Schalltechn. Ingenieurbüro` _______ für Gewerbe-, Freizeitund Verkehrslärm

Paul Pies

Dipl.-Ing.

Von der Industrie- und Handelskammer zu Koblenz öffentlich bestellter und vereidigter Sachverständiger für Gewerbe-, Freizeit- und Verkehrslärm Benannte Messstelle nach §§26, 28 BImSchG.

Dipl.-Ing. Paul Pies Birkenstr. 34 56154 Boppard

lu sortiel un Analgoidues 1Büro: Birkenstr. 34 56154 Boppard-Buchholz Telefon: 06742/2299 Telefax: 06742/3742

E-Mail: info@schallschutz-pies.de

Büro: Buchenstr. 13 56154 Boppard-Buchholz Telefon: 06742/921133 Telefax: 06742/921135 Mobil-Tel: 0171 7782812

E-Mail: pies@schallschutz-pies.de

Ihr Zeichen 14376 / 0311

Ihre Nachricht vom

Datum

03.03.2011

Schalltechnische Immissionsprognose zur Errichtung von Windenergieanlagen bei Polch

-Ergänzende Stellungnahme-

Sehr geehrte

im Rahmen des Genehmigungsverfahrens zu Errichtung von Windenergieanlagen bei Polch, wurden durch unser Büro mehrere schalltechnische Immissionsprognosen erstellt. In einer ergänzenden Stellungnahme vom 22.12.2010 (Auftrag-Nr.: 14283 / 1210) erfolgte eine Überarbeitung der aktuellsten Nachtragsuntersuchung vom 14.06.2010 (Auftrags-Nr.: 13967 / 0610) unter Berücksichtigung einer Stellungnahme der Struktur- und Genehmigungsdirektion Nord, Regionalstelle Gewerbeaufsicht vom 02.09.2010.

Nach Prüfung dieser ergänzenden Stellungnahme durch die SGD Nord-Gewerbeaufsichtsamt, sind noch die Fragestellungen unter Punkt 5 bis Punkt 14 abschließend zu erläutern bzw. die Stellungnahme zu ergänzen.

Die Punkte 5 bis 7 und 13 beziehen sich im Wesentlichen auf Emissionsdaten der bei der Begutachtung berücksichtigten Windenergieanlagen.

2

So fehlen bei den Anlagen Nordex N 100 und Fuhrländer FL 1000 (Vorblastung) in den bei-

gefügten Datenblättern Angaben zur Impulshaltigkeit der Anlagen. Nach Rücksprache mit

den Herstellern wurde uns von der Firma Nordex ein Auszug aus einem Prüfbericht zu

diesem Anlagentyp zugesandt. Hiernach beträgt der immissionsrelevante Schallleistungs-

pegel L_W = 106,8 dB(A). Nach dem Auszug ist ein Ton- bzw. Impulszuschlag bei der

Prognose nicht zu berücksichtigen. Der Auszug kann dem Anhang 1 zum Schreiben ent-

nommen werden.

Von der Firma Fuhrländer wurde uns zum Anlagentyp FL 1000 ein weiteres Schreiben mit

Angaben zur Schallleistung bzw. Impuls- und Tonhaltigkeit zugesandt. Diese Angaben be-

ziehen sich auf eine Referenzgeschwindigkeit von 8 m / Sekunde und ergeben, dass keine

Impuls- und Tonhaltigkeit vorliegt. Aufgrund der schwierigen Erfassung von Ausgangsdaten

für diesen Anlagentyp, wurden bei der nachstehenden Überarbeitung der Berechnung bei

der Unsicherheit der Prognose für die Standardabweichung der Messungenauigkeit ein

Wert von σ_R = 3 dB(A) eingestellt. Hierauf wird im späteren noch näher eingegangen. Das

Datenblatt kann dem Anhang 2 zum Gutachten entnommen werden.

Nach Angaben der Firma Fuhrländer liegt für den Typ FL 800 kein Messbericht vor. Nach

einer schriftlichen Bestätigung der Firma Fuhrländer kann bei der Prognose bei Nenn-

leistungsbetrieb ein Schallleistungspegel von L_W = 102,1 dB(A) angesetzt werden. Eine

Ton- und Impulshaltigkeit wird ab einem Bereich von 300 m ausgeschlossen. Die Be-

stätigung kann dem Anhang 3 zum Schreiben entnommen werden.

Im Zusammenhang mit den geplanten Anlagentyp handelt es sich um eine Anlage der

Firma REpower MM92. Dieser Anlagentyp weist eine Nennleistung von 2050 kW auf. Nach

einer Vermessung entsprechend den gültigen Richtlinien, beträgt der immissionsrelevante

Schallleistungspegel L_W = 103,9 dB(A). Diesbezüglich wurde in der o.g. ergänzenden

Stellungnahme vom 22.12.2010 näher eingegangen. Jedoch wurde versehentlich der

Messbericht für die Anlage mit einer Nennleistung von 2040 kW beigefügt. Die in der Be-

rechnung angesetzte Schallleistung stimmt jedoch mit dem beantragten Anlagentyp mit

einer Leistung von 2050 kW überein. Der entsprechende Auszug aus dem Messbericht

kann dem Anhang 4 dieses Schreibens entnommen werden.

Bei den Prognosen wurden entsprechende Zuschläge zur Erstellung einer Prognose auf der sicheren Seite eingestellt. Unter Punkt 8 der Stellungnahme der SGD-Nord wurde angemerkt das der Zuschlag für den Anlagentyp Fuhrländer nicht nachvollzogen werden kann. Bei der Ermittlung der Zuschläge wurden für die einzelnen Unsicherheiten entsprechende Werte als Standardabweichung eingesetzt. In der nachstehenden Tabelle sind diese für alle in der Begutachtung berücksichtigten Anlagentypen aufgeführt:

Tabelle 1

Anlagentyp	Messunsicherheit σ_R in dB(A)	Produktions- standardabweichung σ _P in dB(A)	Prognose- unsicherheit σ_{prog} in dB(A)		
Repower MM 92	0,5	1,2	1,5		
Vestas V 90	0,5	0,2	1,5		
Nordex N 100	0,5	1,2	1,5		
Fuhrländer FL 1000	3,0	1,2	1,5		
Fuhrländer FL 800	3,0	1,2	1,5		

Kommt es bei der Ausbreitungsberechnung zu Pegelminderungen durch Abschirmung, ist für die Anlage, die bezogen auf einen Immissionspunkt abgeschirmt wird, bei der Ermittlung des Zuschlages noch eine Unsicherheit von $\sigma_{\text{schirm}} = 1,5 \text{ dB(A)}$ zu beachten.

Die Ermittlung der nachstehend aufgeführten Zuschläge erfolgt nach einem anerkannten Verfahren, welches im Anhang 5 sowie in den vorangegangenen Untersuchungen entnommen werden kann. Hiernach ergeben sich für die einzelnen Anlagentypen folgende Zuschläge:

REpower MM 92	K = 2,5 dB(A)
Vestas V 90	K = 2.0 dB(A)
Nordex N 100	K = 2,5 dB(A)
Fuhrländer FL 1000	K = 4,6 dB(A)
Fuhrländer FL 800	K = 4,6 dB(A)

Kommt es bei der Berechnung zu Pegelminderungen durch Abschirmung so ergibt sich für diese Anlage eine Erhöhung des Zuschlages um 0,7 dB(A) aufgrund der Unsicherheit durch die Abschirmung.

Diesbezüglich wurde unter Punkt 9 der Stellungnahme der SGD-Nord hinterfragt, ob auch die Ungenauigkeiten für die Abschirmung bei der Vorbelastung Berücksichtigung fanden, da auch Abschirmungen bei der Berechnung berücksichtigt wurden. Hierzu ist anzumerken, dass entsprechend Anhang 8 der o.g. ergänzenden Stellungnahme, nur für die Anlagen WEA K1, WEA K2 und WEA K4 der Vorbelastung Pegelminderung aufgrund topografischer Abschirmeffekte von 0,2 bis 0,3 dB vorliegen. Bei vorliegen solcher geringen Effekten, ist es aus schalltechnischer Sicht wenig sinnvoll einen Zuschlag in die Berechnung einzustellen, der letztendlich höher ist als die eigentliche Wirkung der Abschirmung. Vor allem vor dem Hintergrund, dass "wie hier im vorliegenden Fall, keine grenzwertige Berechnung für den Immissionspunkt 11 vorliegt.

Unter Punkt 10 wird gebeten, zu ggf. vorhandenen Reflexionen Stellung zu nehmen. Hierzu ist anzumerken, dass bei der Berechnung eine entsprechende Bebauung, die ggf. reflektierend wirken könnte, im digitalen Berechnungsmodel enthalten ist. Ergibt sich aufgrund der Lage der Immissionspunkte und der vorhandenen Bebauung relevante Reflexionsanteile, so werden diese automatisch vom Berechnungsprogramm in den jeweiligen Berechnungsausdrucken in den Anhänge dargestellt. Hierbei handelt es sich um die Spalte, die mit "Re" beschriftet ist. Ist in dieser Spalte kein Wert für den Reflexionsanteil angegeben, so ergab die Berechnung, das kein relevanter Reflexionsanteil vorhanden ist.

Unter Punkt 11 wird von Seitens der SGD-Nord angemerkt, dass die Berechnung und Darstellung, zur Vor- und Gesamtbelastung, unvollständig sei. Des Weiteren wird aufgeführt, dass in unserer Stellungnahme unter Bezugnahme auf eine Aussage der Gewerbeaufsicht ausschließlich die Berechnung der Vorbelastung für den IP 11 zu untersuchen sei.

In unserer Stellungnahme wurde keine Aussage der Gewerbeaufsicht aufgeführt, die darauf hinzielt, dass ausschließlich die Vorbelastung für den IP 11 durchzuführen sei. Vielmehr wurde auf Seite 6 der Stellungnahme auch die Vorbelastung für alle weiteren Immissionspunkte diskutiert. Eine Ermittlung der Vorbelastung für den Immissionspunkt 11 wurde auf Grundlage des Punktes 7 der Stellungnahme der SGD-Nord vom 02.09.2010 durchgeführt, in welcher aufgeführt ist, das eine Betrachtung der Vorbelastung für die Ortslage Alzheim erforderlich wird, da die Zusatzbelastung durch die beantragten Anlagen als relevant einzustufen ist.

5

An dieser Stelle sei nochmals angemerkt (siehe auch o.g. ergänzende Stellungnahme),

dass bei der Betrachtung der Zusatzbelastung pauschal ein um 0,7 dB(A) höherer Zuschlag

aufgrund von Abschirmungseffekten in die Berechnung eingestellt wurde. Da solche Ab-

schirmungseffekte in Alzheim (IP 11) nicht vorliegen, müsste der berechnete Beurteilungs-

pegel um diesen Wert subtrahiert werden. Dies ergibt, dass das Irrelevanzkriterium in Alz-

heim eingehalten wird.

Die Betrachtung der Vorbelastung und der Gesamtbelastung für den Immissionspunkt 11

wurde an dieser Stelle, unter Berücksichtigung der o.g. aktuellen Ausgangsdaten und Zu-

schläge, nochmals durchgeführt. Hierbei wurde pauschal für alle Anlagen auch der höhere

Zuschlag unter Beachtung der Standardabweichung für die Abschirmung eingestellt

(konservative Betrachtung). So ergibt die Berechnung der Vorbelastung am Immissions-

punkt 11 einen Beurteilungspegel für die Nachtzeit von $L_r = 35 \text{ dB}(A)$. Die detaillierte Aus-

breitungsberechnung hierzu kann dem Anhang 6 entnommen werden. Die farbliche Dar-

stellung für einen größeren Untersuchungsbereich zeigt der Anhang 7. In der Gesamt-

betrachtung errechnet sich unter diesen konservativen Ansätzen ein Beurteilungspegel von

 L_r = 38 dB(A) für die Nachtzeit . Das Berechnungsergebnis hierzu zeigen die Anhänge 8

und 9 zum Schreiben.

Wie die Berechnungsergebnisse zeigen, wird in der Gesamtbelastung bei der durch-

geführten Extrembewertung der Nachtimmissionsrichtwert eingehalten.

Zu möglichen Diskrepanzen zwischen der detaillierten, punktuellen Berechnung und der

flächenhaften Berechnung, die unter Punkt 12 des Schreibens der SGD angemerkt wird, ist

erläuternd aufzuführen, dass die flächenhafte Berechnung im vorliegenden Fall pauschal

für das 2. OG erfolgte. Die punktuelle Berechnung berücksichtigt die tatsächliche Höhe des

Aufpunktes entsprechend dem Wohnhaus, also EG, 1. OG usw.. Von daher wird in den

gutachterlichen Stellungnahmen auch darauf hingewiesen, dass die flächenhafte Be-

rechnung nur dem Überblick der Schallverteilung dient und nicht die Einzelpunkt-

berechnung ersetzt.

Zur Abweichung der farblichen Darstellung der Gesamtbelastung zum berechnenden Er-

gebnis, auf welche das Schreiben der SGD-Nord zielt, ist nach Überprüfung anzumerken.

dass es sich hierbei um eine Differenz von 0,1 dB handelt.

Abschließend unter Punkt 14 wurde angemerkt, dass die Lage der Immissionspunkte in der Kartendarstellung nicht den angegebenen Koordinaten der Anlage A entsprechen.

In der nachstehend Tabelle sind die bei der Begutachtung berücksichtigten Immissionspunkten mit ihren Koordinaten aufgeführt:

IP	Bezeichnung IP	Gauß-	Krüger-
		Koord	dinaten
		Rechts-	Hochwert
		Wert	
IP 1.1	Kurbenhof 1, Nordseite	2590727	5574798
IP 1.2	Kurbenhof 1, Westseite	2590722	5574794
IP 2.1	Kurbenhof 2, Nordseite	2590693	5574926
IP 2.2	Kurbenhof 2, Nordostseite	2590686	5574930
IP 2.3	Kurbenhof 2, Südwestseite	2590686	5574922
IP 2.4	Kurbenhof 2, Südostseite	2590692	5574918
IP 3.1	Kurbenhof 3, Südostseite	2590632	5574987
IP 3.2	Kurbenhof 7, Südostseite	2590595	5574958
IP 3.3	Kurbenhof 7, Südwestseite	2590589	5574960
IP 4	Schultheishof 1	2592564	5574467
IP 5	Polch, Nachtigallenstraße 31	2592686	5574851
IP 6	Lindenhof	2592430	5575697
IP 7	Nettesürsch 18	2591953	5576159
IP 8	Zährensmühle II, Im Nettetal 10	2590270	5575897
IP	Wölwerhöfe	2589257	5576090
IP 10	Tierheim, In der Pluns	2588694	5575927
IP 11	Alzheim, Am Hasberg 2	2587906	5574235

Sollten sich Rückfragen ergeben, stehe ich Ihnen gerne zur Verfügung.

Mit freundlichen Grüßen

Auszug aus dem Prüfbericht

Seite 1/2

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"
Rev. 18 vom 1. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 083SE408/02 zur Schallemission der Windenergieanlage vom Typ Nordex N100/2500

Allgemeine Angaben	ne Angaben Technische Daten (Herstellerangaben)			
Anlagenhersteller:	Nordex Energy GmbH Bornbarch 2	Nennleistung (Generator): Rotordurchmesser:	2500 kW 100 m	
	D-22848 Norderstedt	Nabenhöhe über Grund:	100 m	
Seriennummer:	80636	Turmbauart:	Kon. Stahlrohrturm	
WEA-Standort:	Iven	Leistungsregelung:	Pitch/Stall/Aktiv-Stall	
Ergänzende Daten zum	Rotor (Herstellerangaben)	Erg. Daten zu Getriebe und Genera	itor (Herstellerangaben)	
Rotorblatthersteller:	LM Glasfiber A/S	Getriebehersteller:	Bosch-Rexroth	
Typenbezeichnung Blat	t: LM 48.8P	Typenbezeichnung Getriebe:	CPV510D	
Blatteinstellwinkel:	variabel	Generatorhersteller:	Loher	
Rotorblattanzahl 3		Typenbezeichnung Generator:	JFWA-560MR-06A	
Rotornenndrehzahl / -be	ereich: 14,9 / 9,6 – 16,9 rpm	Generatordrehzahlbereich:	740 - 1300 U/min	

Leistungskurve: berechnete Kurve des Herstellers (Quelle: Nordex AG)

	Refer	enzpunkt	Schallemissions- Parameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		
	3,2 ms	148 kW	96,5 dB(A)*	(6)
	4 ms ⁻¹	377 kW	97,3 dB(A)*	(6)
	5 ms ⁻¹	803 kW	102,2 dB(A)	` '
	6 ms ⁻¹	1414 kW	105,5 dB(A)	
Schallleistungs-	7 ms ⁻¹	2046 kW	106,1 dB(A)	
Pegel	7,95 ms ⁻¹	2375 kW	106.7 dB(A)	(1)
L _{WA.P}	8 ms ⁻¹	2386 kW	106,8 dB(A)	(5)
	9 ms ⁻¹	2498 kW	- dB(A)	(2)
	10 ms ⁻¹	2500 kW	- dB(A)	(2)
	3,2 ms ⁻¹	148 kW	0 dB bei 446 Hz	
	4 ms ⁻¹	377 kW	0 dB bei 462 Hz	
	5 ms ⁻¹	803 kW	0 dB bei 64 Hz	
	6 ms ⁻¹	1414 kW	0 dB bei 1300 Hz	
Tonzuschlag für	7 ms ⁻¹	2046 kW	1 dB bei 1318 Hz	
den Nahbereich	7,95 ms ⁻¹	2375 kW	1 dB bei 1330 Hz	(1)
K _{TN}	8 ms ⁻¹	2386 kW	1 dB bei 1330 Hz	(3)
	9 ms ⁻¹	2498 kW		(2)
	10 ms ⁻¹	2500 kW		(2)
	3,2 ms ⁻¹	148 kW	0 dB	
	4 ms ⁻¹	377 kW	0 dB	
	5 ms ⁻¹	803 kW	0 dB	
	6 ms ⁻¹	1414 kW	0 dB	
Impulszuschlag	7 ms ⁻¹	2046 kW	0 dB	
für den Nahbereich	7,95 ms ⁻¹	2375 kW	0 dB	(1)
Kin	8 ms ⁻¹	2386 kW	0 dB	• •
	9 ms ⁻¹	2498 kW	-	(2)
	10 ms ⁻¹	2500 kW	- 1	(2)

Fortsetzung Seite 2

Seite 2/2

			Terz-Sch	allleistung	gspegel R	eferenzpu	$nkt v_{10} = 8$	3 ⁴⁾ ms ⁻¹ ir	n dB(A)			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA, P}	80,4	83.3	84.6	86,2	88,0	90.9	93,1	96,5	96.6	97.6	97,6	96.9
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA, P}	95,6	95.4	95,5	92,7	90.8	88.0	85.9	84.6	92.7	85.9	68,8	66.4
			Oktav-Sch	nallleistun	gspegel R	Referenzpu	nkt v ₁₀ =	8 ⁴⁾ ms ⁻¹ i	in dB(A)			
63	125		250	500		1000	2000		4000	8000		63
87.9	93,6		100,4	102.1	1	00,3	95.7		94.1	86.0		87.9

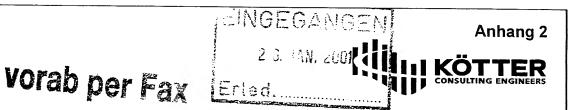
Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 24.11.2008. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

- (1) Betriebspunkt der 95%-igen Nennleistung entsprechend den Messbedingungen und der verwendeten Leistungskurve
 (2) In der Windklasse 9 ms¹ und 10 ms¹ liegen keine Messwerte vor.
 (3) In der Windklasse 8 m¹ liegt ein 10-Sekunden-Spektrum vor.
 (4) Die Terz- und Oktavbandanalyse erfolgte auf Basis von Messdaten der Windklassen 7 ms⁻¹ bis 8 ms⁻¹.
 (5) In der Windklasse 8 m⁻¹ liegt jeweils ein 10-Sekunden-Mittelwert für das Anlagen- und das Fremdgeräusch vor.
 (6) Die Fremdgeräuschkorrektur erfolgte mit konst. 1,3 dB.

Gemessen durch: WIND-consult GmbH

Reuterstraße 9

D-18211 Bargeshagen


i. A. Dipl.-Ing. (FH) H. Reichelt

Unterschrift

Dipl.-Ing. J. Schwabe

Das PDF-Dokument wurde elektronisch unterschrieben.

Datum: 23.01.2009

KÖTTER Consulting Engineers - Bonifatiusstr. 400 - D-48432 Rheine

Fuhrländer AG Umwelttechnik Windkraftanlagen Herrn Lahr Auf der Höhe 4

56477 Waigandshain / Westerwald

Datum...... 25.01.2001

Zeichen.....: Te/De

Bearbeiter.: Hans-Jörg Terno

Durchwahl.: 05971-9710.45

Schalleistungspegel FL 1000 Unsere Projekt-Nr.:23330-1

Sehr geehrter Herr Lahr,

wie telefonisch vereinbart, haben wir den Schalleistungspegel der FL 1000 alternativ zur FGW-konformen Berechnung über die Leistungskurve mit Hilfe der in 10 m Höhe gemessenen Windgeschwindigkeiten bestimmt. Die Ergebnisse für $v_{10} = 8$ m/s sind in Tabelle 1 zusammengefaßt.

Windgeschwindigkeit in 10 m Höhe	8 m/s
Schalleistungspegel L _w (über berechnete Leistungskurve)	102,0 dB(A)
Schalleistungspegel L _w (über gemessene Windgeschwindigkeit)	101,8 dB(A)
Impulshaltigkeit K _{IN}	0 dB
Tonhaltigkeit K _{TN}	0 dB

Tabelle 1:

Schalleistungspegel mit Ton- und Impulshaltigkeit im Nahbereich

Für Rückfragen stehen wir Ihnen gerne zur Verfügung.

Mit freundlichen Grüßen

KÖTTER Consulting Engineers

Bestätigung

Schalleistungspegel Fuhrländer FL-800 48 m Rotordurchmesser

Für die Windkraftanlage Fuhrländer FL-800 (800 kW) geben wir folgende Schallemissionswerte an:

Windgeschwindigkeit bei Nennleistung: 9 m/s

→ LWA = 102.1 dB(A)

basierend auf DIN-EN 61400-11

Ohne hörbare Ton- bzw. Impulshaltigkeit im Bereich ab 300 m

Waigandshain, den 26.11.2003

Dr. Jan Roß

Schalleistungspegel_WKA_FL-800-Bestätigung

Auszug aus dem Prüfbericht SE09001B3 zur Schallemissionsmessung an der Windenergieanlage vom Typ REpower MM92 in Chemin d'Ablis

Messung 2009-01-22
Auszug aus dem Prüfbericht
2009-03-13

SE09001B3A1

Frimmersdorfer Str 73 · D-41517 Grevenbroich · Phone +49(0) 2181 2278-0 · Fax +49(0) 2181 2278-11 · info@windtest-nrv.de · www.windtest-nrv.de · Geschäftlichkenn / Managing Directon Dipt.-Gect. Monital Kramer - HancetsregistenCommercial Register Amisgarchi Venonorgiadosch Hritz 7788 USL-Idiff./VAT No. DE 16389379 · StrusenW-Taz-ID. 114/57770301 Bankverbindungen/Bankaccount Spankasse Neuss-BLZ 305 500 00, Kto-für 600 272 04 · IDAN DE 14305500000600527204 BIC: WELA DE DN

Auszug aus dem Prüfbericht SE09001B3 zur Schallemissionsmessung an der Windenergieanlage vom Typ REpower MM92 in Chemin d'Ablis

SE09001B3A1

Auftraggeber:	REpower Systems	4G					
	Rödemis Hallig D-25813 Husum						
	, = ===================================						
Auftragnehmer:	windtest grevenbroi						
	Frimmersdorfer Str. 73a D-41517 Grevenbroich						
	1	A Commence of the Commence of					
Datum der Auftragserteilung:	2008-12-23	Auftragsnummer	09 0004 06				
Geprüft:		В	earbeiter:				
		L					
17 7/1			1 Clark				
Mins hell	-	V 106 m	of Olacu				
DiplIng. Thomas Fische			ng. David Rode				

Grevenbroich, 2009-03-13

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

	RE	power MM92				
Allgemeine Angaben		Technische Daten (Herstellerar	ngaben)			
Anlagenhersteller:	REpower Systems AG	Nennleistung (Generator):	2050 kW			
	Rödemis Hallig	Rotordurchmesser:	92,5 m			
	D-25813 Husum	Nabenhöhe über Grund:	80 m			
Seriennummer:	R90223	Turmbauart:	Stahlrohr konisch			
WEA-Standort (ca.):	RW: 583820 HW: 2384807	Leistungsregelung:	Pitch			
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)				
Rotorblatthersteller:	A&R	Getriebehersteller:	Eickhoff			
Typenbezeichnung Blatt:	RE45.2	Typenbezeichung Getriebe:	CPNHZ-224/G50115XB			
Blatteinstellwinkel:	0-91°	Generatorhersteller:	VEM			
Rotorblattanzahl:	3	Typenbezeichung Generator:	DASAA 5025-4UA			
Rotordrehzahlbereich:	7,8 - 15,0 U/min	Generatornenndrehzahl:	900 - 1800 U/min			

	Referenz	Referenzpunkt			Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel L _{WAP}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1181 kW 1688 kW 2006 kW 2045 kW 2050 kW	102,8 dB 103,9 dB 103,8 dB dB		95 % Nennleistung bei 7.70 m/s
Tonzuschlag für den Nahbereich K_{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1181 kW 1688 kW 2006 kW 2045 kW 2050 kW	0 dB 0 dB 0 dB 	bei Hz bei Hz bei Hz bei Hz bei Hz	95 % Nennleislung bei 7,70 m/s
Impulszuschlag für den Nahbereich Kei	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1181 kW 1688 kW 2006 kW 2045 kW 2050 kW	0 0	dB dB dB dB dB	95 % Nennleistung bei 7.70 m/s

				Terz-Sch	nallleistun	gspegel fi	$ir v_{10} = 7 n$	ns ⁻¹ in dB				designation of the last of the
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAP	74,19	80,38	80,41	83,60	85,82	89,03	88,91	91,22	93,17	92,86	94,67	94,32
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA P	95,00	94,27	93,03	91,21	89,45	86,98	85,10	82.46	77,65	68.72	62.84	60,17

Oktav-Schallleistungspegel für v ₁₀ = 7 ms ⁻¹ in dB									
Frequenz	63	125	250	500	1000	2000	4000	8000	
LWA P	83,46	90,92	95,89	98.91	99.03	94,53	87,51	70.81	

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2009-02-27. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Gemessen durch: windtest grevenbroich gmbh

Frimmersdorfer Str.73a D-41517 Grevenbroich

1.07.2001

Datum: 2009-03-13

Dipl.-Ing. T. Fischer Dipl.-Ing. D. Rode

Qualität der Prognose

Die TA Lärm sieht unter Punkt A. 2.6 vor, dass die Geräuschimmissionsprognose Aussagen über die Qualität der Prognose enthalten soll.

Bei Windenergieanlagen bestimmen folgende Faktoren die Qualität der Prognose:

- Ungenauigkeit der Schallemissions-Vermessung der WEA (σ_R)
- Serienstreuung der WEA (σ_P)
- prinzipielle Unsicherheit des der Ausbreitungsberechnung zugrunde liegenden Prognosemodelles (σ_{Prog})

Dabei sind:

 $\sigma_{\text{Prog}} = 1.5 \, \text{dB(A)}$

 σ_P = 1,2 dB(A) bei einer einfachen Vermessung, errechnet aus

Sicherheitszuschlag 2 dB(A)

 σ_R = 0,5 dB(A), wenn die WEA gemäß DIN 61400–11

vermessen wird

sonst

σ_R = Ungenauigkeit, die im Vermessungsbericht durch

das Messinstitut angegeben wird

 σ_R = 3 dB(A) bei nicht vermessenen WEA

 σ_{Schirm} = 1,5 dB(A) als Abschätzung aus VDI 2720

Die Gesamtunsicherheit der Schallimmissionsprognose berechnet sich dann:

$$\sigma_{\text{ges}} = \sqrt{\sigma_R^2 + \sigma_p^2 + \sigma_{prog}^2 + \sigma_{Schirm}^2}$$

In einer statistischen Betrachtung ergibt sich die obere Vertrauensbereichsgrenze Lo:

$$L_o$$
 = L_r + K
K = 1,28 · σ_{qes}

mit

L_r = Beurteilungspegel

K = Zuschlag

Der Richtwert nach TA Lärm gilt als eingehalten, wenn L_{o} unter dem Richtwert nach TA Lärm liegt.

Zur Bestimmung des Sicherheitszuschlages für die Serienstreuung σ_P einer 3-fach vermessenen Windenergieanlage wird der Arbeitsentwurf der EN 50376 "Declaration of sound power level and tonality values of wind turbines" herangezogen.

Danach soll zur Bestimmung der Produktionsstreuung aus der Mehrfachmessung des Schallleistungspegels folgende Abschätzung für σ_P angewendet werden:

$$\sigma_P = s$$

Die Standardabweichung s berechnet sich nach EN 50376 wie folgt:

s =
$$\sqrt{\frac{1}{n-1} \sum_{n=1}^{n} (L_{w_i} - \overline{L_w})^2}$$

mit

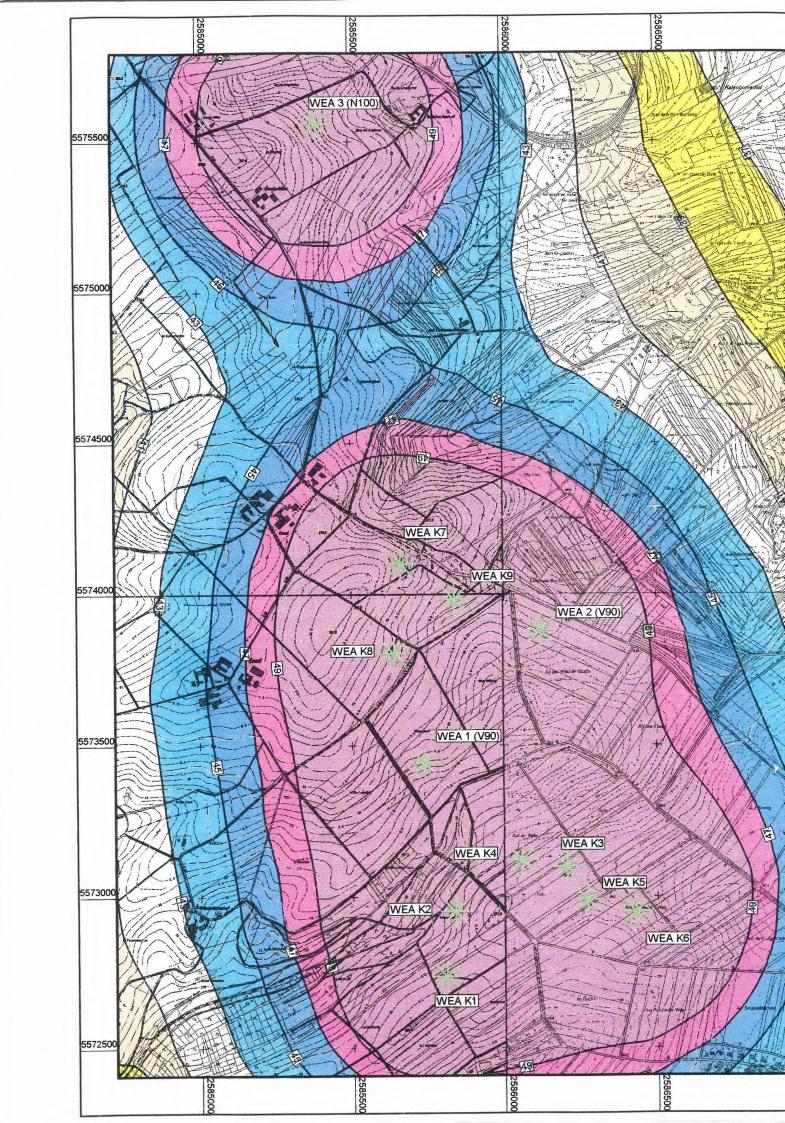
$$\overline{L}_{W} = \sum_{n=1}^{n} \frac{L_{Wi}}{n}$$

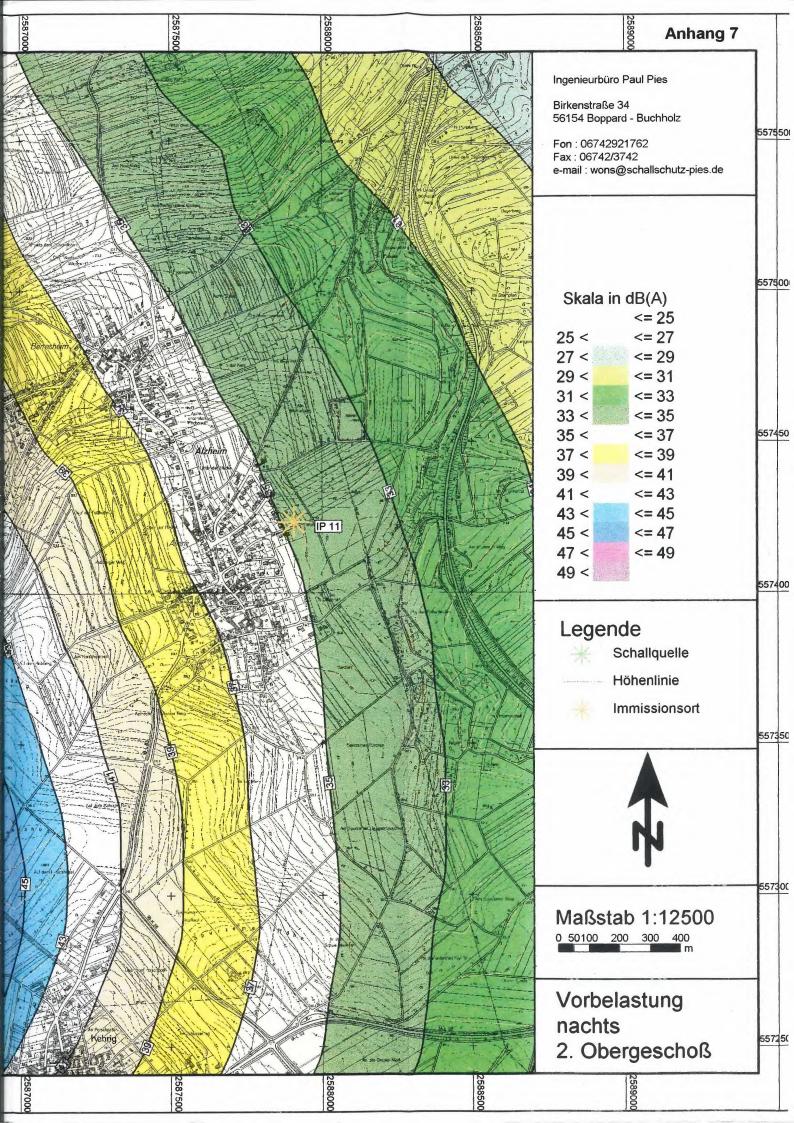
Für die Gesamtunsicherheit der Prognoserechnung ergibt sich dann:

$$\sigma_{\text{ges}} = \sqrt{\sigma_R^2 + s^2 + \sigma_{prog}^2 + \sigma_{Schirm}^2}$$

Anhang 6.1

WEA Polch Ausbreitungsberechnung Vorbelastung


Name	Quelltyp	Lw	Zuschlag	Ko	s	Adiv	Agr	Abar	Aatm	Re	Ls	LrT	LrN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB(A	dB(A)	dB(A)	dB(A)
Name IP 11 Alzheim IRW Tag 55 dB(A) IRW Nacht 40 dB(A) LrT 38,4 dB(A) LrN 34											LrN 34,8		
WEA 1 V90	Punkt	103,4	2,7	3,0	2311,4	78,3	4,2	0,0	4,4		22,2	25,8	22,2
WEA 2 V90	Punkt	103,4	2,7	3,0	1825,2	76,2	3,9	0.0	3,5		25,5	29,1	25.5
WEA 3 N100	Punkt	106,8	3,2	3,0	2846,0	80,1	3,8	0.0	5,5		23,7	27,3	23,7
WEA K1	Punkt	102,1	5,3	3,0	2581,0	79,2	4,6	0.2	5,0		21,4	25,1	21,4
WEA K2	Punkt	102,1	5,3	3,0	2437,7	78,7	4,6	0.2	4,7		22,2	25,8	22,2
WEA K3	Punkt	102,1	5,3	3,0	2050,0	77,2	4,4	0.0	3,9		24,8	28,4	24,8
WEA K4	Punkt	102,1	5,3	3,0	2161,2	77,7	4,4	0.3	4,2		23,8	27,4	23,8
WEA K5	Punkt	102,1	5,3	3,0	2058,8	77,3	4,4	0.0	4,0		24,8	28,4	24.8
WEA K6	Punkt	102,1	5,3	3,0	1962,5	76.8	4,4	0.0	3.8		25,4	29,0	25,4
WEA K7	Punkt	102,1	5,3	3,0	2251,4	78.0	4,2	0,0	4,3		23,8	27,5	23,8
WEA K8	Punkt	102,1	5,3	3,0	2311,5	78,3	4,3	0.0	4,4		23,4	27,0	23.4
WEA K9	Punkt	102,1	5,3	3,0	2087,1	77,4	4,2	0,0	4,0		24,8	28,4	24,8

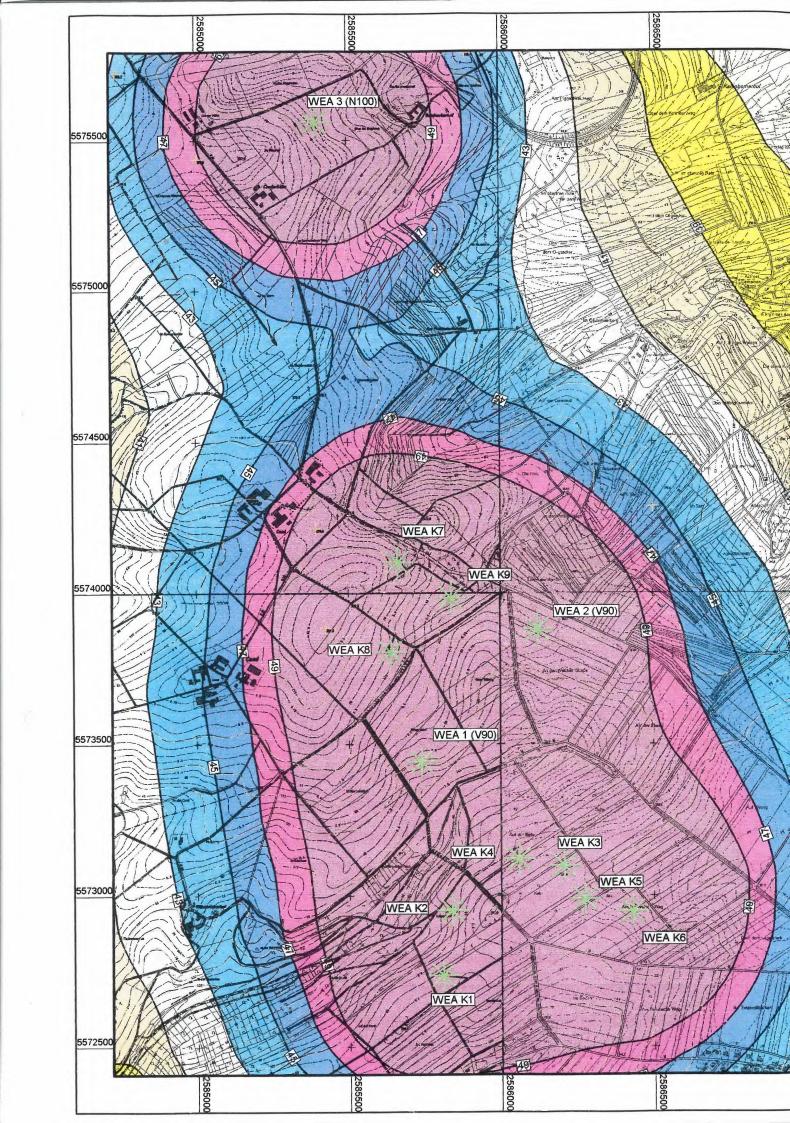

Anhang 6.2

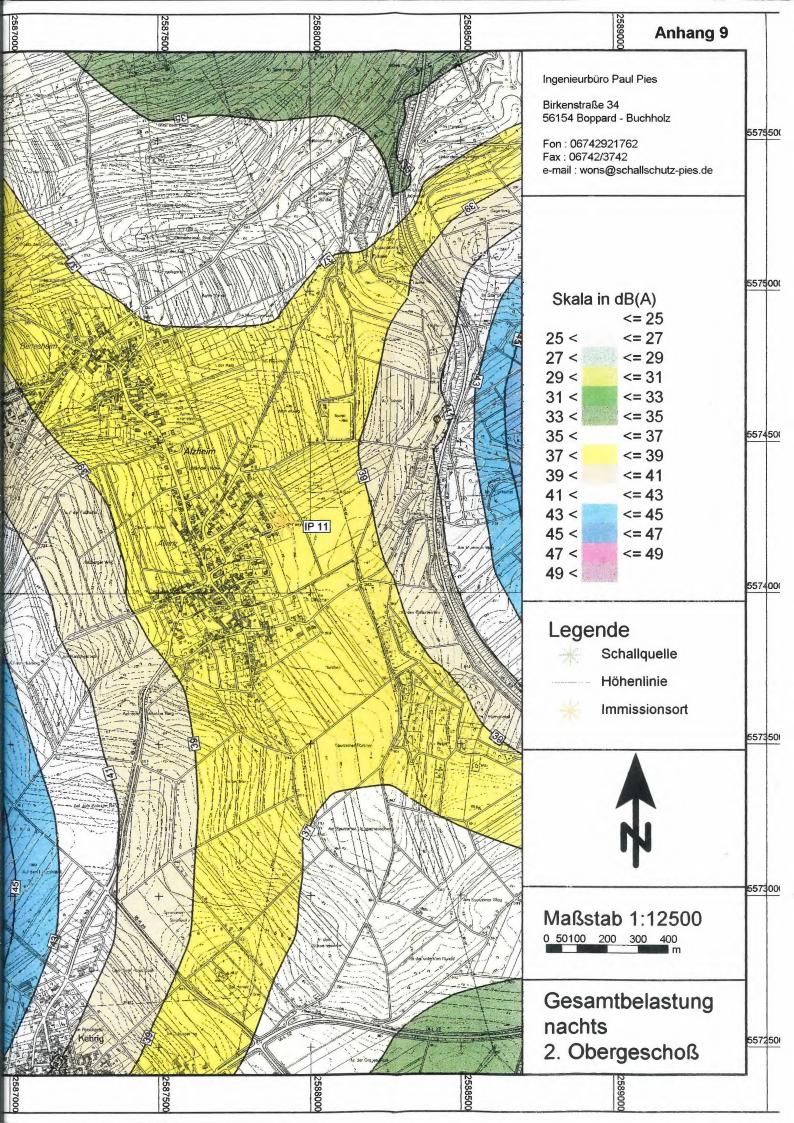
WEA Polch Ausbreitungsberechnung Vorbelastung

<u>Legende</u>

Name Quelltyp Lw Zuschlag Ko s Adiv Agr Abar Aatm Re Ls LrT	dB(A) dB dB m dB dB dB dB dB dB(A) dB(A) dB(A)	Name der Quelle Typ der Quelle (Punkt, Linie, Fläche) Anlagenleistung Zuschlag für Qualität der Prognose Zuschlag für gerichtete Abstrahlung Entfernung Emissionsort-IO Mittlere Entfernungsminderung Mittlerer Bodeneffekt Mittlere Einfügedämpfung Mittlere Dämpfung durch Luftabsorption Reflexanteil Unbewerteter Schalldruck am Immissionsort Teilheutfeilungspegel Tag
	dB(A)	Teilbeurteilungspegel Tag
LrN	dB(A)	Teilbeurteilungspegel Nacht

Anhang 8.1


WEA Polch Ausbreitungsberechnung Gesamtbelastung


Name	Quelityp	Lw	Zuschlag	Ko	S	Adiv	Agr	Abar	Aatm	Re	Ls	LrT	LrN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB(A	dB(A)	dB(A)	dB(A)
Name IP 11 Alzheim IRW Tag 55 dB(A) IRW Nacht 40 dB(A) LrT 41,6 dB(A) LrN 37,9													
WEA 1 V90	Punkt	103,4	2,7	3,0	2311,4	78,3	4,2	0,0		D(A)			LrN 37,9
WEA 2 V90	Punkt	103,4	2,7	3,0	1825,2			1 '	4,4		22,2	25,8	22,2
WEA 3 N100	Punkt	106,8	3,2	1	}	76,2	3,9	0,0	3,5		25,5	29,1	25,5
WEA K1	Punkt	100,8		3,0	2846,0	80,1	3,8	0,0	5,5		23,7	27,3	23,7
WEA K2	1		5,3	3,0	2581,0	79,2	4,6	0,2	5,0		21,4	25,1	21,4
WEA K3	Punkt	102,1	5,3	3,0	2437,7	78,7	4,6	0,2	4,7		22,2	25,8	22,2
	Punkt	102,1	5,3	3,0	2050,0	77,2	4,4	0,0	3,9		24,8	28,4	24,8
WEA K4	Punkt	102,1	5,3	3,0	2161,2	77,7	4,4	0,3	4,2		23,8	27,4	23,8
WEA K5	Punkt	102,1	5,3	3,0	2058,8	77,3	4,4	0,0	4,0		24,8	28,4	24,8
WEA K6	Punkt	102,1	5,3	3,0	1962,5	76,8	4,4	0,0	3,8		25,4	29,0	25,4
WEA K7	Punkt	102,1	5,3	3,0	2251,4	78,0	4,2	0,0	4,3		23,8	27,5	23,8
WEA K8	Punkt	102,1	5,3	3,0	2311,5	78,3	4,3	0,0	4,4		23,4	27,0	23,4
WEA K9	Punkt	102,1	5,3	3,0	2087,1	77,4	4,2	0,0	4,0		24,8	28,4	24,8
WEA 1	Punkt	103,9	3,2	3,0	1280,0	73,1	3.2	0,0	2,5		31,3	34,9	31,3
WEA 2	Punkt	103,9	3,2	3,0	1324,8	73,4	3,3	0,0	2,5		30,8	34,4	30,8
WEA 3	Punkt	103,9	3,2	3,0	1962,2	76,8	4,0	0.0	3,8		25,4	29,1	25,4
WEA 4	Punkt	103,9	3,2	3,0	2141,4	77,6	4,2	0,0	4,1	Constitution of the Consti	24,2	27,8	24,2
WEA 5	Punkt	103,9	3,2	3,0	3328,3	81,4	4,3	0,5	6,4		17,5	21,1	17,5
		***************************************				-		1 -1-			,0		11,0

Anhang 8.2

WEA Polch Ausbreitungsberechnung Gesamtbelastung

<u>Legende</u>

