Gutachterliche Immissionsprognose zur Errichtung von Windenergieanlage bei Polch

Schalltechn. Ingenieurbüro J für Gewerbe, Freizeitund Verkehrdärm

Paul Pies

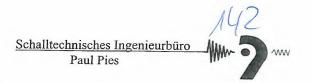
Koblenz öffentlich bestellter und vereidigter Sachverständiger für Gewerbe-, Freizeit- und Verkehrslärm Benannte Messstelle nach §§ 26, 28 BImSch

Büro 1 + 2: Boppard-Buchholz:

1 Buchenstraße 13 56154 Boppard-Buchholz

2 Birkenstraße 34 56154 Boppard-Buchholz

06742 / 921133 06742 / 921135 Fax: E-Mail: pies@schallschutz-pies.de


06742/2299

E-Mail: info@schallschutz-pies.de

141

Schalltechnische Immissionsprognose zur Errichtung von Windenergieanlagen bei Polch

AUFTRAGGEBER:		
AUFTRAG VOM:	13.10.2005	
AUFTRAG – NR.:	11895 / 1105	
BEARBEITER:		
SEITENZAHL:	21	
Anhänge:	6	

INHALTSVERZEICHNIS

		Seite
1.	Aufgabenstellung	3
2.	Grundlagen	3
2.1	Beschreibung der örtlichen Verhältnisse	3
2.2	Anlagenbeschreibung	
2.3	Nutzungszeiten	5
2.4	Verwendete Unterlagen	
2.4.1	Vom Auftraggeber zur Verfügung gestellte Unterlagen	5
2.4.2	Richtlinien, Normen und Erlasse	5
2.4.3	Eigene Unterlagen	6
2.5	Anforderungen	6
2.6	Berechnungsgrundlagen	7
2.6.1	Berechnung der Geräuschimmissionen	7
2.6.2	Bestimmung der Qualität einer Immissionsprognose	10
2.7	Beurteilungsgrundlagen	
2.8	Ausgangsdaten	14
2.8.1	Emissionsdaten für die geplanten Windenergieanlagen	14
2.8.2	Standardabweichungen	15
3.	Immissionsberechnung und Beurteilung	16
4.	Zusammenfassung	20

Aufgabenstellung

Die beabsichtigt, westlich von Polch insgesamt 7 Windenergieanlagen zu errichten und zu betreiben. Die Anlagen verteilen sich auf 2 Standorte, die räumlich etwas voneinander getrennt sind. Für den östlichen Standort mit 2 Windenergieanlagen erfolgte bereits durch unser Büro eine Untersuchung.

Im Rahmen des Genehmigungsverfahrens ist eine schalltechnische Immissionsprognose für alle Standorte nach den geltenden Richtlinien zu erstellen. Sollte diese zeigen, dass ggf. Überschreitungen der Immissionsrichtwerte nicht auszuschließen sind, werden geeignete schallmindernde Maßnahmen aufgeführt.

2. Grundlagen

2.1 Beschreibung der örtlichen Verhältnisse

Zwei der insgesamt 7 Windenergieanlagen sollen auf einer Anhöhe zwischen Polch und dem Aussiedlerhof "Kurbenhof" errichtet werden. Die weiteren 5 geplanten Anlagen sind westlich des "Kurbenhofes" vorgesehen, so dass dieser sich zwischen diesen beiden Standorten befinden. Weitere Wohnhäuser stehen in der Ortslage Nettesürsch im Nordwesten in der Ortslage Alzheim im Westen, in Polch im Osten sowie mehrerer Wohnhäuser im Außenbereich im Norden zu den Standorten. Die Ortslage Einig südlich der Standorte weist einen so großen Abstand auf, dass diese bei der vorliegenden Untersuchung nicht berücksichtigt wurde. Aufgrund der topografischen Gegebenheiten ist davon auszugehen, dass von den Ortslagen die Anlagen weitgehend frei eingesehen werden können.

Lediglich durch die im Nettetal befindlichen Aussiedlerhöfe ist die Sichtverbindung stark eingeschränkt bzw. nicht gegeben.

Einen Überblick über die örtlichen Gegebenheiten vermittelt der Übersichtsplan im Anhang 1 sowie die Lagepläne im Anhang 2 zum Gutachten.

2.2 Anlagenbeschreibung

Am östlicheren Standort sind 2 Windenergieanlagen der Firma Enercon vom Typ E70 E4 und am östlichen Standort 5 Anlagen der Firma Fuhrländer vom Typ MD 77 geplant. In der nachstehenden Tabelle sind die einzelnen Daten mit Standortkoordinaten aufgeführt:

Tabelle 1

Kennzeich- nung	Anlagentyp	Nennleistung in kW	Naben- höhe in m	Rotordurch- messer in m	Gauss/ Koordi Rechtswert	naten
WEA1	MD 77	1 500	100,0	77	2589110	5574666
WEA2	MD 77	1 500	100,0	77	2589554	5574568
WEA3	MD 77	1 500	100,0	77	2589838	5574570
WEA4	MD 77	1 500	100,0	77	2590052	5574310
WEA5	MD 77	1 500	100,0	77	2589209	5574166
WEA6	E70 E4	2 000	113,5	70	2591150	5575015
WEA7	E70 E4	2 000	113,5	70	2591335	5574890

Die Standorte der Windenergieanlagen können ebenfalls dem Übersichtsplan im Anhang 1 sowie den Lageplänen im Anhang 2 entnommen werden.

2.3 Nutzungszeiten

Die geplanten Windenergieanlagen sollen kontinuierlich über die gesamte Tages- und Nachtzeit betrieben werden. Somit ist aus schalltechnischer Sicht vor allem die ungünstigste Nutzungssituation zur Nachtzeit von 22.00 bis 06.00 Uhr und hier die "lauteste Stunde" zu berücksichtigen.

2.4 Verwendete Unterlagen

2.4.1 Vom Auftraggeber zur Verfügung gestellte Unterlagen

- Topografische Karte, Maßstab 1: 25 000
- Deutsche Grundkarte mit Höhenlinien, Maßstab 1:5 000
- Standortkoordinaten der geplanten WEA

2.4.2 Richtlinien, Normen und Erlasse

- Technische Richtlinie für Windenergieanlagen
 Herausgeber: Fördergesellschaft für Windenergie e.V.
- DIN ISO 9613-2
 "Dämpfung des Schalls bei der Ausbreitung im Freien"
- TA Lärm
 "Technische Anleitung zum Schutz gegen Lärm"

2.4.3 Eigene Unterlagen

- Tagungsunterlagen Kötter Consult Engineers
- Auszug aus den Messberichten und Datenblätter der Anlagen
- Schreiben: Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen" der Immissionsschutzbehörden und Messinstitute, Juni 1998
- TA Lärm
 "Technische Anleitung zum Schutz gegen Lärm"
 Kommentar, Verfasser Klaus Hansmann

2.5 Anforderungen

Zur Ermittlung, welche Nutzungseinstufung und damit welche Richtwerte bei der Immissionsprognose anzusetzen sind, wurde bei der jeweiligen Verwaltung recherchiert. So kann nach Angaben der Verbandsgemeindeverwaltung Maifeld und Stadtverwaltung Mayen folgende Nutzungseinstufung bei den nächstgelegenen Wohnhäusern angesetzt werden:

Tabelle 2

Beschreibung	Nutzungseinstufung	Bemerkung	
Kurbenhof	MI/MD	Außenbereich	
Zährensmühle II	MI/MD	Außenbereich	
Nettesürsch	WA	WA Flächennutzungsplan mit Angabe o	
Aussiedlerhöfe	MI/MD	Außenbereich	
Polch	WA	Bebauungsplan	
Wölwerhöfe	MI/MD	Außenbereich	
Tierheim	MI/MD	Außenbereich	
Alzheim	WA	Bebauungsplan	

Bezüglich der Wohnhäuser im Außenbereich ist anzumerken, dass nach entsprechenden Kommentaren zur TA Lärm und einem Gerichtsurteil des OVG Münster für Wohnbebauung im Außenbereich allenfalls die Richtwerte vergleichbar eines Mischgebietes bzw. Dorfgebietes angesetzt werden können.

Die TA Lärm gibt für og. Nutzungseinstufung folgende Immissionsrichtwerte an:

Mischgebiet (MI)/Dorfgebiet (MD):

tags

60 dB(A)

nachts

45 dB(A)

Allgemeines Wohngebiet (WA):

tags

55 dB(A)

nachts

40 dB(A)

Diese sollen 0,5 m vor dem, vom Lärm, am stärksten betroffenen Wohnungsfenster nicht überschritten werden. Ferner soll vermieden werden, dass einzelne Pegelspitzen den Tagesimmissionsrichtwert um mehr als 30 dB(A) und den Nachtimmissionsrichtwert um nicht mehr als 20 dB(A) überschreiten.

2.6 Berechnungsgrundlagen

2.6.1 Berechnung der Geräuschimmissionen

Gemäß der DIN ISO 9613-2 berechnet sich der äquivalente A-bewertete Dauerschalldruckpegel bei Mitwind nach folgender Gleichung:

$$L_{AT}$$
 (DW) = L_{W} + D_{c} - A_{div} - A_{atm} - A_{gr} - A_{bar} - A_{misc}

Dabei ist:

L_W - Schalleistungspegel einer Punktschallquelle in Dezibel (A)

D_c - Richtwirkungskorrektur in Dezibel

A_{div} - die Dämpfung aufgrund geometrischer Ausbreitung (siehe 7.1 der DIN ISO 9613-2);

A_{atm} - die Dämpfung aufgrund von Luftabsorption (siehe 7.2 der DIN ISO 9613-2);

A_{gr} - die Dämpfung aufgrund des Bodeneffekts (siehe 7.3 der DIN ISO 9613-2):

A_{bar} - die Dämpfung aufgrund von Abschirmung (siehe 7.4 der DIN ISO 9613-2)

A_{misc} - die Dämpfung aufgrund verschiedener anderer Effekte (siehe Anhang A der DIN ISO 9613-2)

Die Berechnungen nach obiger Gleichung können zum einen in den 8 Oktavbändern mit Bandmittenfrequenzen von 63 Hz bis 8 kHz erfolgen. Zum anderen, insbesondere, wenn die Geräusche keine bestimmenden hoch- bzw. tieffrequenten Anteile aufweisen, kann die Berechnung auch für eine Mittenfrequenz von 500 Hz durchgeführt werden.

Sind mehrere Punktschallquellen vorhanden, so wird der jeweilige äquivalente A-bewertete Dauerschalldruckpegel nach obiger Gleichung oktavmäßig bzw. mit einer Mittenfrequenz berechnet und dann die einzelnen Werte energetisch addiert.

Aus dem äquivalenten A-bewerteten Dauerschalldruckpegel bei Mitwind L_{AT} (DW) errechnet sich unter Berücksichtigung der nachstehenden Beziehung der A-bewertete Langzeitmittelungspegel $L_{AT}(LT)$:

 $L_{AT}(LT) = L_{AT}(DW)-C_{met}$

C_{met} entspricht dem meteorologischen Korrekturmaß gemäß dem Abschnitt 8 der DIN ISO 9613-2.

Die Immissionsberechnung erfolgte durch das Rechenprogramm "SOUNDPLAN", Version 6, entwickelt vom Ingenieurbüro Braunstein und Berndt, Stuttgart, auf einem Personal-Computer (PC).

Die Berechnung mit "SOUNDPLAN" steht mit dem og. Berechnungsverfahren im Einklang.

Das Programm beruht auf einem Sektorverfahren. Ausgehend von den jeweiligen Immissionsorten werden Suchstrahlen ausgesandt, der Abstandswinkel der Suchstrahlen kann frei gewählt werden.

Mittels Suchroutinen wird überprüft, ob sich in den jeweiligen Sektoren Linienschallquellen, Beugungskanten und Reflexionskanten befinden.

Die Schnittpunkte werden gespeichert, so dass anhand der Schnittgeometrie eine genaue Berechnung des zugehörigen Teilschallpegels erfolgen kann. Bei der Existenz reflektierender Flächen wird sowohl der Schallweg des reflektierenden Schalls als auch der Schallweg über das Hindernis hinweg verfolgt.

Die eingegebenen Koordinaten können über ein Plotbild kontrolliert werden.

Dies sind beispielsweise:

- Straßenachsen,
- Beugungskanten (Lärmschutzwände und -wälle, Einschnittsböschungen, Gebäude, Geländeerhebungen etc.),
- reflektierende Flächen,
- Bewuchs etc.

Mit dem oben beschriebenen Rechenprogramm "SOUNDPLAN" ist auch die Erstellung von Rasterlärmkarten (RLK) möglich.

Zur Erstellung dieser Karten sind sowohl die Vorgehensweise als auch der Rechenformalismus die gleichen wie zuvor beschrieben.

Für die Rasterlärmkarten werden zusätzlich nur das zu untersuchende Gebiet, die Rastergröße und die zu berücksichtigende Immissionshöhe definiert. Die Ausgabe der Rasterlärmkarten besteht aus Plotbildern, in denen die Flächen des Untersuchungsgebietes gestaffelt nach Immissionspegelklassen (Isolinien) farblich dargestellt werden.

2.6.2 Bestimmung der Qualität einer Immissionsprognose

Gemäß der TA Lärm (Abschnitt A.2.6) ist auch eine Angabe über die Qualität der Prognose durchzuführen.

So wurde zur Ermittlung der Unsicherheit "K" nach DIN EN ISO 4871 anhand der Standardabweichung "σ" nach Probst und Donner ein Berechnungsansatz ausgearbeitet (veröffentlicht in der Zeitschrift für Lärmbekämpfung, Ausgabe 3/2002). Dieser Berechnungsansatz ist unter anderem in Nordrhein-Westfalen anerkannt.

Die Herleitung erfolgt aus dem gausischen Fehlerfortpflanzungsgesetz. Hiernach kann die Standardabweichung σ nach folgender Formel bei Einwirkung mehrerer Geräuschquellen berechnet werden:

$$\sigma = \frac{\sqrt{\sum \left(\sigma_n \cdot 10^{0.1 \cdot Ln}\right)^2}}{\sum 10^{0.1 \cdot Ln}}$$

σ - Gesamtstandardabweichung

 σ_n - Gesamtstandardabweichung einer einzelnen Geräuschquelle "n"

L_n - Teilbeurteilungspegel der jeweiligen Geräuschquelle "n"

Im Zusammenhang mit Windkraftanlagen errechnet sich σ_n nach folgender Gleichung:

$$\sigma_n = \sqrt{\sigma_R^2 + \sigma_p^2 + \sigma_{prog}^2}$$

- σ_R Vergleichstandardabweichung, Ungenauigkeit der Schallemissionsmessung mit folgenden Möglichkeiten der Ausgangsdaten
- σ_R 0,5 dB(A), wenn eine Vermessung nach DIN
 61400-11 erfolgte (Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen")

σ _R -	wird im Vermessungsbericht durch das Messinstitut	
		angegeben oder

- σ_R 1,5 dB(A), wenn keine Angabe im Messbericht vorliegt und keine Vermessung gemäß og. Norm durchgeführt wurde
- σ_{p} Produktionsstandardabweichung; Serienstreuung mit folgenden Möglichkeiten der Ausgangsdaten
- σ_{p} entspricht bei 3 Vermessungen der aus den Messwerten ermittelten Standardabweichung s oder
- σ_p 1,2 dB(A), wenn eine Vermessung durchgeführt wurde (Ermittlung aus Sicherheitszuschlag von 2 dB gemäß Artikel in Zeitschrift für Lärmbekämpfung, Ausgabe 5/2001)
- σ_{prog} Unsicherheit des Prognosemodelles
- σ_{prog} 1,5 dB(A), abgeleitet aus der Tabelle 5 der DIN
 ISO 9613-2 entsprechend Artikel in Zeitschrift für
 Lärmbekämpfung, Ausgabe 5/2001

Die Unsicherheit K berechnet sich nun für die Überschreitungswahrscheinlichkeit von 5 % wie folgt:

$$K = 1,645 \cdot \sigma$$

Aus der Unsicherheit "K" und dem ermittelten Beurteilungspegel "L_r" berechnet sich die obere Vertrauensbereichsgrenze L_o nach:

$$L_0 = L_r + K$$

Der Immissionsrichtwert gemäß TA Lärm gilt als eingehalten, wenn $L_o \leq Immissionsrichtwert.$

2.7 Beurteilungsgrundlagen

Nach der 6. Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm – TA Lärm) vom 26. August 1998 erfolgt die Beurteilung eines Geräusches bei nicht genehmigungsbedürftigen bzw. genehmigungsbedürftigen Anlagen anhand eines sog. Beurteilungspegels. Dieser berücksichtigt die auftretenden Schallpegel, die Einwirkzeit, die Tageszeit des Auftretens und besondere Geräuschmerkmale (z.B. Töne).

Das Einwirken des vorhandenen Geräusches auf den Menschen wird dem Einwirken eines konstanten Geräusches während des gesamten Bezugszeitraumes gleichgesetzt.

Zur Bestimmung des Beurteilungspegels wird die tatsächliche Geräuscheinwirkung (Wirkpegel) während des Tages auf einen Bezugszeitraum von 16 Stunden (06.00 bis 22.00 Uhr) und zur Nachtzeit (22.00 bis 06.00 Uhr) auf eine volle Stunde ("lauteste Nachtstunde" z.B. 01.00 bis 02.00 Uhr) bezogen.

Treten in einem Geräusch Einzeltöne und Informationshaltigkeit deutlich hörbar hervor, dann sind in den Zeitabschnitten, in denen die Einzeltöne bzw. Informationshaltigkeiten auftreten, dem maßgebenden Wirkpegel von 3 dB(A) bzw. 6 dB(A) hinzuzurechnen.

Die nach dem oben beschriebenen Verfahren ermittelten Beurteilungspegel sollen bestimmte Immissionsrichtwerte, die in der TA Lärm, Abschnitt 6.1 festgelegt sind, nicht überschreiten.

Zur Berücksichtigung der erhöhten Störwirkung von Geräuschen wird ein Zuschlag von 6 dB(A) für folgende Teilzeiten berücksichtigt:

An Werktagen	06.00 – 07.00 Uhr
	20.00 – 22.00 Uhr
An Sonn- und Feiertagen	06.00 - 09.00 Uhr
	13.00 – 15.00 Uhr
	20.00 – 22.00 Uhr

Die Berücksichtigung des Zuschlages von 6 dB(A) gilt nur für Wohn-, Kleinsiedlungs- und Kurgebiete; jedoch nicht für Kern-, Dorf-, Misch-, Gewerbe- und Industriegebiete.

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte, wie sie in Abschnitt 6.1 der TA Lärm aufgeführt sind, am Tage um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten.

2.8 Ausgangsdaten

2.8.1 Emissionsdaten für die geplanten Windenergieanlagen

Nach einer Vermessung gemäß der FGW-Richtlinie, durchgeführt durch die Firma Wind Consult (Messbericht-Nr.: WICO 392 SEA 03/01) wurde für den Anlagentyp E70 E4 eine Schallleistung unter Referenzbedingungen von L_W = 102 dB(A) ermittelt. Dieser Wert wurde durch eine zweite Vermessung durch das Büro Kötter Consulting Engineers bestätigt. Nach Angaben der Firma Enercon und entsprechend einem Datenblatt soll bei der Immissionsprognose von einem Schallleistungspegel von L_W = 103 dB(A) ausgegangen werden.

Dieser höhere Schalleistungspegel wurde bei der vorliegenden Immissionsprognose angesetzt.

Der Anlagentyp MD 77 weist anhand von 3 Vermessungen gemäß der FGW-Richtlinie unter Referenzbedingungen einen mittleren Schallleistungspegel von L_W = 103 dB(A) auf.

Immissionsrelevante Ton- bzw. Impulshaltigkeit konnten bei den Vermessungen nicht festgestellt werden.

Dem Anhang 3 zum Gutachten sind die Zusammenfassungen der Messberichte sowie ein Datenblatt der Firma Enercon beigefügt.

Zur Tonhaltigkeit ist allgemein anzumerken, dass entsprechend dem Stand der Technik Geräuschemissionen von neuen Windenergieanlagen nicht einzeltonhaltig sein sollten.

Bezüglich tieffrequenter Geräusche bzw. Infraschall sind in Anlehnung an Veröffentlichungen bei den vorliegenden Abständen bisher noch keine messbaren gesundheitsschädlichen Anteile festgestellt worden.

2.8.2 Standardabweichungen

Die Ermittlung der Qualität der Prognose erfolgt nach dem Verfahren, wie dies im Abschnitt 2.6.2 beschrieben ist. Für die Messunsicherheit wurde eine Standardabweichung $\sigma_R = 0.5$ dB(A) berücksichtigt. Dieser Wert konnte im Rahmen von Ringversuchen ermittelt werden.

Die Standardabweichung für die Prognoseunsicherheit beträgt σ_{Prog} = 1,5 dB(A) und wird aus dem Schwankungsbereich für höherliegende Quellen entsprechend der DIN ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien" abgeleitet. Zur Berücksichtigung einer möglichen Serienstreuung wurde eine Produktionsstandardabweichung σ_p = 1,2 dB(A) berücksichtigt. Dieser Wert ergibt sich aus einem Sicherheitszuschlag von 2 dB(A) bei 95 %-iger Vertrauenswahrscheinlichkeit, da og. Anlagentyp noch nicht 3-fach gemäß FWG-Richtlinie vermessen ist. Aus der 3-fach-Vermessung des Anlagentyps MD 77 errechnet sich für die Serienstreuung eine Standardabweichung von σ_P = 0,6 dB(A).

3. <u>Immissionsberechnung und Beurteilung</u>

Zur Ermittlung der Geräuschimmissionen wurde mittels PC und der Software "SOUNDPLAN" ein digitales Geländemodell erstellt. Dieses berücksichtigt alle für die Schallausbreitung wichtigen topografischen Gegebenheiten. Die Immissionsberechnung wurde für die aus schalltechnischer Sicht ungünstigst gelegene Wohnbebauung der angrenzenden Ortschaften bzw. Aussiedlerhöfe (Obergeschosse) durchgeführt. Als Auswahlkriterium wurde der Abstand zu den Planungsvorhaben und die Nutzungseinstufung mit den entsprechenden Immissionsrichtwerten herangezogen. Die Immissionsorte sind nachstehend aufgeführt und im Anhang 1 zum Gutachten gekennzeichnet.

Tabelle 3

IP	Bezeichnung IP	Nutzungsein- stufung	Immission in dE	
			Tag	Nacht
1	Wohnhaus Kurbenhof, Süd	MI/MD	60	45
2	Wohnhaus Kurbenhof, Mitte	MI/MD	60	45
3	Wohnhaus Kurbenhof, Nord	MI/MD	60	45
4	Aussiedlerhof	MI/MD	60	45
5	Wohngebiet in Polch	WA	55	40
6	Aussiedlerhof	MI/MD	60	45
7	Wohnhäuser Nettesürsch	WA	55	40
8	Zährensmühle II	MI/MD	60	45
9	Wölwerhöfe	MI/MD	60	45
10	Wohnhaus Tierheim	MI/MD	60	45
11	Wohngebiet Alzheim	WA	55	40

Zu den einzelnen Wohnhäusern auf dem Kurbenhof sei angemerkt, dass die einzelnen Immissionspunkte, je nach Gebäudeseite unterteilt wurden, um entsprechend die Geräuscheinstrahlung richtungsbezogen bzw. auch die Eigenabschirmung der Gebäude zu berücksichtigen.

Die Immissionsprognose wurde nach der DIN ISO 9613-2 "alternatives Verfahren" vorgenommen.

Unter Beachtung eines Zuschlages von 6 dB für die Tageszeit mit erhöhter Empfindlichkeit an Sonn- und Feiertagen von 06.00 Uhr bis 09.00 Uhr; 13.00 Uhr bis 15.00 Uhr und 20.00 Uhr bis 22.00 Uhr für die Nutzungseinstufungen allgemeines Wohngebiet ergeben sich folgende Beurteilungspegel bei kontinuierlichem Betrieb aller geplanten Windenergieanlagen:

Tabelle 4

IP	Bezeichnung IP	Beurteilungspegel L _r in dB(A)		Immissionsrichtwert in dB(A)	
		Tag	Nacht	Tag	Nacht
1.1	Kurbenhof Süd, Nordseite	42	42	60	45
1.2	Kurbenhof Süd, Westseite	38	38	60	45
2.1	Kurbenhof Mitte, Nordseite	41	41	60	45
2.2	Kurbenhof Mitte, Nordwestseite	39	39	60	45
2.3	Kurbenhof Mitte, Südwestseite	38	38	60	45
2.4	Kurbenhof Mitte, Südostseite	42	42	60	45
3.1	Kurbenhof Nord, Südostseite	40	40	60	45
3.2	Kurbenhof Nord, Südostseite	40	40	60	45
3.3		38	38	60	45
4	Aussiedlerhof	30	30	60	45
5	Wohngebiet in Polch	33	29	55	40
6	Aussiedlerhof	29	29	60	45
7	Wohnhäuser Nettesürsch	33	30	55	40
8	Zährensmühle II	33	33	60	45
9	Wölwerhöfe	27	27	60	45
10	Wohnhaus Tierheim	25	25	60	45
11	Wohngebiet in Alzheim	35	32	55	40

^{*} gilt an Sonn- und Feiertagen

Die detaillierte Ausbreitungsberechnung kann dem Anhang 4 zum Gutachten entnommen werden.

Für die aus schalltechnischer Sicht ungünstigste Nutzungszeit zur "lautesten" Nachtstunde wurde für einen größeren Untersuchungsbereich eine flächenhafte Berechnung für das 2. Obergeschoss durchgeführt. Die Berechnungsergebnisse hierzu sind farblich in den Rasterlärmkarten im Anhang 5 und 6 mit Isolinien im 2 dB-Abstand wiedergegeben.

Gemäß der TA Lärm ist auch eine Qualität der Prognose durchzuführen. Dies erfolgt nach dem Verfahren wie es im Abschnitt 2.6.2 näher erläutert ist. Zur besseren Übersicht sind die Ergebnisse inkl. der Qualität der Prognose nur für die aus schalltechnischer Sicht ungünstigste Nutzungszeit zur "lautesten" Nachtstunde in der nachstehenden Tabelle gegenübergestellt.

			-
10	$h \cap I$		h
	bel	1	.)

IP	Bezeichnung IP	Beurteilungs- pegel L _r nachts in dB(A)	Unsicherheit K in dB(A)	Oberer Ver- trauens-be- reich L₀ in dB(A)	Nachtimmis -sionsricht- wert in dB(A)
1.1	Kurbenhof Süd, Nordwestseite	41,7	2,3	44	45
1.2	Kurbenhof Süd, Westseite	37,6	1,3	39	45
2.1	Kurbenhof Mitte, Nordseite	41,3	2,3	44	45
2.2	Kurbenhof Mitte, Nordwestseite	38,7	1,6	40	45
2.3	Kurbenhof Mitte, Südwestseite	38,2	1,4	40	45
2.4	Kurbenhof Mitte, Südostseite	41,9	2,0	44	45
3.1	Kurbenhof Nord, Südostseite	39,9	2,4	42	45
3.2	Kurbenhof Nord, Südostseite	40,4	1,9	42	45
3.3	Kurbenhof Nord, Südwestseite	37,6	1,3	39	45
4	Aussiedlerhof	29,8	1,9	32	45
5	Wohngebiet in Polch	29,2	2,0	31	40
6	Aussiedlerhof	29,4	2,0	31	45
7	Wohnhäuser Nettesürsch	29,6	1,9	32	40
8	Zährensmühle II	32,6	1,2	34	45
9	Wölwerhöfe	26,9	1,3	28	45
10	Wohnhaus Tierheim	24,8	1,7	27	45
11	Wohngebiet in Alzheim	31,7	1,4	33	40

Wie der obigen Tabelle zu entnehmen ist, wird an allen nächstgelegenen Wohnhäusern bzw. möglichen Wohnhäusern der geltende Immissionsrichtwert teils deutlich unterschritten.

Mit Ausnahme der Wohnhäuser am Kurbenhof wird auch der Immissionsrichtwert um ≥ 6 dB(A) unterschritten und somit das Irrelevanzkriterium erfüllt. D.h. auf eine Betrachtung einer möglichen gewerblichen Geräuschvorbelastung zur Tages- und Nachtzeit kann verzichtet werden.

Hinsichtlich der Wohnhäuser am Kurbenhof ist zu prüfen, ob eine solche Geräuschvorbelastung zur Nachtzeit gegeben ist.

Wie eine Ortsbegehung zeigte, ist eine relevante gewerbliche Geräuschvorbelastung zur Nachtzeit nicht zu erwarten. Dies bedeutet, dass das Planungsvorhaben im Sinne der TA Lärm aus schalltechnischer Sicht umsetzbar ist.

4. Zusammenfassung

Die beabsichtigt, westlich der Ortsgemeinde Polch 7 Windenergieanlagen zu errichten und zu betreiben. Die Anlagen verteilen sich auf 2 Standorte, wobei 2 Anlagen zwischen der Ortslage Polch und dem Kurbenhof errichtet werden sollen (Anlagen der Firma Enercon vom Typ E70 E4) und die weiteren 5 Anlagen westlich des Kurbenhofes (Anlagen vom Typ Fuhrländer MD 77). In einer schalltechnischen Immissionsprognose ist zu prüfen, ob durch das Planungsvorhaben die geltenden Immissionsrichtwerte an den nächstgelegenen Wohnhäusern bzw. möglichen Wohnhäusern eingehalten werden können.

Die schalltechnische Immissionsprognose wurde für die nächstgelegene Wohnbebauung durchgeführt.

Die Immissionspunkte und die Standorte der geplanten Windenergieanlagen können dem Übersichtsplan im Anhang 1 sowie den Lageplänen im Anhang 2 entnommen werden.

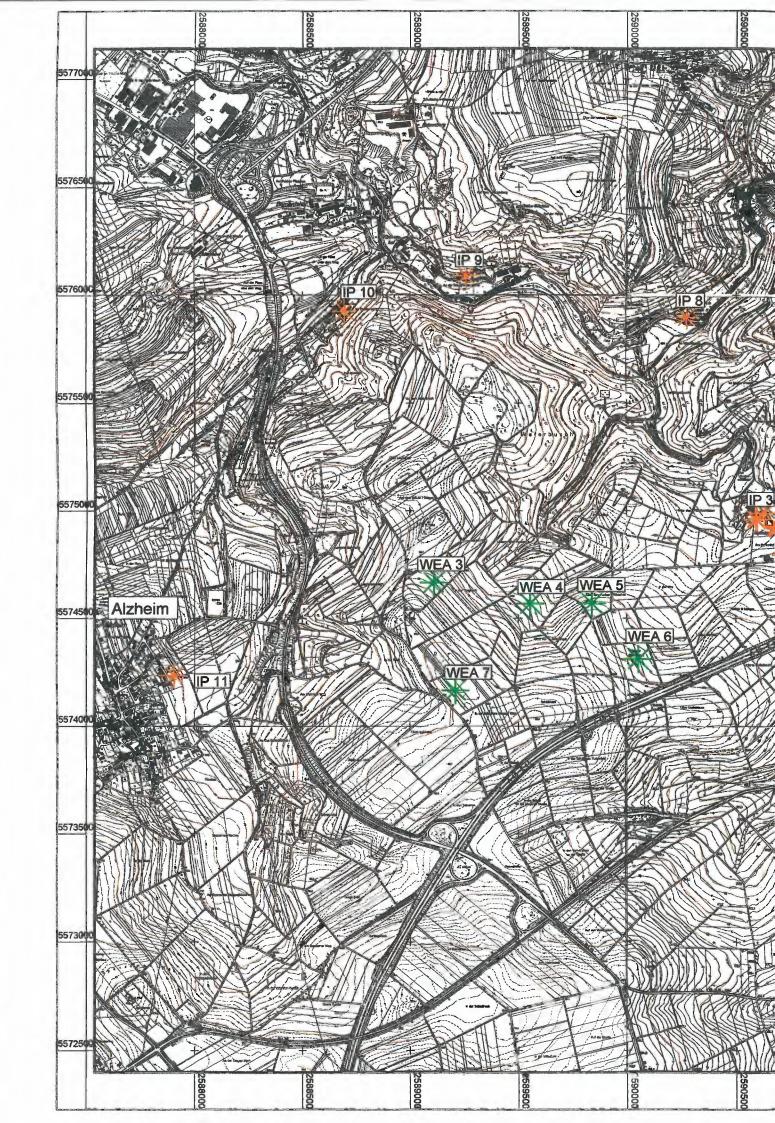
Die schalltechnische Immissionsprognose ergab, dass unter Beachtung der Prognoseunsicherheit an allen ungünstigst gelegenen Wohnhäusern die Richtwerte, sowohl zur Tageszeit, als auch zur Nachtzeit teils deutlich unterschritten werden (hier: Abschnitt 3 und Anhang 4, 5 und 6). Ebenfalls wird, mit Ausnahme der Wohnhäuser am Kurbenhof, das Irrelevanzkriterium der TA Lärm (Unterschreitung der Richtwerte um ≥ 6 dB(A)) erfüllt, so dass auf eine Betrachtung einer möglichen relevanten gewerblichen Geräuschvorbelastung verzichtet werden kann.

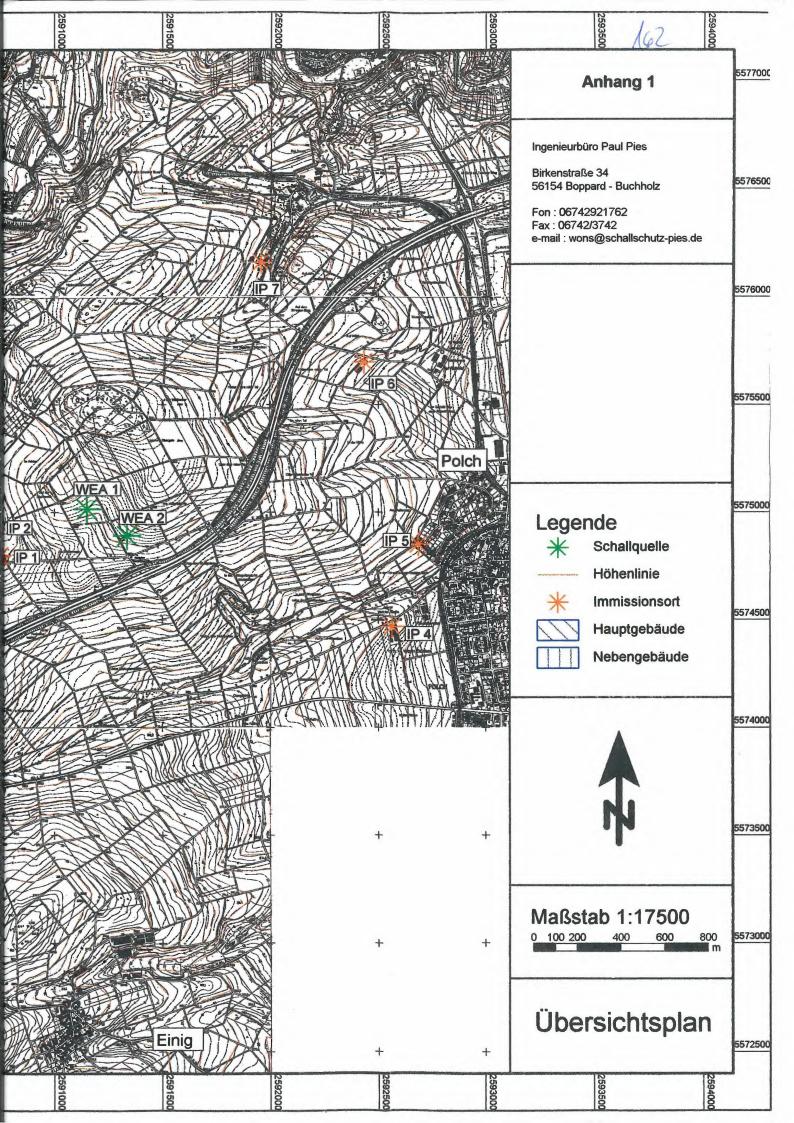
Bezüglich der Wohnhäuser Kurbenhof wird dieses Kriterium zur Nachtzeit nicht erfüllt. Hier ergab jedoch eine Ortsbegehung, dass eine relevante kontinuierliche gewerbliche Geräuschvorbelastung zur Nachtzeit nicht vorliegt.

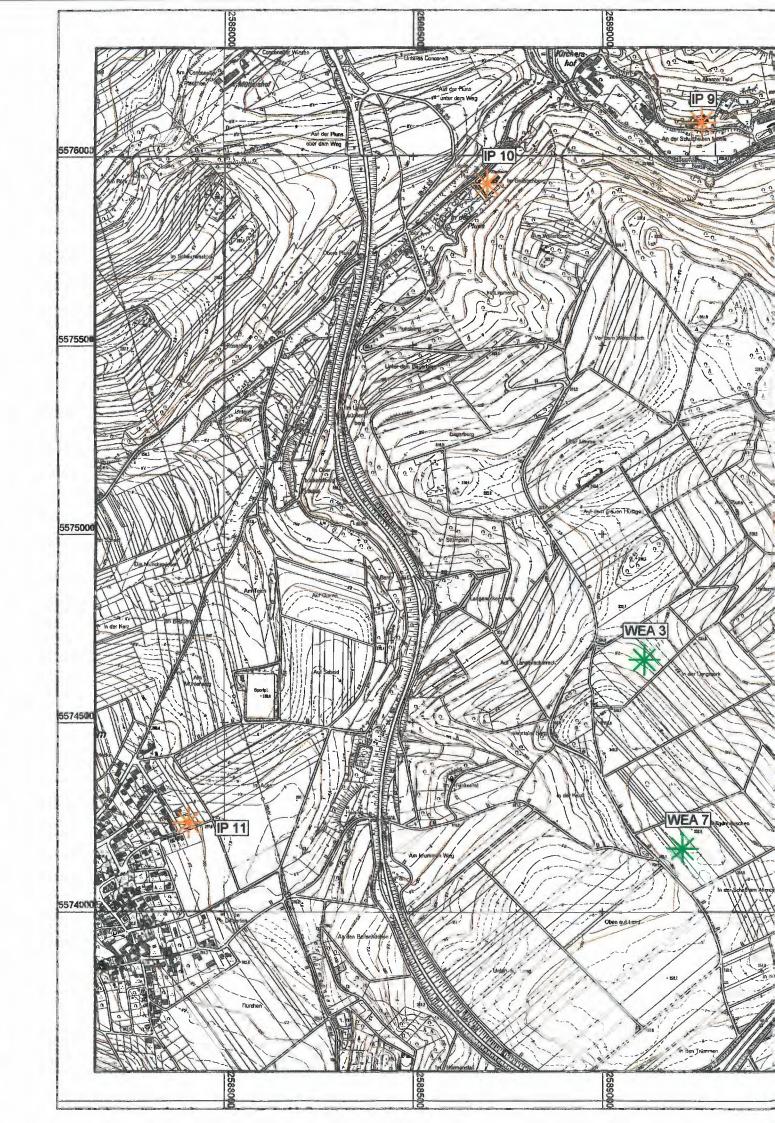
Somit ist im Sinne der TA Lärm die Umsetzung des Planungsvorhabens aus schalltechnischer Sicht zulässig.

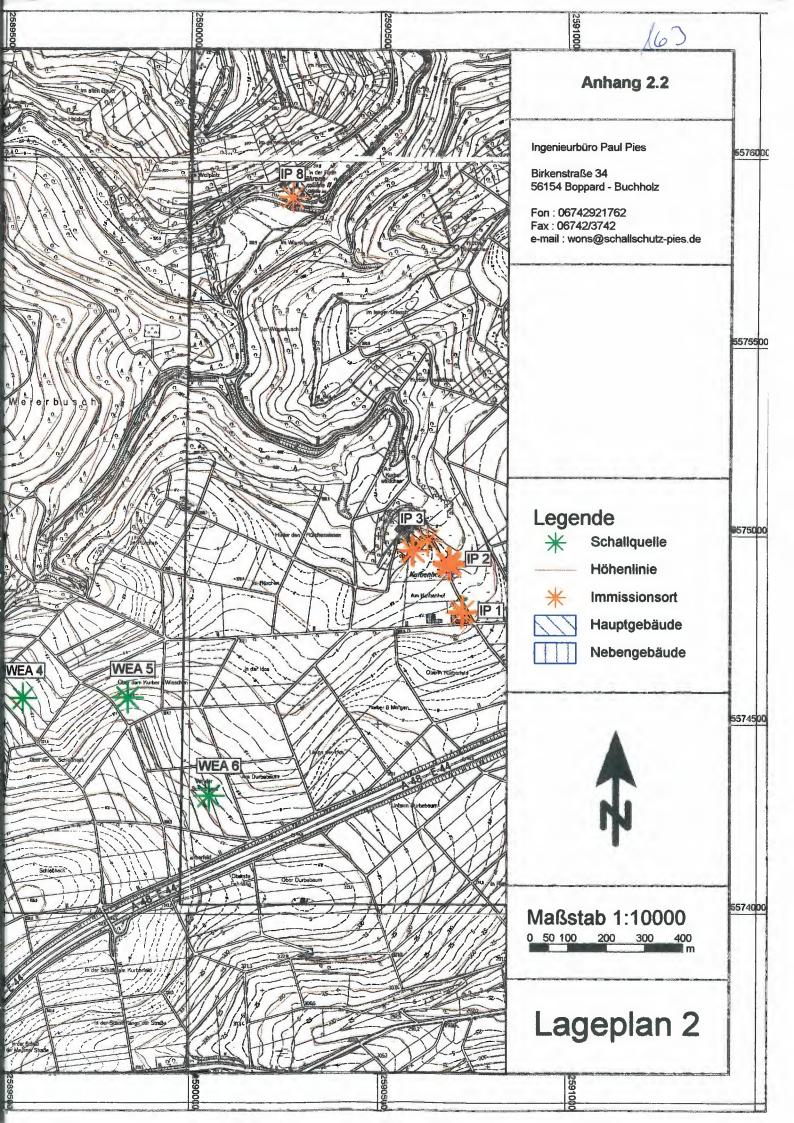
Dipl.-Ing. (FH)

Sachverständiger für

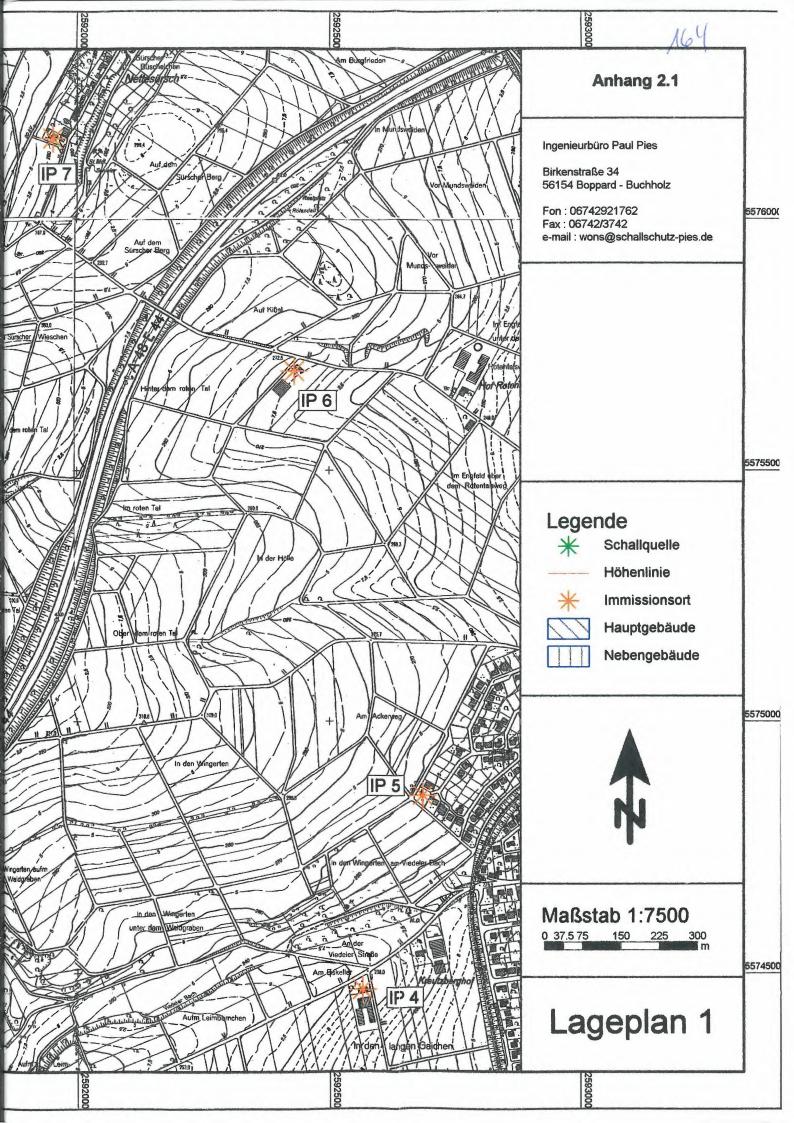

Vereichigterei Sachverständiger

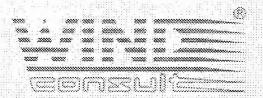

Verkehrslärm


Pies


Pies

Sestellt und vereinnen.




Schalleistungspegel E-70 E4

Seite 1 von 1

Naben- höhe V _{Wind} in 10m Höhe	58 m	64 m	8 5 m	98/99 m	113 m
4 m/s	90.7 dB(A)	90.8 dB(A)	91.1 dB(A)	91.3 dB(A)	91.4 dB(A)
5 m/s	95.7 dB(A)	96.1 dB(A)	97.1 dB(A)	97.7 dB(A)	98.2 dB(A)
6 m/s	99.9 dB(A)	100.0 dB(A)	100.2 dB(A)	100.3 dB(A)	100.4 dB(A)
7 m/s	100.8 dB(A)	100.9 dB(A)	101.1 dB(A)	101.2 dB(A)	101.4 dB(A)
8 m/s	101.9 dB(A)	102.1 dB(A)	102.5 dB(A)	102.7 dB(A)	102.8 dB(A)
95% Nennleistung	103.0 dB(A)	103.0 dB(A)	103.0 dB(A)	103.0 dB(A)	103.0 dB(A)
Vermessener Wert bei 95% Nennleistung		102.0 dB(A) wico 392SEA03/01			101,9 dB(A) KCE 28277-1.003

- 1. Über den gesamten Leistungsbereich wird eine Tonhaltigkeit K_{TN} von 0-1 dB garantiert (gilt für den Nahbereich gemäß aktueller FGW Richtlinie und DIN 45681).
- 2. Über den gesamten Leistungsbereich wird eine Impulshaltigkeit K_{IN} von 0 dB garantiert (gilt für den Nahbereich gemäß aktueller FGW Richtlinie und DIN 45 645-1).
- 3. Die oben angegebenen Schallleistungspegelwerte gelten für den **Betriebsmodus I**, (definiert durch eine Betriebskennlinie mit dem Drehzahlbereich 6 20 U/min). Die zugehörige Leistungskennlinie ist die berechnete Kennlinie E-70 E4 vom Januar 2004 (Rev. 3.x).
- 4. Die garantierten Werte werden auf Basis offizieller und interner Vermessungen des Schallleistungspegels ermittelt. Die offiziell vermessenen Werte sind auf diesem Dokument als Referenz angegeben. Die Schalldatenblätter und Messberichte der offiziellen Vermessungen stehen zur Verfügung und gelten in Verbindung mit diesem Dokument. Die Vermessungen werden gemäß den national und international empfohlenen Richtlinien und Normen durchgeführt (jeweils auf dem Schalldatenblatt und im Messbericht vermerkt).
- 5. Um den Mess- und Prognoseunsicherheiten Rechnung zu tragen, die Planungssicherheit und Akzeptanz bei Genehmigungsbehörden zu erhöhen und ggf. geforderte Nachvermessungen zu vermeiden, empfiehlt ENERCON für Schallausbreitungsrechnungen einen Sicherheitszuschlag von 1 dB(A) auf die garantierten Werte. Für Bundesländer, in denen ohnehin Sicherheitszuschläge vorgeschrieben sind, entfällt diese Empfehlung.
 - Sollte aus planungstechnischen oder anderen Gründen diese Empfehlung vernachlässigt werden, wird ausdrücklich auf Punkt 6 verwiesen.
- 6. Aufgrund der Messunsicherheiten bei Schallvermessungen gilt der Nachweis der Einhaltung der garantierten Werte als erbracht, wenn bei einer nach gängigen Richtlinien durchgeführten Vermessung das Messergebnis dem jeweiligen garantierten Wert +/-1 dB(A) entspricht. [Garantie erfüllt, wenn Messwert = Garantiewert +/- 1dB(A)].
- Für schallkritische Standorte besteht die Möglichkeit, die E-70 nachts mit reduzierter Drehzahl und Leistung zu betreiben (Nachtbetrieb). Die reduzierten Schallleistungspegel können bei Bedarf angefordert werden.

Document information:			
Author/ date:	MK / 09.03.05		
Department:	SA	Translator / date:	
Approved / date:		Revisor / date:	
Revision:	4.1	Reference:	SA-04-SPL Guarantee E-70-Rev4_1-ger-ger.doc

Anhang 3.2

WICO 392SEA03/01

Messung der Schallemission der Windenergieanlage (WEA) des Typs ENERCON E-70 E4

nach

FGW-Richtlinie /1/

Standort:

Ostermarsch (Niedersachsen)

Bargeshagen, 23. Juli 2004

Anhang 3.3

5 Abweichungen zur Richtlinie

Zu Abweichungen mit Bezug auf die Vermessungsrichtlinie /1/ werden die folgenden Hinweise gegeben:

- 1. Informationen, die die Herstellerbescheinigung (vgl. Anlage 4) ergänzen: (1)Turmfußdurchmesser: 4140 mm
- 2. Es sind keine Fotos vom Meßstandort vorhanden. Die Situation am Standort kann aus der Beschreibung im Abschnitt 2 sowie dem Lageplan (Anlage 1) entnommen werden.
- 3. Die Daten der Kalibration vor und nach der Meßkampagne können dem Meßprotokoll entnommen werden. Die Meßkette wurde vor und nach der Messung kalibriert.
- 4. Für die Ermittlung der Terzspektren wird keine Unsicherheit ausgewiesen.
- 5. In der Windklasse 6ms⁻¹ liegt lediglich ein Minutenmittelwert vor.
- 6. Ein der Wirkleistung proportionales analoges Signal wurde durch den Hersteller über die Kundenschnittstelle bereitgestellt und für die Messung verwendet.
- 7. Die standardisierte Windgeschwindigkeit wurde mittels berechneter Leistungskurve bestimmt.

6 Zusammenfassung

Am 11.06.2004 wurde die WEA Nr. 8 des Typs ENERCON E-70 E4 mit einer Nabenhöhe von $h_N = 64,75$ m am Standort *Ostermarsch (Niedersachsen)* akustisch vermessen. Die Datenauswertung erfolgte nach /1/.

Die vermessene WEA zeigte während der Meßkampagne dem subjektiven Eindruck nach im auszuwertenden Windgeschwindigkeitsbereich keine Auffälligkeiten des Geräusches. Die subjektive Bewertung des Anlagengeräusches wird durch die objektive Geräuschbewertung nach /1/ gestützt.

Die Ergebnisse der akustischen Vermessung werden in der nachfolgenden Tabelle zusammengefaßt dargestellt.

Standardisierte Windgeschwindigkeit	ms ⁻¹	6	7	8	9	9,32)
Elektrische Wirkleistung ¹⁾	kW	647	1033	1506	1844	1900
Tonhaltigkeit (mit ΔL nach /2/) K _{TN}	dB	0	0	0	0	0
Impulshaltigkeit K _{IN}	dB	0	0	0	0	0
Unsicherheit Uc	dB(A)	-	0,79	0,78	0,	77
Schalleistungspegel L _{WA, P}	dB(A)	99,0	99,9	101,1	101,9	102,0

Tab. 4: Ergebnisübersicht

- 1) Ermittlungsbasis: Leistungskurve, die der Ermittlung des Schalleistungspegels zugrunde liegt (vgl. Anlage 5).
- 2) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Meßtag bei $v_{10} = 9.3 \text{ ms}^{-1}$ in 10 m ü.G..

Die A-bewerteten Schalleistungsspektren sind in Anlage 6 dargestellt.

23.07.04, 39201A03_pdf.DOC, Dieser Bericht umfaßt 38 Seiten incl. der Anlagen!


Anhang 3.4

Das Drehzahlsignal wurde während der Messung vom Hersteller erfaßt und als graphische Darstellung über die Meßzeit (Zeitversatz von ca. einer Minute zu den in Anlage 7 dargestellten Signalverläufen) übergeben (vgl. Anlage 4).

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteilisch erstellt.

WIND-consult GmbH

Seite 17

SCHALLTECHNISCHER BERICHT NR. 28277-1.004

über die Ermittlung der Schallemissionen einer Windenergieanlage des Typs ENERCON E-70 E4 im Windpark Ahaus in 48683 Ahaus-Wüllen

Auftraggeber:

ENERCON GmbH

Dreekamp 5

26605 Aurich

Bearbeiter:

Dipl.-Ing. Patrick Waning Dipl.-Ing. Amo Schällig

Datum:

14.03.2005

Seite 2 zum Schalltechnischen Bericht Nr. 28277-1.004

1.) Zusammenfassung

Am 07.10.2004 und 07.01.2005 wurden in Ahaus-Wüllen die Schallemissionen der Windenergieanlage (WEA) des Typs ENERCON E-70 E4 ermittelt. Die Untersuchung erfolgte im Windgeschwindigkeitsbereich von $v_s = 5$ m/s bis $v_s = 8.9$ m/s (entsprechend 95 % der Nennleistung) im "Betrieb I" mit der Nennleistung von $P_{Nenn} = 2.000$ kW.

Für die normierte Windgeschwindigkeit $v_s = 8,9$ m/s wurde eine Schalleistung von $L_W = 101,9$ dB(A) bestimmt.

In den untersuchten Windgeschwindigkeitsbereichen lag subjektiv und rechnerisch keine Tonhaltigkeit vor. Subjektiv wurden im oberen Leistungsbereich der WEA kurzzeitig schwache tonale Geräusche sowie das Pfeifen der Rotorblätter der WEA wahrgenommen, welche aber zu keinem Zuschlag von Tonhaltigkeit führen. Eine Impulshaltigkeit wurde nicht festgestellt. Weitere immissionsrelevante, akustische Auffälligkeiten (Azimutverstellung, Lüftergeräusche usw.) lagen zum Zeitpunkt der Messungen nicht vor.

Vorliegender Bericht wurde nach bestem Wissen und Gewissen mit größter Sorgfalt erstellt.*

Dieser Bericht enthält 21 Seiten und 5 Anlagen.

Rheine, 14.03.2005 PW/BB

KÖTTER Consulting Engineers

i. V. Dipl.-Ing. Patrick Waning

/two skilly

Son to present a 200 A 7 C File by

i. V. Dipl.-Ing. Arno Schällig

Die Weitergabe von Daten oder Informationen ist dem Auftraggeber gestattet. Authentisch ist dieses Dokument nur mit Originalunterschrift. Bezüglich der Urheberrechte verweisen wir auf die jeweils gültigen KCE-Beratungsbedingungen.

171

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergle e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht WICO 039SE202 zur Schallemission der Windenergleanlage vom Typ REpower MD77

Allgemeine Angaben		Technische Daten (Herstellera	ngahen
Anlagenhersteller:	REpower Systems AG Rödemis Hallig 25813 Husum	Nennleistung (Generator): Rotordurchmesser: Nabenhöhe über Grund:	1500 kW 77 m
Serlennummer:	70.036	Turmbauart:	Stahlrohrturm
WEA-Standort (ca.):	X: 46, 28, 672; Y: 59, 16, 411	Leistungsregelung:	Pltch/Stall/Aktiv-Stall
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Ge	nerator (Herstellerangaben)
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel:	LM 37.3 variabel (0-90°)	Getriebehersteller: Typenbezeichung Getriebe: Generatorhersteller:	Elckhoff G45260X/A-CPNHZ-197 Loher
Rotorblattanzahl Rotordrehzahlberelch:	3 9,6/17,3 U/min	Typenbezelchung Generator: Generatornenndrehzahl:	JFRA-580 1000-1800 U/min

Prüfbericht zur Leistungskurve: WT2186/02

				Referenzpunkt							Schallemissions- Parameter			Bemerkungen		
			Winds	andardis jeschwi 10 m H	ndigkeit		Elektri Wirklel									
Schalleistur Pegel L _{WAP}	3gs -		6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,2 ms ⁻¹			7 ms ⁻¹ 1059 kW 101,0 dB(A) 8 ms ⁻¹ 1375 kW 102,8 dB(A)					(1)					
Tonzuschla den Nahber K _{TN}	_			6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,2 ms ⁻	1		1069 1375 1425	kW kW kW kW		dB dB dB	bel - H bei - H bei 148 bei 148	z Hz		(1		
impulszusci für den Nah K _M				6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,2 ms ⁻¹	1	718 kW 1069 kW 1375 kW 1425 kW			ankt van	0 dB 0 dB 0 dB 0 dB ct v ₁₀ = 8 ms ⁻¹ in dB(A)			(1)			
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA} , P	50,9	56.5	66,3	68,4	72,2	76.8	81,5	84.9	87,2	89,5	92,0	89,4	90,2	92,0	92,8	91,8
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
LWAP	91,6	91,8	91,5	90,0	88,7	87,8	87,5	87,4	86,9	82,6	77,1	73,5	69,1	63,0	52,9	36,2
Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 8,2 ms ⁻¹ in dB(A)																
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
LWAP	51,4	57,0	66,8	68,9	72,7	77,3	82,0	85,4	87,7	90,0	92,5	89,9	90,7	92,5	93,3	92,3
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
LWA, P	92,1	92,3	92,0	90,5	89,2	88,3	88,0	87,9	87,4	B3,1	77,6	74,0	69,6	63,5	53,4	36,7

Dieser Auszug aus dem Prüfbericht gill nur in Verbindung mit der Herstellerbeschelnigung vom 21.02.2002. Die Angaben ersetzen nicht den o. g. Prüfbericht (Insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

(1) Der Betriebspunkt der 95%igen Nennlelstung, für den der maximale Schallelstungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bel v₁₀= 8,2 ms⁻¹ in 10 m ū.G.

gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 02.10.2002

Unterschrift
Dipl.-ing. W.Wilke
Dipl.-ing. J.Schwabe

REpower Dokumenten-Nummer Rev.

D-1.2 - VM. SM. O1 - B

Freigabe Datum

DAP-PL-2756.00

Nach DIN EN ISO/tEC 17025 durch die DAP Deutsches Akkreditierungssystem Prüfwesen GmbH akkreditiertes Prüff aboratorium.

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

70 04.41.2002

Auszug aus dem Prüfbericht WICO 039SE202

Umrechnung der Schallelstungspegel auf andere Nabenhöhen

Anhang 3

Die "Technischen Richtlinle für Windenergleanlagen" /1/ ermöglicht die Umrechnung des Schalleistungspegels auf andere Nabenhöhen, wenn der Zusammenhang Schalleistungspegel –Windgeschwindigkeit bekannt ist.

REpower Systems AG Rödemis Hallig D-25813 Husum	Nennleist vermesse	ung ne Nabenha		REpower 1500 kW 85 m 77 m	MD77						
zum Rotor (Herstellerang	aben)	Erg. Date	n zu Gelrlebe	und Genera	tor (Herstellerangaben)						
er: LM		Gotrieber	ersteller:	Elc	khoff						
g Blatt: LM 37.3		Typenbezeichung Getriebe: G45260X/A-CPNHZ-197									
				Generatorhersteller: Loher							
		Typenbez	eichung Gen	erator: IEE	A-580						
					0-1800 U/min						
				100	G-1000 DIMIN						
Refere		m (1)	Paran	neter	.Bemerkungen						
Standardisierte											
Windgeschwindigkeit in 10 m Höhe											
6 ms ⁻¹	1		99,0	ďB(A)							
					(2)						
			100,0	05(1)	(4)						
Standardisierte Windgeschwindigkeit	Elektr	ische .									
6 ms ⁻¹			99,5	dB(A)							
		-									
					(2)						
	he von 96,5	m (1)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Slandardisterte Windgeschwindigkeit	Elektr	ische	THE PROPERTY OF THE PROPERTY O	C Greater C	era i kula <u>es er Norderek gi</u>						
6 ms ⁻¹			. 99,5	dB(A)							
			101,2	dB(A)							
					(2)						
Standardisierte Windgeschwindigkeit	Elektr	ische		A Company of the second property	Territoria (1980)						
	750	kW	99,6	dB(A)							
7 ms ⁻¹	1108		101,2	dB(A)							
7 ms ⁻¹ 8 ms ⁻¹	1108 1407	kW	103,2	dB(A)	(2)						
7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹	1108 1407 1425	kW kW			(2)						
7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹ arameter für eine Nabenhö	1108 1407 1425	kW kW	103,2	dB(A)	(2)						
7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹ arameter für eine Nabenhö Standardisierte Windgeschwindigkelt in 10 m Höhe	1108 1407 1425 he von 111,5 Elektr Wirkle	kW kW i m (1) ische Istung	103,2 103,3	dB(A) dB(A)	(2)						
7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹ arameter für eine Nabenhö Standardisierte Windgeschwindigkelt	1108 1407 1425 he von 111,5	kW kW i m (1) ische Istung kW	103,2	dB(A)	(2)						
	Rödemis Hallig D-25813 Husum a zum Rotor (Herstellerang ar: LM g Blatt: LM 37.3 l: varlabel (0-90°) 3 elch: 9,6/17,3 U/min Istungskurve: WT2186/02 Refere arameter für eine Nabenhö Standardisierte Windgeschwindigkeit in 10 m Höhe 6 ms-1 7 ms-1 8 ms-1	Rödemis Hallig D-25813 Husum Rotor (Herstellerangaben) ar: LM g Blatt: LM 37.3 l: varlabel (0-90°) 3 elch: 9,6/17,3 U/min Istungskurve: WT2186/02 Referenzpunkt arameter für eine Nabenhöhe von 61,5 Standardisiarte Windgeschwindigkeit in 10 m Höne 6 ms-1 7 ms-1 8,7 ms-1 1425 arameter für eine Nabenhöhe von 90 m Standardisierte Windgeschwindigkeit in 10 m Höhe 6 ms-1 7 ms-1 1072 8 ms-1 1378 8,2 ms-1 1378 8,2 ms-1 1378 8,2 ms-1 1398 8,1 ms-1 1398 8,1 ms-1 1398 8,1 ms-1 1398 1425 arameter für eine Nabenhöhe von 100 m Standardisierte Windgeschwindigkeit in 10 m Höhe 6 ms-1 740 7 ms-1 1096 8 ms-1 1398 8,1 ms-1 1425 arameter für eine Nabenhöhe von 100 m Standardisierte Windgeschwindigkeit in 10 m Höhe Elektr Wirkleiter Ele	Rödemis Hallig D-25813 Husum Nennleistung vermessene Nabenhö Rotordurchmesser azum Rotor (Herstellerangaben) ar: LM g Blatt: LM 37.3 l: varlabel (0-90°) 3	Rödemis Hallig D-25813 Husum Nennielstung vermessere Nabenhöhe Rotordurchmesser Izum Rotor (Herstellerangaben) Izum Rotor (Hersteller: Inum Rotor (Hersteller: Inum Rotor (Hersteller:	Rödemis Hallig						

Die Angaben ersetzen nicht den o. g. Prüfberichte (Insbesondere bei Schallimmissionsprognosen).

Bemerkungen: (1) keine vermessene Nabenhöhe. Die vermessene Nabenhöhe ist h_N= 85 m. .

(2) Die standardisierte Windgeschwindigkeit ergibt sich aus dem 95%-igen Nennleistungsbezug und der jeweiligen Nabenhöhe.

ausgestellt durch: WIND-consult GmbH

Reuterstraße 9

D-18211 Bargeshagen

Datum: 02.10.2002

DAP-PL-2756.00

Øokumenten-Unterschrift Interschrift DID -Ing. W. Wilkey. S

Nach DIN EN ISO/IEC 17025 durch die DAP Deutsches Akkreditierungssystem Prüfwesen Gmbitkakkreditiertes Prifiaboraforiumun Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

REpower Donumentes	7-iHummer	Rev.				
D-1.2-11.51.04	-A	4				
Fronçaise Datum						
TR	13.05.20	203				

Auszug aus dem Prüfbericht

Stammblatt: "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Tell 1: Bestimmung der Schallemissionswerte" ` . •

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie: e.V. Flotowstraße: 41-43; D-22083 Hamburg):

Auszug aus dem Prüfbericht 27053-1.001

zur Schallemission der Windenergieanlage vom Typ REpower MD 77

Aligemeine Angaben Technische Daten (Herstellerangaben) Nennielstung (Generator):

Anlagenhersteller. REpower Systems AG

Seriennummer:

WEA-Standort (ca.):

Standortkoordinaten

Rotordrehzahlbereich:

70.227

24969 Lindewitt

Tumbauart GK Länge: ²⁵10845 GK Breite: ⁶⁰62363

1500 kW Rotordurchmesser. 77 m Nabenhöhe über Grund: 61,5 m Stahlrohtturm

Leistungsregelung: pitch Erg. Daten zu Getriebe und Generator (Hersfellerang.)

Ergänzende Daten zum Rotor (Herstellerangaben) Rotorblatthersteller: LM od. glekhw.

Typenbezeichnung Blatt: LM 37.3 P. Blatteinstellwinkel: varlabe! Rotorblattenzahl:

Getriebehersteiler. Typenbezeichnung Geiriebe: Generatorhersteller:

Elckhoff od. gleichw. G45260X/A CPNHZ-197 Winergy / o. gleichw. Typenbezeichnung Generator: JFRA-580 / o.a.

9,6 / 17,3 U/min Generatordrehzahlbereich: 1000 - 1800 U/min Prüfbericht Nr. WT2186/02 vom 13.05.2002 der Fa. Windlest Kalser-Wilhelm-Koog GmbH zur Leistungskurvenvermessung der REpower MD77

							enzpu						issions	1			
				Standa		Wind-		El	ektrisch		7 36	Paran		В	emerku	ngen	
			ges	chwindigkeit in 10 m Höhe Wirkleistung							1100						
					6 ms ⁻¹				625 kV			99,1 0		T			
Schalteistur	ıgs-Peg	elLwap			7 ms ⁻¹				845 kV			101,1 dB(A)					
			1		B ms ⁻¹			1268 kW				102,2 dB(A)					
					7 ms ⁻¹			1425 kW				102,3					
			1		6 ms ⁻¹				625 kV			0 d					
Tonzuschla		n			7 ms ⁻¹				845 kV		1	0 d					
Nanbereich	nbereich K _{TN} 8 ms ⁻¹ 8,7 ms ⁻¹								1268 kV			1 d		1 .	53,2 Hz		
			-						1425 kV			2 d		fr≈1	34,4 Hz		
	-1 C		1		6 ms ⁻¹				625 kV			0 d					
impulszusch Nahbereich	nag rur	uen			7 ms ⁻¹				845 kV			0 d					
Mailbeicicii	MN				8 ms ⁻¹				1268 kV			0 d					
~ 0 ! !!	1.4				7 ms ⁻¹	a	1		1425 kV			0 d	8				
Terz-Schall																	
Frequenz	16	20	25	31,5	40	50	63	08	100	125	160	200	250	315	400	500	
LWAP	56,1	60,0	66,3	69,9	72,2	76,0	79,3	84,8	86,4	87,1	94,7	90,0	89,7	90,8	89,8	89,9	
Frequenz	630	B00	1000	1250	1600	2000	2500	- Commence of the Commence of	4000	5000	6300	8000	10000	12500	16000	20000	
Lwap Terz-Schall	90,7	90,3	90,7	90,6	90,0	88,6	87,4	85,1	81,4	79,2	75,0	69,1	64,5	60,1	57,3	54,9	
Frequenz	215tungs	20	25	31,5 I	40	50	(A) 63	80	400	105	400	505	550	545			
	54,2	58,8	67,2	69,0	72,8	76,4	79,7	85.4	100 86.2	125	160	200	250	315	400	500	
L _{WAP} Frequenz	630	800	1000	1250	1600	2000	2500	3150		86,9	93,0	88,5	90,4	91,7	90,1	89,8	
	91,4	90,9	91.4	90.9	89,9	88,7	86,7	84,6	4000 81,6	5000	6300	8000	10000	12500	16000	20000	
LWAP	1 31,4	30,3	31,4							79,1	74,3	68,7	64,7	58,0	55,6	54.0	
				umi	recnnu	ng Scha		ngspeg			labenh	Shen					
Windgesch	dadlale	i	.In		6.0		Nadel	nhöhe H							0		
Schallelstun					99.		_		7,0			8,0			8,3 1)	-	
ochanestur	gspaga	LWA III C	D(A)		99,	9	Naha	nhöhe H	01,6			102,4		1	102,3		
Windgesch	vindiako	it is in m	/c		6,0		Napel		- 90 m			0.0			8,3 17		
Schallelstun				-	99,		-		01.7			8,0					
	Bahede	- LYVA 411 C	-(1-1)		33,		Nahan	hõhe H :				102,4		L	102,3		
Windgeschy	vindiake	it v. in m	/s	T	6,0		1400011		7.0	-		8.0			5,2 ¹		
	illeistungspegel L _{WA} in dB(A) 100,1							01.8			102,5			102,3			
Ns Ns							Naben	höhe H				102,0			102,3		
Windgeschy	chwindigkeit v, ln m/s 6,0						1		7.0	T		8.0		T	8,1 17		
Schallelstun									01.8			102,5			102,3		
							Vabent			n		الكريا			102,3		
Windgesch	vindlake	it v. In m	/s	1	6.0			nhöhe H = 111,5 m 7,0			8,0 1)			<u> </u>			
Schalleistun	gspege	Lwa in d	B(A)		100.		-		02,0		102,3			_			
	challelstungspegel L _{WA} in dB(A) 100,4								لركانا المراعات								

1) bezogen auf 95% von P_{bern} = 1500 kW, hier P_{bern} = 1425 kW

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung. Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Die standardisierte Windgeschwindigkeit von v₁₀= 8,7 ms⁻¹ entspricht 95 % der Nennleistung

Gemessen durch:

KÖTTER Consulting Englneers

- Rheine -

Datum:

08.05.2003

Bonifatiusstraße 400 · 48432 Rheine Tel 0 59 71 - 97 10 0 - Fox 0 59 71 - 97 10 43

Die vermessene WEA weist die in der Tabelle 1 dargestellten Eigenschaften auf.

Tabelle 1: Technische Daten der Windenergieanlage

Tabelle 1: Technische Daten der Windenergleanlag							
Hersteller	REpower Systems AG						
WEA-Typ	MD 77						
Seriennummer	70.075						
Standort	Linnich (Heinsberg)						
Nennleistung.[kW]	1500						
Leistungsregelung	pitch						
Nabenhõhe [m]	83,35						
Nabenhōhe inkl. Fun-	85						
damenthöhe [m]							
Turmbauart	Stahlrohr						
Anordnung Rotorblätter	Luv .						
zum Turm							
Anzahl der Rotorblätter	3						
Rotordurchmesser [m]	77						
Blatt-Typ	LM 37,3						
Drehzahl	9,6 - 17,3 min ⁻¹						
Getriebehersteller	Eickhoff						
Getriebe-Typ	Planeten / Stirnrad						
Generator-Typ	JFRA-580						

2.3 Messort

Die WEA befand sich zum Zeitpunkt der Messung mit weiteren WEA am Standort Linnich bei Heinsberg. Die Umgebung der WEA wird landwirtschaftlich genutzt und war zum Zeitpunkt der Messung teilweise bestellt.

2.4 Messaufbau

Die Anordnung der Messpunkte wurde gemäß /2/ gewählt. Die Messung der Schallemissionen am Referenzpunkt wurde mit einem Mikrofon auf einer schallharten Platte mit einem Radius von 1 m in einem Abstand zum Turmmittelpunkt der WEA von Rogewählt = 100 m durchgeführt. Der Referenzpunkt war in Mitwindrichtung zur WEA angeordnet (Abb. 2).

$$R_0 = H + D/2 \pm 20\%$$

(H: Nabenhöhe; D: Rotordurchmesser)

Der Schalldruckpegel (Betriebsgeräusch BG und Hintergrundgeräusch HG) wurde mit Hilfe eines Mikrofons und eines Schalldruckpegelmessers aufgezeichnet und für nachträgliche Analysen zeitgleich mit einem DAT-Recorder aufgenommen.

Die eingespeiste Wirkleistung der WEA wurde mit einem Leistungsmessumformer dreiphasig (3 x Strom, 3 x Spannung) erfasst, in ein proportionales analoges Signal umgewandelt und mit Hilfe eines Analog-Digitalwandlers auf der Festplatte eines Mess-PCs gespeichert.

5 Zusammenfassung

Im Auftrag der REpower Systems AG wurde von der Firma WINDTEST Grevenbroich GmbH die Geräuschabstrahlung der WEA MD 77 mit einer Nabenhöhe von H = 85 m inkl. Fundament nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die DIN EN 61400 Teil 11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 Teil 1 /3/.

Die Messung wurde am 10.04.2002 in Linnich bei Heinsberg durchgeführt.

Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden. Einzelereignisse, die den Mittelungspegel im Betrieb der WEA um mehr als 10 dB überschreiten, traten nicht auf.

Eine Impulshaltigkeit nach DIN 45645 Teil 1 lag nicht vor.

Bezüglich des Schallleistungspegels L_{WA} wurde für diese Messung eine Messunsicherheit von $U_{C}=0,71$ dB ermittelt. Für die gemessene Windgeschwindigkeit wurde ein Korrekturfaktor k=0,82 festgestellt.

Die Tonhaltigkeitsanalyse nach EDIN 45681 für das in 100 m Entfernung gemessene Anlagengeräusch ergab keinen Tonhaltigkeitszuschlag.

Nach Auswertung der gemessenen Werte in den einzelnen BIN's ergeben sich für die MD 77 die in Tabelle 8 aufgeführten Pegel.

Tabelle 8: Schallleistungspegel, Ton- und Impulshaltigkeitszuschläge für Windgeschwindigkeiten von 6 m/s bis 8,4 m/s, bezogen auf 10 m Höhe

H = 85 m	BIN 6 5,5–6,5 m/s	BIN 7 6,5–7,5 m/s	BIN 8 7,5-8,5 m/s	8,4 m/s ¹
L _{WA} /dB(A)	100,8	102,6	103,3	103,3
UC/ dB(A)	0,71	0,71	0,71	0,71
K _{TN} /dB(A)	0	0	. 0	Ó
K _{IN} /dB(A)	0	0	. 0	۵
P/kW	726.	1065	1365	1425

1) 95% Nennleistung

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik, unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

Die in diesem Bericht aufgeführten Ergebnisse beziehen sich nur auf diese Anlage (vgl. Herstellerbescheinigung Anhang).

Dieser Bericht ersetzt den vorhergehenden Bericht SE02011B1 vom 28.05.02.

Grevenbroich, 07.08.02

Dr. Markus Koschinsky

1:42

Anhang 4.1

WEA Polch Ausbreitungsberechnung

Name	Quelltyp	Lw dB(A)	Ko dB	s m	Adiv dB	Agr dB	Abar dB	Aatm dB	Re dB(A	Cmet dB	Ls dB(A)	LrT dB(A)	LrN dB(A)	
Name IP 01 1 K	1		-	-	RW Ta	-	dB(A)	IRW 1	Vacht		1	41,7 dB		
WEA 1 (MD77)	Punkt	103,0	3,0	1627,3	75,2	3,4	2,8	3,1		0,0	21,5	21,5	21,5	
WEA 2 (MD77)	Punkt	103,0	3,0	1200,2	72,6	3,1	4,7	2,3		0,0	23,3	23,3	23,3	
WEA 3 (MD77)	Punkt	103,0	3,0	924,5	70,3	2,6	5,7	1,8		0,0	25,6	25,6	25,6	
WEA 4 (MD77)	Punkt	103,0	3,0	841,2	69,5	2,4	8,0	1,6		0,0	24,5	24,5	24,5	
WEA 5 (MD77)	Punkt	103,0	3,0	1650,4	75,3	3,6	5,7	3,2		0,0	18,2	18,2	18,2	
WEA 6 (E70)	Punkt	103,0	3,0	491,6	64,8	0,5	0,0	0,9		0,0	39,7	39,7	39,7	
WEA 7 (E70)	Punkt	103,0	3,0	627,8	66,9	1,4	0,0	1,2		0,0	36,4	36,4	36,4	
Name IP 01.2 K	urbenhof S				₹W Ta	1 60	dB(A)	IRW N	lacht	45 dB(/	A) LrT	37,6 dB	(A) LrN	
WEA 1 (MD77)	Punkt	103,0	3,0	1621,6	75,2	3,4	0,0	3,1		0,0	24,3	24,3	24,3	
WEA 2 (MD77)	Punkt	103,0	3,0	1194,1	72,5	3,1	0,0	2,3		0,0	28,1	28,1	28,1	
WEA 3 (MD77)	Punkt	103,0	3,0	918,2	70,3	2,6	0,0	1,8		0,0	31,4	31,4	31,4	
WEA 4 (MD77)	Punkt	103,0	3,0	834,2	69,4	2,4	0,0	1,6		0,0	32,6	32,6	32,6	
WEA 5 (MD77)	Punkt	103,0	3,0	1643,7	75,3	3,6	0,0	3,2		0,0	24,0	24,0	24,0	
WEA 6 (E70)	Punkt	103,0	3,0	498,3	64,9	0,6	10,0	1,0		0,0	29,5	29,5	29,5	
WEA 7 (E70)	Punkt	103,0	3,0	633,7	67,0	1,5	9,4	1,2		0,0	26,8	26,8	26,8	
Name IP 02.1 Ki	urbenhof N	litte Nor	dosts	eite li	₹W Tag	60	dB(A)	IRW N	lacht	45 dB(#	v) En	41 3 dB)	A) LriN	
WEA 1 (MD77)	Punkt	103,0	3,0	1610,3	75,1	3,4	4,2	3,1		0,0	20,2	20,2	20,2	
WEA 2 (MD77)	Punkt	103,0	3,0	1200,1	72,6	3,2	4,7	2,3		0,0	23,3	23,3	23,3	- 1
WEA 3 (MD77)	Punkt	103,0	3,0	934,5	70,4	2,7	5,3	1,8		0,0	25,8	25,8	25,8	-
WEA 4 (MD77)	Punkt	103,0	3,0	898,4	70,1	2,7	5,3	1,7		0,0	26,3	26,3	26,3	- 1
WEA 5 (MD77)	Punkt	103,0	3,0	1674,4	75,5	3,7	3,9	3,2		0,0	19,8	19,8	19,8	1
WEA 6 (E70)	Punkt	103,0	3,0	485,7	64,7	0,9	0,0	0,9		0,0	39,4	39,4	39,4	- 1
WEA 7 (E70)	Punkt	103,0	3,0	657,9	67,4	2,0	0,0	1,3		0,0	35,4	35,4	35,4	- 1
Name IP 02.2 Ki	urbenhof N	**********	********	seite II	RW Tac	0000000000000000	dB(A)	IRW N	lacht	45 dB(A	******		A) LiiN	
WEA 1 (MD77)	Punkt	103,0	3,0	1604,5	75,1	3,4	0,0	3,1		0,0	24,4	24,4	24,4	
WEA 2 (MD77)	Punkt	103,0	3,0	1195,0	72,5	3,2	0,0	2,3		0,0	28,0	28,0	28,0	- 1
WEA 3 (MD77)	Punkt	103,0	3,0	930,0	70,4	2,7	0,0	1,8		0,0	31,2	31,2	31,2	
WEA 4 (MD77)	Punkt	103,0	3,0	896,5	70,0	2,7	3,9	1,7		0,0	27,7	27,7	27,7	- 1
WEA 5 (MD77)	Punkt	103,0	3,0	1670,5	75,4	3,7	0,5	3,2		0,0	23,1	23,1	23,1	- 1
WEA 6 (E70)	Punkt	103,0	3,0	491,2	64,8	1,0	4,1	0,9		0,0	35,1	35,1	35,1	1
WEA 7 (E70)	Punkt	103,0	3,0	664,5	67,4	2,0	5,0	1,3		0,0	30,3	30,3	30,3	
Name IP 02.3 Ki	urbenhof N	litte Süc	lwests	eite II	RW Tag	60	*********	IRW N	lacht	45 dB(A			A) LrN	
WEA 1 (MD77)	Punkt	103,0	3,0	THE RESERVE THE PERSON NAMED IN		3,4	0,0	3,1		0,0	24,4	24,4	24,4	
WEA 2 (MD77)	Punkt	103,0	3,0	1192,2	72,5	3,2	0,0	2,3		0,0	28,0	28,0	28,0	- 1
WEA 3 (MD77)	Punkt	103,0	3,0	926,6	70,3	2,7	0,0	1,8		0,0	31,2	31,2	31,2	
WEA 4 (MD77)	Punkt	103,0	3,0	890,7	70,0	2,6	0,0	1,7		0,0	31,7	31,7	31,7	
WEA 5 (MD77)	Punkt	103,0	3,0	1666,4	75,4	3,7	0,0	3,2		0,0	23,7	23,7	23,7	
WEA 6 (E70)	Punkt	103,0	3,0	493,0	64,8	1,0	6,7	0,9		0,0	32,5	32,5	32,5	
WEA 7 (E70)	Punkt	103,0	3,0	664,5	67,4	2,0	5,8	1,3		0,0	29,5	29,5	29,5	
Name IP 02.4 Ki					RW Tag	00000000000000	dB(A)	IRWN	lacht		****************		A) LrN	
WEA 1 (MD77)	Punkt	103,0	3,0	1607,7	75,1	3,4	2,5	3,1	-LONG	0,0	21,9	21,9		******
WEA 1 (MD77) WEA 2 (MD77)	Punkt	103,0	3,0	1196,4	72,5	3,4	1,7					26,3	21,9 26,3	
WEA 3 (MD77)	Punkt	103,0	1					2,3		0,0	26,3			
WEA 3 (MD77)	Punkt		3,0	930,2	70,4	2,7	0,5	1,8		0,0	30,6	30,6	30,6	
WEA 5 (MD77)	Punkt	103,0	3,0	891,9	70,0	2,7	0,0	1,7		0,0	31,6	31,6	31,6	
VVER 3 (IVID11)	runkt	103,0	3,0	1669,6	75,4	3,7	0,0	3,2		0,0	23,7	23,7	23,7	

177

Anhang 4.2

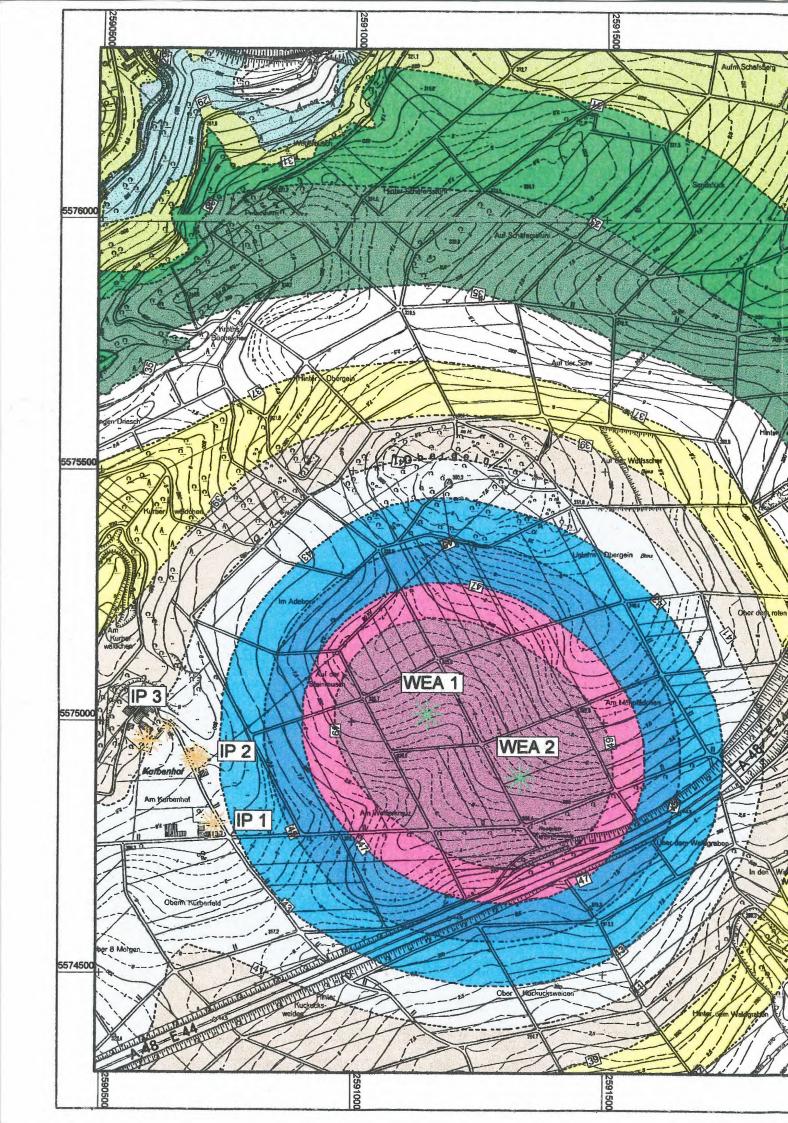
WEA Polch Ausbreitungsberechnung

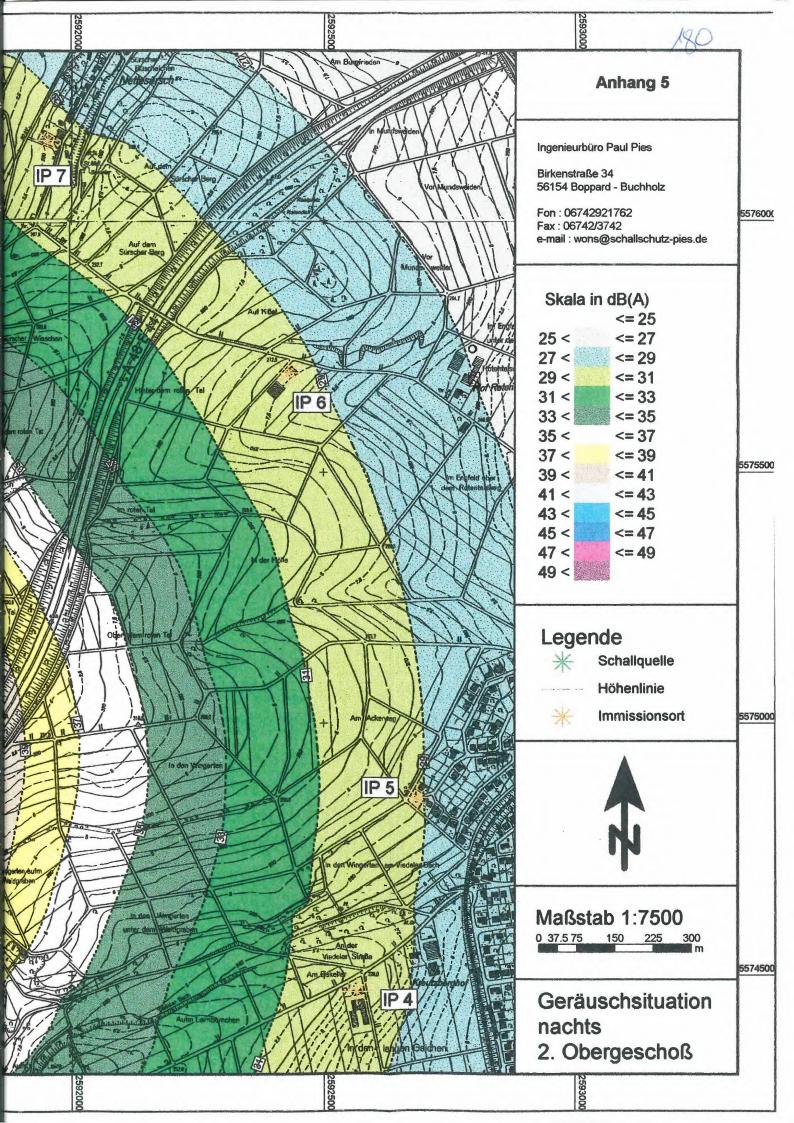
Name	Quelltyp	Lw	Ko	s	Adiv	Agr	Abar	Aatm	Re	Cmet	Ls	LrT	LrN	
		dB(A)	dB	m	dB	dB	dB	dB	dB(A	dB	dB(A)	dB(A)	dB(A)	
WEA 6 (E70)	Punkt	103,0	3,0	488,5	64,8	1,0	0,0	0,9		0,0	39,3	39,3	39,3	
WEA 7 (E70)	Punkt	103,0	3,0	658,8	67,4	2,0	0,0	1,3		0,0	35,4	35,4	35,4	
Name IP 03.1 K					RW Ta	************	dB(A)	IRW I	Vacht			***************************************	(A) Life	
WEA 1 (MD77)	Punkt	103,0	3,0	1561,6	74,9	3,3	13,4	3,0		0,0	11,4	11,4	11,4	
WEA 2 (MD77)	Punkt	103,0	3,0	1162,6	72,3	3,1	13,8	2,2		0,0	14,6	14,6	14,6	
WEA 3 (MD77)	Punkt	103,0	3,0	905,1	70,1	2,6	13,8	1,7		0,0	17,8	17,8	17,8	
WEA 4 (MD77)	Punkt	103,0	3,0	900,5	70,1	2,6	4,9	1,7		0,0	26,7	26,7	26,7	
WEA 5 (MD77)	Punkt	103,0	3,0	1649,8	75,3	3,6	12,2	3,2		0,0	11,7	11,7	11,7	
WEA 6 (E70)	Punkt	103,0	3,0	536,6	65,6	1,2	0,0	1,0		0,0	38,2	38,2	38,2	
WEA 7 (E70)	Punkt	103,0	3,0	723,0	68,2	2,2	0,0	1,4		0,0	34,3	34,3	34,3	
Name IP 03.2 K	**********		iostse		RW Tag	60	dB(A)	IRWI	Vacht	DODODODO DE PARABADA	~~~~~~~~	************	(A) LriN	
WEA 1 (MD77)	Punkt	103,0	3,0	1519,3	74,6	3,3	5,5	2,9		0,0	19,7	19,7	19,7	
WEA 2 (MD77)	Punkt	103,0	3,0	1117,5	72,0	3,0	4,7	2,2		0,0	24,2	24,2	24,2	
WEA 3 (MD77)	Punkt	103,0	3,0	858,7	69,7	2,4	3,9	1,7		0,0	28,4	28,4	28,4	
WEA 4 (MD77)	Punkt	103,0	3,0	854,2	69,6	2,4	0,0	1,6		0,0	32,4	32,4	32,4	
WEA 5 (MD77)	Punkt	103,0	3,0	1603,0	75,1	3,6	2,7	3,1		0,0	21,6	21,6	21,6	
WEA 6 (E70)	Punkt	103,0	3,0	574,0	66,2	1,2	0,0	1,1		0,0	37,5	37,5	37,5	
WEA 7 (E70)	Punkt	103,0	3,0	755,4	68,6	2,1	0,0	1,5		0,0	33,9	33,9	33,9	
Name IP 03.3 K	******************		************	***************************************	RW Tag	***************************************		IRW N	lacht				A) LrN	
WEA 1 (MD77)	Punkt	103,0	3,0	1514,4	74,6	3,2	0,0	2,9		0,0	25,3	25,3	25,3	
WEA 2 (MD77)	Punkt	103,0	3,0	1113,2	71,9	3,0	0,0	2,1		0,0	29,0	29,0	29,0	
WEA 3 (MD77)	Punkt	103,0	3,0	855,0	69,6	2,4	0,0	1,6		0,0	32,3	32,3	32,3	
WEA 4 (MD77)	Punkt	103,0	3,0	852,7	69,6	2,4	0,0	1,6		0,0	32,4	32,4	32,4	
WEA 5 (MD77)	Punkt	103,0	3,0	1599,5	75,1	3,5	0,0	3,1		0,0	24,3	24,3	24,3	
WEA 6 (E70)	Punkt	103,0	3,0	579,1	66,2	1,2	9,4	1,1		0,0	28,0	28,0	28,0	
WEA 7 (E70)	Punkt	103,0	3,0	761,1	68,6	2,1	8,4	1,5		0,0	25,3	25,3	25,3	
Name IP 04 Aus	********			************	RW Tac	000000000000000000000000000000000000000	dB(A)	IRWI	lacht	45 dB(A			A) LrN	
WEA 1 (MD77)	Punkt	103,0	3,0	3465,8	81,8	4,4	0,4	6,7		0,0	12,8	12,8	12,8	*******
WEA 2 (MD77)	Punkt	103,0	3,0	3017,4	80,6	4,4	0,3	5,8		0,0	14,8	14,8	14,8	
WEA 3 (MD77)	Punkt	103,0	3,0	2734,5	79,7	4,3	0,0	5,3		0,0	16,7	16,7	16,7	
WEA 4 (MD77)	Punkt	103,0	3,0	2524,3	79,0	4,2	0,0	4,9		0,0	17,9	17,9	17,9	
WEA 5 (MD77)	Punkt	103,0	3,0	3375,5	81,6	4,4	0,0	6,5		0,0	13,6	13,6	13,6	
WEA 6 (E70)	Punkt	103,0	3,0	1530,6	74,7	3,7	0,0	2,9		0,0	24,7	24,7	24,7	
WEA 7 (E70)	Punkt		3,0		73,4	3,3	0,0	2,5		0,0	26,8	26,8	26,8	
Name IP 05 Pol				******************	RW Tac	000000000000000000000000000000000000000	dB(A)	IRWI	lacht	**************	000000000000000000000000000000000000000		A) Lriv	
WEA 1 (MD77)	Punkt	103,0	3,0	3585,1	82,1	4,4	0,4	6,9		0,0	12,3	15,9	12,3	241300000
WEA 2 (MD77)	Punkt	103,0	3,0	3148,7	81,0	4,4	0,3	6,1		0,0	14,2	17,9	14,2	
WEA 3 (MD77)	Punkt	103,0	3,0	2866,4	80,1	4,3	0,4	5,5		0,0	15,6	19,2	15,6	
WEA 4 (MD77)	Punkt	103,0	3,0	2694,2	79,6	4,2	0,0	5,2		0,0	17,0	20,6	17,0	
WEA 5 (MD77)	Punkt	103,0	3,0	3549,0	82,0	4,4	0,0	6,8		0,0	12,8	16,5	12,8	
WEA 6 (E70)	Punkt	103,0	3,0	1555,1	74,8	3,9	0,0	3,0		0,0	24,3	27,9	24,3	
WEA 7 (E70)	Punkt	103,0	3,0	1363,6	73,7	3,5	0,0	2,6		0,0	26,2	29,8	26,2	
Name IP 06 Aus			-1-		RW Tag	***********	***************************************		Vacht		***************		A) LrN	
WEA 1 (MD77)	Punkt	103,0	3,0	3480,6	81,8	4,3	0,4	6,7		0,0	12,7	12,7	12,7	**********
WEA 2 (MD77)	Punkt		3,0		80,8	4,3	0,4	6,0			14,5	14,5		
VVLA Z (IVIDIT)	I GIIKL	103,0	5,0	0030,4	00,0	4,4	0,4	0,0		0,0	14,5	14,5	14,5	ı

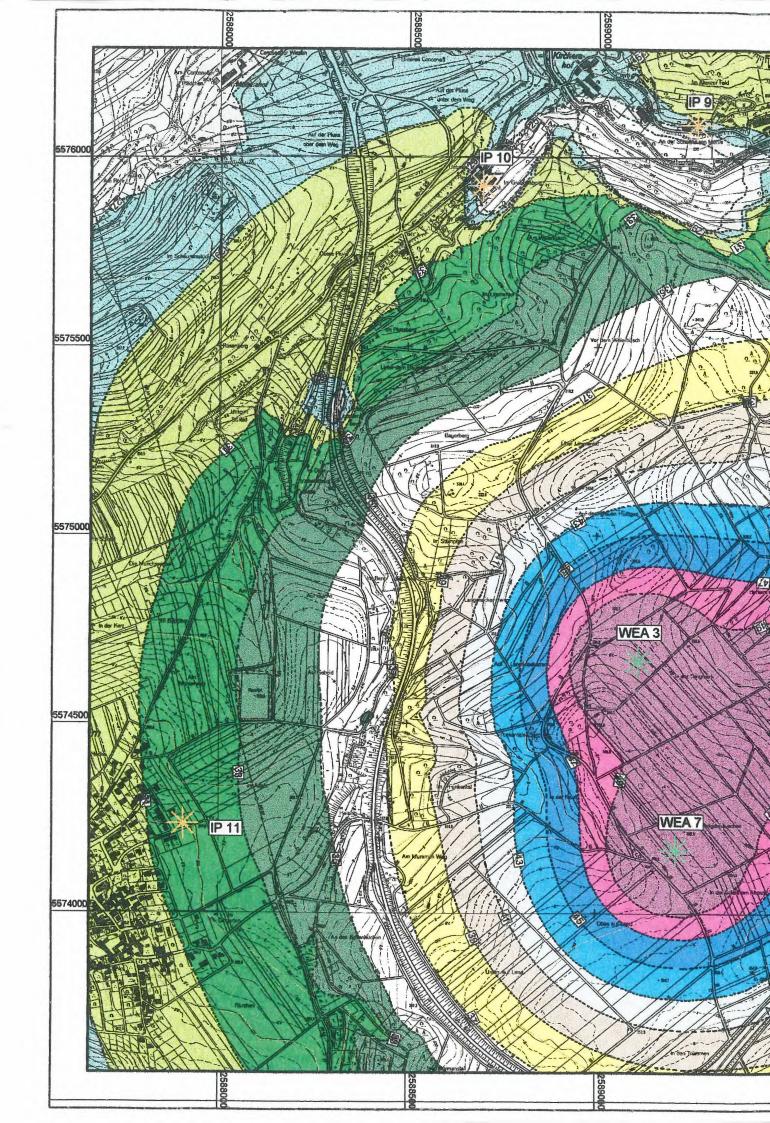
Anhang 4.3

WEA Polch Ausbreitungsberechnung

Name	Quelityp	Lw	Ko	s	Adiv	Agr	Abar	Aatm	Re	Cmet	Ls	LrT	LrN
		dB(A)	dB	m	dB	dB	dB	dB	dB(A	dB	dB(A)	dB(A)	dB(A)
1A/EA 2 (MD77)	D14	402.0	12.0	0000.7	00.0	144	0.4	5.4		2.0	15.0	15.0	45.0
WEA 3 (MD77)	Punkt	103,0	3,0	2830,7	80,0	4,4	0,4	5,4		0,0	15,8	15,8	15,8
WEA 4 (MD77)	Punkt	103,0	3,0	2757,6	79,8	4,3	0,4	5,3		0,0	16,1	16,1	16,1
WEA 5 (MD77)	Punkt	103,0	3,0	3571,0	82,0	4,4	0,4	6,9		0,0	12,3	12,3	12,3
WEA 6 (E70)	Punkt	103,0	3,0	1460,4	74,3	3,7	0,0	2,8		0,0	25,2	25,2	25,2
WEA 7 (E70)	Punkt	103,0	3,0	1371,1	73,7	3,6	0,0	2,6		0,0	26,1	26,1	26,1
Name IP 07 Net					RW Ta	_	dB(A)	IRW I	Vacht				(A) LrN
WEA 1 (MD77)	Punkt	103,0	3,0	3214,5	81,1	4,1	0,0	6,2		0,0	14,6	18,2	14,6
WEA 2 (MD77)	Punkt	103,0	3,0	2881,5	80,2	4,2	0,6	5,5		0,0	15,5	19,1	15,5
WEA 3 (MD77)	Punkt	103,0	3,0	2648,8	79,5	4,2	0,6	5,1		0,0	16,7	20,3	16,7
WEA 4 (MD77)	Punkt	103,0	3,0	2655,6	79,5	4,2	0,5	5,1		0,0	16,7	20,3	16,7
WEA 5 (MD77)	Punkt	103,0	3,0	3395,2	81,6	4,2	0,6	6,5		0,0	13,1	16,7	13,1
WEA 6 (E70)	Punkt	103,0	3,0	1405,9	74,0	3,6	0,0	2,7		0,0	25,7	29,3	25,7
WEA 7 (E70)	Punkt	103,0	3,0	1419,7	74,0	3,6	0,0	2,7		0,0	25,6	29,2	25,6
Name IP 08 Zah	rensmühle	: []		H	₹W Ta	3 60	dB(A)	IRW N	lacht	45 dB(/	v) LrT	32,6 dB(A) LrN
WEA 1 (MD77)	Punkt	103,0	3,0	1708,0	75,6	3,8	0,0	3,3		0,0	23,3	23,3	23,3
WEA 2 (MD77)	Punkt	103,0	3,0	1525,2	74,7	3,7	0,0	2,9		0,0	24,8	24,8	24,8
WEA 3 (MD77)	Punkt	103,0	3,0	1413,0	74,0	3,6	0,0	2,7		0,0	25,7	25,7	25,7
WEA 4 (MD77)	Punkt	103,0	3,0	1617,8	75,2	3,9	0,8	3,1		0,0	23,0	23,0	23,0
WEA 5 (MD77)	Punkt	103,0	3,0	2045,8	77,2	3,9	0,0	3,9		0,0	20,9	20,9	20,9
WEA 6 (E70)	Punkt	103,0	3,0	1268,1	73,1	3,9	0,8	2,4		0,0	25,7	25,7	25,7
WEA 7 (E70)	Punkt	103,0	3,0	1484,7	74,4	4,2	0,6	2,9		0,0	23,9	23,9	23,9
Name IP 09 Wo	lwerhofe			ĮF	₹W Tat	60	dB(A)	IRW N	lacht	45 dB(A) LrT	26.9 dB(A) LrN
WEA 1 (MD77)	Punkt	103,0	3,0	1447,9	74,2	4,4	9,0	2,8		0,0	15,5	15,5	15,5
WEA 2 (MD77)	Punkt	103,0	3,0	1563,3	74,9	4,4	7,8	3,0		0,0	15,9	15,9	15,9
WEA 3 (MD77)	Punkt	103,0	3,0	1639,8	75,3	4,2	2,9	3,2	-	0,0	20,5	20,5	20,5
WEA 4 (MD77)	Punkt	103,0	3,0	1960,4	76,8	4,3	1,5	3,8		0,0	19,6	19,6	19,6
WEA 5 (MD77)	Punkt	103,0	3,0	1938,3	76,7	4,5	7,2	3,7		0,0	13,8	13,8	13,8
WEA 6 (E70)	Punkt	103,0	3,0	2188,4	77,8	3,7	0,0	4,2		0,0	20,3	20,3	20,3
WEA 7 (E70)	Punkt	103,0	3,0	2410,0	78,6	3,9	0,0	4,6		0,0	18,9	18,9	18,9
Name IP 10 Tier	neim				₹W Tat			IRW N	acht	45 dB(A	TO THE OWNER OF THE OWNER OWNER OF THE OWNER OWN	24.8 dB(
WEA 1 (MD77)	Punkt	103,0	3,0	1343,5	73,6	4,1	3,8	2,6		0,0	22,0	22,0	22,0
WEA 2 (MD77)	Punkt	103,0	3,0	1618,8	75,2	4,4	10,4	3,1		0,0	12,8	12,8	12,8
WEA 3 (MD77)	Punkt	103,0	3,0	1784,9	76,0	4,3	10,8	3,4		0,0	11,4	11,4	11,4
WEA 4 (MD77)	Punkt	103,0	3,0		77,5	4,4	9,6	4,1		0,0	10,4	10,4	10,4
WEA 5 (MD77)	Punkt	103,0	3,0	1847,7	76,3	4,4	2,5	3,6			1		
WEA 6 (E70)	Punkt	103,0	3,0	2628,0	79,4	4,4				0,0	19,2	19,2	19,2
WEA 7 (E70)	Punkt	103,0	3,0	2844,9	80,1		7,9	5,1		0,0	9,5	9,5	9,5
		103,0	3,0		*********	4,3	7,3	5,5		0,0	8,9	8,9	8,9
Name IP 11 Alzh		400.0	0.0		₹W Tag			IRW N	acni				A) LrN
WEA 1 (MD77)	Punkt	103,0	3,0	1286,4	73,2	3,2	0,0	2,5		0,0	27,1	30,8	27,1
WEA 2 (MD77)	Punkt	103,0	3,0	1685,6	75,5	3,9	0,0	3,2		0,0	23,3	26,9	23,3
WEA 3 (MD77)	Punkt	103,0	3,0	1964,8	76,9	4,0	0,0	3,8		0,0	21,3	25,0	21,3
WEA 4 (MD77)	Punkt	103,0	3,0	2151,3	77,6	4,2	0,0	4,1		0,0	20,0	23,7	20,0
WEA 5 (MD77)	Punkt	103,0	3,0	1313,9	73,4	3,3	0,0	2,5		0,0	26,8	30,5	26,8
WEA 6 (E70)	Punkt	103,0	3,0	3339,6	81,5	4,2	0,6	6,4		0,0	13,3	17,0	13,3
WEA 7 (E70)	Punkt	103,0	3,0	3494,0	81,9	4,3	0,5	6,7		0,0	12,7	16,3	12,7




Anhang 4.4


WEA Polch Ausbreitungsberechnung

<u>Legende</u>

Name		Name der Quelle
Quelityp		Typ der Quelle (Punkt, Linie, Fläche)
Lw	dB(A)	Anlagenleistung
Ko	dB	Zuschlag für gerichtete Abstrahlung
S	m	Entfernung Emissionsort-IO
Adiv	dB	Mittlere Entfernungsminderung
Agr	dB	Mittlerer Bodeneffekt
Abar	dB	Mittlere Einfügedämpfung
Aatm	dB	Mittlere Dämpfung durch Luftabsorption
Re	dB(A)	Reflexanteil
Cmet	dB	Meteorologische Korrektur
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LrT	dB(A)	Teilbeurteilungspegel Tag
LrN	dB(A)	Teilbeurteilungspegel Nacht

