TERRAGraphica GmbH

Dienstleistungen der Geologie und Geographie

Kreisverwaltung Mayen-Koblenz Gehört zum Genehmigungs-Bescheid [1 6, 11, 2015

AZ: B1-60-31061-2015

Schallimmissionsprognose

für zwei geplante Windkraftanlagen GE 2.75-120 am Standort:

Cond-Kehrig

(Landkreis Mayen-Koblenz) Rheinland-Pfalz

Auftraggeber:

Windpark Cond 1 AG & Co. KG

Gartenstr. 30 56727 Mayen

Auftragsnummer:

2015-06-1

Datum:

10.04.2015

Schallimmissionsprognose Cond-Kehrig WKA 1+2 2 x Cond-Kehrig - NH: 139m

Inhaltsverzeichnis

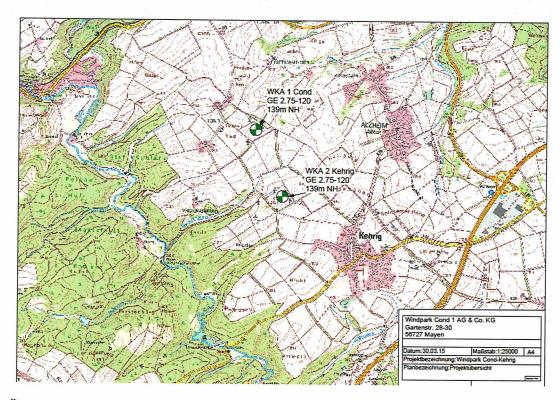
1.	Bauvorhaben	Seite	2
2.	Auftrag	Seite	2
3.	Lage des Standortes	Seite	2
4.	Allgemeines zur Schallemission und -immissionen	Seite	3
5.	Immissionsrichtwerte	Seite	3
6.	Eingangsgrößen für die Berechnung	Seite	5
7.	Berechnungsmethode	Seite	8
8.	Ergebnis	Seite	9
9.	Literatur	Seite	13

Anlage

1	Berechnungsergebnisse Vorbelastung
2	Berechnungsergebnisse Zusatzbelastung
3	Berechnungsergebnisse Gesamtbelastung
4	Berechnungsergebnisse Gesamtbelastung (Tag)
5	Anlage A und B
6	Schallpegelvermessungsberichte

1. Bauvorhaben

Auf der Gemarkungsfläche der Gemeinden Monreal und Kehrig ist die Errichtung je einer Windkraftanlage (WKA oder WEA) des Anlagentyps GE 2.75-120 mit einer Nennleistung von 2.750 kW, einem Rotordurchmesser von 120 m und einer Nabenhöhe von 139,00 m vorgesehen.


2. Auftrag

Die TERRAGraphica GmbH wurde von der Windpark Cond 1 AG & Co KG mit der Durchführung einer Schallimmissionsprognose, inklusive der graphischen Darstellung der Untersuchungsergebnisse beauftragt.

Die Ergebnisse basieren auf der Berechnung nach der Technischen Anleitung zum Schutz gegen Lärm (TA-Lärm) und der deutschen Norm DIN ISO 9613-2 sowie den vom Anlagenhersteller und Auftraggeber vorgegebenen Standort- und Anlagedaten. Die Berechnungen werden mit Softwareprogramm WindPro DECIBEL der Firma EMD durchgeführt.

3. Lage des Standortes

Die in diesem Gutachten untersuchten Standorte für die WKA befinden sich in Rheinland-Pfalz, im Landkreis Mayen-Koblenz. Die Höhe der Fläche für die geplanten Anlagen liegt bei 359-367 m ü. NN. Derzeit wird sie landwirtschaftlich genutzt. Das Relief des Standortes in der näheren Umgebung ist leicht wellig. Darüber hinaus findet sich eine stärkere Reliefierung. Nördlich der Standorte verläuft die B 258, südlich befindet sich die BAB 48.

Übersichtskarte

4. Allgemeines zur Schallemission und -immissionen

Insbesondere durch die aerodynamische Umströmung des Rotors entstehen beim Betrieb von Windkraftanlagen Schallemissionen. Dabei kennzeichnet der Schallleistungspegel die gesamte von einer Schallquelle (WKA) abgestrahlte Schallleistung. Der Schallpegel wird üblicherweise in Dezibel (dB) angegeben. Bei einer Erhöhung des Schallpegels um 10 dB verdoppelt sich dabei nach menschlichem Empfinden die Lautstärke, da es sich um eine logarithmische Skala handelt. Um der Empfindung des menschlichen Ohrs näher zu kommen, wird das gemessene Frequenzspektrum mit einem bestimmten Gewichtungsschema bewertet. Zur Bestimmung des Schallleistungspegels von WKA wird die A-Gewichtung verwendet, gekennzeichnet durch die Einheit dB(A). Wahrnehmbar sind die Geräusche von WKA überwiegend als Rauschen, das aus zahlreichen sich überlagernden Frequenzen besteht. Die technische Kenngröße zur Quantifizierung des Geräusches ist dabei der Schallleistungspegel. Es können jedoch auch Reintöne auftreten. Da diese als störender empfunden werden, wird beim Auftreten von Einzeltönen ein Aufschlag zum gemessenen Schallpegel hinzugerechnet, sofern diese Werte von mehr als 2 db(A) erreichen. Die Angabe des Schallleistungspegel einer WKA bezieht sich auf Schallemission direkt an der Rotornabe.

Ausschlaggebend für eine Prognose sind jedoch die Schallimmissionen, die z.B. in Wohngebieten auftreten.

Der Schalldruckpegel ist der Wert, der an einem Immissionsort (z.B. Wohnhaus) berechnet, gemessen oder wahrgenommen werden kann. Er bildet die Grundlage für die Beurteilung der Geräuschemission zur Überprüfung, ob die Immissionsrichtwerte eingehalten werden. Der Schall breitet sich kreisförmig um die Schallquelle aus und nimmt mit dem Abstand zu ihr hörbar ab. Treten mehrere Schallquellen auf, wie z.B. in einem Windpark, überlagern sich die Schallwellen und addieren sich energetisch. Die Schallabstrahlung einer WKA ist nie konstant, sondern stark von der Leistung und somit von der Windgeschwindigkeit abhängig. Der immissionsrelevante Schalleistungspegel wird üblicherweise bei einer standardisierten Windgeschwindigkeit von 10 m/s in 10 m Höhe ü. Grund angegeben. Falls eine Anlage 95% ihrer Nennleistung schon bei niedrigeren Windgeschwindigkeiten erzeugt, wird das Geräuschverhalten im 95%-Betriebspunkt der Planung zu Grunde gelegt. Die Anforderung an die Schallmessung und Auswertung sind in der Technischen Richtlinie zur Bestimmung der Leistungskurve, der Schallemissionswerte und der elektrischen Eigenschaften von Windenergieanlagen, "Technische Richtlinie zur Akustischen Vermessung von Windenergieanlagen" (Hrsg. FGW Fördergesellschaft für Windenergie e.V. unter Mitwirkung des Arbeitskreises "Geräusche von Windenergieanlagen" der Immissionsschutzbehörden und Messinstitute), beschrieben. Diese Richtlinie enthält - in der jeweils aktuellsten Fassung - die gültigen nationalen und inter-nationalen Normen, die entsprechend konkretisiert worden sind. Emissionsmessungen sollten nach den Mess- und Auswertevorschriften dieser Richtlinie durchgeführt werden. Die Vermessungsergebnisse bilden die Grundlage zur Berechnung der Schallimmissionswerte.

5. Immissionsrichtwerte

Um eine Lärmbelästigung für die Anwohner auszuschließen, gibt es je nach Baugebiet unterschiedliche Grenzwerte des Schalldruckpegels, die eingehalten werden müssen. Die TA-Lärm vom 26. August 1998 dient dem Schutz der Allgemeinheit und der Nachbarschaft vor schädlichen Umwelteinwirkungen durch Geräusche sowie der Vorsorge gegen schädliche Umwelteinwirkungen durch Geräusche. Danach sind ausgehend von

der Einstufung der Gebiete in der Umgebung der geplanten WKA die in der nachfolgenden Tabelle genannten Immissionsrichtwerte für den Beurteilungspegel an den Immissionsorten einzuhalten. In der Baunutzungsverordnung sind die Baugebietsarten festgelegt, denen nach der TA-Lärm eine Immissionsschutz-Rangfolge zugeordnet wird. Danach gelten folgende Immissionsrichtwerte für den Beurteilungspegel für Immissionsorte außerhalb von Gebäuden:

Baugebietsart	Nachts dB(A)	tags dB(A)
Kurgebiete, Krankenhäuser, Pflegeanstalten	35	45
Reines Wohngebiet	35	50
Allgemeines Wohngebiet und Kleinsiedlungsgebiet	40	55
Kerngebiete, Dorfgebiete und Mischgebiete	45	60
Gewerbegebiet	50	65

Die Immissionsrichtwerte beziehen sich tags auf den Beurteilungszeitraum von 06.00 Uhr bis 22.00 Uhr und im Nachtzeitraum auf 22.00 bis 06.00 Uhr. Die Art der Gebiete ergibt sich aus den Festlegungen in Bebauungsplänen. Für Flächen, für die keine Festsetzungen bestehen, sind nach Abschnitt 6.6 der TA-Lärm entsprechend ihrer Schutzbedürftigkeit zu beurteilen.

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte am Tage um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten.

Nach Abschnitt 3.2.1. der TA-Lärm ist der Schutz vor schädlichen Umwelteinwirkungen durch Geräusche dann gegeben, wenn die Gesamtbelastung durch die Geräusche aller einwirkenden Anlagen, die nach der TA-Lärm zu beurteilen sind, die Immissionsrichtwerte nicht überschreitet. Wegen der kontinuierlich einwirkenden Geräusche von WKA ist die Nachtzeit als relevanter Beurteilungszeitraum heranzuziehen, da die zulässigen Anforderungen tagsüber i.d.R. um 15 dB höher liegen.

Nach der TA-Lärm ist festgelegt:

Die "Vorbelastung ist die Belastung eines Ortes mit Geräuschimmissionen von allen Anlagen, für die diese TA-Lärm gilt ohne den Immissionsbeitrag der zu beurteilenden Anlage".

Die "Zusatzbelastung ist der Immissionsbeitrag, der an einem Immissionsort durch die zu beurteilende Anlage voraussichtlich (bei geplanten Anlagen) oder tatsächlich (bei bestehenden Anlagen) hervorgerufen wird."

Die "Gesamtbelastung ist im Sinne dieser Technischen Anleitung die Belastung eines Immissionsortes, die von allen Anlagen hervorgerufen wird, für die diese Technische Anleitung gilt".

6. Eingangsgrößen für die Berechnung

Diese Prognose wurde für 18 schallkritische Punkte (Immissionspunkte) erstellt. Die Berechnungen zur Schallimmission beruhen auf der Kartengrundlage TK 1 : 25 000 (Blatt 5609 Mayen) und den zugehörigen Flurkarten aus dem Netgis Server RLP, sowie einer Ortsbegehung.

Die Immissionspunkte (IP) sind im Bereich der nächst gelegenen Wohnhäuser (Siedlung Cond, Ortschaft Kehrig, Ortschaft Alzheim) um die neu geplante WKA festgelegt worden.

Nach Auskunft des zuständigen Bauamtes sowie der Flächennutzungspläne und Bebauungspläne liegen die Immissionspunkte innerhalb von Dorf- bzw. Mischgebieten, allgemeinen Wohngebieten oder sind als Aussiedlerhof ausgewiesen.

Die IP sind nachfolgend nochmals zusammen gestellt:

IP	Ort	Straße/Hausnummer	Ost	Nord	Immissions- richtwert nachts	Ausweisung nach BauNVO
Α	Cond	Cond Nr. 8	32.371.651	5.573.441	45	Aussiedlerhof
В	Cond	Cond Nr. 1	32.371.548	5.573.361	45	MI
С	Cond	Cond Nr. 2	32.371.475	5.573.383	45	MI
D	Cond	Cond Nr. 3	32.371.441	5.573.353	45	MI
Е	Cond	Cond Nr. 5a	32.371.381	5.572.915	45	MI
F	Cond	Cond Nr. 5	32.371.327	5.572.841	45	MI
G	Cond	Cond Nr. 4	32.371.375	5.572.810	45	MI
Н	Cond	Cond Nr. 6	32.371.263	5.572.807	45	MI
I	Cond	Cond Nr. 7	32.371.296	5.572.768	45	MI
J	Mayen	Wüstenrather Hof Nr. 1	32.371.163	5.572.279	45	Aussiedlerhof
K	Kehrig	Bausberger Str. 40	32.372.853	5.571.508	40	WA
L	Alzheim	Conder Str. 42	32.373.191	5.573.641	40	Allg. Wohngebiet
М	Alzheim	Monrealer Str. 19	32.372.757	5.573.825	40	Wohnbaufläche
N	Mayen	Am Fichtenwäldchen	32.372.150	5.573.938	45	Gemeindebedarfsfläche
0	Kehrig	Haus Ahlen	32.372.004	5.571.432	45	-
Р	Mayen	Wüstenrather Hof Nr. 3	32.371.210	5.572.025	45	Aussiedlerhof
Q	Mayen	Wüstenrather Hof Nr. 4	32.371.226	5.572.016	45	Aussiedlerhof
R	Cond	Cond Nr. 8a	32.371.633	5.573.457	45	Aussiedlerhof

Die Koordinaten und Höhen ü. NN der schallkritischen Punkte sind in den Berechnungstabellen der Anlage aufgeführt. Die Berechnung der Höhen ü. NN basieren auf dem digitalen Geländemodell. Die Grundlage für das Geländemodell bilden die Höhenlinien der topographischen Karte 1:25.000.

Vorbelastung

Es liegt eine **Vorbelastung** durch zwei bestehende WKA vor. Die Standorte der bereits bestehenden WKA sind wie folgt beschrieben:

WKA Nr.	Тур	X	Y	Z	Nabenhöhe m
3	V 90	32.371.967	5.572.505	349	105
4	V 90	32.372.366	5.572.927	355	105

In der Karte der Berechnungsergebnisse sind sie als "exis. WEA" mit blauem Symbol dargestellt.

Im Bereich der IP finden sich, nach örtlicher Prüfung seitens des Gutachters keine weiteren Anlagen oder Betriebe, die nachts Geräusche verursachen.

Nach Auskunft des zuständigen Gewerbeamtes handelt es sich ausschließlich um privilegierte Außenbereichsvorhaben nach §35 Abs. 1 Nr. 1 BauGB, bei denen eine gewerbliche Nutzung nicht erlaubt ist. Ausnahmegenehmigungen zur gewerblichen Nutzung, insbesondere während der Nachtzeit, liegen nicht vor. Nach Auskunft der landwirtschaftlichen Betriebe der Aussiedlerhöfe sind hier auch keine geräuschverursachenden Anlagen für die Landwirtschaft genehmigt. Die Ermittlung einer Vorbelastung der Aussiedlerhöfe kann somit entfallen.

Schutzbedürftige Räume, welche durch Dritte genutzt werden, sind bei den landwirtschaftlichen Betrieben und den umliegenden Wohnhäusern (IP A-J, N) innerhalb des maßgeblichen Einwirkungsbereichs oberhalb von 35 dB(A) nach Auskunft der Eigentümer und auch nach eingehenden Ortsbesichtigungen nicht bekannt geworden, so dass hier keine Vorbelastungen berücksichtigt werden müssen.

Die Immissionsaufpunkte wurden in der Anlage A zusammengefasst und den zuständigen Behörden zur Bestätigung vorgelegt.

Die Prognoseunsicherheit wurde wahrscheinlichkeitsmathematisch ermittelt aus der Serienstreuung für den Anlagentyp, der Unsicherheit der Schallvermessung des Anlagentyps und der Standardabweichung, die für die Ausbreitungsrechnung nach DIN ISO 9613-2 angenommen wird. Die resultierende Unsicherheit wurde im Sinne der Ermittlung der oberen Vertrauensbereichsgrenze bei 90%iger Wahrscheinlichkeit mit einem Faktor von 1,28 multipliziert.

Schallemissionen der WKA

Die in die Berechnung eingeflossenen Schallleistungspegel der einzelnen WKA-Typen ergeben sich aus den Ergebnissen der jeweiligen Schallvermessungsprotokolle zuzüglich der Gesamtunsicherheit im Bereich der oberen Vertrauensbereichsgrenze und lassen sich nach folgender Formel berechnen:. $L_{ges} = L_m + (1,28 * \sqrt{(\sigma_R^2 + \sigma_P^2 + \sigma_{prog}^2)})$.

Lm = Mittelwert der Schallvermessungen der WKA

σR = Unsicherheit der Schallvermessung=0,5 bei mind. einer

Vermessung gem. DIN 61400 – 11

σP = Standardabweichung (Serienstreuung)

σprog = Programmunsicherheit = konstant 1,5

Die **WKA GE 2.75-120 des Herstellers GE Energy** ist einmal vermessen. Auszüge der Schallpegelvermessungsprotokolle liegen in der Anlage bei. Für diese WKA sind folgende Werte in die Berechnung eingeflossen:

```
GE-2.75-120 (Volliast): 108,3 = 105,8 + (1,28 * \sqrt{(0,5^2 + 1,20^2 + 1,5^2)})
```

Messung 1 105,8 dB(A) Windtest SE14009B6

L_m 105,8

σ_P 1,20 (Standardabweichung)

 σ_R 0,5

Ton- und Impulshaltigkeiten wurden nicht festgestellt.

Die WKA V-90 des Herstellers Vestas ist im Mode 0 dreifach vermessen. Auszüge der Schallpegelvermessungsprotokolle liegen in der Anlage bei. Für diese WKA sind folgende Werte in die Berechnung eingeflossen:

```
V-90 Mode0: 105,6 = 103,53 + (1,28 * \sqrt{(0,5^2 + 0,32^2 + 1,5^2)})
```

Messung 1 103,4 dB(A) (WT5308/06) Messung 2 103,3 dB(A) (WT4126/05)

Messung 3 103,9 dB(A) (WT4846/06)

σ_P 0,32 (Standardabweichung)

 σ_R 0,5

Ton- und Impulshaltigkeiten wurden nicht festgestellt.

Zusätzlich liegen für die WKA V-90 noch Schallvermessungsberichte der reduzierten Betriebsmodi Mode1 und Mode2 vor:

```
V-90 Mode1: 104,4 = 102,33 + (1,28 * \sqrt{(0,5^2 + 0,23^2 + 1,5^2)})
```

Messung 1 102,2 dB(A) (WT5635/07) Messung 2 102,6 dB(A) (WT5635/07) Messung 3 102,2 dB(A) (WT5635/07)

σP 0,23 (Standardabweichung)

σR 0,5

Ton- und Impulshaltigkeiten wurden nicht festgestellt.

V-90 Mode2: 102,3 =
$$100,20 + (1,28 * \sqrt{(0,5^2 + 0,46^2 + 1,5^2)})$$

Messung 1 100,1 dB(A) (WT5312/06) Messung 2 101,7 dB(A) (WT4144/05)

Messung 3 99,8 dB(A) (Kötter 29093-1.006)

σP 0,46 (Standardabweichung)

σR 0.5

Ton- und Impulshaltigkeiten wurden nicht festgestellt.

Zusatzbelastung

Die Koordinaten der **neu geplanten WEA** wurden aus dem Kartenmaterial, das vom Auftraggeber zur Verfügung gestellt wurde, ermittelt und sind der Tabelle zu entnehmen:

WKA Nr.	Тур	X	Υ	Z	Nabenhöhe m
1	GE 2.75-120	32.372.005	5.573.045	367	139,0
2	GE 2.75-120	32.372.287	5.572.078	359	139,0

In der Karte der Berechnungsergebnisse ist sie als "neue WKA" mit rotem Symbol dargestellt.

Die **Gesamtbelastung** im Untersuchungsraum ergibt sich schließlich aus der geplanten Windkraftanlage als **Zusatzbelastung einschl. der Vorbelastung** aus den beiden bereits bestehenden WEA.

Aufgrund der verwendeten Schallpegel inkl. Gesamtunsicherheit im Bereich der oberen Vertrauensbereichsgrenze ergeben sich im Ergebnis der Berechnung höhere Werte, als diese i.d.R. von den WKA erzeugt werden. Dies trägt jedoch zu einem größeren Sicherheitspuffer bei.

7. Berechnungsmethode

Die vorliegende Immissionsprognose wurde mit dem Kalkulationsmodul **DECIBEL** des Programms **WindPro** berechnet. Die Schallausbreitungsberechnung basiert dabei auf der **DIN ISO 9613-2**. Verwendet wird im Rahmen der "detaillierten Prognose", das "alternative Verfahren zur Berechnung A-bewerteter Schalldruckpegel der DIN ISO 9613-2, Abschnitt 7.3.2.. Dieses Verfahren zur Berechnung des Bodeneffekts (Agr) kann angewandt werden, wenn nur der A-bewertete Schalldruckpegel von Bedeutung ist, wenn der Schall sich über porösem oder gemischten, überwiegend porösem Boden ausbreitet und wenn der Schall kein reiner Ton ist. Die Bodendämpfung kann dann für beliebig geformte Bodenoberflächen unter der Verwendung der in der DIN ISO 9613-2 aufgeführten Formel, Abschnitt 7.3.2 berechnet werden.

Das Berechnungsprogramm verwendet die sogenannte "worst case" - Annahme, d.h. die Dämpfungen des Schalls durch Bewuchs und Bebauung (Amisc) und durch Abschirmung (Abar) werden vernachlässigt bzw. gleich 0 gesetzt. Weitere Dämpfungsparameter die in die Gleichung mit einfließen, sind die Dämpfung aufgrund der geometrischen Ausbreitung (Adiv) und die Dämpfung aufgrund der Luftabsorption (Aatm). Auch deren Formeln sind in der DIN ISO 9613-2 detailliert aufgeführt. Das Prognosemodell DIN ISO 9613-2 berechnet zunächst den Schalldruckpegel, der am Immissionsort unter Mitwindbedingungen herrscht. Wenn eine Schallquelle unter Mitwindbedingungen einwirkt, sind besonders gute Ausbreitungsbedingungen für Geräusche gegeben, denn sie wirkt mit einem höheren Schalldruckpegel ein, als unter Gegenwind. In die novellierte TA-Lärm 1998 wurde eine meteorologische Korrektur eingeführt. Auf diese Weise werden die im Langzeitmittel auftretenden unterschiedlichen Windrichtungen und die dadurch verursachten unter-schiedlichen akustischen Ausbreitungsbedingungen bei der Beurteilung berücksichtigt. Die meteorologische Korrektur bewirkt nach dem in der DIN ISO 9613-2 vorgegebenen Algorithmus erst bei Abständen größer als das 10-fache der Summe aus Schallquellenhöhe und Immissionspunkthöhe eine Dämpfung im Vergleich zur Mitwindrichtung. Daraus können sich durchaus Abstände von 800 m aufwärts ergeben, ab denen die meteorologische Korrektur einen Einfluss auf den Beurteilungspegel hat. Die meteorologische Korrektur (C_{met}) liegt nach DIN ISO 9613-2 bei $C_{0 \text{ day}} = 2,0 \text{ dB}(A)$, $C_{0 \text{ evening}} = 1,0 \text{ dB}(A)$, $C_{0 \text{ night}} = 0,0 \text{ dB}(A)$. In dieser Prognose wird der meteorologische Korrekturfaktor $C_{met} = 0$ gesetzt.

8. Ergebnis

Für die geplanten Windkraftanlagen wurde für achtzehn relevante Immissionspunkte eine Prognose der Schallimmission erstellt.

Aufgrund der verwendeten Schallpegel inkl. Gesamtunsicherheit im Bereich der oberen Vertrauensbereichsgrenze ergeben sich im Ergebnis der Berechnung höhere Werte, als diese i.d.R. von den WKA erzeugt werden.

Vorbelastung

Die nachfolgende Tabelle gibt die Ergebnisse der Berechnung unter den beschriebenen Voraussetzungen für die **Vorbelastung** an:

IP	Bezeichnung	Immissions- richtwert (IWR)	Beurteilungspegel (berechnet)	Abstand IRW- Beurteilungspe- gel
Α	Cond, Nr.8	45	34,2 dB(A)	10,8 dB(A)
В	Cond, Nr. 1	45	34,1 dB(A)	10,9 dB(A)
С	Cond, Nr. 2	45	33,4 dB(A)	11,6 dB(A)
Ď	Cond, Nr. 3	45	33,3 dB(A)	11,7 dB(A)
Е	Cond, Nr. 5a	45	36,4 dB(A)	8,6 dB(A)
F	Cond, Nr. 5	45	36,2 dB(A)	8,8 dB(A)
G	Cond, Nr. 4	45	37,1 dB(A)	7,9 dB(A)
Н	Cond, Nr. 6	45	35,5 dB(A)	9,5 dB(A)
1	Cond, Nr. 7	45	36,2 dB(A)	8,8 dB(A)
J	Wüstenrather Hof, Nr. 1	45	34,1 dB(A)	10,9 dB(A)
K	Kehrig, Bausberger Str. 40	40	29,6 dB(A)	10,4 dB(A)
L	Alzheim, Conder Str. 42	40	29,7 dB(A)	10,3 dB(A)
M	Alzheim, Monrealer Str. 19	40	31,1 dB(A)	8,9 dB(A)
N	Mayen, Am Fichtenwäldchen	45	31,1 dB(A)	13,9 dB(A)
0	Haus Ahlen	45	29,8 dB(A)	15,2 dB(A)
Р	Wüstenrather Hof, Nr. 3	45	33,2 dB(A)	11,8 dB(A)
Q	Wüstenrather Hof, Nr. 4	45	33,3 dB(A)	11,7 dB(A)
R	Cond, Nr. 8a	45	33,9 dB(A)	11,1 dB(A)

Daraus geht hervor, dass die zulässigen Nachtrichtwerte durch die Vorbelastung an keinem Immissionspunkt überschritten werden. (s. Anlage 1).

Zusatzbelastung

Die nachfolgende Tabelle gibt die Ergebnisse der Berechnung unter den beschriebenen Voraussetzungen für die **Zusatzbelastung** an:

IP	Bezeichnung	Immissions-	Beurteilungspegel	Abstand IRW-
		richtwert (IWR)	(berechnet)	Beurteilungspe-
				gel
Α	Cond, Nr.8	45	44,4 dB(A)	0,6 dB(A)
В	Cond, Nr. 1	45	43,7 dB(A)	1,3 dB(A)
С	Cond, Nr. 2	45	42,1 dB(A)	2,9 dB(A)
D	Cond, Nr. 3	45	41,8 dB(A)	3,2 dB(A)
Е	Cond, Nr. 5a	45	42,2 dB(A)	2,8 dB(A)
F	Cond, Nr. 5	45	41,1 dB(A)	3,9 dB(A)
G	Cond, Nr. 4	45	41,8 dB(A)	3,2 dB(A)
Н	Cond, Nr. 6	45	40,0 dB(A)	5,0 dB(A)
I	Cond, Nr. 7	45	40,4 dB(A)	4,6 dB(A)
J	Wüstenrather Hof, Nr. 1	45	37,2 dB(A)	7,8 dB(A)
K	Kehrig, Bausberger Str. 40	40	39,5 dB(A)	0,5 dB(A)
L	Alzheim, Conder Str. 42	40	33,6 dB(A)	6,4 dB(A)
М	Alzheim, Monrealer Str. 19	40	35,5 dB(A)	4,5 dB(A)
N	Mayen, Am Fichtenwäldchen	45	37,8 dB(A)	7,2 dB(A)
0	Haus Ahlen	45	40,2 dB(A)	4,8 dB(A)
Р	Wüstenrather Hof, Nr. 3	45	36,9 dB(A)	8,1 dB(A)
Q	Wüstenrather Hof, Nr. 4	45	37,1 dB(A)	7,9 dB(A)
R	Cond, Nr. 8a	45	43,8 dB(A)	1,2 dB(A)

Daraus geht hervor, dass durch die neu geplante WEA die zulässigen Nachtrichtwerte an keinem Immissionspunkt überschritten werden (s. Anlage 2). An den IP J, N, P und Q liegt der Beurteilungspegel um mehr als 6 db(A) unterhalb des IRW (Irrelevanzgrenze der TA-Lärm)

Gesamtbelastung

Die nachfolgende Tabelle gibt die Ergebnisse der Berechnung unter den beschriebenen Voraussetzungen für die **Gesamtbelastung** (existierende WEA und neue WEA) an:

IP	Bezeichnung	Immissions-	Beurteilungspegel	Abstand IRW-
		richtwert (IWR)	(berechnet)	Beurteilungspe-
				gel
Α	Cond, Nr.8	45	44,8 dB(A)	0,2 dB(A)
В	Cond, Nr. 1	45	44,2 dB(A)	0,8 dB(A)
С	Cond, Nr. 2	45	42,7 dB(A)	2,3 dB(A)
D	Cond, Nr. 3	45	42,4 dB(A)	2,6 dB(A)
Е	Cond, Nr. 5a	45	43,2 dB(A)	1,8 dB(A)
F	Cond, Nr. 5	45	42,3 dB(A)	2,7 dB(A)
G	Cond, Nr. 4	45	43,0 dB(A)	2,0 dB(A)
Н	Cond, Nr. 6	45	41,3 dB(A)	3,7 dB(A)
I	Cond, Nr. 7	45	41,8 dB(A)	3,2 dB(A)
J	Wüstenrather Hof, Nr. 1	45	38,9 dB(A)	6,1 dB(A)
K	Kehrig, Bausberger Str. 40	40	39,9 dB(A)	0,1 dB(A)
L	Alzheim, Conder Str. 42	40	35,1 dB(A)	4,9 dB(A)
М	Alzheim, Monrealer Str. 19	40	36,8 dB(A)	3,2 dB(A)
Ν	Mayen, Am Fichtenwäldchen	45	38,6 dB(A)	6,4 dB(A)
0	Haus Ahlen	45	40,5 dB(A)	4,5 dB(A)
Р	Wüstenrather Hof, Nr. 3	45	38,5 dB(A)	6,5 dB(A)
Q	Wüstenrather Hof, Nr. 4	45	38,6 dB(A)	6,4 dB(A)
R	Cond, Nr. 8a	45	44,2 dB(A)	0,8 dB(A)

Daraus geht hervor, dass durch die neu geplante WEA entstehende Gesamtbelastung die zulässigen Nachtrichtwerte an keinem Immissionspunkt überschritten werden. (s. Anlage 3).

Schallreflexionen

Vereinfachend kann davon ausgegangen werden, dass sich die Lautstärke an einem Aufpunkt durch eine Reflektion an einer Gebäudefläche maximal verdoppelt (+ 3 dB(A)). Daher sind Reflektionen nur an Aufpunkten relevant, an denen ein Beurteilungspegel von mehr als 3 dB(A) unter dem Immissionsrichtwert berechnet wurde.

Schallreflexionen wurden nach eingehenden Prüfungen der Örtlichkeiten nicht berücksichtigt, da an den potentiell betroffenen IPs (IP A bis G, K und R) keine Schallreflexion durch andere Gebäude zu erwarten sind. Reflexionsfähige Gebäude oder Hänge sind in der Nähe der IPs nicht vorhanden. Sofern Nachbargebäudeflächen vorhanden sind, sind

diese zu klein, um Schallreflexionen zu erzeugen. Zudem befindet sich an den IP A, B, C, H und R Baumbewuchs vor den Gebäuden, so dass potentielle Reflexionen erheblich

gedämpft würden.

Einer Genehmigung steht daher aus schalltechnischer Sicht nichts entgegen.

Die detaillierten Ergebnisse der gesamten Berechnungen sind in Anlage 1 bis 3 dargestellt. Dort wird für jeden Immissionspunkt der Schallimmissionsbeitrag der WEA angegeben. Desweiteren sind die Einflussgrößen auf den Beurteilungspegel detailliert dargestellt sowie die mittlere Höhe zwischen WEA und Immissionspunkt angegeben. In der Übersichtskarte sowie den Detailkarten ist dazu jeweils die Schallausbreitung darge-

stellt.

Alzey, den 10.04.2015

TERRAGraphica GmbH A. Stork Dipl.-Geogr.

12

4. Literatur

- BlmSchG vom 15. März 1974 (BGBI. I S. 721) in der Fassung der Bekanntmachung vom 26. September 2002 (BGBI. I S. 3830), das zuletzt durch Artikel 3 des Gesetzes vom 11. August 2010 (BGBI. I S. 1163) geändert worden ist.
- TA-Lärm Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm – TA Lärm) Ausgabe August 1998.
- 3. DIN ISO 9613-2: Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2: Allgemeines Berechnungsverfahren.
- 4. Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen": Schallimmissionsschutz im Genehmigungsverfahren von Windenergieanlagen, Oktober 1999.
- Mielke, Bernd: Räumliche Steuerung von Windenergieanlagen. Institut für Landes- und Stadtentwicklungsforschung des Landes NRW (Hrsg.), ILS-Schriften, 1. Aufl. Heft 100, Dortmund 1995.
- 6. Landesumweltamt NRW (Hrsg.): Sachinformationen zur Geräuschemissionen und –immissionen von Windenergieanlagen.
- Technische Richtlinie für Windenergieanlagen, Teil 1: "Bestimmung der Emissionswerte" Revision 18, Stand: 1.2.2008, Hrsg. Fördergesellschaft für Windenergieanlagen e.V., Kiel.

Anlage 1 Berechnungsergebnisse Vorbelastung

WindPRO version 2.9.285 Sep 2014

Projekt: Cond-Kehrig

09.04.2015 15:52 / 1

izenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung Cond-Kehrig

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:50.000

★ Existierende WEA Schall-Immissionsort

WEA

	UTM (nor	th)-WGS84	Zone	: 32	WEA-T	ур					Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Nenn-	Rotor-	Nabenhöhe	Quelle	Name	Windgeschw.	LWA	Einzel-
								leistung	durchmesser						töne
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
3	371.967	5.572.505	348,6	Vestas V-90	Ja	VESTAS	V90 Mode 0-2.000	2.000	90,0	105,0	USER	Mode 1	(95%)	104,4	0 dB
4	372.366	5.572.927	355,0	Vestas V-90	Ja	VESTAS	V90 Mode 0-2.000	2.000	90.0	105.0	USER	Mode 2	(95%)	102.3	0 dB

Berechnungsergebnisse

Beurteilungspegel

.								
Schall-Immissionsort	UTM (no	rth)-WGS84	Zone:	32	Anforderungen	Beurteilu	ngspegel	Anforderungen erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von	Distanz	Schall
en e e						WEA	zum	
A STATE OF THE STA							Richtwert	
			[m]	[m]	[dB(A)]	[dB(A)]	[m]	
A IP A Cond, Nr. 8	371.651	5.573.441	380,0	5,0	45,0	34,2	592	Ja
B IP B Cond, Nr. 1	371.548	5.573.361	378,5	5,0	45,0	34,1	584	Ja
C IP C Cond, Nr. 2	371.475	5.573.383	379,0	5,0	45,0	33,4	642	Ja
D IP D Cond, Nr. 3	371.441	5.573.353	376,8	5,0	45,0	33,3	636	Ja
E IP E Cond, Nr. 5a	371.381	5.572.915	379,7	5,0	45,0	36,4	365	Ja
F IP F Cond, Nr. 5	371.327	5.572.841	379,9	5,0	45,0	36,2	375	Ja
G IP G Cond, Nr. 4	371.375	5.572.810	378,9	5,0	45,0	37,1	318	Ja
H IP H Cond, Nr. 6	371.263	5.572.807	380,0	5,0	45,0	35,5	420	Ja
I IP I Cond, Nr. 7	371.296	5.572.768	379,0	5,0	45,0	36,2	374	Ja
J IP J Wüstenrather Hof, Nr. 1	371.163	5.572.279	345,3	5,0	45,0	34,1	495	Ja
K IP K Kehrig, Bausberger Str. 40	372.853	5.571.508	362,1	5,0	40,0	29,6	777	Ja
L IP L Alzheim, Conder Str. 42	373.191	5.573.641	313,6	5,0	40,0	29,7	638	Ja
M IP M Alzheim, Monrealer Str. 19	372.757	5.573.825	314,4	5,0	40,0	31,1	529	Ja
N IP N Mayen, Am Fichtenwäldchen	372.150	5.573.938	353,6	5,0	45,0	31,1	766	Ja
O IP O Haus Ahlen	372.004	5.571.432	320,2	5,0	45,0	29,8	741	Ja
P IP P Wüstenrather Hof, Nr. 3	371.210	5.572.025	322,0	5,0	45,0	33,2	560	Ja
Q IP Q Wüstenrather Hof Nr. 4	371.226	5.572.016	321,0	5,0	45,0	33,3	552	Ja
R IP R Cond, Nr. 8a	371.633	5.573.457	380,0	5,0	45,0	33,9	616	Ja

Abstände (m)

WEA								
Schall-Immissionsort	3	4						
Α	988	881						
В	953	926						
C	1006	1001						
D	998	1018						

Fortsetzuna nächste Seite)

WindPRO version 2.9.285 Sep 2014

Projekt: Cond-Kehrig

Ausdruck/Seite 09.04.2015 15:52 / 2

Lizenzierter Anwender:
TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey

+49 (0) 157714077198
Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung Cond-Kehrig

...(Fortsetzung von letzter Seite)

	WEA	
Schall-Immissionsort	3	4
E	715	985
F	723	1043
G	666	998
Н	766	1110
1	721	1082
J	835	1366
K	1334	1500
L	1670	1091
M	1538	979
N	1445	1034
0	1074	1538
Р	896	1466
Q	888	1459
R	1009	905

Projekt: Cond-Kehrig

09.04.2015 15:53 / 1

Lizenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

Cmet

09.04.2015 15:45/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist <math>Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A IP A Cond, Nr. 8

	VEA				Lautester '								
L	Vr. Abstanc	d Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	
	[m]	[m]	[m]		[dB(A)]								

[dB] [dB] [dB] 988 3 990 46,3 Ja 31,43 104,4 3,01 70,91 1,88 3,18 0,00 0,00 75,98 0,00 881 884 54,5 Ja 31,04 102,3 3,00 69,93 1,68 2,66 0,00 0,00 74,27 0.00

Summe 34,25

Schall-Immissionsort: B IP B Cond, Nr. 1

WEA Lautester Wert bis 95% Nennleistung

	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]									
į	3	953	956	45,1	Ja	31,82	104,4	3,01	70,61	1,82	3,17	0,00	0,00	75,59	0,00
	4	926	929	52,3	Ja	30,33	102,3	3,01	70,36	1,77	2,85	0,00	0,00	74,98	0,00

Summe 34,15

Schall-Immissionsort: C IP C Cond. Nr. 2

WEA Lautester Wert bis 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]									
3	1.006	1.009	45,0	Ja	31,16	104,4	3,01	71,08	1,92	3,26	0,00	0,00	76,25	0,00
4	1.001	1.004	51,7	Ja	29,35	102.3	3.01	71.03	1.91	3.02	0.00	0.00	75.96	0.00

Summe 33,36

Schall-Immissionsort: D IP D Cond, Nr. 3

WEA Lautester Wert bis 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	998	1.000	44,2	Ja	31,23	104,4	3,01	71,00	1,90	3,27	0,00	0,00	76,18	0,00
4	1.018	1.021	50,6	Ja	29,09	102,3	3,01	71,18	1,94	3,09	0,00	0,00	76,21	0,00

Summe 33,30

Schall-Immissionsort: E IP E Cond, Nr. 5a

WE	A.	Lauteste	er Wert bis 95% Nennle	istung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	715	718	47,4	Ja	35,41	104,4	3,00	68,13	1,36	2,50	0,00	0,00	72,00	0,00
4	985	988	52,7	Ja	29,58	102,3	3,01	70,89	1,88	2,95	0,00	0,00	75,73	0,00

Summe 36,42

Projekt: Cond-Kehrig

09.04.2015 15:53 / 2

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: F IP F Cond, Nr. 5

W-200					_									
WE					Lautester \	Wert bis	95% N	Vennlei	stuna					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Aar	Abar	Amisc	Δ	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
(726	,0	Ja		104,4	3,00	68,22	1,38	2,50	0.00	0,00		
4	1.043	1.045	52,5	Ja	28,87	102,3	3,01	71,38	1,99	3,06	0,00	0,00	76,43	

Summe 36,19

Schall-Immissionsort: G IP G Cond, Nr. 4

	WE					Lautester \	Wert bis	95% N	Vennlei	stuna					
١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]		[dB]	[dB]	[dB]
	3	666	670	48,1	Ja		104,4	3.00	67.52	1.27	2 29				
	4	998	1.001	52,9	Ja	29,43	102,3							75,88	
ı										.,	_,0,	0,00	0,00	70,00	0,00

Summe 37,13

Schall-Immissionsort: H IP H Cond, Nr. 6

	WE					Lautester \	Wert bis	95% N	lennlei	etuna					
Į	Nr.	Abstand		Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv			Abar	Amisc	Α	Cmet
l	_	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
	3	766	769	48,1	Ja	34,60	104,4	3,00	68,72	1,46	2,63	0.00	0.00	72.81	0.00
	4	1.110	1.112	52,2	Ja	28,09	102,3	3,01	71,92	2,11	3,18	0,00		77,21	(Table 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
ĺ	Sur	nme 3	5,47												

Schall-Immissionsort: I IP I Cond, Nr. 7

	WE					Lautester 1	Wert bis	95% N	lennlei	stuna					
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc .	Adiv	Aatm	Aar	Abar	Amisc	Δ	Cmet
١		fuil	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
١	3	721	724	48,6	Ja								0,00		
ı	4	1.082	1.084	52,6	Ja	28,42	102,3	3,01	71,70	2,06	3,12	0,00	0,00	76,89	0.00
ı	_												2		-,

Summe 36,17

Schall-Immissionsort: J IP J Wüstenrather Hof, Nr. 1

WE	7				Lautester 1	Wert bis	95%	Vennlei	istuna					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc .	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	835	841	47,4	Ja		104,4	3,00	69,50	1,60	2.85	0.00	0,00		
4	1.366	1.371	45,8	Ja	25,31	102,3	3,01	73,74	2,60	3,65	0,00	0,00	79,99	0,00
														175020000000

Summe 34,08

Schall-Immissionsort: K IP K Kehrig, Bausberger Str. 40

WE	_				Lautester \	Wert bis	95%	Vennlei	stuna					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	fuil	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]		[dB]
3	1.334	1.337	00,0	Ja	28,04							0,00		
4	1.500	1.503	59,1	Ja	24,47	102,3	3,01	74,54	2,86	3,45	0,00	0,00	80,84	0,00

Summe 29,62

Schall-Immissionsort: L IP L Alzheim, Conder Str. 42

Name of the last				,										
WE					Lautester 1	Wert bis	95% N	Vennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	1.670	1.675	41,1	Ja								0,00		
4	1.091	1.100	47,4	Ja	28,07	102,3	3,01	71,83	2,09	3,31	0.00	0,00	77.23	0.00
Sur	nme 2	9 74								15.	25/	,	,	-,

Projekt: Cond-Kehrig

09.04.2015 15:53 / 3

Lizenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: M IP M Alzheim, Monrealer Str. 19

WEA

Lautester Wert bis 95% Nennleistung
Nr. Abstand Schallwag Mittlere Höhe Sichthar Resonant LWA Do Adiv Astro

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [dB(A)][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] 1.538 1 544 3 41.6 25,83 104,4 3,01 74,77 2,93 3,87 0,00 0,00 81,58 0,00 979 989 51,0 29.50 102,3 3,01 70,91 1,88 3,01 0,00 0.00 75.80 0.00

Summe 31,05

Schall-Immissionsort: N IP N Mayen, Am Fichtenwäldchen

WEA Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Cmet [m] [m] $[\mathsf{dB}(\mathsf{A})] \quad [\mathsf{dB}(\mathsf{A})] \quad [\mathsf{dB}] \quad [\mathsf{dB}] \quad [\mathsf{dB}] \quad [\mathsf{dB}] \quad [\mathsf{dB}] \quad [\mathsf{dB}]$ [m] [dB] [dB] 1.445 1.448 47,8 26,78 Ja 104,4 3,01 74,21 2,75 3,66 0,00 0,00 80,63 0.00 1.034 1.039 59,2 Ja 29.17 102,3 3,01 71,33 1,97 2,83 0,00 0,00 76,13

Summe 31,15

Schall-Immissionsort: O IP O Haus Ahlen

WEA Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [dB] [m] [m] [dB(A)] [dB(A)] [dB][dB] [dB] [dB] [dB] [dB] [dB] 46,8 1.074 1.081 3 Nein 28,87 104,4 3,01 71,68 2,05 4,80 0,00 0,00 78,53 0,00 1.538 1.544 44,1 Nein 22,80 102,3 3,01 74,77 2,93 4,80 0,00 0.00 82.51

Summe 29,83

Schall-Immissionsort: P IP P Wüstenrather Hof, Nr. 3

WEA Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Cmet [m] [m] [dB(A)] [dB(A)] [dB][m] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 896 905 104,4 3,00 70,13 1,72 2,93 0,00 .la 32.62 0,00 74,79 0,00 1.466 1.472 44.9 Ja 24,40 102,3 3,01 74,36 2,80 3,75 0,00 0,00 80,91

Summe 33,23

Schall-Immissionsort: Q IP Q Wüstenrather Hof Nr. 4

NEA Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB][dB] [dB] [dB] [dB] 897 3 888 48.4 32,72 104,4 3,00 70,05 1,70 2,93 0,00 0,00 74,69 0.00 1.459 1.465 44.5 24,45 102,3 3,01 74,32 2,78 3,75 0,00 0.00 80.86 0.00

Summe 33.32

Schall-Immissionsort: R IP R Cond, Nr. 8a

WEA Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)][dB(A)] [dB][m][m] [m] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.009 3 1.011 46,0 Ja 31.16 104,4 3,01 71,10 1,92 3,23 0,00 0,00 76,24 0.00 905 908 54.1 Ja 30.69 102,3 3,00 70,16 1,72 2,73 0,00 0,00 74,61 0,00

Summe 33,94

09.04.2015 15:53 / 1

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Vorbelastung Cond-Kehrig

Schallberechnungs-Modell:

ISO 9613-2 Deutschland

Windgeschwindigkeit:

Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Alternatives Verf.

Meteorlogischer Koeffizient, C0:

0,0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Einzelton- und Impulszuschläge werden zu Schallwerten addiert

Aufpunkthöhe ü.Gr.:

5,0 m Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Keine Oktavbanddaten verwendet

Luftdämpfung: 1,9 dB/km

WEA: VESTAS V90 Mode 0 2000 90.0 !O!

Schall: Mode 1

Quelle Quelle/Datum Quelle Bearbeitet vestas 21.03.2013 USER 21.03.2013 10:11

Status

Nabenhöhe

Windgeschw.

LWA Einzel- töne

[m/s]105,0 95% der Nennleistung

[dB(A)]

Von WEA-Katalog

Nein

WEA: VESTAS V90 Mode 0 2000 90.0 !O!

Schall: Mode 2

vestas 21.03.2013

Quelle Quelle/Datum Quelle Bearbeitet USER 21.03.2013 10:11

Status

Nabenhöhe Windgeschw. LWA Einzel- töne

[m/s]

[dB(A)]

Von WEA-Katalog

105,0 95% der Nennleistung

102.3 Nein

Schall-Immissionsort: IP A Cond, Nr. 8-A Vordefinierter Berechnungsstandard: Außenbereich

[m]

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP B Cond, Nr. 1-B Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP C Cond. Nr. 2-C Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Projekt:

Cond-Kehrig

09.04.2015 15:53 / 2

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Vorbelastung Cond-Kehrig

Schall-Immissionsort: IP D Cond, Nr. 3-D
Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP E Cond, Nr. 5a-E Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP F Cond, Nr. 5-F Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP G Cond, Nr. 4-G Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP H Cond, Nr. 6-H Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP I Cond, Nr. 7-I
Vordefinierter Berechnungsstandard: Außenbereich
Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP J Wüstenrather Hof, Nr. 1-J Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP K Kehrig, Bausberger Str. 40-K Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP L Alzheim, Conder Str. 42-L Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

09.04.2015 15:53 / 3

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Vorbelastung Cond-Kehrig

Schall-Immissionsort: IP M Alzheim, Monrealer Str. 19-M Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP N Mayen, Am Fichtenwäldchen-N Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP O Haus Ahlen-O Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP P Wüstenrather Hof, Nr. 3-P Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP Q Wüstenrather Hof Nr. 4-Q Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP R Cond, Nr. 8a-R Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

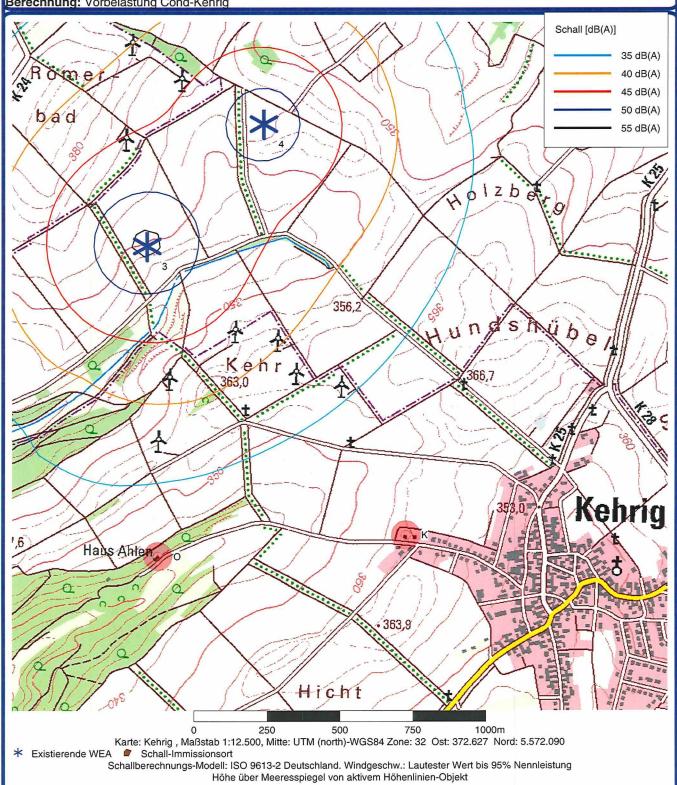
Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

Schall-Immissionsort

Existierende WEA

09.04.2015 16:38 / 1

TERRAGraphica GmbH


Spießgasse 59 DE-55232 Alzev +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

09.04.2015 15:45/2.9.285

DECIBEL - Karte Lautester Wert bis 95% Nennleistung

Berechnung: Vorbelastung Cond-Kehrig

250

Karte: Kehrig , Maßstab 1:12.500, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 372.852 Nord: 5.573.150

★ Existierende WEA Schall-Immissionsort

500

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

750

1000m

Anlage 2 Berechnungsergebnisse Zusatzbelastung

WindPRO version 2.9.285 Sep 2014

Cond-Kehrig

10.04.2015 10:21 / 1

Lizenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung Cond-Kehrig

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1:50.000 Schall-Immissionsort

WEA

	UTM (nor	rth)-WGS84	Zone	: 32	WEA-T	ур					Schally	verte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Nenn-	Rotor-	Nabenhöhe			Windgeschw.	LWA	Einzel-
								leistung	durchmesser				3		töne
			[m]	- Particular and the same				[kW]	[m]	[m]			[m/s]	[dB(A)]	
				WKA 1 Cond		GE WIND ENERGY			120,0	139,0	USER	Volllast	(95%)	108.3	0 dB
2	372.287	5.572.078	358,8	WKA 2 Kehrig	Ja	GE WIND ENERGY	GE 2.75-120-2.750	2.750	120,0	139,0	USER	Volllast	(95%)	108,3	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-Immiss		UTM (no	rth)-WGS84	Zone:	32	Anforderungen	Beurteilu	ngspegel	Anforderungen	erfüllt?
Nr. Na	ame	Ost	Nord	Z	Aufpunkthöhe		Von	Distanz	Schall	orra
,							WEA	zum		
05X								Richtwert		
				[m]	[m]	[dB(A)]	[dB(A)]	[m]		
	A Cond, Nr. 8		5.573.441	380,0	5,0	45,0	44,4	25	Ja	
	B Cond, Nr. 1	371.548	5.573.361	378,5	5,0	45,0	43,7	54	Ja	
	C Cond, Nr. 2	371.475	5.573.383	379,0	5,0	45,0	42,1	127		
	D Cond, Nr. 3	371.441	5.573.353	376,8	5,0			142		
	P E Cond, Nr. 5a	371.381	5.572.915	379,7			0.000	127	1,6,50	
FIP	F Cond, Nr. 5	371.327	5.572.841	379,9				194		
	G Cond, Nr. 4	371.375	5.572.810	378,9				156		
	H Cond, Nr. 6	371.263	5.572.807	380,0			100 000	265		
I IP	PI Cond, Nr. 7	371.296	5.572.768	379,0				244		
J IP	J Wüstenrather Hof, Nr. 1		5.572.279					595		
K IP	K Kehrig, Bausberger Str. 40		5.571.508	,	5,0		39,5	33		
	L Alzheim, Conder Str. 42		5.573.641				33,6	540		
M IP	M Alzheim, Monrealer Str. 19		5.573.825				35,5	336		
	N Mayen, Am Fichtenwäldchen		5.573.938				37,8	428		
	O Haus Ahlen		5.571.432		5,0		40,2	205		
	P Wüstenrather Hof, Nr. 3		5.572.025		5,0		36,9	560	100.00	
	Q Wüstenrather Hof Nr. 4		5.572.016		5,0		37,1	546		
	R Cond, Nr. 8a		5.573.457		5,0		43,8	49	Ja Ja	

Abstände (m)

	WEA	
Schall-Immissionsort	2	1
Α	1504	531
В	1481	556
С	1537	629
D	1530	643

WindPRO version 2.9.285 Sep 2014

Projekt: Cond-Kehrig

10.04.2015 10:21 / 2

Lizenzierter Anwender:
TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey

+49 (0) 157714077198 Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung Cond-Kehrig

...(Fortsetzung von letzter Seite)

	WEA	
Schall-Immissionsort	2	1
E	1233	637
F	1226	708
G	1169	672
H	1257	779
1	1208	761
J	1142	1138
K	803	1755
L	1806	1327
M	1809	1083
N	1865	905
0	705	1613
Р	1078	1293
Q	1063	1291
R	1526	555

10.04.2015 10:21 / 1

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

Cmet

10.04.2015 09:57/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Agr: Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A IP A Cond, Nr. 8

WEA Lautester Wert bis 95% Nennielstung															
١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
١	1	531	545	69,5	Ja	44,21	108,3	2,99	65,73	1,04	0,32	0,00	0,00	67,08	0,00
١	2	1.504	1.508	78.3	Ja	30.86	108.3	3.01	74.57	2.87	3.01	0.00	0.00	80.45	0.00

Summe 44,40

Schall-Immissionsort: B IP B Cond, Nr. 1

ı	WE	A				Lautester \	Wert bis	95% ľ	Nennle	istung				
١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]

[dB] 108,3 2,99 66,10 1,08 0,65 0,00 0,00 556 0,00 67,83 569 67.4 43,46 Ja 1.481 1.485 76,6 31,03 108,3 3,01 74,43 2,82 3,03 0,00 0,00 80,28 0.00

Summe 43.70

Schall-Immissionsort: C IP C Cond, Nr. 2

WEA Lautester Wert bis 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	629	640	67,5	Ja	41,83	108,3	3,00	67,13	1,22	1,12	0,00	0,00	69,47	0,00
2	1.537	1.541	76,2	Ja	30,52	108,3	3,01	74,76	2,93	3,10	0,00	0,00	80,79	0,00

Summe 42,14

Schall-Immissionsort: D IP D Cond, Nr. 3

WEA Lautester Wert bis 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	643	655	66,5	Ja	41,48	108,3	3,00	67,32	1,24	1,25	0,00	0,00	69,82	0,00
2	1.530	1.535	75,3	Ja	30,56	108,3	3,01	74,72	2,92	3,11	0,00	0,00	80,75	0,00

Summe 41.82

Schall-Immissionsort: E IP E Cond, Nr. 5a

WE	4				Lautester	Wert bis	95% N	lenniei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	637	649	66,5	Ja	41,60	108,3	3,00	67,24	1,23	1,22	0,00	0,00	69,70	0,00
2	1.233	1.239	80,7	Ja	33,54	108,3	3,01	72,86	2,35	2,55	0,00	0,00	77,76	0,00

Summe 42,23

10.04.2015 10:21 / 2

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort:	F	IΡ	F	Cond,	Nr.	5	Ó
-----------------------	---	----	---	-------	-----	---	---

WE	Α			Lautester V	Vert bis	95% N	Vennlei	stuna	
Nr	Ahetand	Schallwon	Mittlere Höbe			D.		A - 1	,

INT.	Abstand	Schallweg	Mittlere Hohe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	708	718	66,6	Ja	40,23							0,00		
2	1.226	1.231	81,4	Ja	33,64	108,3	3,01	72,81	2,34	2,52	0,00	0,00	77,67	0,00

Summe 41,09

Schall-Immissionsort: G IP G Cond, Nr. 4

ester Wert bis 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]			[dB(A)]								
1	672	683	66,5	Ja	40,90							0,00		
2	1.169	1.175	81,9	Ja	34,28									0.00

Summe 41,76

Schall-Immissionsort: H IP H Cond, Nr. 6

WEA Lautester Wert bis 95% Nennle	eistung
-----------------------------------	---------

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]									
1	779	789	66,6	Ja	39,00							0,00		
2	1.257	1.262	81,8	Ja	33,32	108,3	3,01	73,02	2,40	2,57	0,00	0,00	77,99	0,00

Summe 40,04

Schall-Immissionsort: I IP I Cond, Nr. 7

WEA Lautester Wert bis 95% Nennleistung

Ni	 Abstar 	d Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]			[dB(A)]								
	1 7	31 771	66,6	Ja	39,30							0,00		
	2 1.2	08 1.213	82,4	Ja	33,87							0,00		

Summe 40,39

Schall-Immissionsort: J IP J Wüstenrather Hof, Nr. 1

WEA Lautester Wert bis 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]											
1	1.138	1.149	60,2	Ja	33,93							0,00		
2	1.142	1.151	80,1	Ja	34,50							0,00		

Summe 37,23

Schall-Immissionsort: K IP K Kehrig, Bausberger Str. 40

147 m A	
WEA	Lautester Wert bis 95% Nennleistung
	Lautestei Weit Dis 33 /6 Neillileistullu

١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
١		[m]	[m]	[m]		[dB(A)]									
	1	1.755	1.761	83,0	Ja								0,00		
١	2	803	814	78,0	Ja	39,07	108,3	3,00	69,21	1,55	1,47	0,00	0,00	72,23	0,00

Summe 39,47

Schall-Immissionsort: L IP L Alzheim, Conder Str. 42

WEA	Lautester Wert his 95% Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]									
1	1.327	1.341	67,7	Ja	32,15							0,00		
2	1.806	1.814	65.7	Ja	28.13							0.00		

Summe 33,60

10.04.2015 10:21 / 3

Lizenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zusatzbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: M IP M Alzheim, Monrealer Str. 19

Lautester Wert bis 95% Nennleistung Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr [m] [m]

[m] [dB(A)][dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1 083 1 099 64.7 Ja 34,63 108,3 3,01 71,82 2,09 2,77 0,00 0,00 76,68 0,00 1.809 1.818 65,0 108,3 3,01 76,19 3,45 3,57 0,00 Ja 28.09 0.00 83.22 0.00

35,50 Summe

Schall-Immissionsort: N IP N Mayen, Am Fichtenwäldchen

Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)] [dB(A)] [dB][dB] [m] [dB] [dB] [dB] [dB] [dB] [dB] 917 905 73,4 108,3 3,00 70,24 1,74 2,02 0,00 Ja 37.29 0,00 74,01 0,00 1.865 1.870 77,3 27.94 Ja 108,3 3,01 76,44 3,55 3,38 0,00 0,00 83,37

Summe 37,77

Schall-Immissionsort: O IP O Haus Ahlen

Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m][m] [dB(A)] [dB(A)] [dB][dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.613 1.623 67.6 Nein 28,22 108,3 3,01 75,21 3,08 4,80 0,00 0.00 83.09 0.00 2 705 726 62,0 39,87 108,3 3,00 68,22 1,38 1,83 0,00 Ja 0,00 71,43

40.16 Summe

Schall-Immissionsort: P IP P Wüstenrather Hof, Nr. 3

Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Cmet [m] [m] [m][dB(A)] [dB(A)] [dB][dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.293 1.306 73,32 Ja 32.25 108,3 3,01 2,48 3,26 0,00 0,00 79,05 0,00 1.078 2 1.092 77.9 Ja 35,13 108,3 3,01 71,76 2,07 2,33 0,00

Summe 36,94

Schall-Immissionsort: Q IP Q Wüstenrather Hof Nr. 4

Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.291 1 303 58,3 Ja 32,27 108,3 3,01 73,30 2,48 3,26 0,00 0,00 79,03 0.00 1.063 1.077 77,2 35,30 108,3 3,01 71,64 2,05 2,32 0,00 0.00 76.01 0.00

Summe 37,05

Schall-Immissionsort: R IP R Cond, Nr. 8a

Lautester Wert bis 95% Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc Cmet [m] [m] [m][dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 555 568 69,3 Ja 43,60 108,3 2,99 66,09 1.08 0.52 0.00 0,00 67,69 0,00 1.526 1.530 77.8 Ja 30,65 108,3 3,01 74,70 2,91 3,05 0,00 0,00 80,65 0,00

Summe 43,81

10.04.2015 10:21 / 1

Lizenzierter Anwender:

TERRAGraphica GmbH Spießgasse 59

DE-55232 Alzev +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Zusatzbelastung Cond-Kehrig

Schallberechnungs-Modell:

ISO 9613-2 Deutschland

Windgeschwindigkeit:

Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Alternatives Verf.

Meteorlogischer Koeffizient, C0:

0.0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung: Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Einzelton- und Impulszuschläge werden zu Schallwerten addiert

Aufpunkthöhe ü.Gr.:

5,0 m Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Keine Oktavbanddaten verwendet

Luftdämpfung: 1,9 dB/km

WEA: GE WIND ENERGY GE 2.75-120 2750 120.0 !O!

Schall: Volllast

Quelle Quelle/Datum Quelle Bearbeitet

18.02.2015 USER 10.04.2015 09:51

Status Windgeschw. LWA Einzel-töne

[dB(A)] [m/s]

Von WEA-Katalog 95% der Nennleistung 108.3 Nein

Schall-Immissionsort: IP A Cond, Nr. 8-A Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP B Cond, Nr. 1-B Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP C Cond, Nr. 2-C Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP D Cond. Nr. 3-D Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP E Cond, Nr. 5a-E Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

10.04.2015 10:21 / 2

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Zusatzbelastung Cond-Kehrig

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP F Cond, Nr. 5-F Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP G Cond, Nr. 4-G
Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP H Cond, Nr. 6-H Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP I Cond, Nr. 7-I Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP J Wüstenrather Hof, Nr. 1-J Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP K Kehrig, Bausberger Str. 40-K Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP L Alzheim, Conder Str. 42-L Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP M Alzheim, Monrealer Str. 19-M Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP N Mayen, Am Fichtenwäldchen-N Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Projekt:

Cond-Kehrig

10.04.2015 10:21 / 3

izenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Zusatzbelastung Cond-Kehrig

Schall-Immissionsort: IP O Haus Ahlen-O Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP P Wüstenrather Hof, Nr. 3-P Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP Q Wüstenrather Hof Nr. 4-Q Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP R Cond, Nr. 8a-R Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Schall-Immissionsort

Neue WEA

250

500

Karte: Kehrig , Maßstab 1:25.000, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 372.087 Nord: 5.572.470

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

750

1000m

250

500

Karte: Kehrig , Maßstab 1:12.500, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 371.622 Nord: 5.572.730

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

750

1000m

Hardt

Schall-Immissionsort

Neue WEA

10.04.2015 10:24 / 1

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:57/2.9.285

DECIBEL - Karte Lautester Wert bis 95% Nennleistung Berechnung: Zusatzbelastung Cond-Kehrig Schall [dB(A)] 35 40 45 50 bad 55 Holzba Haus Ahlen 363,9 1000m 250 750

Neue WEA

Karte: Kehrig , Maßstab 1:12.500, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 372.627 Nord: 5.572.090 Schall-Immissionsort

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

WindPRO version 2.9.285 Sep 2014 10.04.2015 10:24 / 1 Cond-Kehrig TERRAGraphica GmbH Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198 Terragraphica GmbH / schmitz@terragraphica.de 10.04.2015 09:57/2.9.285 **DECIBEL - Karte Lautester Wert bis 95% Nennleistung** Berechnung: Zusatzbelastung Cond-Kehrig Schall [dB(A)] Oligs-35 40 acker 45 AM FICHTENWÄLDCHEN 50 55 ichten-Berresheim ien

Anlage 3 Berechnungsergebnisse Gesamtbelastung

10.04.2015 10:25 / 1

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung Cond-Kehrig

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:50.000 ★ Existierende WEA

Neue WEA > Schall-Immissionsort

WEA

	UTM (nor	rth)-WGS84	Zone	: 32	WEA-T	ур					Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Nenn-	Rotor-	Nabenhöhe	Quelle	Name	Windgeschw.	LWA	Einzel-
								leistung	durchmesser						töne
			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
1	372.005	5.573.045	367,3	WKA 1 Cond	Ja	GE WIND ENERGY	GE 2.75-120-2.750	2.750	120,0	139,0	USER	Volllast	(95%)	108,3	0 dB
2	372.287	5.572.078	358,8	WKA 2 Kehrig	Ja	GE WIND ENERGY	GE 2.75-120-2.750	2.750	120,0	139,0	USER	Volllast	(95%)	108,3	0 dB
3	371.967	5.572.505	348,6	Vestas V-90	Ja	VESTAS	V90 Mode 0-2.000	2.000	90,0	105,0	USER	Mode 1	(95%)	104,4	0 dB
4	372.366	5.572.927	355,0	Vestas V-90	Ja	VESTAS	V90 Mode 0-2.000	2.000	90,0	105,0	USER	Mode 2	(95%)	102,3	0 dB

Berechnungsergebnisse

Beurteilungspegel

Deditellaligspeger								
Schall-Immissionsort	UTM (no	rth)-WGS84	Zone:	32	Anforderungen	Beurteilu	ngspegel	Anforderungen erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von	Distanz	Schall
100						WEA	zum	
							Richtwert	
proper y de mines a			[m]	[m]	[dB(A)]	[dB(A)]	[m]	
A IP A Cond, Nr. 8	371.651	5.573.441	380,0			44,8	10	
B IP B Cond, Nr. 1	371.548	5.573.361	378,5	5,0	45,0	44,2	37	Ja
C IP C Cond, Nr. 2	371.475	5.573.383	379,0				110	
D IP D Cond, Nr. 3	371.441	5.573.353	376,8				125	Ja
E IP E Cond, Nr. 5a	371.381	5.572.915	379,7			43,2	91	Ja
F IP F Cond, Nr. 5	371.327	5.572.841	379,9	5,0	45,0	42,3	151	Ja
G IP G Cond, Nr. 4	371.375	5.572.810	378,9			43,0	107	
H IP H Cond, Nr. 6	371.263	5.572.807	380,0	5,0	45,0	41,3	218	Ja
I IP I Cond, Nr. 7	371.296	5.572.768	379,0	5,0	45,0	41,8	191	Ja
J IP J Wüstenrather Hof, Nr. 1	371.163	5.572.279	345,3	5,0	45,0	38,9	398	Ja
K IP K Kehrig, Bausberger Str. 40		5.571.508		5,0			7	Ja
L IP L Alzheim, Conder Str. 42	373.191	5.573.641	313,6				413	
M IP M Alzheim, Monrealer Str. 19	372.757	5.573.825	314,4	5,0	40,0	36,8	250	Ja
N IP N Mayen, Am Fichtenwäldchen	372.150	5.573.938	353,6				410	
O IP O Haus Ahlen		5.571.432					192	
P IP P Wüstenrather Hof, Nr. 3	371.210	5.572.025	322,0	0.00			443	
Q IP Q Wüstenrather Hof Nr. 4		5.572.016					432	
R IP R Cond, Nr. 8a	371.633	5.573.457	380,0	5,0	45,0	44,2	34	Ja

Ausdruck/Seite 10.04.2015 10:25 / 2

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung Cond-Kehrig

Abstände (m)

	WEA			
Schall-Immissionsort	2	1	3	4
Α	1504	531	988	881
В	1481	556	953	926
C	1537	629	1006	1001
D	1530	643	998	1018
E	1233	637	715	985
F	1226	708	723	1043
G	1169	672	666	998
H	1257	779	766	1110
1	1208	761	721	1082
J	1142	1138	835	1366
K	803	1755	1334	1500
L	1806	1327	1670	1091
M	1809	1083	1538	979
N	1865	905	1445	1034
0	705	1613	1074	1538
Р	1078	1293	896	1466
Q	1063	1291	888	1459
R	1526	555	1009	905

10.04.2015 10:25 / 1

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Agr: Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A IP A Cond, Nr. 8

Ì	WE	A				Lautester '	Wert bis	95% N	lennlei	stung					
l	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Ì	1	531	545	69,5	Ja	44,21	108,3	2,99	65,73	1,04	0,32	0,00	0,00	67,08	0,00
I	2	1.504	1.508	78,3	Ja	30,86	108,3	3,01	74,57	2,87	3,01	0,00	0,00	80,45	0,00
ŀ	3	988	990	46,3	Ja	31,43	104,4	3,01	70,91	1,88	3,18	0,00	0,00	75,98	0,00
١	4	881	884	54,5	Ja	31,04	102,3	3,00	69,93	1,68	2,66	0,00	0,00	74,27	0,00
Ì															
I	Sur	nme 4	4,80												

Schall-Immissionsort: B IP B Cond, Nr. 1

WE	4				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	556	569	67,4	Ja	43,46	108,3	2,99	66,10	1,08	0,65	0,00	0,00	67,83	0,00
2	1.481	1.485	76,6	Ja	31,03	108,3	3,01	74,43	2,82	3,03	0,00	0,00	80,28	0,00
3	953	956	45,1	Ja	31,82	104,4	3,01	70,61	1,82	3,17	0,00	0,00	75,59	0,00
4	926	929	52,3	Ja	30,33	102,3	3,01	70,36	1,77	2,85	0,00	0,00	74,98	0,00

Summe 44,16

Summe

42,68

Schall-Immissionsort: C IP C Cond, Nr. 2

WE	4				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	629	640	67,5	Ja	41,83	108,3	3,00	67,13	1,22	1,12	0,00	0,00	69,47	0,00
2	1.537	1.541	76,2	Ja	30,52	108,3	3,01	74,76	2,93	3,10	0,00	0,00	80,79	0,00
3	1.006	1.009	45,0	Ja	31,16	104,4	3,01	71,08	1,92	3,26	0,00	0,00	76,25	0,00
4	1.001	1.004	51,7	Ja	29,35	102,3	3,01	71,03	1,91	3,02	0,00	0,00	75,96	0,00

Schall-Immissionsort: D IP D Cond, Nr. 3

WEA	4				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	643	655	66,5	Ja	41,48	108,3	3,00	67,32	1,24	1,25	0,00	0,00	69,82	0,00
2	1.530	1.535	75,3	Ja	30,56	108,3	3,01	74,72	2,92	3,11	0,00	0,00	80,75	0,00
3	998	1.000	44,2	Ja	31,23	104,4	3,01	71,00	1,90	3,27	0,00	0,00	76,18	0,00
4	1.018	1.021	50,6	Ja	29,09	102,3	3,01	71,18	1,94	3,09	0,00	0,00	76,21	0,00

Summe 42,39

10.04.2015 10:25 / 2

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: E IP E Cond, Nr. 5a

WE	4				Lautester \	Nert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	637	649	66,5	Ja	41,60	108,3	3,00	67,24	1,23	1,22	0,00	0,00	69,70	0,00
2	1.233	1.239	80,7	Ja	33,54	108,3	3,01	72,86	2,35	2,55	0,00	0,00	77,76	0,00
3	715	718	47,4	Ja	35,41	104,4	3,00	68,13	1,36	2,50	0,00	0,00	72,00	0,00
4	985	988	52,7	Ja	29,58	102,3	3,01	70,89	1,88	2,95	0,00	0,00	75,73	0,00

Summe 43,24

Schall-Immissionsort: F IP F Cond, Nr. 5

ı	WE	4				Lautester \	Wert bis	95% N	lennlei	stung					
l	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
١	1	708	718	66,6	Ja	40,23	108,3	3,00	68,13	1,36	1,57	0,00	0,00	71,06	0,00
ı	2	1.226	1.231	81,4	Ja	33,64	108,3	3,01	72,81	2,34	2,52	0,00	0,00	77,67	0,00
ı	3	723	726	47,8	Ja	35,30	104,4	3,00	68,22	1,38	2,50	0,00	0,00	72,10	0,00
ı	4	1.043	1.045	52,5	Ja	28,87	102,3	3,01	71,38	1,99	3,06	0,00	0,00	76,43	0,00
п															

Summe 42,31

Schall-Immissionsort: G IP G Cond, Nr. 4

W	EA				Lautester \	Wert bis	95% N	lennlei	stung						
Nr	. Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	1 672	683	66,5	Ja	40,90	108,3	3,00	67,69	1,30	1,40	0,00	0,00	70,40	0,00	
	2 1.169	1.175	81,9	Ja	34,28	108,3	3,01	72,40	2,23	2,40	0,00	0,00	77,03	0,00	
	3 666	670	48,1	Ja	36,32	104,4	3,00	67,52	1,27	2,29	0,00	0,00	71,08	0,00	
9	4 998	1.001	52,9	Ja	29,43	102,3	3,01	71,01	1,90	2,97	0,00	0,00	75,88	0,00	

Summe 43,04

Schall-Immissionsort: H IP H Cond, Nr. 6

WE	A				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	779	789	66,6	Ja	39,00	108,3	3,00	68,94	1,50	1,86	0,00	0,00	72,30	0,00
2	1.257	1.262	81,8	Ja	33,32	108,3	3,01	73,02	2,40	2,57	0,00	0,00	77,99	0,00
3	766	769	48,1	Ja	34,60	104,4	3,00	68,72	1,46	2,63	0,00	0,00	72,81	0,00
4	1.110	1.112	52,2	Ja	28,09	102,3	3,01	71,92	2,11	3,18	0,00	0,00	77,21	0,00

Summe 41,34

Schall-Immissionsort: I IP I Cond, Nr. 7

WE	4				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	761	771	66,6	Ja	39,30	108,3	3,00	68,74	1,46	1,79	0,00	0,00	72,00	0,00
2	1.208	1.213	82,4	Ja	33,87	108,3	3,01	72,68	2,30	2,46	0,00	0,00	77,44	0,00
3	721	724	48,6	Ja	35,37	104,4	3,00	68,19	1,38	2,46	0,00	0,00	72,03	0,00
4	1.082	1.084	52,6	Ja	28,42	102,3	3,01	71,70	2,06	3,12	0,00	0,00	76,89	0,00

Summe 41,79

Schall-Immissionsort: J IP J Wüstenrather Hof, Nr. 1

١	WE	A				Lautester \	Wert bis	95% N	lennlei	stung					
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	1.138	1.149	60,2	Ja	33,93	108,3	3,01	72,21	2,18	2,99	0,00	0,00	77,38	0,00
	2	1.142	1.151	80,1	Ja	34,50	108,3	3,01	72,22	2,19	2,40	0,00	0,00	76,81	0,00
	3	835	841	47,4	Ja	33,46	104,4	3,00	69,50	1,60	2,85	0,00	0,00	73,94	0,00
	4	1.366	1.371	45,8	Ja	25,31	102,3	3,01	73,74	2,60	3,65	0,00	0,00	79,99	0,00
	_	_													
ı	Sur	nme 3	88,94												

10.04.2015 10:25 / 3

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: K IP K Kehrig, Bausberger Str. 40

ı	WEA	4				Lautester \	Wert bis	95% N	lennlei	stung					
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
H	1	1.755	1.761	83,0	Ja	28,87	108,3	3,01	75,91	3,35	3,18	0,00	0,00	82,44	0,00
ì	2	803	814	78,0	Ja	39,07	108,3	3,00	69,21	1,55	1,47	0,00	0,00	72,23	0,00
ŀ	3	1.334	1.337	58,0	Ja	28,04	104,4	3,01	73,52	2,54	3,30	0,00	0,00	79,36	0,00
ă	4	1.500	1.503	59,1	Ja	24,47	102,3	3,01	74,54	2,86	3,45	0,00	0,00	80,84	0,00

Summe 39,90

Schall-Immissionsort: L IP L Alzheim, Conder Str. 42

WE	A				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.327	1.341	67,7	Ja	32,15	108,3	3,01	73,55	2,55	3,06	0,00	0,00	79,15	0,00
2	1.806	1.814	65,7	Ja	28,13	108,3	3,01	76,17	3,45	3,56	0,00	0,00	83,18	0,00
3	1.670	1.675	41,1	Ja	24,79	104,4	3,01	75,48	3,18	3,96	0,00	0,00	82,62	0,00
4	1.091	1.100	47,4	Ja	28,07	102,3	3,01	71,83	2,09	3,31	0,00	0,00	77,23	0,00

Summe 35,10

Schall-Immissionsort: M IP M Alzheim, Monrealer Str. 19

ŀ	WE	4				Lautester \	Wert bis	95% N	Nennlei	stung						
l	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
l	- 12	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	1	1.083	1.099	64,7	Ja	34,63	108,3	3,01	71,82	2,09	2,77	0,00	0,00	76,68	0,00	
Ì	2	1.809	1.818	65,0	Ja	28,09	108,3	3,01	76,19	3,45	3,57	0,00	0,00	83,22	0,00	
ı	3	1.538	1.544	41,6	Ja	25,83	104,4	3,01	74,77	2,93	3,87	0,00	0,00	81,58	0,00	
	4	979	989	51,0	Ja	29,50	102,3	3,01	70,91	1,88	3,01	0,00	0,00	75,80	0,00	

Summe 36,83

Schall-Immissionsort: N IP N Mayen, Am Fichtenwäldchen

WE	4				Lautester \	Wert bis	95% N	lennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	905	917	73,4	Ja	37,29	108,3	3,00	70,24	1,74	2,02	0,00	0,00	74,01	0,00
2	1.865	1.870	77,3	Ja	27,94	108,3	3,01	76,44	3,55	3,38	0,00	0,00	83,37	0,00
3	1.445	1.448	47,8	Ja	26,78	104,4	3,01	74,21	2,75	3,66	0,00	0,00	80,63	0,00
4	1.034	1.039	59,2	Ja	29,17	102,3	3,01	71,33	1,97	2,83	0,00	0,00	76,13	0,00

Summe 38,63

Schall-Immissionsort: O IP O Haus Ahlen

	WE	4				Lautester \	Wert bis	95% N	lennlei	stung					
l	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
I		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	1	1.613	1.623	67,6	Nein	28,22	108,3	3,01	75,21	3,08	4,80	0,00	0,00	83,09	0,00
	2	705	726	62,0	Ja	39,87	108,3	3,00	68,22	1,38	1,83	0,00	0,00	71,43	0,00
١	3	1.074	1.081	46,8	Nein	28,87	104,4	3,01	71,68	2,05	4,80	0,00	0,00	78,53	0,00
	4	1.538	1.544	44,1	Nein	22,80	102,3	3,01	74,77	2,93	4,80	0,00	0,00	82,51	0,00

Summe 40,55

Schall-Immissionsort: P IP P Wüstenrather Hof, Nr. 3

WE	A				Lautester \	Wert bis	95% N	Vennlei	stung					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.293	1.306	58,5	Ja	32,25	108,3	3,01	73,32	2,48	3,26	0,00	0,00	79,05	0,00
2	1.078	1.092	77,9	Ja	35,13	108,3	3,01	71,76	2,07	2,33	0,00	0,00	76,17	0,00
3	896	905	48,8	Ja	32,62	104,4	3,00	70,13	1,72	2,93	0,00	0,00	74,79	0,00
4	1.466	1.472	44,9	Ja	24,40	102,3	3,01	74,36	2,80	3,75	0,00	0,00	80,91	0,00
Su	ımme 3	38,48												

10.04.2015 10:25 / 4

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

+49 (0) 157714077198
Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung Cond-KehrigSchallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: Q IP Q Wüstenrather Hof Nr. 4

	4				Lautester \	Wert bis	95% N	lennlei	stung					
٧r.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.291	1.303	58,3	Ja	32,27	108,3	3,01	73,30	2,48	3,26	0,00	0,00	79,03	0,00
2	1.063	1.077	77,2	Ja	35,30	108,3	3,01	71,64	2,05	2,32	0,00	0,00	76,01	0,00
3	888	897	48,4	Ja	32,72	104,4	3,00	70,05	1,70	2,93	0,00	0,00	74,69	0,00
4	1.459	1.465	44,5	Ja	24,45	102,3	3,01	74,32	2,78	3,75	0,00	0,00	80,86	0,00
	Nr. 1 2 3	[m] 1 1.291 2 1.063 3 888	Nr. Abstand Schallweg [m] [m] 1 1.291 1.303 2 1.063 1.077 3 888 897	Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] 1 1.291 1.303 58,3 2 1.063 1.077 77,2 3 888 897 48,4	Nr. Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [m] Sichtbar [m] 1 1.291 1.303 58,3 Ja 2 1.063 1.077 77,2 Ja 3 888 897 48,4 Ja	Nr. Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] 1 1.291 1.303 58,3 Ja 32,27 2 1.063 1.077 77,2 Ja 35,30 3 888 897 48,4 Ja 32,72	Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA [dB(A)] 1 1.291 1.303 58,3 Ja 32,27 108,3 2 1.063 1.077 77,2 Ja 35,30 108,3 3 888 897 48,4 Ja 32,72 104,4	Nr. Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LWA Dc [dB(A)] Dc [dB(A)] [dB(A)] <th< th=""><th>Nr. Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LWA Dc Adiv [dB] Adiv [dB] 1 1.291 1.303 58,3 Ja 32,27 108,3 3,01 73,30 2 1.063 1.077 77,2 Ja 35,30 108,3 3,01 71,64 3 888 897 48,4 Ja 32,72 104,4 3,00 70,05</th><th>Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA Dc Adiv Aatm [dB] Adiv [dB] [dB] 1 1.291 1.303 58,3 Ja 32,27 108,3 3,01 73,30 2,48 2 1.063 1.077 77,2 Ja 35,30 108,3 3,01 71,64 2,05 3 888 897 48,4 Ja 32,72 104,4 3,00 70,05 1,70</th><th>Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA [dB] Dc Adiv Aatm Agr [dB] Agr [dB] [dB]</th><th>Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA [dB] Dc Adiv Aatm Agr Abar [dB] Adam Agr Abar [dB] Adam Agr Abar [dB] Adiv Aatm Agr Abar [dB] Adiv Aatm Agr Abar [dB] Adam Agr Abar [dB]</th><th>Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB</th><th>Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1 1.291 1.303 58,3 Ja 32,27 108,3 3,01 73,30 2,48 3,26 0,00 0,00 79,03 2 1.063 1.077 77,2 Ja 35,30 108,3 3,01 71,64 2,05 2,32 0,00 0,00 76,01 3 888 897 48,4 Ja 32,72 104,4 3,00 70,05 1,70 2,93 0,00 0,00 74,69</th></th<>	Nr. Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LWA Dc Adiv [dB] Adiv [dB] 1 1.291 1.303 58,3 Ja 32,27 108,3 3,01 73,30 2 1.063 1.077 77,2 Ja 35,30 108,3 3,01 71,64 3 888 897 48,4 Ja 32,72 104,4 3,00 70,05	Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA Dc Adiv Aatm [dB] Adiv [dB] [dB] 1 1.291 1.303 58,3 Ja 32,27 108,3 3,01 73,30 2,48 2 1.063 1.077 77,2 Ja 35,30 108,3 3,01 71,64 2,05 3 888 897 48,4 Ja 32,72 104,4 3,00 70,05 1,70	Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA [dB] Dc Adiv Aatm Agr [dB] Agr [dB] [dB]	Nr. Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LWA [dB] Dc Adiv Aatm Agr Abar [dB] Adam Agr Abar [dB] Adam Agr Abar [dB] Adiv Aatm Agr Abar [dB] Adiv Aatm Agr Abar [dB] Adam Agr Abar [dB]	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LWA Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1 1.291 1.303 58,3 Ja 32,27 108,3 3,01 73,30 2,48 3,26 0,00 0,00 79,03 2 1.063 1.077 77,2 Ja 35,30 108,3 3,01 71,64 2,05 2,32 0,00 0,00 76,01 3 888 897 48,4 Ja 32,72 104,4 3,00 70,05 1,70 2,93 0,00 0,00 74,69

Summe 38,59

Schall-Immissionsort: R IP R Cond, Nr. 8a

	WEA					Lautester \		95% N	lennlei	stung					
l	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LWA	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
Ì		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
I	1	555	568	69,3	Ja	43,60	108,3	2,99	66,09	1,08	0,52	0,00	0,00	67,69	0,00
	2	1.526	1.530	77,8	Ja	30,65	108,3	3,01	74,70	2,91	3,05	0,00	0,00	80,65	0,00
	3	1.009	1.011	46,0	Ja	31,16	104,4	3,01	71,10	1,92	3,23	0,00	0,00	76,24	0,00
l	4	905	908	54,1	Ja	30,69	102,3	3,00	70,16	1,72	2,73	0,00	0,00	74,61	0,00

Summe 44,24

10.04.2015 10:25 / 1

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung Cond-Kehrig

Schallberechnungs-Modell:

ISO 9613-2 Deutschland

Windgeschwindigkeit:

Lautester Wert bis 95% Nennleistung

Bodeneffekt:

Alternatives Verf.

Meteorlogischer Koeffizient, C0:

0.0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Einzelton- und Impulszuschläge werden zu Schallwerten addiert

Aufpunkthöhe ü.Gr.:

5,0 m Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Modell

verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Keine Oktavbanddaten verwendet

Luftdämpfung: 1,9 dB/km

WEA: GE WIND ENERGY GE 2.75-120 2750 120.0 !O!

Schall: Volllast

Quelle Quelle/Datum Quelle Bearbeitet

18.02.2015 USER 10.04.2015 09:51

LWA Einzel-töne Windgeschw.

[m/s] [dB(A)]

Von WEA-Katalog 95% der Nennleistung 108,3 Nein

WEA: VESTAS V90 Mode 0 2000 90.0 !O!

Schall: Mode 1

Quelle Quelle/Datum Quelle Bearbeitet

vestas 21.03.2013 USER 21.03.2013 10:11

Status

Nabenhöhe

Windgeschw. LWA Einzel-töne

[m/s]

[dB(A)]

Von WEA-Katalog

105,0 95% der Nennleistung 104,4

WEA: VESTAS V90 Mode 0 2000 90.0 !O! **Schall:** Mode 2

Quelle Quelle/Datum Quelle Bearbeitet

vestas 21.03.2013 USER 21.03.2013 10:11

Status

Nabenhöhe

Windgeschw.

LWA Einzel- töne

Nein

[m/s] [m] 105,0 95% der Nennleistung

[dB(A)]102,3

Von WEA-Katalog

Schall-Immissionsort: IP A Cond, Nr. 8-A Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP B Cond, Nr. 1-B

Vordefinierter Berechnungsstandard: Außenbereich

Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

10.04.2015 10:25 / 2

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung Cond-Kehrig

Schall-Immissionsort: IP C Cond, Nr. 2-C Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP D Cond, Nr. 3-D Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP E Cond, Nr. 5a-E Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP F Cond, Nr. 5-F Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP G Cond, Nr. 4-G Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP H Cond, Nr. 6-H Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP | Cond, Nr. 7-| Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP J Wüstenrather Hof, Nr. 1-J Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP K Kehrig, Bausberger Str. 40-K Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

10.04.2015 10:25 / 3

Lizenzierter Anwender

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Annahmen für Schallberechnung

Berechnung: Gesamtbelastung Cond-Kehrig

Schall-Immissionsort: IP L Alzheim, Conder Str. 42-L Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP M Alzheim, Monrealer Str. 19-M Vordefinierter Berechnungsstandard: Allgemeines Wohngebiet Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 40,0 dB(A)

Abstand:

Schall-Immissionsort: IP N Mayen, Am Fichtenwäldchen-N Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP O Haus Ahlen-O Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A) Abstand:

Schall-Immissionsort: IP P Wüstenrather Hof, Nr. 3-P Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP Q Wüstenrather Hof Nr. 4-Q Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

Schall-Immissionsort: IP R Cond, Nr. 8a-R Vordefinierter Berechnungsstandard: Außenbereich Höhe Aufpunkt (ü.Gr.): Standardwert des Berechnungsmodells

Schallrichtwert: 45,0 dB(A)

Abstand:

750

Karte: Kehrig , Maßstab 1:25.000, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 372.087 Nord: 5.572.470

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

1000m

(

* Existierende WEA Schall-Immissionsort

Neue WEA

* Existierende WEA Schall-Immissionsort

Neue WEA

750

Karte: Kehrig , Maßstab 1:12.500, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 371.622 Nord: 5.572.730

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

1000m

10.04.2015 10:27 / 1

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Karte Lautester Wert bis 95% Nennleistung Berechnung: Gesamtbelastung Cond-Kehrig Schall [dB(A)] 35 40 45 50 bad 55 HOIZDE Kehrig Hads Ahlen 363,9 Hicht 750 1000m Karte: Kehrig , Maßstab 1:12.500, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 372.627 Nord: 5.572.090 * Existierende WEA Schall-Immissionsort Neue WEA Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

* Existierende WEA Schall-Immissionsort

Neue WEA

Karte: Kehrig , Maßstab 1:12.500, Mitte: UTM (north)-WGS84 Zone: 32 Ost: 372.852 Nord: 5.573.150

Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: Lautester Wert bis 95% Nennleistung Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

1000m

Anlage 4 Berechnungsergebnisse Gesamtbelastung Tagberechnung

10.04.2015 10:28 / 1

Lizenzierter Anwender:

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung (Tag) Cond-Kehrig

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Lautester Wert bis 95% Nennleistung Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Schall-Immissionsort

WEA

ı	UTM (no	rth)-WGS84	Zone	: 32	WEA-T	ур					Schall	verte			
ı	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Nenn-	Rotor-	Nabenhöhe	Quelle	Name	Windgeschw.	LWA	Einzel-
١								leistung	durchmesser						töne
ı			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
				WKA 1 Cond	Ja	GE WIND ENERGY	GE 2.75-120-2.750	2.750	120,0	139,0	USER	Volllast	(95%)	108,3	0 dB
						GE WIND ENERGY	GE 2.75-120-2.750	2.750	120,0	139,0	USER	Volllast	(95%)	108,3	0 dB
				Vestas V-90 (Tag)		VESTAS	V90 Mode 0-2.000	2.000	90,0	105,0	USER	Mode 0	(95%)	105,6	0 dB
	4 372.366	5.572.927	355,0	Vestas V-90 (Tag)	Ja	VESTAS	V90 Mode 0-2.000	2.000	90,0	105,0	USER	Mode 0	(95%)	105,6	0 dB

Berechnungsergebnisse

Beurteilungspegel

- Cartonangopogo.								
Schall-Immissionsort	UTM (no	rth)-WGS84	Zone:	32	Anforderungen	Beurteilu	ngspegel	Anforderungen erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Distanz zum Richtwert	Schall
*			[m]	[m]	[dB(A)]	[dB(A)]	[m]	
A IP A Cond, Nr. 8 (Tag)	371.651	5.573.441	380,0					Ja
B IP B Cond, Nr. 1 (Tag)	371.548	5.573.361	378,5	5,0	60,0	44,4		Ja
C IP C Cond, Nr. 2 (Tag)	371.475	5.573.383	379,0	5,0	60,0	43,0		Ja
D IP D Cond, Nr. 3 (Tag)	371.441	5.573.353	376,8	5,0	60,0	42,7		Ja
E IP E Cond, Nr. 5a (Tag)	371.381	5.572.915	379,7	5,0	60,0	43,7		Ja
F IP F Cond, Nr. 5 (Tag)	371.327	5.572:841	379,9	5,0	60,0	42,8		Ja
G IP G Cond, Nr. 4 (Tag)	371.375	5.572.810	378,9	5,0	60,0	43,5		Ja
H IP H Cond, Nr. 6 (Tag)	371.263	5.572.807	380,0		60,0	41,8		Ja
I IP I Cond, Nr. 7 (Tag)	371.296	5.572.768	379,0	5,0	60,0	42,3		Ja
J IP J Wüstenrather Hof, Nr. 1 (Tag)		5.572.279	- , - , -	5,0	60,0	39,5		Ja
K IP K Kehrig, Bausberger Str. 40 (Tag)		5.571.508		5,0	55,0	40,1	689	
L IP L Alzheim, Conder Str. 42 (Tag)		5.573.641			55,0	36,1	994	Ja
M IP M Alzheim, Monrealer Str. 19 (Tag)		5.573.825			55,0		881	Ja
N IP N Mayen, Am Fichtenwäldchen (Tag)		5.573.938			60,0			Ja
O IP O Haus Ahlen (Tag)		5.571.432			60,0			Ja
P IP P Wüstenrather Hof, Nr. 3 (Tag)		5.572.025		5,0	60,0			Ja
Q IP Q Wüstenrather Hof Nr. 4 (Tag)		5.572.016		5,0		27 C.		Ja
R IP R Cond, Nr. 8a (Tag)	371.633	5.573.457	380,0	5,0	60,0	44,5		Ja

10.04.2015 10:28 / 2

Lizenzierter Anwende

TERRAGraphica GmbH

Spießgasse 59 DE-55232 Alzey +49 (0) 157714077198

Terragraphica GmbH / schmitz@terragraphica.de

10.04.2015 09:58/2.9.285

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung (Tag) Cond-Kehrig

Abstände (m)

	WEA				
Schall-Immissionsort	2	1	3	4	
Α	1504	531	988	881	
В	1481	556	953	926	
C	1537	629	1006	1001	
D	1530	643	998	1018	
E	1233	637	715	985	
F	1226	708	723	1043	
G	1169	672	666	998	
H	1257	779	766	1110	
Ĭ	1208	761	721	1082	
J	1142	1138	835	1366	
K	803	1755	1334	1500	
L	1806	1327	1670	1091	
M	1809	1083	1538	979	
N	1865	905	1445	1034	
0	705	1613	1074	1538	
Р	1078	1293	896	1466	
Q	1063	1291	888	1459	
R	1526	555	1009	905	

Anlage 5
Anlage A und B

Lingoy UCU Cordunts

Anlage A

30.03.2015

vertreten durch die Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen)

Windpark Cond 1 AG & Co. KG

Tel. +49 2651 4915520 Fax: +49 2651 4915510

www.nesag.de info@nesag.de

Komplementärin: New Energies Systems AG Gartenstraße 30 56727 Mayen

Bebauungsplan, wenn vorhanden,

Immissions- Ausweisung

ansonsten Flächennutzungsp	(Name, Datum)	FNP Aussiedlerhof	FNP Aussiedlerhof	FNP Aussiedlerhof	FNP Wohnhaus (Außenbere	FNP Aussiedlerhof	FNP Aussiedlerhof	FNP Aussiedlerhof	✓ FNP Aussiedlerhof	FNP W-Fläche	TNP Waldflack [W	Hill WY	11 11	" "	17 11	n n	11 11	FNP W-Flüche	B-Plan WA	gunt/ewravchriering	Vordereifel	2051 Kelberger Straße 26	Unterschrift und Stempel der layen	zuständigen Baugenehmigungsbehörde	
nach	BauNVO	M	M	Z	Σ	Σ	Z	Σ	M	WA		2			21	, a		9) (8)		Hat/vorgelegen	>	Postfach 2051	Unterschrift	zuständigen	/
richtwert	nachts	45	45	45	45	45	45	45	45	40	45													2	

5.571.574

5.571.647

32.373.202

32.373.184

Kehrig

20/2 V Kehrig 128/1 / Kehrig

> တ တ

6

6

Am Siegenpfad 15

Am Siegenpfad 25

Kehrig Kehrig

Am Siegenpfad 27 Gartenstraße 39

Kehrig

Am Siegenpfad 19

Kehrig W Kehrig

Am Siegenpfad 21

129 Kehrig

32.373.212

110,/ Kehrig 🗸

/ 6

Am Siegenpfad 16

Am Siegenpfad 17

Kehrig Kehrig Kehrig

Kehrig

0 S

124 Kehrig

တ

126/1 / Kehrig Kehrig

6 တ

125 / 122 /

32.373.194 32.373.191

32.373.189

5.571.681

32.373.211 32,373,264

eich)////e/san Seri'd

5.572.915

32.371.381

5.572.841

32.371.327

5.573.383 5.573.353

5.573.361

32.371.548 32.371.475 32.371.441

/Monreal v

6/3

16 16

Monreal 4 / Monreal

> 19 16

Cond, Nr. 5a Cond, Nr. 3

Cond, Nr. 2

Cond Cond Cond Cond Cond

ပ Ω ш

Cond

В

Cond, Nr. 1

Cond, Nr. 5

(UTM 32)

(UTM 32) Ost

Gemarkung

Flurstück

Flur

Straße/Hausnummer

Ort

<u>a</u>

Nord

5.572.810 5.572.807 5.572.768 5.571.508 5.571.432 5.571.582 5.571.570 5.571.623 5.571.599 5.571.563

32.371.375

Monreal, Monreal

9

15/2

160

7 15 /

16

Cond, Nr. 6

Cond Cond

G

ட

Cond, Nr. 7

Cond, Nr. 4

10 / Monreal 10 / Monreal

32.371.263

32.371.296

Monreal u

16

Kehrig 6

63

9

Haus Ahlen, Grube Bausberg 2

Bausberger Str. 40

Kehrig

869/7 / Kehrig

32.372.853 32.372.004

> WINDPARK COND GARTENSTR. 30 56727 MAYEN AGE 50 . KG Ort und Datum: 1944, 130, 3, 75 Unterschrift Antragsteller

Aktenzeichen:

Bauvorhaben:

Gemarkung:

Antragsteller

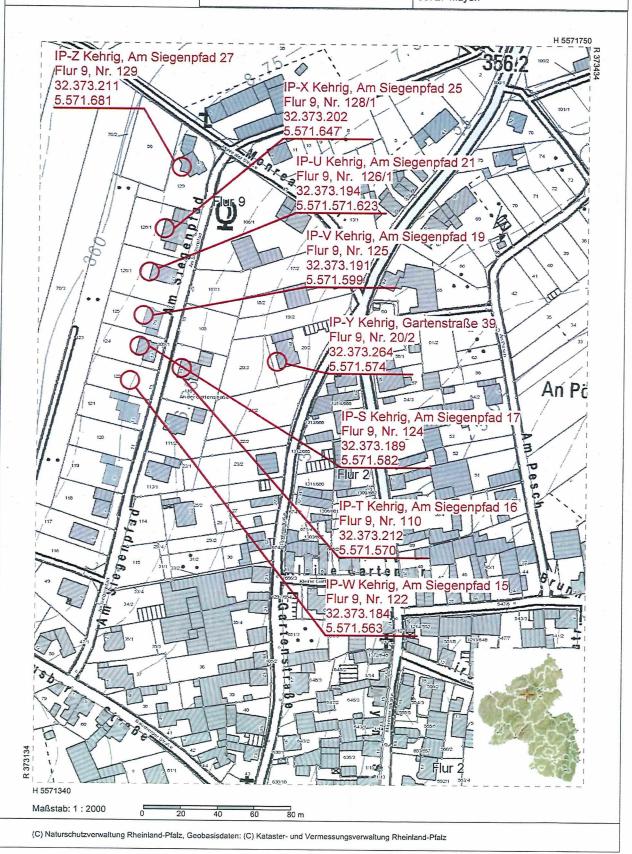
WKA 1 Cond, WKA 2 Kehrig

Windpark Cond-Kehrig

WKA 1 Monreal, WKA 2 Kehrig Windpark Cond 1 AG & Co. KG

Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin H 5573516 Datum: 31.03.2015 New Energies Systems AG Gartenstraße 28-30 56727 Mayen IP-B Cond, Nr. 1 Flur 16, Nr. 6/3 32.371.548 5.573.361 Projekt: WP Cond-Kehrig IP: Cond, IP B, C, D IP-C Cond, Nr. 2 Flur 16, Nr. 3 32.371.475 5.573.383 (G) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz Naturschutzverwaltung Rheinland-Pfalz Cond Landschaftsinformationssystem der IP-D Cond, Nr. 3 Flur 16, Nr. 4 32.371.441 5.573.353 Maßstab: 1:2000

Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin Datum: 31.03.2015 New Energies Systems AG Gartenstraße 28-30 56727 Mayen -IP-G Cond, Nr. 4 Flur 16, Nr. 9 32.371.375 IP-E Cond, Nr. 58 5.572.810 Flur 16, Nr. 10 32.371.381 5.572.915 Flur 16 Monreal Projekt: WP Cond-Kehrig IP: Cond, IP E, F, G, H, I Cond (C) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz IP-F Cond, Nr. 5 Flur 16, Nr. 10 32.371.327 5.572.841 Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der 09 -IP-J Cond, Nr. 7 Flur 165Nr.- 15. 32.371.296 5.572.768 Flur 16, Nr. 32.371.263 5.572,807 Maßstab: 1:2000 H 5572694 R 371073


Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin Datum: 31.03.2015 H 5571633 New Energies Systems AG Gartenstraße 28-30 56727 Mayen P-K Bausberger Str. 40 /Kehrig Flur 9, Nr. 63 32.372.853 5.571.508 Projekt: WP Cond-Kehrig IP: Kehrig, IP K 360 (C) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der 80 E Maßstab: 1:2000 H 5571363

Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin Datum: 01.04.2015 H 5571562 Bohrbach New Energies Systems AG Gartenstraße 28-30 56727 Mayen Projekt: WP Cond-Kehrig IP: Kehrig, IP O (C) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der Grube Bausberg 2 Kehrig Flur 7, Nr. 869/7 32.372.004 5.571.432 IP-O Haus Ahlen Maßstab: 1:2000 H 5571292 69717E A

Projekt: WP Cond-Kehrig IP: Cond, IP S, T, U, V, W, X, Y, Z

Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin New Energies Systems AG Gartenstraße 28-30 56727 Mayen

Anlage A

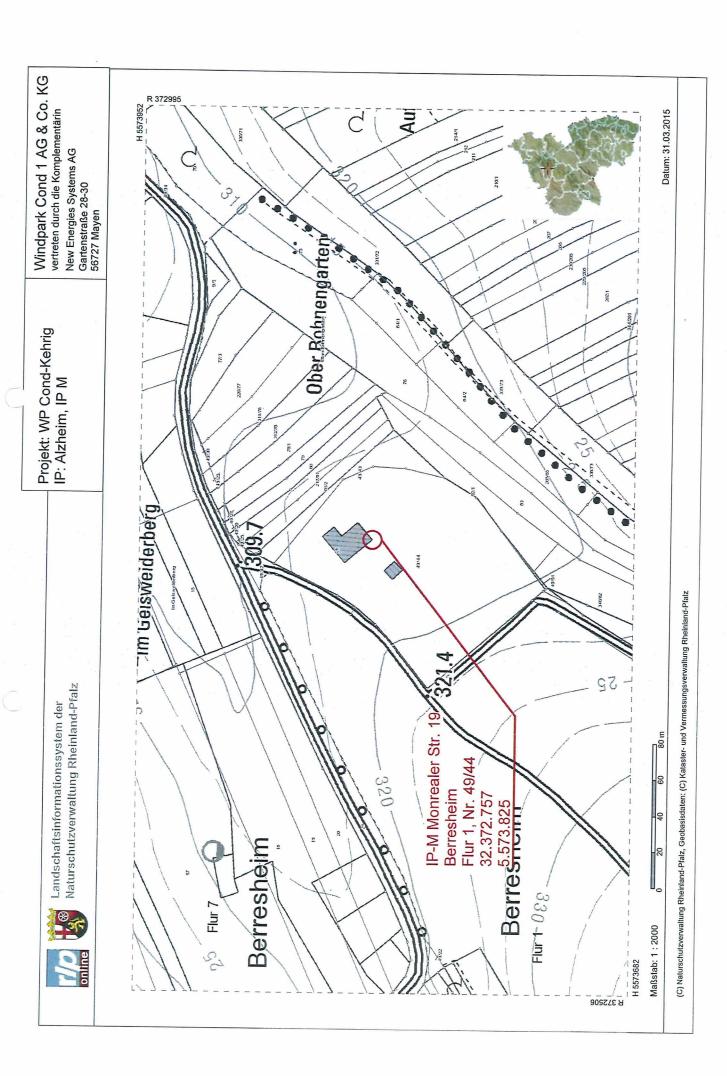
Stand:

30.03.2015

Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen)

Tel. +49 2651 4915520 Fax: +49 2651 4915510 www.nesag.de info@nesag.de Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin: New Energies Systems AG Gartenstraße 28-30 56727 Mayen

<u>-</u>	Ort	Straße/Hausnummer	Flur	Flur Flurstück	Gemarkung	Ost (UTM 32)	Nord (UTM 32)	Immissions- richtwert nachts	Ausweisung nach BauNVO	Bebauungsplan, wenn vorhanden, ansonsten Flächennutzungsplan (Name, Datum)	
⋖	Cond	Cond, Nr. 8	30	30/1	Mayen	32.371.651	5.573.441	45	Aussiedlerhof	Flachennitzingsplan 19 06 2006	
	Mayen	Wüstenrather Hof, Nr. 1	10	10	Allenz	32.371.163	5.572.279	45	Aussiedlerhof	Flächennitzingsplan 19 06 2006	_
-		Conder Str. 42	3	291/4	Berresheim	32.373.191	5.573.641	40	all. Wohngebiet	BP "In der Höll" (7 Ä +F) 24 03 1979	_
≥ :		Monrealer Str. 19	1	49/44	Berresheim	32.372.757	5.573.825	40	Wohnbaufläche	Flächennutzungsplan 19 06 2006	_
Z	Mayen	Am Fichtenwäldchen	28	72	Mayen	32.372.150	5.573.938	45	Gemeinbedarfsfläche	Flächennutzungsplan 19.06.2006	_
	Mayen	Wüstenrather Hof, Nr. 3	10	68/4	Allenz	32.371.210	5.572.025	45	Aussiedlerhof	Flächennutzungsplan 19.06.2006	_
3	Mayen	Wüstenrather Hof, Nr. 4	9	68/3	Allenz	32.371.226	5.572.016	45	Aussiedlerhof	Flächennutzungsplan 19.06.2006	
~	Mayen	Cond, Nr. 8a	30	30/1	Mayen	32.371.633	5.573.457	45	Aussiedlerhof	Flächennutzungsplan 19.06.2006	_
	72				a						
									<		,
				0 0					12		_
											_
				93							
						5.			Hat vorgelegen		
Ort	und Datum: Myyer		-	*				K .	Mayen, n	dun 13.04. 2015	
	13 Sell	1			3 0 0		来		1. B.	Helmaye	
Unte	Jnterschrift Antragsteller				14				Unterschrift und Stempel der zuständigen Baugenehmigun	Unterschrift und Stempel der zuständigen Baugenehmigungsbehörde	
								一个	1		_


WKA 1 Monreal, WKA 2 Kehrig Windpark Cond 1 AG & Co. KG WKA 1 Cond, WKA 2 Kehrig Windpark Cond-Kehrig

> Antragsteller Gemarkung:

Aktenzeichen: Bauvorhaben: Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin R 371918 Datum: 31.03.2015 New Energies Systems AG Gartenstraße 28-30 56727 Mayen Projekt: WP Cond-Kehrig IP: Cond, IP A, R IP-À Cond, Nr. 8 Flur 30, Nr. 30/1 32.371.651 Ma_{5.573.441} (C) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der IP-R Cond, Nr. 8a' Flur 30, Nr. 30/1 32.371.633 5.573.457 Maßstab: 1:2000 H 5573343

Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin Datum: 31.03.2015 New Energies Systems AG Gartenstraße 28-30 56727 Mayen IP-J Wüstenrather Hof, Nr. 1 32.371.163 5.572.279 Flur 10, Nr. Projekt: WP Cond-Kehrig IP: Mayen, IP J Allenz 2.5 (C) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der Allenz Maßstab: 1:2000 35 H 5572131 16807£ Я

Windpark Cond 1 AG & Co. KG R 373465 Datum: 31.03.2015 H 5573768 vertreten durch die Komplementärin New Energies Systems AG Gartenstraße 28-30 56727 Mayen Projekt: WP Cond-Kehrig IP: Alzheim, IP L (C) Naturschutzverwaltung Rheinland-Pfatz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfatz n der Höll Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der Be Flur 3, Nr. 29174 32.373.191⁵ 5.573.641 P-L Conder Str. -09 Flur 3 Berresheim Maßstab: 1:2000 H 5573498

Windpark Cond 1 AG & Co. KG H 5574065 Datum: 31.03,2015 vertreten durch die Komplementärin New Energies Systems AG Gartenstraße 28-30 56727 Mayen P-N Am Fichtenwäldchen Flur 28 Flur 28, Nr. 72 32.372.150 5.573.938 Projekt: WP Cond-Kehrig IP: Mayen, IP N Mayen LeFlur 15 Fichtenwäldchen (C) Naturschutzverwallung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der 60 80 m Fichtenwäldcher dem ier ier Maßstab: 1:2000 Flur 30 H 5573795 R 371928

Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin R 371439 H 5572150 Datum: 01.04.2015 New Energies Systems AG Gartenstraße 28-30 56727 Mayen IP-Q Wüstenrather Hof, Nr. Flur 10, Nr. 68/3 32.371.226 Projekt: WP Cond-Kehrig IP: Mayen, IP P, Q 5.572.016 IP-P Wüstenrather Hof, Nr. 3 Allenz 25 2.5 Flur 10, Nr. 68/4. 0/8 32.371.210 5.572.025 Allenz (C) Naturschutzverwaltung Rheinland-Pfalz, Geobasisdaten: (C) Kataster- und Vermessungsverwaltung Rheinland-Pfalz 25 Naturschutzverwaltung Rheinland-Pfalz Landschaftsinformationssystem der 40 Flur 10 Theiswieschen Maßstab: 1:2000 H 5571880 8 370949

	ten und allgemeine Anlagendaten
orbelastung	iorde Standortdaten und allgemeine A
Zu berücksichtigende Vorbelastung	intragungen der Genehmigungsbeh

	(A) 8b ni		Ť	T	T	T	T	T	T	Г	Г	T	1	7		7	Γ	111	
)je:	Ap ab di (A) Ab di	1																	
(A) 8b ni gnuuertenehe8		I	T	T		ŀ								!				
•	(A) 8b ni swJ														-	1999	108.2	108,3	
	WA ni gruizielnneM														COND		2750	2750	ns AG,
1	Rotordurchmesser in								-						Patum 199488 180.KG		1200	120,0	i s Systel
	nateM ni eribinedsM														Ort upd Datum AB& to . Kg		130		. Co. KG Energie
	dújuejsjuy .														Yeylm 136.3.74	_	2 75-120	2.75-120	Windpark Cond 1 AG & Co. KG vertreten durch die Komplementärin: New Energies Systems AG,
	Anlagenhersteller								Name of the last o						Haylan!	geplan zu ver	E E	GE	Windpark Cond 1 A vertreten durch die Komplementärin: N
	Bemerkungen								4						Or und Datum Hey	und Schattenprognosen zu verwenden und im Lageplan zu vermerken III	Tag u. Nacht	Tag u. Nacht	
-	Z														_	zu verwe	367		Abrahama ang ang a
	(SE MTU) broM	KEIN	2				200									enprognosen	5.573.045	5.572.078	
	(SE MTU) JeO	こいかこのは	H N		Constant											all- und Schatt	32.372.005	372.287	
D.	Flurstück		35	/												ig in den Sch	7/4	5,6,7	
3	Flur															anaic	16	9	rig ehrig
SE	Сетайчипд		/			2										A Kobitem of Spalte 4) sind u.a. analog in den Schall-	Monreal	Kehrig	Windpark Cond-Kehrig WKA 1 Gond, WKA 2 Kehrig WKA 1 Monreal, WKA 2 Kehrig Windpark Cond 1 AG & Co. KG
SE	eb remmunnegalnA enelietegatrinA													18	9 *	ds) di	-	2	Cond Monr ark Co
	19mmunnagalnA								1			1	320	B 1000		obler			Windpark Cond WKA 1 Cond, W WKA 1 Monreal, Windpark Cond
	əbniəməĐ	16	-									AND DEP	A STATE OF THE STA		Sterned	abener Salagn			, , , , , , , , , , , , , , , , , , , ,
9	THE RESERVE THE PARTY NAMED IN COLUMN TWO IS NOT	Vorder @ 1 4 @												Hat vorgelegen	IPR. 2015	Wichtig: Die vorgegebener zeite			Vorhaben: Ort: Gemarkung: Betreiber:
	Kreis	X					T							at vo	0 / Datum	/Ichti			Vorhe Ort: Gema Betre

Tel. +49 2651 4915520, Fax: +49 2651 4915510

www.nesag.de info@nesag.de

Zu berücksichtigende Vorbelastung

	Impuls- und Ton-haltigkeit in dB (A)						T													
	(A) Bb ni gnuustreins@		\vdash	\vdash	\vdash	+	+	+	+		\vdash	+	+	+	+	_				
	(A) &b ni swJ	104.4	105.6	102.3	105.6		T	Ī				T	T	1						rfasser
	WA ni gnutsiəlnnəM	2000	2000	2000	2000		Ī						T				10ND 1	•	2	Wurfsve
	Rotordurchmesser in Meter	90	90	06	06			Ī			-						That (In)	KA	G L S.	or the figure
	Nabenhöhe in Meter	105	105	105	105				1				T	1			ON THE STATE OF THE OWN	A G & G C	GARTENS	Unterschrift Antwurfsverfasser
	qvjnəgslnA	V 90	06 A	06 A	06 A															
	Tellejz19rhegellet	Vestas	Vestas	Vestas	Vestas												36.3.74	1-	X	etreiber
	Bemerkungen	349 Nachtbetrieb	349 Tagbetrieb	355 Nachtbetrieb	355 Tagbetrieb												Ort und Datum 36.3.74	11	1 Selm	Unterschrift Betreiber
	Z	349	349	355	322									T	T		0			
	(SE MTU) broM	5.572.505	5.572.505	5.572.927	5.572.927						2 (K) 2	N _c								
ne	(SE MTU) ‡sO	32.3/1.967	32.371.967	32.372.366	32.372.366								2							
ne Anlagendar	Huratûck (32	32	21, 22	21, 22	* * * * * * * * * * * * * * * * * * *			3											
emeir	Flur	ກ່	တ (ဘ (ာ									T						
Standortdaten und allgemeine Anlagendaten	Сетаткия	Allenz	Allenz	Allenz	Allenz															
Standor	Anlagennummer des callers	2	e .	4	4								*							
hörde	TemmunnegalnA									I						20	0	/		schrift
Eintragungen der Genehmigungsbehörde	ebniemeĐ													Altino Maye	ch 3	-	Men Chaulaus	1	Hunt	Stempel u. Unterschrift
agungen der	ebniemegebnscheV													Stadtverv		SED GORDON	56797 Mayon	-1	J. Jak	Datum
EIDE	Kreis															Hot vor	ומן אסו	11 51	インド	Datum

Wichtig: Die vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!

					12									
		-	Monreal	16	7/4	32.372.005 5.573.045	5.573.045	367 Tag u. Nacht	F	2 75-120	130	GF 275-120 139 120 0 2750 108 3	108 3	
		2	Kehria	10	5.6.7	32 372 287 5 572 078	5 572 078	359 Tag II Nacht		275 120	120	20,0 21,00	00,0	
		ļ					0.0.1	००० । वर्षु प. । । बद्धार	3	4.13-120	133	2.13-120 139 120,0 Z/30 108,3	108,3	
						У.								
					5									
Vorhaben:	Win	dnark (Windnark Cond-Kehria											
		N Inda	Solid-Ivelling						Windpark	Windpark Cond 1 AG & Co. KG	k Co. KG			
Ort:	WK	4 1 Cor	WKA 1 Cond, WKA 2 Kehrig	rig					vertreten durch die	durch die				
Gemarkung:	WK	A 1 Moi	WKA 1 Monreal. WKA 2 Kehrid	ehria						מוכון מוכ				
				0					Kompleme	entarin: New	-nergie	Komplementarin: New Energies Systems AG		
Betreiber:	Win	dpark (Sond 1 AG & C	o. KG					Cartonotac	Saturday of Contraction	0 7 7	'occupación o		

Komplementärin: New Energies Systems AG, Gartenstraße 30, 56727 Mayen, Fax: +49 2651 4915510 Tel. +49 2651 4915520, www.nesag.de

info@nesag.de