelastung, dass durch die Neuplanung einer weiteren Anlage in Laudert, die Richtwerte zur Tages- und Nachtzeit alle eingehalten werden. Schallmindernde Maßnahmen (schalloptimierte Betriebsweise zur Nachtzeit) sind nicht erforderlich.

Boppard-Buchholz, 17.05.2013

SCHALLTECHNISCHER BERICHT NR. 213121-01.01

über die Ermittlung der Schallemissionen einer Windenergieanlage des Typs Enercon E-101, im Windpark Haren, bei 49733 Haren

Datum:

03.04.2013

Auftraggeber:

Enercon GmbH Dreekamp 5

26605 Aurich

Bearbeiter:

Dipl.-Ing. Oliver Bunk Matthias Humpohl, B. Sc.

KÖTTER Consulting Engineers GmbH & Co. KG ▶ Bonifatiusstraße 400 ▶ D-48432 Rheine ▶ Tel. 05971-9710.0 ▶ Fax 05971-9710.55

Herstellerbescheinigung, Kurzfassung für akustische Nachmessungen Manufacturer's certificate, Short version for control measurements of acoustic noise

1. Allgemeine Informationen – General informations Anlagenhersteller – turbine manufacturer:	ENERCON
Spezifische Anlagenbezeichnung – specific turbine type name :	E-10
Seriennummer der vermessenen WEA – serial number of tested WT	. 101000
Standort der vermessenen WEA – location of tested WT:	49733 Hare
Koordinaten des Standortes (WGS 84 / UTM zone 32N) – coordinates of turbine lo	ocation (WGS 84 / UTM zone 32N). R: 374196 / H: 585898
Rotorachse – rotor axis:	horizontal - horizontal ⊠ vertikal - vertical [
Nennleistung – rated power:	3,0 MV
Leistungsregelung – power control	pitch ⊠ stall [
Nabenhöhe über Grund – hub height above ground	991
Nabenhöhe über Fundamentflansch – hub height above top of foundation flange	96,69 r
Nennwindgeschwindigkeit – rated wind speed:	12 m
Ein- / Abschaltwindgeschwindigkeit - cut-in / cut out wind speed	2,5 m/s / 34 m
2. Rotor - Rotor	
Durchmesser – rolor diameter :	101 r
Anzahl der Blätter – number of blades	
Nabenart - kind of hub	pendelnd - teetered □ starr - rigid t
Anordnung zum Turm – position relative to tower	luv - upwind ⊠ lee - downwind
Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed.	5 - 14,7 Upm (Betrieb I) - 5 - 14,7 rpm (Mode
Rotorblatteinstellwinkel = rotor blade pitch setting :	variabel – variab
Konuswinkel – cone angle:	
Achsneigung – tilt angle	
Horizontaler Abstand Rotormittelpunkt - Turmmittellinie – horiz. distance between	n centre of rotor and tower centre line : 6,00
3. Rotorblatt - Rotor blade	
Hersteller – manufacturer:	ENERCO
Typenbezeichnung – type	E-101
Seriennummern der Rotorblätter – serial numbers of rotor blades	
Seriennummern der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con	
Seriennummern der Rolorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox	
Seriennummern der Rolorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer	mponents (e.g. stall strips, vortex gen., trip strips): keine – no entfällt – non existe
Seriennummern der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type :	mponents (e.g. stall strips, vortex gen., trip strips): keine – no entfällt – non existe entfällt – non existe
Seriennummern der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box :	mponents (e.g. stall strips, vortex gen., trip strips); keine – no entfällt – non existe entfällt – non existe entfällt – non existe
Seriennummern der Rolorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design :	mponents (e.g. stall strips, vortex gen., trip strips); keine – no entfallt – non existe entfällt – non existe entfällt – non existe entfällt – non existe
Seriennummem der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con: 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio :	mponents (e.g. stall strips, vortex gen., trip strips); keine – no entfallt – non existe entfällt – non existe entfällt – non existe entfällt – non existe
Seriennummem der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con: 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator	entfallt – non existe entfällt – non existe
Seriennummem der Rolorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con: 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator Hersteller – manufacturer :	entfällt – non existe
Seriennummem der Rolorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Generators – serial number of generator:	entfällt – non existe
Seriennummem der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Generators – serial number of generator: Seriennummer des Generators – serial number of generator: Anzahl – number of generators:	entfällt – non existe entfällt – Stator C/F/214-0/0001
Seriennummem der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con: 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Generators – serial number of generator : Anzahl – number of generators : Art – design :	entfällt – non existe entfällt – ron existe Sener CF-214-0/0001 Stator C/F/227-0/00 synchron, Ringgeneral
Seriennummem der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Generators – serial number of generator: Anzahl – number of generators: Ant – design: Nennleistung(en) – rated power value(s):	entfällt – non existe entfällt – ron existe entfällt – ron existe ENERCO G-101/30-0 Stator: C/F/214-0/0001 Synchron, Ringgeneral
Seriennummern der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z. B. stall strips, Vortex-Gen., Turbulatoren) – additional con: 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Generators – serial number of generator : Anzahl – number of generators : Art – design : Nennleistung(en) – rated power value(s) : Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed:	entfällt – non existe entfällt – ron existe entfällt – ron existe ENERCO G-101/30-0 Stator: C/F/214-0/0001 Synchron, Ringgeneral
Seriennummem der Rotorblätter – serial numbers of rotor blades : Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con: 4. Getriebe – Gearbox Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator Hersteller – manufacturer : Typenbezeichnung – type : Seriennummer des Generators – serial number of generator : Anzahl – number of generators : Ant – design : Nennleistung(en) – rated power value(s) : Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower	entfallt – non existe ENERCO G-101/30-C Stator C/F/214-0/0001 Synchron, Ringgeneral 3250 k 5 – 14,7 Upm (Betrieb I) – 5 – 14,7 rpm (Mode
Seriennummern der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z. B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type : Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator Hersteller – manufacturer Typenbezeichnung – type : Seriennummer des Generators – serial number of generator : Anzahl – number of generators : Art – design : Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower Ausführung – design : Gitter – lattice Rohr – tubular Seriennum Seriennum	entfallt – non existe
Seriennummem der Rotorblätter — serial numbers of rotor blades : Zusatzkomponenten (z. B. stall strips. Vortex-Gen., Turbulatoren) — additional con. 4. Getriebe — Gearbox Hersteller — manufacturer : Typenbezeichnung — type : Seriennummer des Getriebes — serial number of gear box : Ausführung — design : Übersetzungsverhältnis — gear ratio : 5. Generator — Generator Hersteller — manufacturer : Typenbezeichnung — type : Seriennummer des Generators — serial number of generator : Anzahl — number of generators : Art — design : Nennleistung(en) — rated power value(s) : Drehzahlbereich / Drehzahlstufen — rot. speed range / stages of rot. speed: 6. Turm — Tower Ausführung — design : Gitter — lattice □ Rohr — tubular ⊠ Material — material :	entfallt – non existe
Seriennummem der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z.B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Generators – serial number of generator: Anzahl – number of generators: Art – design: Nennleistung(en) – rated power value(s): Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower Ausführung – design: Gitter – lattice Material – material: Durchmesser - Turmfuß – foot of the tower diameter:	entfallt – non existe ENERCC G-101/30-t Stator C/F/214-0/0001 Synchron, Ringgenera 3250 h 5 – 14,7 Upm (Betrieb I) – 5 – 14.7 rpm (Model zylindrisch – cylindrical konisch – conical Beton - conical
Seriennummem der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z. B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box : Ausführung – design : Übersetzungsverhältnis – gear ratio : 5. Generator – Generator Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Generators – serial number of generator : Anzahl – number of generators : Art – design : Nennleistung(en) – rated power value(s) : Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower Ausführung – design : Gitter – lattice Rohr – tubular Material – material : Durchmesser - Turmfuß – foot of the tower diameter. 7. Betriebsführung / Regelung – Control system	entfallt – non existe ENERCC G-101/30-t Stator C/F/227-0/00 synchron, Ringgenera 3250 t 5 – 14,7 Upm (Betrieb I) – 5 – 14,7 rpm (Model zylindrisch – cylindrical konisch – conical Beton - concal 6,80
Seriennummem der Rolorblätter — serial numbers of rotor blades Zusatzkomponenten (z. B. stall strips. Vortex-Gen., Turbulatoren) — additional con 4. Getriebe — Gearbox Hersteller — manufacturer Typenbezeichnung — type: Seriennummer des Getriebes — serial number of gear box: Ausführung — design: Übersetzungsverhältnis — gear ratio: 5. Generator — Generator Hersteller — manufacturer Typenbezeichnung — type: Seriennummer des Generators — serial number of generator: Anzahl — number of generators: Art — design: Nennleistung(en) — rated power value(s): Drehzahlbereich / Drehzahlstufen — rot. speed range / stages of rot. speed: 6. Turm — Tower Material — material: Durchmesser - Turmfuß — foot of the tower diameter: 7. Betriebsführung / Regelung — Control system Art der Leistungsregelung — kind of power control:	entfällt – non existe ENERCC G-101/30-C Stator C/F/227-0/00 synchron, Ringgenera 3250 k 5 – 14,7 Upm (Betrieb I) – 5 – 14,7 rpm (Model zylindrisch – cylindrical konisch – conical Beton - concre 6,80
Seriennummem der Rolorblätter – serial numbers of rotor blades: Zusatzkomponenten (z. B. stall strips, Vortex-Gen., Turbulatoren) – additional con. 4. Getriebe – Gearbox Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Generators – serial number of generator: Anzahl – number of generators: Art – design: Nennleistung(en) – rated power value(s): Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower Ausführung – design: Gitter – lattice Rohr – tubular Material – material: Durchmesser - Turmfuß – foot of the tower diameter. 7. Betriebsführung / Regelung – Control system Art der Leistungsregelung – kind of power control: Antrieb der Leistungsregelung – actuation of power control:	entfallt – non existe
Seriennummem der Rotorblätter – serial numbers of rotor blades Zusatzkomponenten (z. B. stall strips. Vortex-Gen., Turbulatoren) – additional con 4. Getriebe – Gearbox Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer Typenbezeichnung – type: Seriennummer des Generators – serial number of generator: Anzahl – number of generators: Art – design: Nennleistung(en) – rated power value(s): Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower Ausführung – design: Gitter – lattice Rohr – tubular Material – material: Durchmesser - Turmfuß – foot of the tower diameter: 7. Betriebsführung / Regelung – Control system Ant der Leistungsregelung – kind of power control: Hersteller der Betriebsführung / Regelung – manufacturer of control system	entfällt – non existe ENERCC G-101/30-C Stator C/F/214-0/0001 Stator C/F/227-0/00 synchron, Ringgeneral 3250 k 5 – 14,7 Upm (Betrieb I) – 5 – 14,7 rpm (Mode zylindrisch – cylindrical konisch – conical Beton - concre 6,80
Seriennummem der Rolorblätter – serial numbers of rotor blades: Zusatzkomponenten (z. B. stall strips, Vortex-Gen., Turbulatoren) – additional con. 4. Getriebe – Gearbox Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Getriebes – serial number of gear box: Ausführung – design: Übersetzungsverhältnis – gear ratio: 5. Generator – Generator Hersteller – manufacturer: Typenbezeichnung – type: Seriennummer des Generators – serial number of generator: Anzahl – number of generators: Art – design: Nennleistung(en) – rated power value(s): Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed: 6. Turm – Tower Ausführung – design: Gitter – lattice Rohr – tubular Material – material: Durchmesser - Turmfuß – foot of the tower diameter. 7. Betriebsführung / Regelung – Control system Art der Leistungsregelung – kind of power control: Antrieb der Leistungsregelung – actuation of power control:	entfallt – non existe

ENERCON GmbH
Dreekamp 5

(26605 Aurich

TOPLA

Remels, 13.03.2013

Stempel und Unterschrift des Herstellers manufacturer's stamp and signature

Der Hersteller der Windenergieanlage bestätigt, dass die WEA, deren Schallemission, Leistungskurve und elektrische Eigenschaften in den Prüfberichten abgebildet sind, die o. g. Eigenschaften aufweist. – The manufacturer of the wind turbine (WT) confirms that the WT whose noise level, performance curve and power quality is measured and depicted in the test reports shows the characteristics given above.

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 (Gel)

Auszug aus dem Prüfbericht 213121-01.01

zur Schallemission einer Windenergieanlage vom Typ E-101

Allgemeine Angaben Technische Daten (Herstellerangaben) Enercon GmbH Nennleistung (Generator): Anlagenhersteller 3.0 (3.25) MW Seriennummer: 1010002 Rotordurchmesser: 101 m WEA-Standort (ca.): Nabenhöhe über Grund: 49733 Haren 99 m Standortkoordinaten: RW: 25.76.214 Turmbauart: Beton HW: 58.59.856 Leistungsregelung: Pitch

Ergänzende Daten zum Rotor Ergänzende Daten zu Getriebe und Generator

(Herstellerangaben) (Herstellerangaben) Rotorblatthersteller Enercon Getriebehersteller entfällt Typenbezeichnung Blatt: E-101-1 Typenbezeichnung Getriebe: entfällt Blatteinstellwinkel: variabel Generatorhersteller Enercon Rotorblattanzahl: G-101/30-G2 Typenbezeichnung Generator: Rotordrehzahlbereich: 5 - 14,7 U/min Generatomenndrehzahl: 14,7 U/min

Leistungskurve: Leistungskennlinie E101 3 MW OM I (berechnet) der Enercon GmbH zur E-101 vom 05.07.2012

	Referenzpur	nkt	Schallemissions-		
	Normierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen	
	6 ms ⁻³	1.414 kW	103,6 dB(A)		
	7 ms ⁻¹	2.077 kW	104,3 dB(A)	•	
Schallleistungs-Pegel	8 ms ⁻¹	2.751 kW	104,7 dB(A)		
LWAP	9 ms ⁻¹	2.987 kW	104,6 dB(A)	(3)	
	10 ms ⁻¹	3.050 kW	- dB(A)	(2)	
	8,3 ms ⁻¹	2.850 kW	104,8 dB(A)	(1)	
	6 ms ⁻¹	1.414 kW	0 dB bei 116 Hz		
	7 ms ⁻¹	2.077 kW	0 dB		
Tonzuschlag für den	8 ms ⁻¹	2.751 kW	0 dB		
Nahbereich K _{TN}	9 ms ⁻¹	2.987 kW	0 dB	(3)	
	10 ms ⁻¹	3.050 kW	dB	(2)	
	8.3 ms ⁻¹	2.850 kW	0 dB	(1)	
	6 ms	1.414 kW	0 dB	Nectorial Co.	
	7 ms ⁻¹	2.077 kW	0 dB		
Impulszuschlag für den	8 ms ⁻¹	2.751 kW	0 dB		
Nahbereich K _{IN}	9 ms ⁻¹	2.987 kW	0 dB	(3)	
	10 ms ⁻¹	3.050 kW	- dB	(2)	
	8,3 ms ⁻¹	2.850 kW	0 dB	(1)	

Terz-Schallleistungspegel			für v _s = 8,3 ms ⁻¹ in dB(A) entsprechend dem maximalen Schallleistungspegel									
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Luya P max	78,8	82,1	82,7	84,4	88,4	86,7	90.0	94.8	95.0	95.6	96.3	96.2
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8,000	10,000
LIVA P max	95,0	93,3	91,5	90.4	86,6	85.4	83.7	80.8	75.8	69,7*	67,1**	65.5**

Oktav-Schall	leistungspegel	für v _s = 8.	3 ms-1 in dB(A) entsprechend	dem maximale	en Schallleistur	gspegel	
Frequenz	63	125	250	500	1.000	2.000	4.000	8,000
LIVA P PEREN	86,3	91.6	98,6	100.8	98.3	92.8	85,9	73,3**

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 13.03.2013. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- (1) Die normierte Windgeschwindigkeit von v_s = 8,3 ms⁻¹ entspricht 95 % der Nennleistung.
- (2) Witterungsbedingt keine Daten vorhanden
- (3) Höchste gemessene normierte Windgeschwindigkeit bei WEA-Betrieb vs = 9,5 m/s
- * Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB
- ** Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch:

KÖTTER Consulting Engineers GmbH & Co. KG

Datum: 03.04.2013

i. V. Dipl.-Ing. Oliver Bunk

i. A. Matthias Humpohl, B. Sc.

KÖTTER CONSULTING ENGINEERS

Bonifatiusstraße 400 · 48432 Rheine

Kurzbericht WT 8290/10

Bestimmung der Schallleistungspegel einer WEA des Typs REpower 3.4M 104 aus mehreren Einzelmessungen für die Nabenhöhen von 78 m, 80 m, 96,5 m, 98 m, 100 m, 125 m, 128 m über Grund

GL Garrad Hassan GL®

Bestimmung der Schallleistungspegel einer WEA des Typs REpower 3.4M104 aus mehreren Einzelmessungen für die Nabenhöhen von 78 m, 80 m, 96,5 m, 98 m, 100 m, 125 m, 128 m über Grund

Kurzbericht WT 8290/10 2010-08-11

7 Ergebniszusammenfassung REpower 3.4M 104, Nabenhöhe 128 m

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten								
Hersteller	REpower Systems AG	Anlagenbezeichnung		REpower 3.4M 104				
	Albert-Betz-Straße 1	Albert-Betz-Straße 1 Nennleistung in kW 24783 Osterronfeld Nabenhöhe in m		3370				
	24783 Osterronfeld			128				
	·	Rotordurchmesser in m	1	104				
Angaben zur Einzelmessung	Messung-Nr.							
	1	-	2					
Seriennummer		300.001		300.003				
Standort		Südermarsch		Galmsbüll				
Vermessene Nabenhöhe (m)		80		80				
Messinstitut	WINDTEST Kai	ser-Wilhelm-Koog GmbH	WINDTEST Kaiser-Wilhelm-Koog Gmbl					
Prüfbericht		WT 7498/09	WT 8092/					
Datum		2009-09-04		2010-06-01				
Getriebetyp	Eickhoff EBN 2	525 A03 R00A/G53645X	Eicl	khoff EBN 2525 A03 R01A/G53645XA				
Generatortyp	Winergy JFRA-630MR-06A			Winergy JFRA-630MR-06A1				
Rotorblattyp		Power Blades RE50.8		Power Blades RE50.8				
Angaben zur Einzelmessung	Messung-Nr.							
	3			n				
Seriennummer		300.007		-				
Standort		Großenwiehe		-				
Vermessene Nabenhöhe (m)		100		-				
Messinstitut	WINDTEST Kai:	ser-Wilhelm-Koog GmbH						
Prüfbericht		WT 8137/10		-				
Datum	·	2010-06-30						
Getriebetyp	Eickhoff EBN 252	25 A03 R02A/G53645XC						
Generalortyp	Wi	nergy JFRA-630MR-06A						
Rotorblattyp		Power Blades RE50.8		-				

nallleistung	allleistungspegel Lwa.k [dB(A)]:											
	Messung	Windgeschwindigkeit in 10 m Höhe										
L	, and the second	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s 2)						
	1	102,6	103,5	103,8	103,6	99,7						
	2	-	-	103,8	102,9	102,9						
	3	103,3	104,3	103,7	103,0	102,2						
L	4	•	-	•	4	-						
	Mittelwert \overline{L}_{v}	103.0 1)	103.9 1)	103.8	103,2	101,6						
	[dB(A)]	100,00	100,5 7	100.0	100,2	0,101						
	Standard-											
	Abweichung s	0,5	0,6	0,1	0,4	1,7						
-	[dB(A)] K nach /2/	·	+									
		4.4	1.5			3,3						
į	σ_R =0,5 dB /3/	1,4	1,5	1,0	1,2	0,0						
1	[dB(A)]											

¹⁾ Für die Windgeschwindigkeitswerte von 6 m/s und 7 m/s liegen jeweils nur zwei Messwerte vor. Bei der Verwendung der hieraus errechneten Mittelwerte für den Schallleistungspegel ist, insbesondere bei Schallimmissionsprognosen, aus statistischen Gründen eine erhöhte Unsicherheit zu berücksichtigen

Vordruck Urheberrechtlich geschützt. Nachdruck und Vervielfaltigung nur mit Zustimmung der Herausgeber

WINDTEST Kaiser-Wilhelm-Koog GmbH

Seite 15 von 16

²⁾ Bei einer 128 m hohen Anlage beträgt die der 95% igen Nennleistung (3202 kW) entsprechende Windgeschwindigkeit 8,0 m/s

Bestimmung der Schallleistungspegel einer WEA des Typs REpower 3.4M104 aus mehreren Einzelmessungen für die Nabenhöhen von 78 m, 80 m, 96,5 m, 98 m, 100 m, 125 m, 128 m über Grund

Kurzbericht WT 8290/10 2010-08-11

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Schalle	missionsparame	ter: Zusc	hläge								
Tonzusch	lag K _{TN} in dB bei verm	essener Na	benhōhe:								
	Messung				Winds	geschwindig	gkeit in 10 m	Höhe			
		6	m/s	7	m/s	8	m/s	9	m/s	10	m/s
	1	0	- Hz	0	- Hz	0	- Hz	0	- Hz	0	- Hz
	2		- Hz	-	- Hz	0	- Hz	0	- Hz	0	- Hz
	3	0	- Hz	0	- Hz	0	· Hz	0	- Hz	0	- Hz

Messung		Wind	geschwindigkeit in 10 m	Hōhe	
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
1	0	0	0	0	0
2		-	0	0	0
3	0	0	0	0	0
3	0	0	0	0	

Aufgrund der baulichen Änderungen für WEA unterschiedlicher Nabenhöhen kann das akustische Verhalten in Bezug auf die Ton- und Impulshaltigkeit nicht durch Umrechnung bestimmt werden. Es treten jedoch im Allgemeinen keine erheblichen Änderungen auf Die gemachten Angaben zur Ton- und Impulshaltigkeit sind den o.g. Prüfberichten entnommen

			-		nzpunkt V ₁₀		000	252	246	400	500	1 000
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWA,max	78,1	82,2	83,1	87,3	88.5	87,6	90,4	92,5	92,9	92,9	94,8	94,7
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwamax	95,2	95,1	93,6	92,2	89,8	87,6	85.6	83,0	79.5	73,9	69.9	67.0

Oktav- Schallleistu	ngspegel (Mittel au	ıs 3 Messur	ngen) Refere	enzpunkt V	OLunas i	n dB(A)			
Frequenz	63	125	250	500	1000	2000	4000	8000	
I WA may	86.5	92.7	96.9	99.0	99.5	95.1	88,2	76,2	

Die Angaben ersetzen nicht die o g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

//i/ Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 18, Herausgeber. Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel // IEC 61400-14 TS ed. 1. Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 // Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Bemerkunger

1) Für die Windgeschwindigkeitswerte von 6 m/s und 7 m/s liegen jeweils nur zwei Messwerte von Bei der Verwendung der hieraus errechneten Mittelwerte für den Schallleistungspegel ist, insbesondere bei Schallimmissionsprognosen, aus statistischen Gründen eine erhöhte Unsicherheit zu berücksichtigen.

Ausgestellt durch:

WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog

Datum:

2010-08-11

Dipl.-Ing. K. Buchmann Abteilungsleiter Akustik & Inspektion

Dipl.-Ing. J. Dedert

Vordruck Urneberrechtlich geschützt. Nachdruck und Vervielfältigung nur mit Zustimmung der Herausgeber

WINDTEST Kaiser-Wilhelm-Koog GmbH

Seite 16 von 16

SCHALLTECHNISCHER BERICHT NR. 211376-01.01

über eine Dreifachvermessung von Windenergieanlagen des Typs Enercon E-82 E2 im "Betrieb I"

Datum:

14.10.2011

Auftraggeber:

Enercon GmbH
Dreekamp 5
26605 Aurich

Bearbeiter:

Dipl.-Ing. Jürgen Weinheimer Dipl.-Ing. Oliver Bunk

KÖŢTER Consulting Engineers KG ▶ Bonifatiusstraße 400 ▶ D-48432 Rheine ▶ Tel. 05971 - 97 10.0 ▶ Fax 05971 - 97 10.55

Seite 14 zum Bericht Nr. 211376-01.01

Ergebniszusammenfassung für die Nabenhöhe 138 m 7.)

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 1 von 2

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" [1] besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß [4] anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten			
Hersteller	Enercon GmbH	Anlagenbezeichnung	E-82 E2
		Nennleistung in kW	2.300 (Betrieb I)
		Nabenhöhe in m	138
		Rotordurchmesser in m	82
A		Messung-Nr.	
Angaben zur Einzelmessung	1	2	3
Seriennummer	82679	822040	822877
Standort	26629 Großefehn	26632 Ihlow	26316 Varel-Hohelucht
vermessene Nabenhöhe (m)	108	108	108
Messinstitut	KÖTTER Consulting Engineers KG	Müller-BBM GmbH	KÖTTER Consulting Engineers KG
Prüfbericht	209244-03.03	M95 777/1	211372-01.01
Datum	18.03.2010	15.09.2011	18.10.2011
Getriebetyp			-
Generatortyp	E-82 E2	E-82 E2	E-82 E2
Rotorblatttyp	E-82-2	E-82-2	E-82-2

Schallemissionsparameter: Messwerte (1. und 2. Messung: Kennlinie E-82 E2, 2.3 MW, Betrieb I, berechnet Rev 3.0, Enercon GmbH; 3. Messung: Prüfbericht Leistungskurve: Excerpt MP11 004 of the Test Report MP10 026, Deutsche WindGuard)

Schallleis	tungspegel	LWAD.

Marianana	Windgeschwindigkeit in 10 m Höhe									
Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	8,1 m/s ²⁾				
1 1)	101,1 dB(A)	102,8 dB(A)	103,3 dB(A)	103,3 dB(A)	102,5 dB(A)	103,4 dB(A)				
2 1)	102,6 dB(A)	103,9 dB(A)	104,0 dB(A)	104,3 dB(A)		104,0 dB(A)				
3 1)	102,4 dB(A)	103,2 dB(A)	103,9 dB(A)	104,4 dB(A) 3)		104,0 dB(A)				
Mittelwert \overline{L}_w	102,0 dB(A)	103,3 dB(A)	103,7 dB(A)	104,0 dB(A)		103,8 dB(A)				
Standardab- weichung S	0,8 dB	0,6 dB	0,4 dB	0,6 dB		0,4 dB				
K nach [4] σ _R = 0,5 dB	1,8 dB	1,4 dB	1,2 dB	1,5 dB		1,2 dB				

Schallleistungspegel bei umgerechneter Nabenhöhe
Entspricht 95 % der Nennleistung nach vermessener Leistungskennlinie der dritten Messung [8]
Höchste gemessene und umgerechnete normierte Windgeschwindigkeit v_s = 8,7 m/s

Seite 15 zum Bericht Nr. 211376-01.01

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

Tonzuschlad	bei vermesse	ner Nabenhöhe k	(TN:			*
				ndigkeit in 10 m Höhe		-
Messung	oung 6 m/s 7 m/s		8 m/s	9 m/s	10 m/s	8,1 m/s ²⁾
1	0 dB	0 dB	0 dB	1 dB 130 Hz	0 dB	1 dB 130 Hz
2	0 dB	0 dB	0 dB	0 dB		0 dB
3	0 dB	0 dB	0 dB	0 dB		0 dB

Messung			Windgeschwindig	keit in 10 m Höhe		
wessung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	8,1 m/s ²⁾
1	0 dB	0 dB	0 dB	0 dB	0 dB	0 dB
2	0 dB	0 dB	0 dB	0 dB	-	0 dB
3	0 dB	0 dB	0 dB	0 dB	-	0 dB

Terz-Schal	lleistung	spegel (N	/littel aus	drei Mes	ssungen)	Referen	zpunkt v	10LWA,Pmax	in dB(A)	3)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P}	76,6	79,5	82,6	84,7	90,9	88,5	89,1	92,9	93,5	93,8	94,2	95,0
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
L _{WA,P}	94,3	94,0	92,8	90,4	88,1	85,4	83,0	81,1	78,0	74,9	72,3	70,8

Oktav-Scha	llleistungspe	egel (Mittel au	ıs drei Messu	ingen) Refere	enzpunkt v _{10LV}	VA,Pmax in dB(A) 3)	
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000
LWA,P	85,0	93,5	97,0	99,1	98,5	93,3	86,1	78,7

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- 2) Entspricht 95 % der Nennleistung nach vermessener Leistungskennlinie der

dritten Messung [8]
3) Entspricht v_s = 9 m/s und der maximalen Schallleistung

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 14.10.2011

i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

Auszug aus dem Prüfbericht SE09001B3 zur Schallemissionsmessung an der Windenergieanlage vom Typ REpower MM92 in Chemin d'Ablis

Messung 2009-01-22
Auszug aus dem Prüfbericht
2009-03-13

REpower Dokumer	REpower Dokumenten-Nummer			
D-29-VM.JM	1.15-B	1		
Freigabe	Datur	n		
S. Bigallie	17.03.2	209		

SE09001B3A1

Frimmersdorfer Str. 73 · D-41517 Grevenbroich · Phone +49 (0) 2181 2278-0 · Fax +49 (0) 2181 2278-11 · Info@windtest-nnv.de · www.windtest-nnv.de

Geschärblichreim / Managing Director: Dipt.-Gecl. Monital Krämer · Handelsregister/Commercial Register. Artisger cht Menchengladeach HRB 7/58

USL-idniv/NAT No.: DE 183895379 · Steven-Nr/Tax-10. 114/5777/0301

Bankverbindungen/Bankaccount Sparkasse Neuss: BLZ 305 500 00, Kio -Nr. 800 272 04 · IBAN DE: 74/10/50000008/027204 · BIC: WELA DE DN

Auszug aus dem Prüfbericht SE09001B3 zur Schallemissionsmessung an der Windenergieanlage vom Typ REpower MM92 in Chemin d'Ablis

SE09001B3A1

Standort bzw. Messort:	WP Chemin d'Ablis	, WEA E 14, SerNr. R90	223				
Auftraggeber:	REpower Systems A Rödemis Hallig D-25813 Husum	AG					
Auftragnehmer:	windtest grevenbroich gmbh Frimmersdorfer Str. 73a D-41517 Grevenbroich						
Datum der Auftragserteilung:	2008-12-23	Auftragsnummer	09 0004 06				
Geprüft:	Bearbeiter:						
Theres Till	David Rod						
DiplIng. Thomas Fische	er	DiplIr	ng. David Rode				

Grevenbroich, 2009-03-13

windtest grevenbroich gmbh

Seite 3 von 3

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

	RE	power MM92					
Allgemeine Angaben		Technische Daten (Herstellerangaben)					
Anlagenhersteller:	REpower Systems AG	Nennleistung (Generator):	2050 kW				
	Rödemis Hallig	Rotordurchmesser:	92,5 m				
	D-25813 Husum	Nabenhöhe über Grund:	80 m				
Serlennummer:	R90223	Turmbauart:	Stahlrohr konisch				
WEA-Standort (ca.):	RW: 583820 HW: 2384807	Leistungsregelung:	Pitch				
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)					
Rotorblatthersteller:	A&R	Getriebehersteller:	Elckhoff				
Typenbezeichnung Blatt:	RE45.2	Typenbezelchung Getriebe:	CPNHZ-224/G50115XB				
Blatteinstellwinkel:	0-91°	Generatorhersteller:	VEM				
Rotorblattanzahl:	3	Typenbezelchung Generator:	DASAA 5025-4UA				
Rotordrehzahlbereich:	7,8 - 15,0 U/mln	Generatornenndrehzahl:	900 - 1800 U/min				

	Referenz	punkt		missions- imeter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel L _{WAF}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1181 kW 1688 kW 2006 kW 2045 kW 2050 kW	103	,8 dB ,9 dB ,8 dB dB dB	95 % Nennleistung bei 7,70 m/s
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1181 kW 1688 kW 2006 kW 2045 kW 2050 kW	0 dB 0 dB 0 dB 	bei Hz bei Hz bei Hz bei Hz bei Hz	95 % Nennleistung bei 7,70 m/s
Impulszuschlag für den Nahbereich K _{IN}	6 ms ^{-r} 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1181 kW 1688 kW 2006 kW 2045 kW 2050 kW	0	dB dB dB dB dB	95 % Nennleistung bei 7,70 m/s

				Terz-Scl	hallleistun	gspegel fi	ir V ₁₀ = 7 n	ns¹ in dB				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAP	74,19	80,38	80,41	83,60	85,82	89,03	88,91	91,22	93,17	92,86	94,67	94,32
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAP	95,00	94,27	93,03	91,21	89,45	86,98	85,10	82,46	77,65	68,72	62,84	60,17

			Oktav-Schallle	eistungspegel f	ur v ₁₀ = 7 ms-1	n dB		
Frequenz	63	125	250	500	1000	2000	4000	8000
LWAP	83,46	90,92	95,89	98,91	99,03	94,53	87,51	70,81

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2009-02-27. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei SchallimmIssionsprognosen).

Bemerkungen:

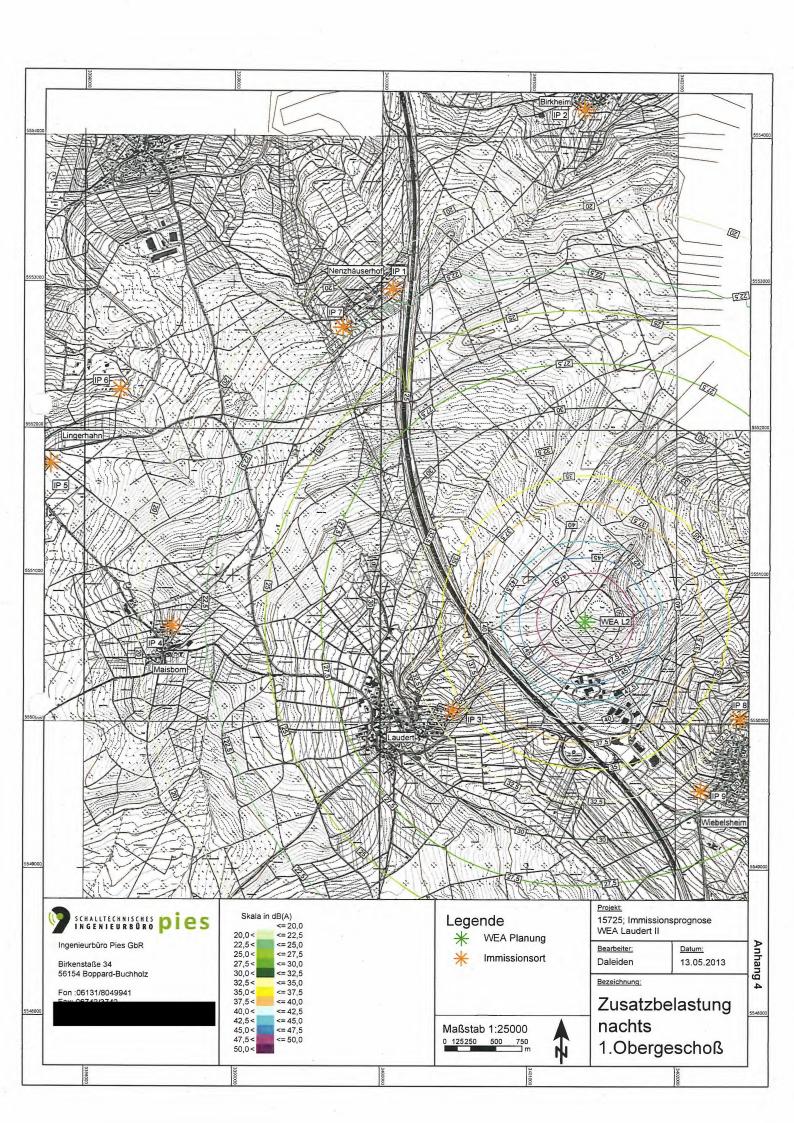
Gemessen durch: windtest grevenbroich gmbh

Frimmersdorfer Str.73a D-41517 Grevenbrolch REpower Dokumenten-Nummer Rev. Datum: 2009-03-13

D-2.9-VM.SM.15-B Freigabe Di Datum S. Bigolke 17.03.2089

Anhang 3.1

Name	Quelltyp	Lw dB(A)	K dB	Ko dB	s . m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLrefl [*] dB	ADI dB	Ls dB(A)	LrT dB(A)	LrN dB(A)
Name IP 1 Nenzi	Name IP 1 Nenzhäuserhof 54					dB(A)	IRW N	lacht 40) dB(A)	LoT	25,6	dB(A)	LoN 22,0	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	2620,7	-79,4	-3,9	0,0	-5,0	0,0	0,0	19,5	25,6	22,0
Name IP 2 Birkhe	eim Am Briel 6	5		IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	20,5	dB(A)	LoN 16,9	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	3503,9	-81,9	-4,4	-0,3	-6,7	0,0	0,0	14,4	20,5	16,9
Name IP 3 Laude	ert Im großen	Stück 16		IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	37,7	dB(A)	LoN 34,1	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	1097,0	-71,8	-2,3	0,0	-2,1	0,0	0,0	31,6	37,7	34,1
Name IP 4 Maisb	orn Im Hopfe	ngarten 1	1	IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	24,9	dB(A)	LoN 21,3	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	2798,5	-79,9	-3,7	0,0	-5,4	0,0	0,0	18,8	24,9	21,3
Name IP 5 Linge	rhahn Stiersw	iese 5		IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	20,0	dB(A)	LoN 16,4	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	3775,7	-82,5	-4,1	0,0	-7,3	0,0	0,0	13,9	20,0	16,4
Name IP 6 Camp	ingplatz Parz	.20		IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	20,6	dB(A)	LoN 17,0	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	3525,3	-81,9	-4,2	-0,4	-6,8	0,0	0,0	14,5	20,6	17,0
Name IP 7 Nenzh	näuserhof 2			IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	25,8	dB(A)	LoN 22,2	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	2596,8	-79,3	-3,9	0,0	-5,0	0,0	0,0	19,7	25,8	22,2
Name IP 8 Wiebe	elsheim Maisb	erg 26		IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	36,1	dB(A)	LoN 32,5	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	1262,9	-73,0	-2,4	0,0	-2,4	0,0	0,0	30,0	36,1	32,5
Name IP 9 Wiebe	elsheim Flur 9	Flurstüc	k 35/1	IRW	Tag 55	dB(A)	IRW N	lacht 40	dB(A)	LoT	34,6	dB(A)	LoN 31,0	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	1413,7	-74,0	-2,6	0,0	-2,7	0,0	0,0	28,5	34,6	31,0


Anhang 3.2

WEA Laudert II Ausbreitungsberechnung Zusatzbelastung WEA

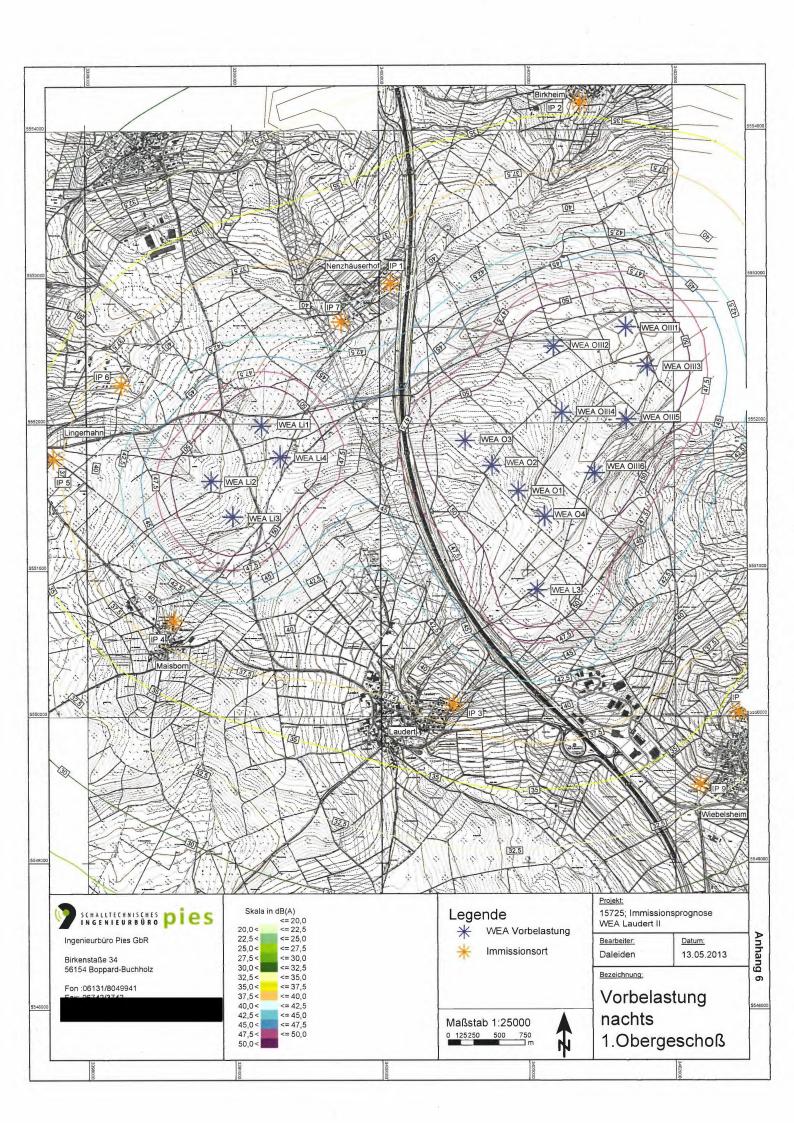
<u>Legende</u>

Name Quelltyp Lw K Ko s Adiv Agnd Abar Aatm dLrefl ADI Ls	dB(A) dB dB m dB dB dB dB dB dB dB	Name der Quelle Typ der Quelle (Punkt, Linie, Fläche) Anlagenleistung Zuschlag für Qualität der Prognose Zuschlag für gerichtete Abstrahlung Entfernung Emissionsort-IO Dämpfung aufgrund geometrischer Ausbreitung Dämpfung aufgrund Bodeneffekt Dämpfung aufgrund Abschirmung Dämpfung aufgrund Luftabsorption Pegelerhöhung durch Reflexionen Richtwirkungskorrektur Unbewerteter Schalldruck am Immissionsort
LrT	dB(A)	Beurteilungspegel Tag
LrN	dB(A)	Beurteilungspegel Nacht

Name	Quelltyp	Lw dB(A)	K dB	Ko dB	s m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLrefl dB	ADI dB	Ls dB(A)	LrT dB(A)	LrN dB(A)
15 () 1 - 1 -		UD(A)	ub			dB(A)	IRW N			LoT	43,5		LoN 39,9	dB(A)
Name IP 1 Nenzhāus		1010	0.5	_	_			0,0	-4,5	0,0	0,0	21,3	27,4	23,8
WEA L3	Punkt	104,8	2,5	3,0	2319,1	-78,3	-3,8		-2,5	0,0	0,0	27,6	33,7	30,1
WEA Li1	Punkt	103,9	2,5	3,0	1316,5	-73,4	-3,4	0,0			0,0	23,3	29,5	25,8
WEA Li2	Punkt	103,9	2,5	3,0	1824,1	-76,2	-3,9	0,0	-3,5	0,0	0,0	22,7	28,8	25,2
WEA Li3	Punkt	103,9	2,5	3,0	1919,8	-76,7	-3,9	0,0	-3,7	0,0		26,7	32,8	29,2
WEA Li4	Punkt	103,9	2,5	3,0	1410,1	-74,0	-3,5	0,0	-2,7	0,0	0,0			27,2
WEA O1	Punkt	104,0	2,2	3,0	1665,4	-75,4	-3,4	0,0	-3,2	0,0	0,0	25,0	30,8	29,1
WEA O2	Punkt	104,0	2,2	3,0	1426,8	-74,1	-3,3	0,0	-2,7	0,0	0,0	26,9	32,7	31,4
WEA O3	Punkt	104,0	2,2	3,0	1192,8	-72,5	-2,9	0,0	-2,3	0,0	0,0	29,2	35,1	
WEA O4	Punkt	104,0	2,2	3,0	1903,3	-76,6	-3,6	0,0	-3,7	0,0	0,0	23,2	29,0	25,4
WEA OIII 1	Punkt	103,9	2,5	3,0	1636,8	-75,3	-3,6	0,0	-3,1	0,0	0,0	24,9	31,1	27,4
WEA OIII 2	Punkt	103,9	2,5	3,0	1200,1	-72,6	-3,1	0,0	-2,3	0,0	0,0	28,9	35,0	31,4
WEA OIII 3	Punkt	103,9	2,5	3,0	1843,7	-76,3	-3,7	0,0	-3,5	0,0	0,0	23,4	29,5	25,9
WEA OIII 4	Punkt	103,9	2,5	3,0	1468,1	-74,3	-3,4	0,0	-2,8	0,0	0,0	26,3	32,5	28,8
WEA OIII 5	Punkt	103,9	2,5	3,0	1859,4	-76,4	-3,7	0,0	-3,6	0,0	0,0	23,3	29,4	25,8
WEA OIII 6	Punkt	103,9	2,5	3,0	1902,1	-76,6	-3,7	0,0	-3,7	0,0	0,0	23,0	29,1	25,5
Name IP 2 Birkheim	Am Briel	3		IRW		dB(A)	_	lacht 40			38,1	dB(A)	LoN 34,5	dB(A)
WEA L3	Punkt	104,8	2,5	3,0	3345,7	-81,5	-4,4	-0,4	-6,4	0,0	0,0	15,1	21,3	17,6
WEA Li1	Punkt	103,9	2,5	3,0	3102,8	-80,8	-4,5	-0,3	-6,0	0,0	0,0	15,4	21,5	17,9
WEA Li2	Punkt	103,9	2,5	3,0	3610,3	-82,1	-4,6	-0,2	-6,9	0,0	0,0	13,1	19,2	15,6
WEA Li3	Punkt	103,9	2,5	3,0	3687,9	-82,3	-4,6	-0,2	-7,1	0,0	0,0	12,7	18,8	15,2
WEA Li4	Punkt	103,9	2,5	3,0	3175,3	-81,0	-4,5	-0,3	-6,1	0,0	0,0	15,0	21,1	17,5
WEA O1	Punkt	104,0	2,2	3,0	2693,3	-79,6	-4,2	0,0	-5,2	0,0	0,0	18,0	23,8	20,2
WEA O2	Punkt	104,0	2,2	3,0	2557,7	-79,1	-4,2	0,0	-4,9	0,0	0,0	18,8	24,6	21,0
WEA O3	Punkt	104,0	2,2	3,0	2447,3	-78,8	-4,1	0,0	-4,7	0,0	0,0	19,4	25,2	21,6
WEA O4	Punkt	104,0	2,2	3,0	2837,6	-80,1	-4,3	-0,5	-5,5	0,0	0,0	16,7	22,6	18,9
WEA OIII 1	Punkt	103,9	2,5	3,0	1580,0	-75,0	-3,3	0,0	-3,0	0,0	0,0	25,6	31,8	28,1
WEA OIII 2	Punkt	103,9	2,5	3,0	1689,7	-75,5	-3,5	0,0	-3,3	0,0	0,0	24,6	30,7	27,1
WEA OIII 3	Punkt-	103,9	2,5	3,0	1872,0	-76,4	-3,7	0,0	-3,6	0,0	0,0	23,2	29,3	25,7
WEA OIII 4	Punkt	103,9	2,5	3,0	2131,0	-77,6	-4,0	0,0	-4,1	0,0	0,0	21,3	27,4	23,8
WEA OIII 5	Punkt	103,9	2,5	3,0	2196,0	-77,8	-3,9	0,0	-4,2	0,0	0,0	20,9	27,0	23,4
WEA OIII 6	Punkt	103,9	2,5	3,0	2540,3	-79,1	-4,2	0,0	-4,9	0,0	0,0	18,8	24,9	21,3
Name IP 3 Laudert I	lm großen	Stück 16		IRW	Tag 55	dB(A)	IRW N	Nacht 4	0 dB(A) LoT	42,6	dB(A)	LoN 38,9	dB(A)
WEA L3	Punkt	104,8	2,5	3,0	984,2	-70,9	-2,4	0,0	-1,9	0,0	0,0	32,7	38,8	35,2
WEA Li1	Punkt	103,9	2,5	3,0	2304,7	-78,2	-4,0	0,0	-4,4	0,0	0,0	20,2	26,4	22,7
WEA Li2	Punkt	103,9	2,5	3,0	2244,1	-78,0	-4,0	0,0	-4,3	0,0	0,0	20,5	26,7	23,0
WEA Li3	Punkt	103,9	2,5	3,0	1979,5	-76,9	-3,8	0,0	-3,8	0,0	0,0	22,4	28,5	24,9
WEA Li4	Punkt	103,9	2,5	3,0	2057,2	-77,3	-3,8	0,0	-4,0	0,0	0,0	21,9	28,0	24,4
WEA O1	Punkt	104,0	2,2	3,0	1532,3	-74,7	-3,3	0,0	-2,9	0,0	0,0	26,1	31,9	28,3
WEA O2	Punkt	104,0	2,2	3,0	1660,1	-75,4	-3,4	0,0	-3,2	0,0	0,0	25,0	30,9	27,2
WEA O3	Punkt	104,0	2,2	3,0	1809,3	-76,1	-3,5	0,0	-3,5	0,0	0,0	23,9	29,7	26,1
WEA O4	Punkt	104,0	2,2	3,0	1443,1	-74,2	-3,3	0,0	-2,8	0,0	0,0	26,8	32,6	29,0
WEA OIII 1	Punkt	103,9	2,5	3,0	2838,9	-80,1	-4,1	0,0	-5,5	0,0	0,0	17,3	23,4	19,8
WEA OIII 2	Punkt	103,9	2,5	3,0	2543,7	-79,1	-3,9	0,0	-4,9	0,0	0,0	19,0	25,1	21,5
WEA OIII 3	Punkt	103,9	2,5	3,0	2667,1	-79,5	-4,1	0,0	-5,1	0,0	0,0	18,2	24,3	20,7
WEA OIII 4	Punkt	103,9	2,5	3,0	2132,7	-77,6	-3,8	0,0	-4,1	0,0	0,0	21,4	27,5	23,9
WEA OIII 5	Punkt	103,9	2,5	3,0	2285,3	-78,2	-3,9	0,0	-4,4	0,0	0,0	20,4	26,5	22,9
WEA OIII 6	Punkt	103,9	2,5	3,0	1858,9	-76,4	-3,7	0,0	-3,6	0,0	0,0	23,2	29,4	25,7
Name IP 4 Maisborn					/ Tag 55			Nacht 4					LoN 39,4	
					2486,3		-3,6	0,0	-4,8	0,0	0,0	20,5	26,6	23,0

Name	Quelltyp	Lw dB(A)	K dB	Ko dB	s m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLrefl dB	ADI dB	Ls dB(A)	LrT dB(A)	LrN dB(A)
WEA Li1	Punkt	103,9	2,5	3,0	1462,1	-74,3	-3,6	0,0	-2,8	0,0	0,0	26,2	32,3	28,7
WEA Li2	Punkt	103,9	2,5	3,0	992,3	-70,9	-3,2	0,0	-1,9	0,0	0,0	30,9	37,0	33,4
WEA Li3	Punkt	103,9	2,5	3,0	828,7	-69,4	-2,8	0,0	-1,6	0,0	0,0	33,1	39,3	35,6
WEA Li4	Punkt	103,9	2,5	3,0	1335,8	-73,5	-3,5	0,0	-2,6	0,0	0,0	27,4	33,5	29,9
WEA O1	Punkt	104,0	2,2	3,0	2511,6	-79,0	-3,7	0,0	-4,8	0,0	0,0	19,5	25,3	21,7
WEA O2	Punkt	104,0	2,2	3,0	2418,6	-78,7	-3,7	0,0	-4,7	0,0	0,0	20,0	25,8	22,2
WEA O3	Punkt	104,0	2,2	3,0	2339,0	-78,4	-3,7	0,0	-4,5	0,0	0,0	20,4	26,3	22,6
WEA O4	Punkt	104,0	2,2	3,0	2630,2	-79,4	-3,7	0,0	-5,1	0,0	0,0	18,9	24,7	21,1
WEA OIII 1	Punkt	103,9	2,5	3,0	3681,0	-82,3	-4,1	0,0	-7,1	0,0	0,0	13,4	19,5	15,9
WEA OIII 2	Punkt	103,9	2,5	3,0	3200,6	-81,1	-4,0	0,0	-6,2	0,0	0,0	15,6	21,8	18,1
WEA OIII 3	Punkt	103,9	2,5	3,0	3668,9	-82,3	-4,1	0,0	-7,1	0,0	0,0	13,5	19,6	16,0
WEA OIII 4	Punkt	103,9	2,5	3,0	3007,0	-80,6	-3,9	0,0	-5,8	0,0	0,0	16,6	22,8	19,1
WEA OIII 5	Punkt	103,9	2,5	3,0	3381,5	-81,6	-4,0	0,0	-6,5	0,0	0,0	14,8	21,0	17,3
WEA OIII 6	Punkt	103,9	2,5	3,0	3042,3	-80,7	-3,9	0,0	-5,9	0,0	0,0	16,5	22,6	19,0
Name IP 5 Lingerhal	n Stiersw	iese 5	V TOOLS	IRW	Tag 55	dB(A)	IRW N	acht 40	dB(A)	LoT	40,5	dB(A)	LoN 36,9	dB(A)
WEA L3	Punkt	104,8	2,5	3,0	3420,1	-81,7	-4,1	0,0	-6,6	0,0	0,0	15,5	21,6	18,0
WEA Li1	Punkt	103,9	2,5	3,0	1445,0	-74,2	-3,4	0,0	-2,8	0,0	0,0	26,6	32,7	29,1
WEA Li2	Punkt	103,9	2,5	3,0	1095,3	-71,8	-3,0	. 0,0	-2,1	0,0	0,0	30,0	36,1	32,5
WEA Li3	Punkt	103,9	2,5	3,0	1289,8	-73,2	-3,3	0,0	-2,5	0,0	0,0	27,9	34,1	30,4
WEA Li4	Punkt	103,9	2,5	3,0	1555,0	-74,8	-3,5	0,0	-3,0	0,0	0,0	25,6	31,7	28,1
WEA O1	Punkt	104,0	2,2	3,0	3181,0	-81,0	-4,0	0,0	-6,1	0,0	0,0	15,8	21,6	18,0
WEA O2	Punkt	104,0	2,2	3,0	2997,5	-80,5	-4,0	0,0	-5,8	0,0	0,0	16,7	22,5	18,9
WEA O3	Punkt	104,0	2,2	3,0	2815,2	-80,0	-4,0	0,0	-5,4	0,0	0,0	17,6	23,4	19,8
WEA O4	Punkt	104,0	2,2	3,0	3375,9	-81,6	-4,1	0,0	-6,5	0,0	0,0	14,9	20,7	17,1
WEA OIII 1	Punkt	103,9	2,5	3,0	4012,6	-83,1	-4,3	0,0	-7,7	0,0	0,0	11,9	18,0	14,4
WEA OIII 2	Punkt	103,9	2,5	3,0	3504,0	-81,9	-4,2	0,0	-6,7	0,0	0,0	14,1	20,2	16,6
WEA OIII 3	Punkt	103,9	2,5	3,0	4104,5	-83,3	-4,3	0,0	-7,9	0,0	0,0	11,5	17,6	14,0
WEA OIII 4	Punkt	103,9	2,5	3,0	3487,7	-81,8	-4,2	0,0	-6,7	0,0	0,0	14,2	20,3	16,7
WEA OIII 5	Punkt	103,9	2,5	3,0	3921,9	-82,9	-4,2	0,0	-7,5	0,0	0,0	12,3	18,4	14,8
WEA OIII 6	Punkt	103,9	2,5	3,0	3695,3	-82,3	-4,2	0,0	-7,1	0,0	0,0	13,3	19,4	15,8
Name IP 6 Camping	olatz Parz.	.20	1 1 3 3 3 3	IRW	Tag 55	dB(A)	IRW N	acht 40	dB(A)	LoT	43,0		LoN 39,4	dB(A)
WEA L3	Punkt	104,8	2,5	3,0	3161,7	-81,0	-4,2	0,0	-6,1	0,0	0,0	16,6	22,7	19,1
WEA Li1	Punkt	103,9	2,5	3,0	1006,2	-71,0	-3,0	0,0	-1,9	0,0	0,0	30,9	37,0	33,4
WEA Li2	Punkt	103,9	2,5	3,0	907,1	-70,1	-2,9	0,0	-1,7	0,0	0,0	32,1	38,2	34,6
WEA Li3	Punkt	103,9	2,5	3,0	1178,5	-72,4	-3,4	0,0	-2,3	0,0	0,0	28,9	35,0	31,4
WEA Li4	Punkt	103,9	2,5	3,0	1199,6	-72,6	-3,4	0,0	-2,3	0,0	0,0	28,6	34,8	31,1
WEA O1	Punkt	104,0	2,2	3,0	2803,3	-79,9	-4,1	0,0	-5,4	0,0	0,0	17,5	23,4	19,7
WEA O2	Punkt	104,0	2,2	3,0	2591,1	-79,3	-4,1	0,0	-5,0	0,0	0,0	18,6	24,5	20,8
WEA O3	Punkt	104,0	2,2	3,0	2378,4	-78,5	-4,0	0,0	-4,6	0,0	0,0	19,9	25,7	22,1
WEA O4	Punkt	104,0	2,2	3,0	3022,7	-80,6	-4,2	0,0	-5,8	0,0	0,0	16,4	22,3	18,6
WEA OIII 1	Punkt	103,9	2,5	3,0	3467,7	-81,8	-4,3	0,0	-6,7	0,0	0,0	14,1	20,3	16,6
WEA OIII 2	Punkt	103,9	2,5	3,0	2965,7	-80,4	-4,2	0,0	-5,7	0,0	0,0	16,6	22,7	19,1
WEA OIII 3	Punkt	103,9	2,5	3,0	3592,5	-82,1	-4,3	0,0	-6,9	0,0	0,0	13,6	19,7	16,1
WEA OIII 4	Punkt	103,9	2,5	3,0	3014,1	-80,6	-4,2	0,0	-5,8	0,0	0,0	16,3	22,4	18,8
WEA OIII 5	Punkt	103,9	2,5	3,0	3455,0	-81,8	-4,3	0,0	-6,6	0,0	0,0	14,2	20,3	16,7
WEA OIII 6	Punkt	103,9	2,5	3,0	3284,1	-81,3	-4,3	0,0	-6,3	0,0	0,0	15,0	21,1	17,5
Name IP 7 Nenzhāus	serhof 2			IRW		dB(A)		acht 40		LoT	44,6	dB(A)	LoN 41,0	dB(A)
WEA L3	Punkt	104,8	2,5	3,0	2264,5	-78,1	-3,7	0,0	-4,4	0,0	0,0	21,6	27,7	24,1
WEA Li1	Punkt	103,9	2,5	3,0	900,6	-70,1	-2,8	0,0	-1,7	0,0	0,0	32,3	38,5	34,8
			,		,				,		,	,	,	,

Name	Quelltyp	LW	K dB	Ko dB	s m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLrefl dB	ADI dB	Ls dB(A)	LrT dB(A)	LrN dB(A)
-		dB(A)	иь	ub	111	ив	UD	ub	ub	QD	ub	ub(A)	UD(A)	
WEA Li3	Punkt	103,9	2,5	3,0	1519,3	-74,6	-3,7	0,0	-2,9	0,0	0,0	25,7	31,8	28,2
NEA Li4	Punkt	103,9	2,5	3,0	1019,4	-71,2	-3,0	0,0	-2,0	0,0	0,0	30,7	36,9	33,
WEA O1	Punkt	104,0	2,2	3,0	1671,2	-75,5	-3,4	0,0	-3,2	0,0	0,0	24,9	30,7	27,
WEA O2	Punkt	104,0	2,2	3,0	1424,2	-74,1	-3,3	0,0	-2,7	0,0	0,0	26,9	32,8	29,
WEA O3	Punkt	104,0	2,2	3,0	1174,8	-72,4	-2,9	0,0	-2,3	0,0	0,0	29,4	35,3	31,
WEA O4	Punkt	104,0	2,2	3,0	1917,0	-76,6	-3,6	. 0,0	-3,7	0,0	0,0	23,1	28,9	25,
WEA OIII 1	Punkt	103,9	2,5	3,0	1945,3	-76,8	-3,8	0,0	-3,7	0,0	0,0	22,6	28,7	25,
WEA OIII 2	Punkt	103,9	2,5	3,0	1464,4	-74,3	-3,4	0,0	-2,8	0,0	0,0	26,4	32,5	28
WEA OIII 3	Punkt	103,9	2,5	3,0	2111,9	-77,5	-3,8	0,0	-4,1	0,0	0,0	21,5	27,6	24
WEA OIII 4	Punkt	103,9	2,5	3,0	1630,5	-75,2	-3,5	0,0	-3,1	0,0	0,0	25,0	31,2	27
WEA OIII 5	Punkt	103,9	2,5	3,0	2057,1	-77,3	-3,7	0,0	-4,0	0,0	0,0	22,0	28,1	24
WEA OIII 6	Punkt	103,9	2,5	3,0	2012,9	-77,1	-3,7	0,0	-3,9	0,0	0,0	22,3	28,4	24
Name IP 8 Wiebe	Isheim Maish	perg 26		IRW	Tag 55	dB(A)	IRW N	lacht 4	0 dB(A)	LoT	38,2	dB(A)	LoN 34,6	dB(A
WEA L3	Punkt	104,8	2,5	3,0	1621,3	-75,2	-3,3	0,0	-3,1	0,0	0,0	26,2	32,4	28
WEA Li1	Punkt	103,9	2,5	3,0	3792,8	-82,6	-4,5	-0,2	-7,3	0,0	0,0	12,3	18,4	14
WEA Li2	Punkt	103,9	2,5	3,0	3925,1	-82,9	-4,5	-0,2	-7,6	0,0	0,0	11,7	17,8	14
WEA Li3	Punkt	103,9	2,5	3,0	3701,2	-82,4	-4,4	-0,3	-7,1	0,0	0,0	12,7	18,8	15
WEA Li4	Punkt	103,9	2,5	3,0	3576,0	-82,1	-4,5	-0,3	-6,9	0,0	0,0	13,2	19,3	15
WEA O1	Punkt	104,0	2,2	3,0	2139,5	-77,6	-3,9	0,0	-4,1	0,0	0,0	21,4	27,3	23
WEA O2	Punkt	104,0	2,2	3,0	2385,3	-78,5	-4,0	0,0	-4,6	0,0	0,0	19,8	25,7	22
WEA O3	Punkt	104,0	2,2	3,0	2635,7	-79,4	-4,1	-0,5	-5,1	0,0	0,0	17,9	23,7	20
WEA O4	Punkt	104,0	2,2	3,0	1895,4	-76,5	-3,6	0,0	-3,6	0,0	0,0	23,2	29,0	25
WEA OIII 1	Punkt	103,9	2,5	3,0	2745,2	-79,8	-3,9	0,0	-5,3	0,0	0,0	18,0	24,1	20
WEA OIII 2	Punkt	103,9	2,5	3,0	2801,4	-79,9	-4,1	0,0	-5,4	0,0	0,0	17,5	23,6	20
WEA OIII 3	Punkt	103,9	2,5	3,0	2448,5	-78,8	-3,6	0,0	-4,7	0,0	0,0	19,8	25,9	22
WEA OIII 4	Punkt	103,9	2,5	3,0	2380,2	-78,5	-3,9	0,0	-4,6	0,0	0,0	19,9	26,0	22
WEA OIII 5	Punkt	103,9	2,5	3,0	2150,7	-77,6	-3,5	0,0	-4,1	0,0	0,0	21,7	27,8	24
WEA OIII 6	Punkt	103,9	2,5	3,0	1915,8	-76,6	-3,5	0,0	-3,7	0,0	0,0	23,1	29,2	25
Name IP 9 Wiebe			-	IRW		dB(A)	IRW N	lacht 4	0 dB(A	LoT	36,9	dB(A)	LoN 33,2	dB(A
WEA L3	Punkt	104,8	2,5	3,0	1741,2	-75,8	-3,2	0,0	-3,4	0,0	0,0	25,4	31,6	27
WEA Li1	Punkt	103,9	2,5	3,0	3860,2	-82,7	-4,4	0,0	-7,4	0,0	0,0	12,3	18,5	14
WEA Li2	Punkt	103,9	2,5	3,0	3920,5	-82,9	-4,4	0,0	-7,5	0,0	0,0	12,1	18,2	14
WEA Li3	Punkt	103,9	2,5	3,0	3675,2	-82,3	-4,3	0,0	-7,1	0,0	0,0	13,2	19,3	15
WEA Li4	Punkt	103,9	2,5	3,0	3627,7	-82,2	-4,3	0,0	-7,0	0,0	0,0	13,4	19,5	15
WEA O1	Punkt	104,0	2,2	3,0	2362,1	-78,5	-3,9	0,0	-4,5	0,0	0,0	20,2	26,0	22
WEA O2	Punkt	104,0	2,2	3,0	2601,9	-79,3	-4,0	0,0	-5,0	0,0	0,0	18,7	24,5	20
WEA O3	Punkt	104,0	2,2	3,0	2845,5	-80,1	-4,1	0,0	-5,5	0,0	0,0	17,4	23,2	19
WEA O4	Punkt	104,0	2,2	3,0	2127,0	-77,5	-3,7	0,0	-4,1	0,0	0,0	21,7	27,5	23
WEA OIII 1	Punkt	103,9	2,5	3,0	3167,3	-81,0	-4,0	0,0	-6,1	0,0	0,0	15,9	22,0	18
WEA OIII 2	Punkt	103,9	2,5	3,0	3154,8	-81,0	-4,1	0,0	-6,1	0,0	0,0	15,7	21,9	18
WEA OIII 3	Punkt	103,9	2,5	3,0	2881,5	-80,2	-3,8	0,0	-5,5	0,0	0,0	17,4	23,6	19
WEA OIII 4	Punkt	103,9	2,5	3,0	2711,8	-79,7	-4,0	0,0	-5,2	0,0	0,0	18,0	24,2	20
WEA OIII 5	Punkt	103,9	2,5	3,0	2549,8	-79,1	-3,6	0,0	-4,9	0,0	0,0	19,3	25,4	21
WEA OIII 6	Punkt	103,9	2,5	3,0	2251,2	-78,0	-3,6	0,0	-4,3	0,0	0,0	20,9	27,0	23



Anhang 5.4

Legende

Name		Name der Quelle
Quelltyp		Typ der Quelle (Punkt, Linie, Fläche)
Lw	dB(A)	Anlagenleistung
K	dB	Zuschlag für Qualität der Prognose
Ko	dB	Zuschlag für gerichtete Abstrahlung
S	m	Entfernung Emissionsort-IO
Adiv	dB	Dämpfung aufgrund geometrischer Ausbreitung
Agnd	dB	Dämpfung aufgrund Bodeneffekt
Abar	dB	Dämpfung aufgrund Abschirmung
Aatm	dB	Dämpfung aufgrund Luftabsorption
dLrefl	dB	Pegelerhöhung durch Reflexionen
ADI	dB	Richtwirkungskorrektur
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LrT	dB(A)	Beurteilungspegel Tag
LrN	dB(A)	Beurteilungspegel Nacht

WEA Laudert II Ausbreitungsberechnung Vorbelastung Industriegebiet

Anhang 7.1

		dB(A)	dB(A)	m,m²	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)
Name IP 3 Laude	ert Im große	en Stück	16	IRW Nac	cht 4	40 dB(A) Lrì	V 29,6	dB(A)					
GI Wiebelsheim	Fläche	104,3	50,5	238910,	3,0	102	-71,2	-4,5	0,0	-1,9	0,0	0,0	29,6	29,6
Name IP 8 Wiebelsheim Maisberg 26 IRW Nacht 40 dB(A) LrN 31,3 dB(A)														
GI Wiebelsheim	Fläche	104,3	50,5	238910,	3,0	879,	-69,9	-4,3	-0,2	-1,7	0,0	0.0	31.3	31.3

40 dB(A)

238910, 3,0 | 736, | -68,3 | -4,5

LrN 33,1

Adiv Agnd Abar Aatm dLref ADI

dB(A)

0,0

0,0

0,0

33,1

33,1

I oder S Ko s

IRW Nacht

(1)

Name

GI Wiebelsheim

Quelltyp

Name IP 9 Wiebelsheim Flur 9 Flurstück 35/1

Fläche 104,3

50,5

Anhang 7.2

WEA Laudert II Ausbreitungsberechnung Vorbelastung Industriegebiet

Legende

Name Quelltyp Lw L'w I oder S Ko s Adiv Agnd Abar Aatm dLrefl ADI Ls LrN	dB(A) dB(A) m,m² dB m dB	Name der Quelle Typ der Quelle (Punkt, Linie, Fläche) Anlagenleistung Leistung pro m,m² Größe der Quelle (Länge oder Fläche) Zuschlag für gerichtete Abstrahlung Entfernung Emissionsort-IO Dämpfung aufgrund geometrischer Ausbreitung Dämpfung aufgrund Bodeneffekt Dämpfung aufgrund Abschirmung Dämpfung aufgrund Luftabsorption Pegelerhöhung durch Reflexionen Richtwirkungskorrektur Unbewerteter Schalldruck am Immissionsort Teilbeurteilungspegel Nacht
LIIN	UD(A)	Chiboartonangapagarriaant

WEA Laudert II Ausbreitungsberechnung Vorbelastung Gewerbegebiet

Anhang 8.1

Name	Quelltyp	Lw dB(A)	L´w dB(A)	I oder S m,m ²	Ko dB	s m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLref dB	ADI dB	Ls- dB(A)	LrN dB(A)
Name IP 3 Lauder	t Im große	n Stück		IRW Na	acht	40 dE	3(A) L	rN 21,	0 dB(A	\)				
GE Wiebelsheim GE Wiebelsheim	Fläche Fläche	89,6 93,1	54,0 54,0	3627,5 8190,5	0,0	126 143	-73,1 -74,1	0,0 0,0	0,0 0,0		0,0 0,0	0,0 0,0	16,5 19,0	16,5 19,0
Name IP 8 Wiebe	IRW Na	acht	40 dE	3(A) L	rN 25,	3 dB(<i>A</i>	4)							
GE Wiebelsheim GE Wiebelsheim	Fläche Fläche	89,6 93,1	54,0 54,0	3627,5 8190,5	0,0	854, 828,	-69,6 -69,4	0,0 0,0	0,0 0,0		0,0 0,0	0,0 0,0	20,0 23,8	20,0 23,8
Name IP 9 Wiebe	lsh eim Flu	r 9 Flurs	tück 35/1	IRW N	acht	40 dE	B(A) L	rN 31,	7 dB(<i>A</i>	4)			-	
GE Wiebelsheim GE Wiebelsheim	Fläche Fläche	89,6 93,1	54,0 54,0	3627,5 8190,5	0,0 0,0	506, 370,	-65,1 -62,4	0,0 0,0	0,0 0,0		0,0 0,0	0,0 0,0	24,5 30,8	24,5 30,8

Anhang 8.2

WEA Laudert II Ausbreitungsberechnung Vorbelastung Gewerbegebiet

<u>Legende</u>

Name		Name der Quelle
Quelltyp		Typ der Quelle (Punkt, Linie, Fläche)
Lw	dB(A)	Anlagenleistung
L´w	dB(A)	Leistung pro m,m ²
I oder S	m,m ²	Größe der Quelle (Länge oder Fläche)
Ko	dB	Zuschlag für gerichtete Abstrahlung
S	m	Entfernung Emissionsort-IO
Adiv	dB	Dämpfung aufgrund geometrischer Ausbreitung
Agnd	dB	Dämpfung aufgrund Bodeneffekt
Abar	dB	Dämpfung aufgrund Abschirmung
Aatm	dB	Dämpfung aufgrund Luftabsorption
dLrefl	dB	Pegelerhöhung durch Reflexionen
ADI	dB	Richtwirkungskorrektur
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LrN	dB(A)	Teilbeurteilungspegel Nacht

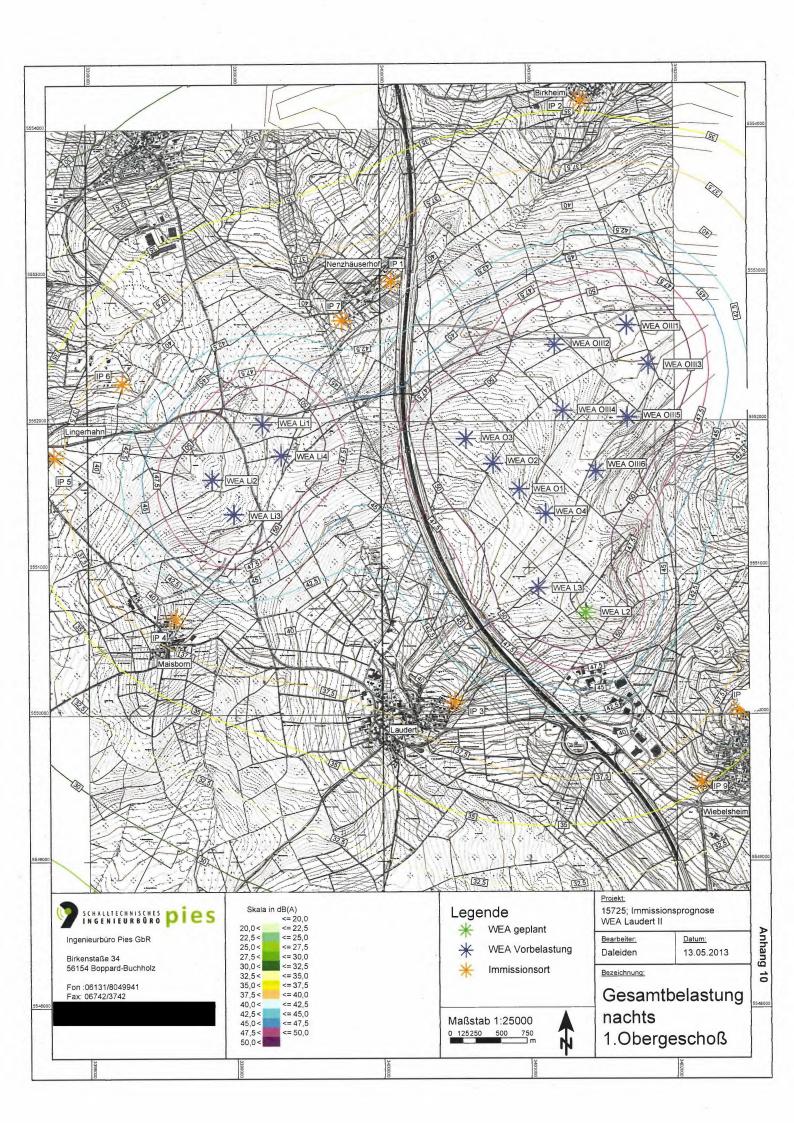
Anhang 9.1

Name	Quelityp	Lw	K	Ko	s	Adiv	Agnd	Abar	Aatm	dLrefl	ADI	Ls	LoT	LoN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)
Name IP 1 Nenzhä	userhof 54	1-17		IRW	Tag 55	dB(A)	IRW N	acht 4	0 dB(A)	LoT	43,6	dB(A)	LoN 39,9	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	2620,7	-79,4	-3,9	0,0	-5,0	0,0	0,0	19,5	25,6	22,0
WEA L3	Punkt	104,8	2,5	3,0	2319,1	-78,3	-3,8	0,0	-4,5	0,0	0,0	21,3	27,4	23,8
WEA Li1	Punkt	103,9	2,5	3,0	1316,5	-73,4	-3,4	0,0	-2,5	0,0	0,0	27,6	33,7	30,1
WEA Li2	Punkt	103,9	2,5	3,0	1824,1	-76,2	-3,9	0,0	-3,5	0,0	0,0	23,3	29,5	25,8
WEA Li3	Punkt	103,9	2,5	3,0	1919,8	-76,7	-3,9	0,0	-3,7	0,0	0,0	22,7	28,8	25,2
WEA Li4	Punkt	103,9	2,5	3,0	1410,1	-74,0	-3,5	0,0	-2,7	0,0	0,0	26,7	32,8	29,2
WEA O1	Punkt	104,0	2,2	3,0	1665,4	-75,4	-3,4	0,0	-3,2	0,0	0,0	25,0	30,8	27,2
WEA O2	Punkt	104,0	2,2	3,0	1426,8	-74,1	-3,3	0,0	-2,7	0,0	0,0	26,9	32,7	29,1
WEA O3	Punkt	104,0	2,2	3,0	1192,8	-72,5	-2,9	0,0	-2,3	0,0	0,0	29,2	35,1	31,4
WEA O4	Punkt	104,0	2,2	3,0	1903,3	-76,6	-3,6	0,0	-3,7	0,0	0,0	23,2	29,0	25,4
WEA OIII 1	Punkt	103,9	2,5	3,0	1636,8	-75,3	-3,6	0,0	-3,1	0,0	0,0	24,9	31,1	27,4
WEA OIII 2	Punkt	103,9	2,5	3,0	1200,1	-72,6	-3,1	0,0	-2,3	0,0	0,0	28,9	35,0	31,4
WEA OIII 3	Punkt	103,9	2,5	3,0	1843,7	-76,3	-3,7	0,0	-3,5	0,0	0,0	23,4	29,5	25,9
WEA OIII 4	Punkt	103,9	2,5	3,0	1468,1	-74,3	-3,4	0,0	-2,8	0,0	0,0	26,3	32,5	28,8
WEA OIII 5	Punkt	103,9	2,5	3,0	1859,4	-76,4	-3,7	0,0	-3,6	0,0	0,0	23,3	29,4	25,8
WEA OIII 6	Punkt	103,9	2,5	3,0	1902,1	-76,6	-3,7	0,0	-3,7	0,0	0,0	23,0	29,1	25,5
Name IP 2 Birkheim	n Am Briel 6	6		IRW	Tag 55	dB(A)	IRW N	acht 40	dB(A)	LoT	38,2	dB(A)	LoN 34,6	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	3503,9	-81,9	-4,4	-0,3	-6,7	0,0	0,0	14,4	20,5	16,9
WEA L3	Punkt	104,8	2,5	3,0	3345,7	-81,5	-4,4	-0,4	-6,4	0,0	0,0	15,1	21,3	17,6
WEA Li1	Punkt	103,9	2,5	3,0	3102,8	-80,8	-4,5	-0,3	-6,0	0,0	0,0	15,4	21,5	17,9
WEA Li2	Punkt	103,9	2,5	3,0	3610,3	-82,1	-4,6	-0,2	-6,9	0,0	0,0	13,1	19,2	15,6
WEA Li3	Punkt	103,9	2,5	3,0	3687,9	-82,3	-4,6	-0,2	-7,1	0,0	0,0	12,7	18,8	15,2
WEA Li4	Punkt	103,9	2,5	3,0	3175,3	-81,0	-4,5	-0,3	-6,1	0,0	0,0	15,0	21,1	17,5
WEA O1	Punkt	104,0	2,2	3,0	2693,3	-79,6	-4,2	0,0	-5,2	0,0	0,0	18,0	23,8	20,2
WEA O2	Punkt	104,0	2,2	3,0	2557,7	-79,1	-4,2	0,0	-4,9	0,0	0,0	18,8	24,6	21,0
WEA O3	Punkt	104,0	2,2	3,0	2447,3	-78,8	-4,1	0,0	-4,7	0,0	0,0	19,4	25,2	21,6
WEA O4	Punkt	104,0	2,2	3,0	2837,6	-80,1	-4,3	-0,5	-5,5	0,0	0,0	16,7	22,6	18,9
WEA OIII 1	Punkt	103,9	2,5	3,0	1580,0	-75,0	-3,3	0,0	-3,0	0,0	0,0	25,6	31,8	28,1
WEA OIII 2	Punkt	103,9	2,5	3,0	1689,7	-75,5	-3,5	0,0	-3,3	0,0	0,0	24,6	30,7	27,1
WEA OIII 3	Punkt	103,9	2,5	3,0	1872,0	-76,4	-3,7	0,0	-3,6	0,0	0,0	23,2	29,3	25,7
WEA OIII 4	Punkt	103,9	2,5	3,0	2131,0	-77,6	-4,0	0,0	-4,1	0,0	0,0	21,3	27,4	23,8
WEA OIII 5	Punkt	103,9	2,5	3,0	2196,0	-77,8	-3,9	0,0	-4,2	0,0	0,0	20,9	27,0	23,4
WEA OIII 6	Punkt	103,9	2,5	3,0	2540,3	-79,1	-4,2	0,0	-4,9	0,0	0,0	18,8	24,9	21,3
Name IP 3 Laudert				IRW		dB(A)	IRW N		- '	LoT		dB(A)	LoN 40,2	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	1097,0	-71,8	-2,3	0,0	-2,1	0,0	0,0	31,6	37,7	34,1
WEAL3	Punkt	104,8	2,5	3,0	984,2	-70,9	-2,4	0,0	-1,9	0,0	0,0	32,7	38,8	35,2
WEA Lin	Punkt	103,9	2,5	3,0	2304,7	-78,2	-4,0	0,0	-4,4	0,0	0,0	20,2	26,4	22,7
WEA Li2	Punkt	103,9	2,5	3,0	2244,1	-78,0	-4,0	0,0	-4,3	0,0	0,0	20,5	26,7	23,0
WEA Lia	Punkt	103,9	2,5	3,0	1979,5	-76,9	-3,8	0,0	-3,8	0,0	0,0	22,4	28,5	24,9
WEA Li4 WEA O1	Punkt	103,9	2,5	3,0	2057,2	-77,3	-3,8	0,0	-4,0	0,0	0,0	21,9	28,0	24,4
WEA O2	Punkt Punkt	104,0	2,2	3,0	1532,3	-74,7	-3,3	0,0	-2,9	0,0	0,0	26,1	31,9	28,3
WEA O3	Punkt	104,0	2,2	3,0	1660,1	-75,4	-3,4	0,0	-3,2	0,0	0,0	25,0	30,9	27,2
WEA 04	Punkt	104,0	2,2	3,0	1809,3	-76,1	-3,5	0,0	-3,5	0,0	0,0	23,9	29,7	26,1
WEA OIII 1	Punkt	104,0	2,2 2,5	3,0	1443,1 2838,9	-74,2	-3,3	0,0	-2,8	0,0	0,0	26,8	32,6	29,0
WEA OIII 2	Punkt	103,9	2,5	3,0	2543,7	-80,1	-4,1 -3,9	0,0	-5,5	0,0	0,0	17,3	23,4	19,8
WEA OIII 3	Punkt	103,9	2,5	3,0		-79,1 -79,5		0,0	-4,9 -5.1	0,0	0,0	19,0	25,1	21,5
WEA OIII 4	Punkt	103,9			2667,1		-4,1	0,0	-5,1 -4.1	0,0	0,0	18,2	24,3	20,7
WEA OIII 5	Punkt		2,5	3,0	2132,7	-77,6 -78.2	-3,8	0,0	-4,1	0,0	0,0	21,4	27,5	23,9
WEA OIII 5	Lulikt	103,9	2,5	3,0	2285,3	-78,2	-3,9	0,0	-4,4	0,0	0,0	20,4	26,5	22,9

Name	Quelltyp	Lw	K	Ko	S	Adiv	Agnd	Abar	Aatm	dLrefl	ADI	Ls	LoT	LoN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)
WEA OIII 6	Punkt	103,9	2,5	3,0	1858,9	-76,4	-3,7	0,0	-3,6	0,0	0,0	23,2	29,4	25,7
Name IP 4 Maisborn	Im Hopfe	ngarten 1	1	IRW	Tag 55	dB(A)	IRW N	acht 40	dB(A)	LoT	43,1	dB(A)	LoN 39,5	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	2798,5	-79,9	-3,7	0,0	-5,4	0,0	0,0	18,8	24,9	21,3
WEA L3	Punkt	104,8	2,5	3,0	2486,3	-78,9	-3,6	0,0	-4,8	0,0	0,0	20,5	26,6	23,0
WEA Li1	Punkt	103,9	2,5	3,0	1462,1	-74,3	-3,6	0,0	-2,8	0,0	0,0	26,2	32,3	28,7
WEA Li2	Punkt	103,9	2,5	3,0	992,3	-70,9	-3,2	0,0	-1,9	0,0	0,0	30,9	37,0	33,4
WEA Li3	Punkt	103,9	2,5	3,0	828,7	-69,4	-2,8	0,0	-1,6	0,0	0,0	33,1	39,3	35,6
WEA Li4	Punkt	103,9	2,5	3,0	1335,8	-73,5	-3,5	0,0	-2,6	0,0	0,0	27,4	33,5	29,9
WEA O1	Punkt	104,0	2,2	3,0	2511,6	-79,0	-3,7	0,0	-4,8	0,0	0,0	19,5	25,3	21,7
WEA O2	Punkt	104,0	2,2	3,0	2418,6	-78,7	-3,7	0,0	-4,7	0,0	0,0	20,0	25,8	22,2
WEA O3	Punkt	104,0	2,2	3,0	2339,0	-78,4	-3,7	0,0	-4,5	0,0	0,0	20,4	26,3	22,6
WEA O4	Punkt	104,0	2,2	3,0	2630,2	-79,4	-3,7	0,0	-5,1	0,0	0,0	18,9	24,7	21,1
WEA OIII 1	Punkt	103,9	2,5	3,0	3681,0	-82,3	-4,1	0,0	-7,1	0,0	0,0	13,4	19,5	15,9
WEA OIII 2	Punkt	103,9	2,5	3,0	3200,6	-81,1	-4,0	0,0	-6,2	0,0	0,0	15,6	21,8	18,1
WEA OIII 3	Punkt	103,9	2,5	3,0	3668,9	-82,3	-4,1	0,0	-7,1	0,0	0,0	13,5	19,6	16,0
WEA OIII 4	Punkt	103,9	2,5	3,0	3007,0	-80,6	-3,9	0,0	-5,8	0,0	0,0	16,6	22,8	19,1
WEA OIII 5	Punkt	103,9	2,5	3,0	3381,5	-81,6	-4,0	0,0	-6,5	0,0	0,0	14,8	21,0	17,3
WEA OIII 6	Punkt	103,9	2,5	3,0	3042,3	-80,7	-3,9	0.0	-5,9	0,0	0,0	16,5	22,6	19,0
Name IP 5 Lingerha			2,0	IRW		dB(A)		lacht 4				dB(A)	LoN 36,9	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	3775,7	-82,5	-4,1	0,0	-7,3	0,0	0,0	13,9	20,0	16,4
	Punkt	104,8	2,5	3,0	3420,1	-81,7	-4,1	0,0	-6,6	0,0	0,0	15,5	21,6	18,0
WEA L3	Punkt	104,8	2,5	3,0	1445,0	-74,2	-3,4	0,0	-2,8	0,0	0,0	26,6	32,7	29,1
WEA Li1 WEA Li2	Punkt	103,9	2,5	3,0	1095,3	-71,8	-3,0	0,0	-2,1	0,0	0,0	30,0	36,1	32,5
		103,9	2,5	3,0	1289,8	-73,2	-3,3	0,0	-2,5	0,0	0,0	27,9	34,1	30,4
WEA LI3	Punkt Punkt	103,9	2,5	3,0	1555,0	-74,8	-3,5	0,0	-3,0	0,0	0,0	25,6	31,7	28,1
WEA Li4 WEA O1	Punkt	103,9	2,3	3,0	3181,0	-81,0	-4,0	0,0	-6,1	0,0	0,0	15,8	21,6	18,0
WEA O2	Punkt	104,0	2,2	3,0	2997,5	-80,5	-4,0	0,0	-5,8	0,0	0,0	16,7	22,5	18,9
WEA 03	Punkt	104,0	2,2	3,0	2815,2	-80,0	-4,0	0,0	-5,4	0,0	0,0	17,6	23,4	19,8
WEA 04	Punkt	104,0	2,2	3,0	3375,9	-81,6	-4,1	0,0	-6,5	0,0	0,0	14,9	20,7	17,1
WEA OIII 1	Punkt	103,9	2,5	3,0	4012,6	-83,1	-4,3	0,0	-7,7	0,0	0,0	11,9	18,0	14,4
WEA OIII 2	Punkt	103,9	2,5	3,0	3504,0	-81,9	-4,2	0,0	-6,7	0,0	0,0	14,1	20,2	16,6
WEA OIII 3	Punkt	103,9	2,5	3,0	4104,5	-83,3	-4,3	0,0	-7,9	0,0	0,0	11,5	17,6	14,0
WEA OIII 4	Punkt	103,9	2,5	3,0	3487,7	-81,8	-4,2	0,0	-6,7	0,0	0,0	14,2	20,3	16,7
WEA OIII 5	Punkt	103,9	2,5	3,0	3921,9	-82,9	-4,2	0,0	-7,5	0,0	0,0	12,3	18,4	14,8
WEA OIII 6	Punkt	103,9	2,5	3,0	3695,3	-82,3	-4,2	0.0	-7,1	0,0	0,0	13,3	19,4	15,8
Name IP 6 Camping			2,0	IRW		dB(A)		Vacht 4			-	dB(A)	LoN 39,4	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	3525,3	-81,9	-4,2	-0,4	-6,8	0,0	0,0	14,5	20,6	17,0
WEA L3	Punkt	104,8	2,5	3,0	3161,7	-81,0	-4,2	0,0	-6,1	0,0	0,0	16,6	22,7	19,1
WEA LI1	Punkt	103,9	2,5	3,0	1006,2	-71,0	-3,0	0,0	-1,9	0,0	0,0	30,9	37,0	33,4
WEA Li2	Punkt	103,9	2,5	3,0	907,1	-70,1	-2,9	0,0	-1,7	0,0	0,0	32,1	38,2	34,6
WEA Li3	Punkt	103,9	2,5	3,0	1178,5	-72,4	-3,4	0,0	-2,3	0,0	0,0	28,9	35,0	31,4
WEA Li4	Punkt	103,9	2,5	3,0	1199,6	-72,6	-3,4	0,0	-2,3	0,0	0,0	28,6	34,8	31,1
WEA O1	Punkt	104,0	2,2	3,0	2803,3	-79,9	-4,1	0,0	-5,4	0,0	0,0	17,5	23,4	19,7
WEA O2	Punkt	104,0	2,2	3,0	2591,1	-79,3	-4,1	0,0	-5,0	0,0	0,0	18,6	24,5	20,8
WEA O2 WEA O3	Punkt	104,0	2,2	3,0	2378,4	-78,5	-4,0	0,0	-4,6	0,0	0,0		25,7	22,1
WEA O4	Punkt	104,0	2,2	3,0	3022,7	-80,6	-4,2	0,0	-5,8	0,0	0,0		22,3	18,6
WEA OIII 1	Punkt	103,9	2,5	3,0	3467,7	-81,8	-4,3	0,0	-6,7	0,0	0,0		20,3	16,6
WEA OIII 1	Punkt	103,9	2,5	3,0	2965,7	-80,4	-4,2	0,0	-5,7	0,0	0,0	16,6	22,7	19,1
WEA OIII 3	Punkt	103,9	2,5	3,0	3592,5	-82,1	-4,3	0,0	-6,9	0,0	0,0		19,7	16,1
WEA OIII 3 WEA OIII 4	Punkt	103,9	2,5	3,0	3014,1	-80,6	-4,2	0,0	-5,8	0,0	0,0		22,4	18,8
	· Since	,.	_,0	1 3,0	, , ,	, 50,0	-,-	-,-	, ,,-	, ,-	1 -,-		, ,	,

Name	Quelityp	Lw	K	Ко	s	Adiv	Agnd	Abar	Aatm	dLrefl	ADI	Lo	LoT	LoN
Name	Quentyp	dB(A)	dB	dB	m	dB	dB	dB	dB	dB	ADI dB	Ls dB(A)	dB(A)	LoN dB(A)
		(CD () ()	u.b	100		UD	T GB	T GD	ub	ub	u u u	UD(A)	(AD(A)	UD(A)
WEA OIII 5	Punkt	103,9	2,5	3,0	3455,0	-81,8	-4,3	0,0	-6,6	0,0	0,0	14,2	20,3	16,7
WEA OIII 6	Punkt	103,9	2,5	3,0	3284,1	-81,3	-4,3	0,0	-6,3	0,0	0,0	15,0	21,1	17,5
Name IP 7 Nenzhāu	serhof 2			IRW	Tag 55	dB(A)	IRW N	lacht 4	0 dB(A)	LoT	44,7	dB(A)	LoN 41,0	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	2596,8	-79,3	-3,9	0,0	-5,0	0,0	0,0	19,7	25,8	22,2
WEA L3	Punkt	104,8	2,5	3,0	2264,5	-78,1	-3,7	0,0	-4,4	0,0	0,0	21,6	27,7	24,1
WEA Li1	Punkt	103,9	2,5	3,0	900,6	-70,1	-2,8	0,0	-1,7	0,0	0,0	32,3	38,5	34,8
WEA Li2	Punkt	103,9	2,5	3,0	1405,7	-74,0	-3,6	0,0	-2,7	0,0	0,0	26,7	32,8	29,2
WEA Li3	Punkt	103,9	2,5	3,0	1519,3	-74,6	-3,7	0,0	-2,9	0,0	0,0	25,7	31,8	28,2
WEA Li4	Punkt	103,9	2,5	3,0	1019,4	-71,2	-3,0	0,0	-2,0	0,0	0,0	30,7	36,9	33,2
WEA O1	Punkt	104,0	2,2	3,0	1671,2	-75,5	-3,4	0,0	-3,2	0,0	0,0	24,9	30,7	27,1
WEA O2	Punkt	104,0	2,2	3,0	1424,2	-74,1	-3,3	0,0	-2,7	0,0	0,0	26,9	32,8	29,1
WEA O3	Punkt	104,0	2,2	3,0	1174,8	-72,4	-2,9	0,0	-2,3	0,0	0,0	29,4	35,3	31,6
WEA O4	Punkt	104,0	2,2	3,0	1917,0	-76,6	-3,6	0,0	-3,7	0,0	0,0	23,1	28,9	25,3
WEA OIII 1	Punkt	103,9	2,5	3,0	1945,3	-76,8	-3,8	0,0	-3,7	0,0	0,0	22,6	28,7	25,1
WEA OIII 2	Punkt	103,9	2,5	3,0	1464,4	-74,3	-3,4	0,0	-2,8	0,0	0,0	26,4	32,5	28,9
WEA OIII 3	Punkt	103,9	2,5	3,0	2111,9	-77,5	-3,8	0,0	-4,1	0,0	0,0	21,5	27,6	24,0
WEA OIII 4	Punkt	103,9	2,5	3,0	1630,5	-75,2	-3,5	0,0	-3,1	0,0	0,0	25,0	31,2	27,5
WEA OIII 5	Punkt	103,9	2,5	3,0	2057,1	-77,3	-3,7	0,0	-4,0	0,0	0,0	22,0	28,1	24,5
WEA OIII 6	Punkt	103,9	2,5	3,0	2012,9	-77,1	-3,7	0,0	-3,9	0,0	0,0	22,3	28,4	24,8
Name IP 8 Wiebelsh	eim Maisb	era 26		IRW	Tag 55	dB(A)		acht 40		LoT	40,3	dB(A)	LoN 36,7	dB(A)
WEA L2	Punkt	104,8	2,5	3,0	1262,9	-73,0	-2,4	0,0	-2,4	0,0	0,0	30,0	36,1	32,5
WEA L3	Punkt	104,8	2,5	3,0	1621,3	-75,2	-3,3	0,0	-3,1	0,0	0,0	26,2	32,4	28,7
WEA Li1	Punkt	103,9	2,5	3,0	3792,8	-82,6	-4,5	-0,2	-7,3	0,0	0,0	12,3	18,4	
WEA Li2	Punkt	103,9	2,5	3,0	3925,1	-82,9	-4,5	-0,2	-7,5 -7,6	0,0	0,0	11,7	17,8	14,8
WEA Li3	Punkt	103,9	2,5	3,0	3701,2	-82,4	-4,4	-0,2	-7,0	0,0	0,0	12,7	18,8	14,2 15,2
WEA Li4	Punkt	103,9	2,5	3,0	3576,0	-82,1	-4,5	-0,3	-6,9	0,0	0,0	13,2	19,3	15,7
WEA O1	Punkt	104,0	2,2	3,0	2139,5	-77,6	-3,9	0,0	-4,1	0,0	0,0	21,4	27,3	23,6
WEA O2	Punkt	104,0	2,2	3,0	2385,3	-78,5	-4,0	0,0	-4,6	0,0	0,0	19,8	25,7	22,0
WEA O3	Punkt	104,0	2,2	3,0	2635,7	-79,4	-4,1	-0,5	-5,1	0,0	0,0	17,9	23,7	20,1
WEA O4	Punkt	104,0	2,2	3,0	1895,4	-76,5	-3,6	0,0	-3,6	0,0	0,0	23,2	29,0	25,4
WEA OIII 1	Punkt	103,9	2,5	3,0	2745,2	-79,8	-3,9	0,0	-5,3	0,0	0,0	18,0		
WEA OIII 2	Punkt	103,9	2,5	3,0	2801,4	-79,9	-4,1	0,0	-5,4	0,0	0,0	17,5	24,1 23,6	20,5 20,0
WEA OIII 3	Punkt	103,9	2,5	3,0	2448,5	-78,8	-3,6	0,0	-4,7	0,0	0,0	19,8	25,9	22,3
WEA OIII 4	Punkt	103,9	2,5	3,0	2380,2	-78,5	-3,9	0,0	-4,6	0,0	0,0	19,8	26,0	22,3
WEA OIII 5	Punkt	103,9	2,5	3,0	2150,7	-77,6	-3,5	0,0	-4,1	0,0	0,0	21,7	27,8	24,2
WEA OIII 6	Punkt	103,9	2,5	3,0	1915,8	-76,6	-3,5	0,0	-3,7	0,0	0,0	23,1	29,2	24,2 25,6
Name IP 9 Wiebelsh				-	Tag 55	dB(A)		acht 40		LoT			LoN 35,3	dB(A)
WEA L2	Punkt	104,8		1					-			-		
WEA L3	Punkt	104,8	2,5 2,5	3,0	1413,7	-74,0 -75.8	-2,6	0,0	-2,7	0,0	0,0	28,5	34,6	31,0
WEA Li1	Punkt	104,8			1741,2 3860,2	-75,8	-3,2	0,0	-3,4	0,0	0,0	25,4	31,6	27,9
WEA Li2			2,5	3,0		-82,7	-4,4	0,0	-7,4 7.5	0,0	0,0	12,3	18,5	14,8
WEA LIZ	Punkt Punkt	103,9	2,5	3,0	3920,5	-82,9	-4,4	0,0	-7 , 5	0,0	0,0	12,1	18,2	14,6
WEA LI3	Punkt	103,9	2,5	3,0	3675,2	-82,3	-4,3	0,0	-7,1 7.0	0,0	0,0	13,2	19,3	15,7
WEA 01	Punkt	103,9	2,5	3,0	3627,7	-82,2 -78.5	-4,3	0,0	-7,0 4.5	0,0	0,0	13,4	19,5	15,9
WEA O1	Punkt	104,0 104,0	2,2	3,0	2362,1	-78,5 -79.3	-3,9 -4.0	0,0	-4,5 -5.0	0,0	0,0	20,2	26,0	22,4
WEA 02 WEA 03			2,2	3,0	2601,9	-79,3	-4,0	0,0	-5,0	0,0	0,0	18,7	24,5	20,9
WEA O4	Punkt	104,0	2,2	3,0	2845,5	-80,1	-4,1	0,0	-5,5	0,0	0,0	17,4	23,2	19,6
WEA OIII 1	Punkt	104,0	2,2	3,0	2127,0	-77,5	-3,7	0,0	-4,1	0,0	0,0	21,7	27,5	23,9
	Punkt	103,9	2,5	3,0	3167,3	-81,0	-4,0	0,0	-6,1	0,0	0,0	15,9	22,0	18,4
WEA OIII 2	Punkt	103,9	2,5	3,0	3154,8	-81,0	-4,1	0,0	-6,1	0,0	0,0	15,7	21,9	18,2
WEA OIII 3	Punkt	103,9	2,5	3,0	2881,5	-80,2	-3,8	0,0	-5,5	0,0	0,0	17,4	23,6	19,9

Anhang 9.4


Name	Quelityp	Lw dB(A)	K dB	Ko dB	s m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLrefl dB	ADI dB	Ls dB(A)	LoT dB(A)	LoN dB(A)
WEA OIII 4	Punkt	103,9	2,5	3,0	2711,8	-79,7	-4,0	0,0	-5,2	0,0	0,0	18,0	24,2	20,5
WEA OIII 5	Punkt	103,9	2,5	3,0	2549,8	-79,1	-3,6	0,0	-4,9	0,0	0,0	19,3	25,4	21,8
WEA OIII 6	Punkt	103,9	2,5	3,0	2251,2	-78,0	-3,6	0,0	-4,3	0,0	0,0	20,9	27,0	23,4

<u>Legende</u>

Name Quelityp		Name der Quelle
Lw	dD(A)	Typ der Quelle (Punkt, Linie, Fläche)
	dB(A)	Anlagenleistung
K	dB	Zuschlag für Qualität der Prognose
Ko	dB	Zuschlag für gerichtete Abstrahlung
S	m	Entfernung Emissionsort-IO
Adiv	dB	Dämpfung aufgrund geometrischer Ausbreitung
Agnd	dB	Dämpfung aufgrund Bodeneffekt
Abar	dB	Dämpfung aufgrund Abschirmung
Aatm	dB	Dāmpfung aufgrund Luftabsorption
dLrefl	dB	Pegelerhöhung durch Reflexionen
ADI	dB	Richtwirkungskorrektur
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LoT	dB(A)	oberer Vertrauensbereich Tag
LoN	dB(A)	oberer Vertrauensbereich Nacht

