2. NACHTRAG ZUM GERÄUSCHIMMISSIONS-GUTACHTEN

für den Betrieb von

2 WINDENERGIEANLAGEN

TYP NORDEX N90 MIT 100,0 M NABENHÖHE

am Standort

56745 WEIBERN

AUFTRAGGEBER:

AUFTRAGNEHMER:

Ingenieurbüro PLANkon

Dipl.-Ing. Roman Wagner vom Berg

Achternstraße 16

D - 26122 Oldenburg

Tel.: (0441) 39034-0

BERICHTSNUMMER:

PK 2008003-SLG-NT2

DATUM:

24.02.2010

Inhaltsverzeichnis

1	Einleitung und Aufgabenstellung.	3
2	Kartengrundlagen	4
3	Standortbeschreibung	4
4	Daten der emittierenden Windenergieanlagen	4
5	Randbedingungen und Berechnungsverfahren	9
6	Immissionsrichtwerte und Immissionspunkte	9
7	Ermittlung der Geräuschimmissionen	11
8	Beurteilung	25
9	Quellenverzeichnis	28
10	Anlagen zum 2. Nachtrag zum Geräuschimmissionsgutachten 2 WEA in Weibern	29

1 Einleitung und Aufgabenstellung

Dieser zweite Nachtrag zum Hauptgutachten PK 2008003-SLG vom 19.03.2009 und zum ersten Nachtrag PK 2008003-SLG-NT1 vom 11.06.2009 wurde aufgrund diverser Umstände notwendig.

- Um die nächtlichen Lärmemissionen insbesondere durch den Betrieb des Werkzeugherstellers Wolfcraft zu erfassen, wurde durch das schalltechnische Ingenieurbüro Paul Pies eine Geräuschmessung an der nächstgelegenen Wohnbebauung durchgeführt. Die an den 4 ausgewählten Messpunkten erfassten Immissionspegel fließen in die Berechnungen der Vor- und Gesamtbelastung mit ein. Zu diesem Zweck wurden weitere Immissionspunkte gesetzt. Details zum erstellten Messbericht des Ingenieurbüros Pies sind dem Anhang zu entnehmen.
- Um die Höhe der nächtlichen Vorbelastung zu reduzieren, wird vertraglich zwischen der Fa. GED, der Fa. Dunoair und dem Betreiber der sich im Südwesten des Windparks befindenden Seewind-WEA vereinbart, dass diese in einem nächtlichen Zeitraum von 22.00 Uhr bis 06.00 Uhr ausgeschaltet wird. Die Seewind-WEA ist somit nicht mehr Bestandteil der nächtlichen Vor- und Gesamtbelastungsberechnungen. Der Antragsteller erbringt das entsprechende Schriftstück für die Genehmigungsbehörden.
- Nach dem Erhalt detaillierterer Flächennutzungspläne durch die Verbandsgemeinde Brohltal zur Ortschaft Weibern, in die handschriftliche Eintragungen entsprechend vorhandener Bebauungspläne eingetragen waren, wurden die Einstufungen einiger IPs in Weibern angepasst.
- Alle Berechnungen wurden mit der WindPRO-Version 2.6 durchgeführt, um die von der SGD Nord beanstandeten Unterschiede zwischen ausgegebenen Werten auf den Deckblättern der Berechnungen und dem Isophonlinienverlauf an einigen IPs zu vermeiden.
- Umplanungen bzgl. der beantragten WEA der Vorbelastung fließen in die Berechnungen mit ein: Die beantragte WEA Nr. 13 entfällt, die beiden als Enercon E-82 beantragten WEA 10 und 12 werden in diesem zweiten Nachtrag den aktuellen Planungen entsprechend bereits als Enercon E-70/E4-WEA berücksichtigt.
- Trotz der Umplanung eines WEA-Typs, was normalerweise eine Änderung in der Rangfolge der beantragten/geplanten WEA bedeuten würde, wird die Rangfolge aus dem Hauptgutachten und dem ersten Nachtrag beibehalten, da dies für keinen Antragsteller einen Nachteil beinhaltet und sich beide Antragsteller damit einverstanden erklären.

Auch in diesem zweiten Nachtrag wird zwischen zwei Berechnungszuständen unterschieden. Im <u>Zustand 1</u> wird als Zusatzbelastung allein die geplante WEA 14 auf dem Gebiet des Landkreises Mayen-Koblenz betrachtet. Die Vorbelastung besteht aus den bereits vorhandenen und durch einen anderen Planer beantragten WEA.

Im <u>Zustand 2</u> stellt die geplante WEA 17, die sich auf dem Gebiet des Landkreises Ahrweiler befindet, die Zusatzbelastung dar. Als Vorbelastung werden wiederum die vorhandenen und beantragten, jedoch ebenfalls die geplante WEA 14 aus dem Zustand 1 berücksichtigt.

Alle übrigen Berechnungsparameter entsprechen denen des Hautgutachtens PK 2008003-SLG vom 19.03.2009 und des ersten Nachtrag PK 2008003-SLG-NT1 vom 11.06.2009, es sei denn, es wird in diesem zweiten Nachtrag eindeutig auf eine Änderung hingewiesen.

2 Kartengrundlagen

- siehe ersten Nachtrag PK 2008003-SLG-NT1 vom 11.06.2009 -

3 Standortbeschreibung

- siehe Hauptgutachten PK 2008003-SLG vom 19.03.2009 -

4 Daten der emittierenden Windenergieanlagen

Änderung:

1) geplante WEA 14 und 17: Nordex N90-2.5MW, Volllastbetrieb tags und nachts

Gemäß Auszügen aus den Prüfberichten von Windconsult Nr. WICO 246SEB06/04 vom 29.04.2009 und von Windtest (WT 4226/05 vom 13.05.2005, WT 5966/07 vom 13.09.2007) ergibt sich bei dreifacher Vermessung der geplanten Windenergieanlagen im Volllastbetrieb von 2.500 kW ein energetischer Mittelwert der Schalleistungspegel von 103,6 dB(A) bei Beurteilungssituationen v(10) von 9 m/s, 8,6 m/s und 10 m/s. Dieser Wert zzgl. einer Beaufschlagung von 2,1 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

2) vorhandene WEA 2 bis 6: Vestas V47

Gemäß erstem Nachtrag zum Prüfbericht von WINDTEST Nr. WT 802/98 vom 11.02.2005 ergibt sich bei einfacher Vermessung der vorhandenen Windenergieanlagen ein Schalleistungspegel von 101,9 dB(A) bei einer Beurteilungssituation v(10) = 10 m/s, der dem Messergebnis bei 95 % der Nennleistung entspricht (s. Auszug Messbericht). Dieser Wert zzgl. einer Beaufschlagung von 3,4 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Änderung:

3) beantragte WEA 7, 8, 9 und 11: Enercon E-82 – Vollastbetrieb tags, beantr. WEA 8 und 11 auch Volllastbetrieb nachts

Gemäß Prüfbericht von Kötter Nr. 207542-02.02 vom 18.09.2008 ergibt sich bei dreifacher Vermessung der beantragten Windenergieanlagen ein energetischer Mittelwert der Schalleistungspegel von 103,8 dB(A) bei einer Beurteilungssituation v(10) = 7,7 m/s, der dem Messergebnis bei 95 % der Nennleistung entspricht (s. Auszug Messbericht). Dieser Wert zzgl. einer Beaufschlagung von 2,1 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Änderung:

4) beantragte WEA 7 und 9: Enercon E-82 – nächtliche Reduzierung auf eine Nennleistung von 1 MW

Gemäß Prüfbericht von Müller-BBM Nr. M68 330/1 vom 27.04.2007 ergibt sich bei einfacher Vermessung der beantragten Windenergieanlagen ein energetischer Wert der Schalleistungspegel von 98,7 dB(A) bei einer Beurteilungssituation v(10) = 6,8 m/s, der dem Messergebnis bei 95 % der Nennleistung entspricht (s. Auszug Messbericht). Dieser Wert zzgl. einer Beaufschlagung von 2,6 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Änderung:

5) beantragte WEA 10 und 12: Enercon E-70/E4 – tags und nachts im Volllastbetrieb

Gemäß Auszügen aus den Prüfberichten von Windconsult (WICO 141SE707/02, WICO 314SEA05/01) vom 24.01.2008 und 21.11.2005 sowie Auszug aus dem Prüfbericht von Busch Nr. 135208gs01 vom 22.06.2009 ergibt sich bei dreifacher Vermessung der beantragten Windenergieanlagen im Volllastbetrieb von 2.300 kW ein energetischer Mittelwert der Schalleistungspegel von 104,2 dB(A) bei Beurteilungssituationen v(10) von 10 m/s, 9,6 m/s und 11 m/s. Dieser Wert zzgl. einer Beaufschlagung von 2,03 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Für eine Betrachtung relevanter Infraschall wird von heutigen Windkraftanlagen nachweislich nicht emittiert, an dieser Stelle sei auf die entsprechende Fachliteratur verwiesen.

Die wichtigsten, für die nächtliche Prognoseberechnung erforderlichen Daten der untersuchten Windenergieanlagen folgen im Überblick:

Parameter	gepl. WEA 14+17	vorh. WEA 2 - 6	beantragte WEA 8 und 11
WEA - Typ	Nordex N90	Vestas V47	Enercon E-82
Nennleistung	2.500 kW	660 kW	2.000 kW
Rotordurchmesser	90,0 m	47,0 m	82,0 m
Nabenhöhe	100,0 m	65,0 m	108,4 m
Vermessung Schall	Windconsult, Windtest	Windtest	Müller-BBM, Köt- ter
max. Schallpegel	103,6 dB(A)	101,9 dB(A)	103,8 dB(A)
Tonhaltigkeit K _T	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)
Impulshaltigkeit K ₁	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)
Zuschlag für Un- sicherheiten	2,1 dB(A)	3,4 dB(A)	2,1 dB(A)
Summe	105,7 dB(A)	105,3 dB(A)	105,9 dB(A)

Parameter	beantragte WEA 7 und 9	beantragte WEA 10 und 12
WEA - Typ	Enercon E-82	Enercon E-70/E4
Nennleistung	nachts red. auf 1.000 kW	2.300 kW
Rotordurchmesser	82,0 m	71,0 m
Nabenhöhe	108,4 m	113,5 m
Vermessung Schall	Müller-BBM	Windconsult, Busch
max. Schallpegel	98,7 dB(A)	104,2 dB(A)
Tonhaltigkeit K _T	0,0 dB(A)	0,0 dB(A)
Impulshaltigkeit K _I	0,0 dB(A)	0,0 dB(A)
Zuschlag für Unsicherheiten	2,6 dB(A)	2,03 dB(A)
Summe	101,3 dB(A)	106,2 dB(A)

Es wurde aufgrund von Forderungen der zuständigen Genehmigungsbehörde, Hr. Schäfer von der Immissionsschutzabteilung der SGD Nord Rheinland-Pfalz mit Sitz in Koblenz, eine zusätzliche Sicherheitsbetrachtung der verwendeten Emissionspegel unter Berücksichtigung der Ungenauigkeiten des Berechnungsmodells gefordert. Es werden Unsicherheiten für Messwerte, die Serienstreuung und die Ausbreitungsberechnung angesetzt. Zur Berechnung der Gesamtunsicherheit werden die Einzelunsicherheiten quadriert und aufsummiert. Aus der Summe wird die Wurzel gezogen. Das Ergebnis wird zur Würdigung einer 10 %-igen Irrtumswahrscheinlichkeit mit dem Faktor 1,28 multipliziert.

Für die o.g. Punkte ergeben sich Unsicherheiten für die geplanten WEA Nordex N90 bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte durch die Einfachvermessung von 0,36 dB(A). Es ergibt sich der Wert 2,1 dB(A).

$$U_{ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(0,5^2+0,36^2+1,5^2)^{0.5} = 2,1 dB(A)$$

Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je WEA ein Rechenpegel von 103,6 + 2,1 = 105,7 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Für die vorhandenen WEA vom Typ Vestas V47 ergeben sich Unsicherheiten bei der schalltechnischen Vermessung von 1,8 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte infolge der vorhandenen Einfachvermessung 1,22 dB(A). Es ergibt sich der Wert 3,4 dB(A).

$$U_{ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(1,8^2+1,22^2+1,5^2)^{0.5} = 3,4 dB(A)$$

Der Sicherheitsabstand zu den Richtwerten kann reduziert werden, wenn die angenommenen Unsicherheiten durch messtechnische Nachweise ausgeräumt werden können. Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je vorhandener WEA ein Rechenpegel von 101.9 + 3.4 = 105.3 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Änderung: Für die o.g. Punkte ergeben sich Unsicherheiten für die beantragten WEA 8 und 11 / Enercon E-82 im Volllastbetrieb bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte durch die Auswertung der Dreifachvermessung 0,4 dB(A). Es ergibt sich der Wert 2,1 dB(A).

$$U_{\text{ges}} = 1,28*(U1^2 + U2^2 + U3^2)^{0,5} = 1,28*(0,5^2 + 1,5^2 + 0,4^2)^{0,5} = \textbf{2,1} \ \textbf{dB(A)}$$

Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je WEA ein Rechenpegel von 103,8 + 2,1 = 105,9 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Änderung: Für die beantragten WEA 7 und 9 vom Typ Enercon E-82 mit nächtlicher reduzierten Nennleistung auf 1 MW ergeben sich Unsicherheiten bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte infolge der vorhandenen Einfachvermessung 1,22 dB(A). Es ergibt sich der Wert 2,6 dB(A).

$$U_{ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(0,5^2+1,22^2+1,5^2)^{0.5} = 2,6 \text{ dB(A)}$$

Der Sicherheitsabstand zu den Richtwerten kann reduziert werden, wenn die angenommenen Unsicherheiten durch messtechnische Nachweise ausgeräumt werden können. Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je vorhandener WEA ein Rechenpegel von 98.7 + 2.6 = 101.3 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Änderung: Für die <u>beantragten WEA 10 und 12 / Enercon E-70/E4 im Volllastbetrieb</u> ergeben sich Unsicherheiten bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte durch die Auswertung der Dreifachvermessung 0,16 dB(A). Es ergibt sich der Wert 2,0 dB(A).

$$U_{\rm ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(0,5^2+1,5^2+0,16^2)^{0.5} = \textbf{2,0 dB(A)}$$

Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je WEA ein Rechenpegel von 104.2 + 2.0 = 106.2 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

5 Randbedingungen und Berechnungsverfahren

- siehe Hauptgutachten PK 2008003-SLG vom 19.03.2009 -

6 Immissionsrichtwerte und Immissionspunkte

Für die Beurteilung von Industrie- und Gewerbegeräuschen sind in der TA Lärm /3/ Immissionsrichtwerte sowohl für den Beurteilungspegel, als auch für Maximalpegel einzelner Geräuschereignisse genannt. Sie sind nach Einwirkungsorten entsprechend der baulichen Nutzung ihrer Umgebung, sowie nach Tag und Nacht unterteilt (s. Tabelle unten). Die Beurteilungspegel beziehen sich auf die Zeiträume tags von 6:00 bis 22:00 Uhr und nachts von 22:00 bis 6:00 Uhr. Somit werden auch die Einflüsse der Ortsüblichkeiten und des Zeitpunktes des Auftretens der Geräusche berücksichtigt. Im vorliegenden Fall ist die lauteste Nachtstunde maßgeblich.

Industriegebiete	tags und nachts
	70 dB(A)
Gewerbegebiete	tags 65 dB(A)
	nachts 50 dB(A)
Kerngebiete, Dorfgebiete und Mischgebiete	tags 60 dB(A)
	nachts 45 dB(A)
Allgemeine Wohngebiete und Kleinsiedlungsgebiete	tags 55 dB(A)
	nachts 40 dB(A)
Reine Wohngebiete	tags 50 dB(A)
	nachts 35 dB(A)
Kurgebiete, Krankenhäuser und Pflegeanstalten	tags 45 dB(A)
	nachts 35 dB(A)

Änderung: Es werden insgesamt 26 Punkte in der näheren Umgebung zu den geplanten Windkraftanlagen als Immissionspunkte untersucht. Bei den Immissionspunkten handelt es sich hauptsächlich um die nächstgelegene Wohnbebauung, die in ein- bzw. zweigeschossiger Bauweise mit ausgebautem Dachgeschoß ausgebildet ist. Die Einstufung der Immissionspunkte erfolgte nach Rücksprache mit den örtlichen Baubehörden der Verbandsgemeinden Mendig und Brohltal. Die Koordinaten der Immissionspunkte wurden mit Hilfe der verwendeten Berechnungssoftware aus dem vom Auftraggeber zur Verfügung gestellten Kartenmaterial ermittelt. Die Höhe des Aufpunktes wird mit 5 m bzw. 7,50 m über Gelände angesetzt. Die Immissionspunkte wurden im Zuge einer Ortsbegehung besichtigt.

Die Bezeichnungen und Lagebeschreibungen sowie zulässigen Richtwerte für die verschiedenen Immissionspunkte sind der folgenden Tabelle zu entnehmen:

Immissionspunkt	Lagebeschreibung	Richtwert Tag/Nacht in dB(A)
IP A	Whs. Appentalerhof	60/45
IP B	Whs. Winkelweg 10, Weibern	55/40
IP C	Whs. Waldstr. 2, Weibern	60/45
IP D	Whs. Waldstr. 32, Weibern	60/45
IPE	Whs. Kirchstr. 27, Weibern	60/45
IP F	Whs. Im Wiesengrund 13, Weibern	60/45
IP G	Whs. Dorfstr. 10, Wabern	60/45
IP H	Whs. Heideweg 6a, Wabern	55/40
IP I	Whs. Birkenhof, Volkesfeld	60/45
IP J **)	Baugrundstück Sonnenwinkel, Volkesfeld	55/40
IP K	Whs. Seeblick 1, Volkesfeld	55/40
IP L	Hotel Eifler Seehütte, Rieden	55/40
IP M *)	Whs. Waldseestr. 8, Rieden	55/40
IP N	Whs. Suhrstr. 24, Rieden	60/45
IP O	Whs. Am Sonnenhang 24, Rieden	55/40
IP P	Whs. Bahnhofstr. 111, Weibern	60/45
IP Q	Whs. Löhstr. 5, Weibern	60/45
IP R	Whs. Löhstr. 6, Weibern	60/45
IP S	Whs. Konnstr. 41, Weibern	55/40
IP T	Whs. Tannenweg 6, Weibern	55/40
IP U	Whs. Konnstr. 25, Weibern	55/40
IP V	Whs. Buchenweg 1, Weibern	55/40
IP W **)	Baugrundstück Am Hang, Volkesfeld	55/40
IP X	Uferterrasse 3, Rieden	55/40
IP Y	Whs. Geisenberg 19, Rieden	55/40
IP Z	Whs. Am Sonnenhang 40, Rieden	55/40

^{*)} Da das Wohnhaus noch nicht im den Berechnungen zugrundeliegenden Kartenmaterial verzeichnet ist, wurde der IP M anhand des im Internet veröffentlichten Liegenschaftskatasters mit ausgewiesenen Flurstücken des Landschaftsinformationssystems der Naturschutzverwaltung Rheinland-Pfalz gesetzt (siehe http://mapl.naturschutz.rlp.de).

**) Diese Grundstücke (Flurstücke 241 und 51 der Gemeinde Volkesfeld) waren zum Zeitpunkt der Begehung noch nicht bebaut. Nach Telefonaten mit Fr. Hatzmann von der Verbandsgemeinde Mendig wurden diese Grundstück mit IPs versehen, die sich an der den geplanten und vorhandenen WEA zugewandten Grundstücksseite befinden – unter Beachtung des auf den jeweiligen Grundstücken It. Fr. Hatzmann zu beachtenden Grenzabstandes, um die Geräuschbelastung auch an diesen bebaubaren Grundstücken miteinzubeziehen.

7 Ermittlung der Geräuschimmissionen

Grundlage für die Berechnung der Geräuschimmissionen sind die Schallleistungspegel der Windenergieanlagen gem. Abs. 4, sowie die Randbedingungen und Berechnungsgrundlagen gem. Abs. 5.

Die Berechnungen erfolgen mit dem Programmsystem DECIBEL. Das Programmsystem führt die Schallausbreitungsrechnungen auf der Grundlage der DIN ISO 9613-2 /7/ durch. Die Berechnungen ermöglichen eine Analyse des Einflusses jeder Emissionsquelle auf die Geräuschimmission an jedem Immissionsort.

Berechnet wurden für den Zustand 1 und den Zustand 2 jeweils drei verschiedene Situationen.

Änderung: Im Zustand 1 wurden die 11 bestehenden/beantragten Anlagen (Vorbelastung) und die geplante Anlage 14 des Landkreises Mayen-Koblenz (Zusatzbelastung) jeweils getrennt betrachtet. Weiterhin wurden Immissionen durch die Gesamtbelastung der insgesamt 12 WEA berechnet.

Im <u>Zustand 2</u> besteht die Vorbelastung aus den 11 bestehenden/beantragten Anlagen sowie der nun als vorhanden angesetzten WEA 14 des Zustandes 1. In der Zusatzbelastung werden die Immissionen durch die geplante WEA 17 des Landkreises Ahrweiler berechnet. Abschließend werden die Immissionen durch die Gesamtbelastung der insgesamt 13 WEA betrachtet.

Hinweis: In den Berechnungen der Vor- und Gesamtbelastung beider Zustände wird die vom Ingenieurbüro Pies ermittelte nächtliche Geräuschbelastung durch den Gewerbebetrieb Wolfcraft in Weibern berücksichtigt. Das Ingenieurbüro wertete die Geräuschvorbelastung an vier nahegelegenen Messpunkten aus, die aufgrund ihrer Nähe und ihrer Einstufungen in Anlehnung an Empfehlungen der Genehmigungsbehörde ausgewählt wurden. Am IP T ("Whs. Tannenweg 6, Weibern") waren Betriebsgeräusche durch Wolfcraft weder "mess- noch wahrnehmbar" (s. Auszug aus dem Messbericht vom Büro Pies im Anhang).

Ebenso fand an allen anderen IPs keine zu berücksichtigende Vorbelastung durch Wolfcraft statt.

An den drei übrigen Messpunkten P, Q und R konnten folgende Betriebsgeräuschimmissionen verzeichnet werden:

Name des Messpunktes	gemessene Betriebsgeräuschimmissionen
IP P: "Whs. Bahnhofstr. 111, Weibern"	31 dB(A)
IP Q: "Whs. Löhstr. 5, Weibern"	34 dB(A)
IP R: "Whs. Löhstr. 6, Weibern"	31 dB(A)

Die Messpunkte befanden sich dabei so nah wie möglich an der Wohnbebauung. Auf eine Sichtverbindung zwischen den Messpunkten und der Firma Wolfcraft bzw. ihrem Dachbereich wurde Wert gelegt.

Das Ergebnis am Messpunkt östlich des Wohnhauses Löhstr. 6 am Fahrweg wurde auf den IP S ("Whs. Konnstr. 41, Weibern") übertragen, da in der Nähe dieses IPs keine Messung stattfand, dieser IP anders als die IPs P bis R aber in einem allgemeinen Wohngebiet liegt und deshalb ebenfalls Beachtung finden muss, auch wenn die Entfernung zu Wolfcraft größer ist als bei den IPs P bis R. Aus diesem Grund ist die Schallbelastung durch Wolfcraft am IP S geringer als die angenommenen 31 dB(A), der Wert wird aber, auf der ungünstigen Seite liegend, in den Berechnungen angesetzt.

Hinweis: Die in den Anlagen enthaltenen graphischen Darstellungen der Isolinienverläufe stellen die Immissionen bedingt allein durch die Emissionen der WEA dar. Um die Belastung an den vier betroffenen IPs P, Q, R und S in Weibern durch die WEAs und das Gewerbe Wolfcraft darzulegen, sind dem Anhang Tabellenblätter beigefügt, in denen die entsprechenden Pegeladditionen aus WEAs und Gewerbe für die vier betroffenen IPs durchgeführt werden.

Bericht Nr. PK 2008003-SLG-NT2 Datum 24,02.2010 Seite 13 von 30

Zustand 1

Berechnet wurde die Vorbelastung durch 11 bestehende und beantragte WEA sowie das Gewerbe Wolferaft bei und in Weibern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes und der WEA dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Immissions- punkt	Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	Summe Schall- pegel aus WEA und Ge- werbe in	erf. Richtwert in dB(A)	Reserve zum Klentwert in dB(A)
TP A	38.0	,	38,0	45	7,0
IP B	38,0		38,0	40	2,0
IPC	40,1	,	40,1	45	4,9
IPD	38,4	/	38,4	45	9,9
IPE	36,6	/	36,6	45	8,4
IPF	35,0	/	35,0	45	10,0
IPG	32,3	,	32,3	45	12,7
IPH	31,5	/	31,5	40	8,5
IPI	33,4	1	33,4	45	11,6
IPJ	35,6	,	35,6	40	4,4
IP K	35,0	,	35,0	40	5,0
IPL	37,0	,	37,0	40	3,0
IP M	35,2		35,2	40	4,8
N d1	42.0	1	42.9	45	2,1

Digi. - Ing. Roman Wagner vom Berg Achternstraße 16, 26122 Oldenburg - Postfach 4070, 26030 Oldenburg

Berichi Nr. PK 2008003-SI.G-NT2 Datum 24.02.2010 Scite 14 von 30

Reserve zum Richtwert in dB(A)	1,3	4,9	4,3	5,2	6,7	0,0	6,0	1,5	5,5	4,2	0,6	1,4
erf. Richtwert in dB(A)	40	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	38,7	40,1	40,7	39,8	39,3	40,0	39,1	38,5	34,5	35,8	39,4	38,6
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)		31,0	34,0	31,0	31,0	(*	•		•		1	/
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	38,7	39,6	39,6	39,2	38,6	40,0	39,1	38,5	34,5	35,8	39,4	38,6
Immissions- punkt	IP O	ΡР	РQ	IPR	IPS	$IP\ T$	ΡU	ΙΡV	M dI	IP X	IP Y	IPZ

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar.

An keinem Immissionspunkt werden durch die Vorbelastung aus WEA und Gewerbe die zulässigen Richtwerte überschritten.

Am IP T ("Whs. Tannenweg 6, Weibern") wird der zulässige Richtwert durch die Vorbelastung erreicht.

PLANKon Dipl.-Ing. Roman Wagner vom Berg Achternstraße 16, 26122 Oldenburg - Postfach 4070, 26030 Oldenburg Berechnet wurde die <u>Zusatzbelastung durch eine geplante WEA (WEA 14) bei Weibern</u>. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Immissionspunkt	Berechneter Schallpegel L_s in dB(A) V(10)=10 m/s	erf. Richtwert in dB(A)	Reserve zum Richtwer in dB(A)
IP A	20,1	45	24,9
IP B	28,5	40	11,5
IP C	30,6	45	14,4
IP D	30,1	45	14,9
IP E	30,5	45	14,5
IP F	29,9	45	15,1
IP G	27,8	45	17,2
IP H	27,2	40	12,8
IP I	30,3	45	14,7
IP J	34,7	40	5,3
IP K	33,3	40	6,7
IP L	34,5	40	5,5
IP M	32,0	40	8,0
IP N	37,9	45	7,1
IP O	29,3	40	10,7
IP P	28,1	45	16,9
IP Q	28,8	45	16,2
IP R	29,3	45	15,7
IP S	29,4	40	10,6
IP T	30,4	40	9,6
IP U	30,0	40	10,0
IP V	30,0	40	10,0
IP W	31,9	40	8,1
IP X	32,5	40	7,5
IP Y	34,7	40	5,3
IP Z	33,0	40	7,0

Als Immissionspunkte mit dem geringsten Abstand zum Richtwert ergeben sich in der Berechnung der Zusatzbelastung IP J ("Baugrundstück Sonnenwinkel, Volkesfeld") und IP Y ("Whs. Geisenberg 19, Rieden"). Es wird hier ein Abstand von 5,3 dB(A) zum Richtwert eingehalten.

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Zusatzbelastung IP N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 37,9 dB(A) immittiert.

Es erfolgt an keinem IP eine Überschreitung der zulässigen Richtwerte durch die geplante WEA 14 der Zusatzbelastung.

Die Immissionspunkte A bis I, O bis S, U und V liegen zudem nicht mehr im Einflussbereich der geplanten WEA 14, da hier mehr als 10 dB(A) Abstand zum Richtwert eingehalten werden.

bern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes Berechnet wurde die Gesamtbelastung durch eine geplante und 11 bestehende und beantragte WEA sowie das Gewerbe Wolfcraft bei und in Wei-

Lr, macht durch Gewerbe in AB(A) MEA und Gewerbe in AB(A) (A) (B) (A) (B) (A) (B) (A) (B) (A) (B) (A) (A	nd der we.A	und der WEA dokumenten, Die Ergebnisse dei inninssionsbeteendungen sund der jorgenden zu der der entrement. Termissione Derechneter Schallnegel Germasseaner Schallnegel Summe Schall. erf Richtwert Rev	Camaccanar Schallnegal	Summe Schall.	erf Richtwert	Reserve zum Richtwert
/ 38,1 45 / 38,5 40 / 40,6 45 / 39,0 45 / 37,5 45 / 36,2 45 / 33,6 40 / 35,1 45 / 35,1 40 / 38,2 40 / 38,9 40 / 36,9 40 / 44,1 45 / 44,1 45 / 39,1 40	<u> </u>	Ls durch WEA in dB(A) V(10)=10 m/s	Lr,nacht durch Gewerbe in dB(A)	pegel aus WEA und Gewerbe in dB(A)	in dB(A)	in dB(A)
1 38,5 40 1 40,6 45 1 39,0 45 1 37,5 45 1 36,2 45 1 33,6 40 1 32,9 40 1 35,1 45 1 38,2 40 1 38,9 40 1 36,9 40 1 44,1 45 1 44,1 45 1 39,1 40	 	38,1		38,1	45	6,9
1 40,6 45 1 39,0 45 1 37,5 45 1 36,2 45 1 33,6 45 1 32,9 40 1 35,1 45 1 38,2 40 1 38,9 40 1 36,9 40 1 44,1 45 1 44,1 45		38,5	/	38,5	40	1,5
/ 39,0 45 / 37,5 45 / 36,2 45 / 33,6 40 / 32,9 40 / 38,2 40 / 38,2 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40	-	40,6		40,6	45	4,4
/ 37,5 45 / 36,2 45 / 33,6 45 / 32,9 40 / 35,1 45 / 38,2 40 / 37,3 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		39,0		39,0	45	6,0
/ 36,2 45 / 33,6 45 / 32,9 40 / 35,1 45 / 38,2 40 / 37,3 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		37,5		37,5	45	7,5
/ 33,6 45 / 32,9 40 / 38,2 40 / 37,3 40 / 38,9 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		36,2	/	36,2	45	8,8
/ 32,9 40 / 35,1 45 / 38,2 40 / 37,3 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		33,6	/	33,6	45	11,4
/ 35,1 45 / 38,2 40 / 37,3 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		32,9	/	32,9	40	7,1
/ 38,2 40 / 37,3 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		35,1	/	35,1	45	6,6
/ 37,3 40 / 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		38,2		38,2	40	1,8
/ 38,9 40 / 36,9 40 / 44,1 45 / 39,1 40		37,3		37,3	40	2,7
/ 36,9 40 / 44,1 45 / 39,1 40	l I	38,9	/	38,9	40	1,1
/ 44,1 45 / 39,1 40		36,9	/	36,9	40	3,1
/ 39,1 40	ì	44,1	/	44,1	45	6,0
		39,1	,	39,1	40	6,0

PLANKon Dipl.-Ing. Roman Wagner vom Berg Achternstraße 16, 26122 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2008003-SLG-NT2 Datum 24.02.2010 Seite 17 von 30

Reserve zum Richtwert in dB(A)	4,6	4,0	4,8	0,3	-0,5	0,4	6,0	3,6	2,5	9,0-	0,3
erf. Richtwert in dB(A)	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	40,4	41,0	40,2	39,7	40,5	39,6	39,1	36,4	37,5	40,6	39,7
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	31,0	34,0	31,0	31,0	(*	/	/	1	1	1	/
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	39,9	40,0	39,6	39,1	40,5	39,6	39,1	36,4	37,5	40,6	39,7
Immissions- punkt	IPP	IPQ	IPR	IPS	IPT	IPU	ΙΡV	IP W	IP X	IP Y	ZdI

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar. Am IP T ("Whs. Tannenweg 6, Weibern") und am IP Y ("Whs. Geisenberg 19, Rieden") wird durch die Gesamtbelastung aus den geplanten und vorhandenen/beantragten WEA der zulässige Richtwert überschritten. Dies ist lt. TA-Lärm von 1998, Abs. 3.2.1 jedoch zulässig, da die Überschreitung nicht mehr als 1 dB(A) beträgt und die Vorbelastung die Zusatzbelastung an diesen IPs bei weitem überschreitet (vgl. S. 14 und 15).

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Gesamtbelastung IP N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 44,1 dB(A) immittiert.

Zustand 2

Berechnet wurde die Vorbelastung durch 12 bestehende und beantragte WEA sowie das Gewerbe Wolfcraft bei und in Weibern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes und der WEA dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

	Gemessener Schallpegel Summe Schall- Lr,nacht durch Gewerbe in pegel aus dB(A) werbe in dB(A) werbe in dB(A)	/ 38,1 45 6,9	7 38,5 40 1,5	/ 40,6 45 4,4	/ 39,0 45 6,0	, 37,5 45 7,5	/ 36,2 45 8,8	/ 33,6 45 11,4	/ 32,9 40 7,1	/ 35,1 45 9,9	/ 38,2 40 1,8	/ 37,3 40 2,7	/ 38,9 40 1,1	/ 36,9 40 3,1	
Number of the property of the	Berechneter Schallpegel Gemesse Ls durch WEA in dB(A) Lr,nacht o V(10)=10 m/s	38,1	38,5	40,6	39,0	37,5	36,2	33,6	32,9	35,1	38,2	37,3	38,9	36,9	
Aumonton L. Las	Immissions- punkt	IPA	IPB	IPC	IPD	IPE	IPF	IPG	IPH	IPI	IP J	IP K	PL	IPM	

Bericht Nr. PK 2008003-SLG-NT2 Datum 24.02.2010 Seite 19 von 30

Reserve zum Richtwert in dB(A)	6,0	4,6	4,0	4,8	0,3	-0,5	0,4	6,0	3,6	2,5	-0,6	0,3
erf. Richtwert in dB(A)	40	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	39,1	40,4	41,0	40,2	39,7	40,5	39,6	39,1	36,4	37,5	40,6	39,7
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	/	31,0	34,0	31,0	31,0	(*	/	1	,	/	/	/
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	39,1	39,9	40,0	39,6	39,1	40,5	39,6	39,1	36,4	37,5	40,6	39,7
Immissions- punkt	РО	IP P	IPQ	IPR	IP S	IPT	IP U	IP V	IP W	IP X	IP Y	IPZ

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar.

Am IP T ("Whs. Tannenweg 6, Weibern") und am IP Y ("Whs. Geisenberg 19, Rieden") wird durch die Vorbelastung aus den vorhandenen und beantragten WEA der zulässige Richtwert um 0,5 bzw. 0,6 dB(A) überschritten. Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Vorbelastung IP N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 44,1 dB(A) immittiert. Berechnet wurde die <u>Zusatzbelastung durch eine geplante WEA (WEA 17) bei Weibern</u>. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Immissionspunkt	Berechneter Schallpegel L _s in dB(A) V(10)=10 m/s	erf. Richtwert in dB(A)	Reserve zum Richtwern in dB(A)			
IP A	28,8	45	16,2			
IPB	28,8	40	11,2			
IPC	28,9	45	16,1			
IPD	27,4	45	17,6			
IPE	24,9	45	20,1			
IP F	22,1	45	22,9			
IP G	20,2	45	24,8			
IP H	19,5	40	20,5			
IPI	20,5	45	24,5			
IP J	22,3	40	17,7			
IP K	21,8	40	18,2			
IP L	24,1	40	15,9			
IP M	22,7	40	17,3			
IP N	28,3	45	16,7			
IP O	27,3	40	12,7			
IP P	29,7	45	15,3			
IP Q	30,9	45	14,1			
IP R	31,0	45	14,0			
IP S	28,8	40	11,2			
IP T	29,0	40	11,0			
IP U	27,8	40	12,2			
IP V	27,9	40	12,1			
IP W	21,9	40	18,1			
IP X	23,2	40	16,8			
IP Y	26,8	40	13,2			
IP Z	27,0	40	13,0			

Als Immissionspunkt mit dem geringsten Abstand zum Richtwert ergibt sich in der Berechnung der Zusatzbelastung IP T ("Whs. Tannenweg 6, Weibern"). Es wird hier ein Abstand von 11,0 dB(A) zum Richtwert eingehalten.

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Zusatzbelastung IP R ("Whs. Löhstr. 6, Weibern"). An diesem IP werden 31,0 dB(A) immittiert.

Es erfolgt an keinem IP eine Überschreitung der zulässigen Richtwerte durch die geplante WEA 17 der Zusatzbelastung.

Alle Immissionspunkte liegen zudem nicht mehr im Einflussbereich der geplanten WEA 17, da hier mehr als 10 dB(A) Abstand zum Richtwert eingehalten werden.

Berechnet wurde die Gesamtbelastung durch eine geplante und 12 bestehende und beantragte WEA sowie das Gewerbe Wolfcraft bei und in Weibern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes und der WEA dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

htwert Reserve zum Richtwert (A) in dB(A)	5 6,5	1,1	5 4,2	5,7	5 7,2	9,8	5 11,2	6,9	5 9,7	0 1,7	0 2,6	6,0	0 2,9	5 0,8	0.6
erf. Richtwert in dB(A)	45	40	45	45	45	45	45	40	45	40	40	40	40	45	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	38,5	38,9	40,8	39,3	37,8	36,4	33,8	33,1	35,3	38,3	37,4	39,1	37,1	44,2	30.4
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	,	,	1	1	,	1	1	1	,	,	1	/	/	/	,
Berechneter Schallpegel Ls in dB(A) V(10)=10 m/s	38,5	38,9	40,8	39,3	37,8	36,4	33,8	33,1	35,3	38,3	37,4	39,1	37,1	44,2	200
Immissions- punkt	ΙΡΑ	IPB	IPC	IPD	IPE	IP F	IPG	IPH	IPI	IP J	IP K	IPL	IPM	IP N	CH

Bericht Nr. PK 2008003-SLG-NT2 Datum 24,02,2010 Seite 23 von 30

		Т					1	1	1		
Reserve zum Richtwert in dB(A)	4,2	3,6	4,3	0,0	8'0-	0,1	9,0	3,5	2,4	8.0-	0,1
erf. Richtwert in dB(A)	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	40,8	41,4	40,7	40,0	40,8	39,9	39,4	36,5	37,6	40,8	39,9
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	31,0	34,0	31,0	31,0	*	1	1	1	,	1	1
Berechneter Schallpegel Ls in dB(A) V(10)=10 m/s	40,3	40,5	40,2	39,5	40,8	39,9	39,4	36,5	37,6	40,8	39,9
Immissions- punkt	IPP	РQ	IPR	IP S	IPT	IPU	IP V	IP W	IP X	IP Y	IPZ

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar.

Am IP T ("Whs. Tannenweg 6, Weibern") und am IP Y ("Whs. Geisenberg 19, Rieden") wird durch die Gesamtbelastung aus den geplanten und vorhandenen/beantragten WEA der zulässige Richtwert überschritten. Dies ist It. TA-Lärm von 1998, Abs. 3.2.1 jedoch zulässig, da die Überschreitung nicht mehr als 1 dB(A) beträgt und die Vorbelastung die Zusatzbelastung an diesem IP bei weitem überschreitet (vgl. S. 20 und 21). Zudem ist die Überschreitung für die Planung von WEA 17 ohne Belang, da durch das Unterschreiten der Richtwerte in der Berechnung der Zusatzbelastung um mehr als 10 dB(A) sämtliche IPs außerhalb des Einflussbereiches der geplanten WEA liegen. Als Immissionspunkt mit der höchsten Schalibelastung ergibt sich in der Berechnung der Gesamtbelastung IP N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 44,2 dB(A) immittiert.

8 Beurteilung

Folgende Vorschriften werden zur Beurteilung herangezogen:

- BImSchG /4/ mit allen ergänzenden und relevanten Verordnungen
- TA Lärm /3/

Die Begutachtung erfolgt im Rahmen des Genehmigungsverfahrens. In den Berechnungsausdrucken sind verschiedene Belastungszustände aus schalltechnischer Sicht dokumentiert. Bewertet werden die Ergebnisse für die verschiedenen Immissionspunkte gemäß den relevanten Belastungszuständen für die Belastung nachts (22-6 Uhr). Aufgrund der um 15 dB(A) höheren Richtwerte tags sind am Tage (6-22 Uhr) generell höhere Emissionswerte möglich. Alle Berechnungen enthalten je nach WEA-Typ einen Zuschlag zum Emissionspegel von 2,0 – 3,4 dB(A), s. auch Kap. 4.

In diesem zweiten Nachtrag zum Hauptgutachten PK 2008003-SLG vom 19.03.2009 und zum ersten Nachtrag PK 2008003-SLG-NT1 vom 11.06.2009 werden erneut zwei Zustände betrachtet, die sich auf die zeitliche Abfolge der Errichtung der beiden geplanten WEA 14 und 17 beziehen.

Zustand 1

Die geplante WEA 14 auf dem Gebiet des Landkreises Mayen-Koblenz stellt die Zusatzbelastung dar. Zusammen mit den 11 vorhandenen und beantragten WEA werden in der Gesamtbelastung 12 WEA berechnet. In den Schallberechnungen der Vor- und Gesamtbelastung werden nächtliche, vom Ingenieurbüro Pies gemessene Emissionen des Gewerbes Wolfcraft in Weibern berücksichtigt. Diese Emissionen werden an den vier nächstgelegenen IPs miteinbezogen, an denen von Wolfcraft freigesetzte Lärmpegel messbar waren.

Der max. Immissionspegel an einem Immissionspunkt beträgt in der Berechnung der Gesamtbelastung 44,1 dB(A) am Immissionspunkt N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 0,9 dB(A) Abstand zum Richtwert eingehalten.

Am Immissionspunkt Y ("Whs. Geisenberg 19, Rieden") und am Immissionspunkt T ("Whs. Tannenweg 6, Weibern") wird durch die Gesamtbelastung aus den geplanten und vorhandenen/beantragten WEA der zulässige Richtwert von 40 dB(A) um 0,6 bzw. 0,5 dB(A) überschritten (an dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar).

Dies ist lt. TA-Lärm von 1998, Abs. 3.2.1 zulässig, da die Überschreitung nicht mehr als 1 dB(A) beträgt und die Vorbelastung die Zusatzbelastung an diesen IPs bei weitem überschreitet (vgl. S. 14 und 15).

Die geplante WEA 14 kann tagsüber und auch nachts mit dem vollen Emissionspegel betrieben werden. Bei Ansatz des Emissionspegels von 103,6 dB(A) mit Ansatz von 2,1 dB(A) für Unsicherheiten (s. Kap. 4) für die neue WEA werden die Richtwerte nachts lt. Prognose bei Betrachtung der Zusatzbelastung an allen relevanten Immissionspunkten um mindestens 5,3 dB(A) unterschritten.

Die Immissionspunkte A bis I, O bis S, U und V liegen zudem nicht mehr im Einflussbereich der geplanten WEA 14, da hier mehr als 10 dB(A) Abstand zum Richtwert eingehalten werden.

Zustand 2

Im Zustand 2 besteht die Vorbelastung aus den 11 diversen vorhandenen und beantragten WEA sowie der im Zustand 1 geplanten WEA 14, die nun ebenfalls als beantragte WEA behandelt wird. Die Zusatzbelastung stellt die geplante WEA 17 auf dem Gebiet des Landkreises Ahrweiler dar. Die Gesamtbelastung besteht abschließend aus den insgesamt 13 vorhandenen und beantragten WEA und der geplanten WEA 17. Auch in diesem Zustand werden in der Berechnung der Vor- und Gesamtbelastung nächtliche, gemessene Emissionen des Gewerbebetriebes Wolfcraft an den vier nächstgelegenen IPs berücksichtigt.

Der max. Immissionspegel an einem Immissionspunkt beträgt in der Berechnung der Gesamtbelastung 44,2 dB(A) am Immissionspunkt N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 0,8 dB(A) Abstand zum Richtwert eingehalten.

Am Immissionspunkt Y ("Whs. Geisenberg 19, Rieden") und am Immissionspunkt T ("Whs. Tannenweg 6, Weibern") wird durch die Gesamtbelastung aus den geplanten und vorhandenen/beantragten WEA der zulässige Richtwert überschritten (an dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar).

Dies ist lt. TA-Lärm von 1998, Abs. 3.2.1 zulässig, da die Überschreitung nicht mehr als 1 dB(A) beträgt und die Vorbelastung die Zusatzbelastung an diesem IP bei weitem überschreitet (vgl. S. 20 und 21). Zudem ist die Überschreitung für die Planung von WEA 17 ohne Belang, da durch das Unterschreiten der Richtwerte in der Berechnung der Zusatzbelastung um mehr als 10 dB(A) sämtliche IPs außerhalb des Einflussbereiches der geplanten WEA liegen.

Die geplante WEA 17 kann tagsüber und auch nachts mit dem vollen Emissionspegel betrieben werden. Bei Ansatz des Emissionspegels von 103,6 dB(A) mit Ansatz von 2,1 dB(A) für Unsicherheiten (s. Kap. 4) für die neue WEA werden der Richtwert nachts lt. Prognose bei Betrachtung der Zusatzbelastung an allen Immissionspunkten mehr als 10 dB(A) Abstand zum Richtwert eingehalten.

Alle Immissionspunkte liegen nicht mehr im Einflussbereich der geplanten WEA 17, da in der Berechnung der Zusatzbelastung mehr als 11,0 dB(A) Abstand zum Richtwert eingehalten werden.

Aus schalltechnischer Sicht bestehen keine Bedenken bei Errichtung der Anlagen 14 und 17.

Oldenburg, den 24. Februar 2010

Dipl.-Ing. Roman Wagner vom Berg

9 Quellenverzeichnis

/1/ VDI 2714: Schallausbreitung im Freien

Fassung vom Januar 1988

/2/ VDI 2058/1: Beurteilung von Arbeitslärm in der Nachbarschaft.-

Fassung vom Februar 1999

/3/ TA Lärm: Technische Anleitung zum Schutz gegen Lärm (TA Lärm),

Fassung vom August 1998

/4/ BImSchG: Bundesimmissionsschutzgesetz

Fassung vom September 2002, letzte Änderung Juni 2005

/5/ 4. BImSchV: Vierte Verordnung zur Durchführung des

Bundesimmissionsschutzgesetzes

Fassung vom Juni 2005

/6/ DIN 18005: Schallschutz im Städtebau

Teil 1: Berechnungsverfahren

Fassung vom Juli 2002

/7/ DIN ISO 9613/2: DIN ISO 9613-2, "Dämpfung des Schalls bei der Ausbreitung im Freien

Teil 2: Allgemeines Berechnungsverfahren"

Deutsche Fassung ISO 9613-2 vom Oktober 1999

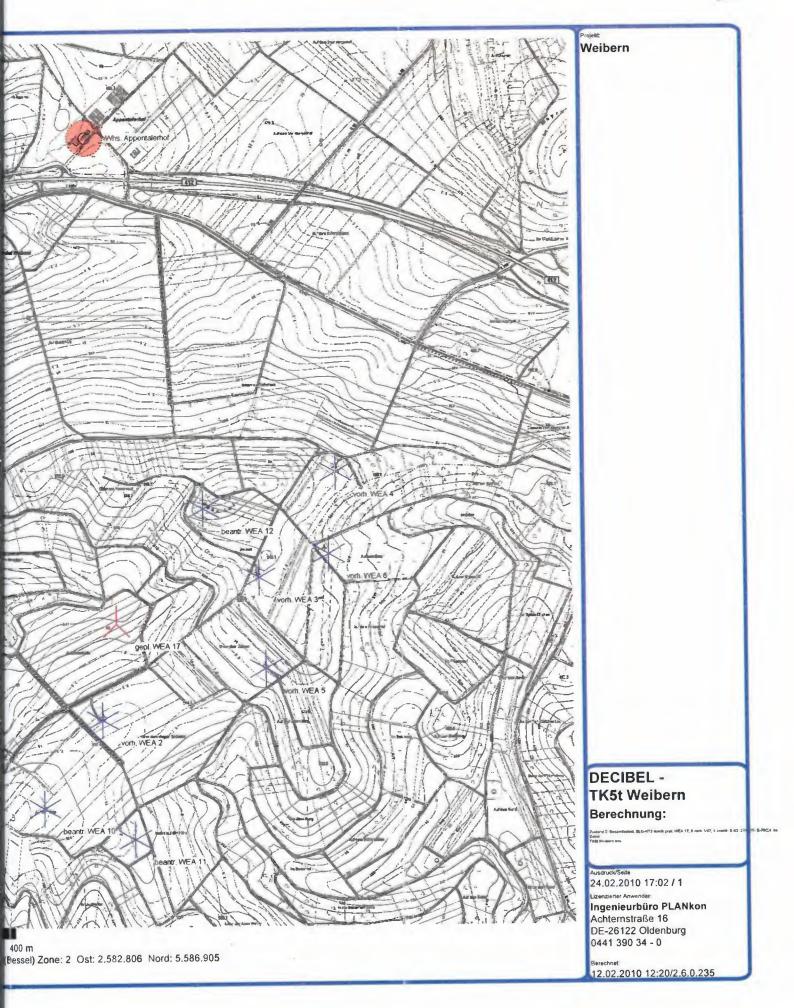
10 Anlagen zum 2. Nachtrag zum Geräuschimmissionsgutachten

2 WEA in Weibern

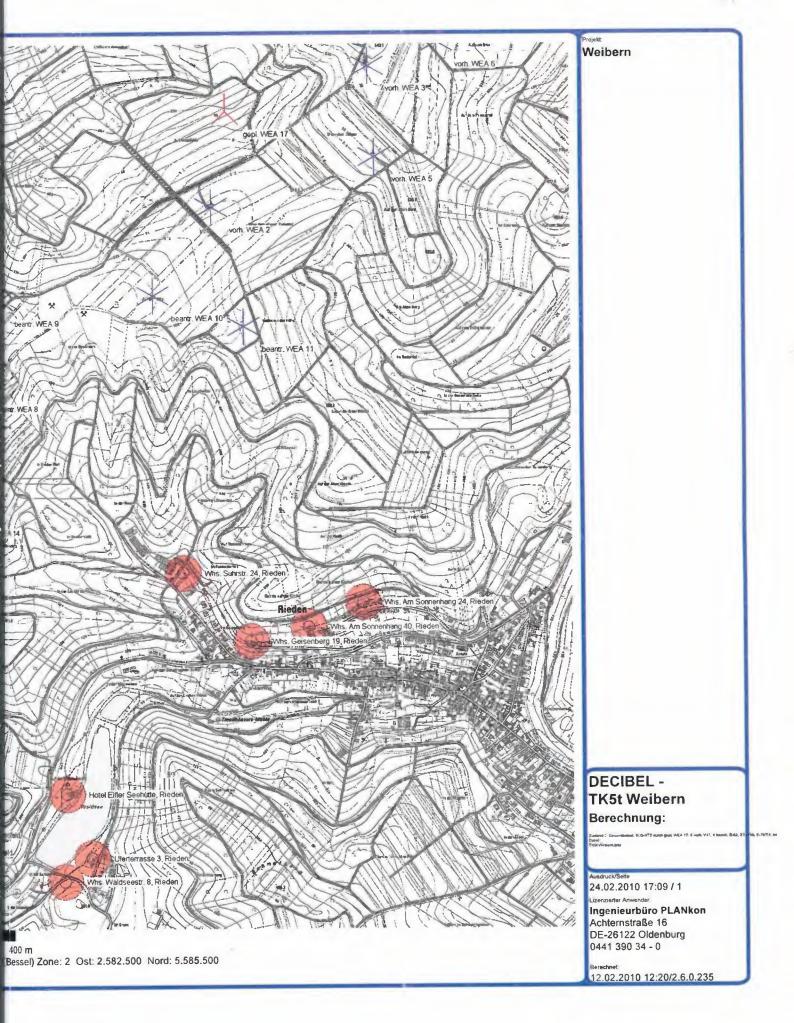
4 Blatt Lageplan Nord und Süd

Zustand 1

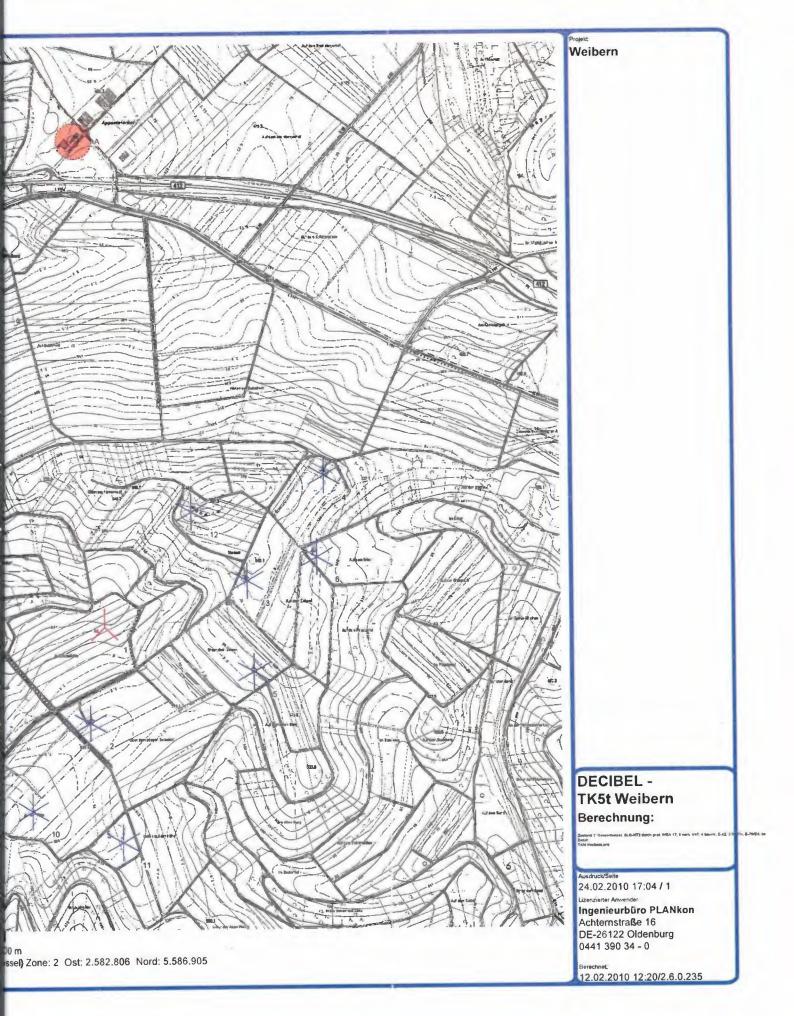
- 10 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl. 5 Blatt Isophondarstellungen 11 WEA (Vorbelastung)
- 6 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl. 2 Blatt Isophondarstellungen gepl. WEA 14 (Zusatzbelastung)
- 11 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl. 5 Blatt Isophondarstellungen 12 WEA (Gesamtbelastung)
- 4 Blatt tabellarische Pegeladditionen der Vor- und Gesamtbelastung aus WEA und Gewerbe Wolfcraft für die IPs P, Q, R und S

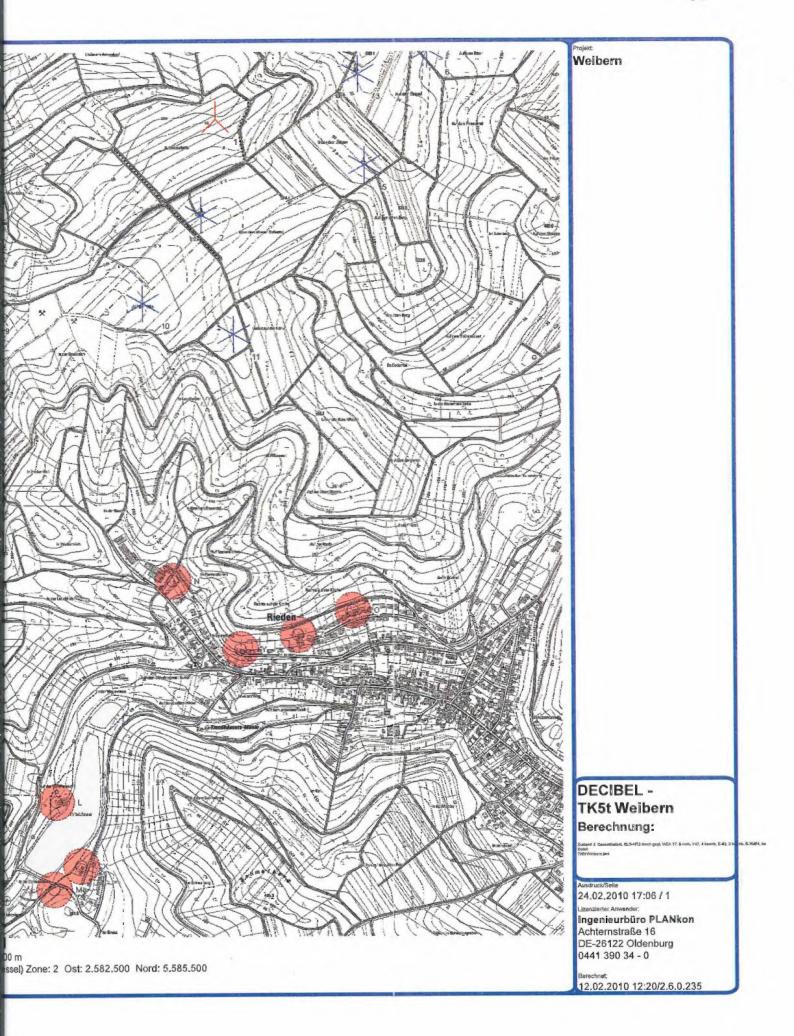

Zustand 2

- 11 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl. 5 Blatt Isophondarstellungen 12 WEA (Vorbelastung)
- 6 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl. 1 Blatt Isophondarstellung gepl. WEA 17 (Zusatzbelastung)
- 11 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl. 5 Blatt Isophondarstellungen 13 WEA (Gesamtbelastung)
- 4 Blatt tabellarische Pegeladditionen der Gesamtbelastung aus WEA und Gewerbe Wolfcraft für die IPs P, Q, R und S (tabellarische Addition der Vorbelastung kann der Addition der Gesamtbelastung des Zustandes 1 entnommen werden)
- 6 Blatt Auszüge aus den Prüfberichten von Windconsult Nr. WICO 246SEB06/04 vom 29.04.2009 und von Windtest (WT 4226/05 vom 13.05.2005, WT 5966/07 vom 13.09.2007) für die geplanten Windenergieanlagen Nordex N90 im Volllastbetrieb von 2.500 kW inkl. tabellarischer Unsicherheitenermittlung
- 4 Blatt Auszüge aus den Prüfberichten von Windconsult (WICO 141SE707/02, WICO 314SEA05/01) vom 24.01.2008 und 21.11.2005 sowie Auszug aus dem Prüfbericht von Busch Nr. 135208gs01 vom 22.06.2009 für die beantragten Windenergieanlagen Enercon E-70/E4 im Volllastbetrieb von 2.300 kW inkl. tabellarischer Unsicherheitenermittlung


 9 Blatt Auszug aus Messbericht vom schalltechnischen Ingenieurbüro P. Pies vom 17.12.2009

Alle anderen Anlagen, wie Übersichtskarte oder Emissionspegel der vorhandenen und beantragten WEA, sind dem 1. Nachtrag zum Hauptgutachten PK 2008003-SLG-NT1 vom 11.06.2009 zu entnehmen.





Weibern

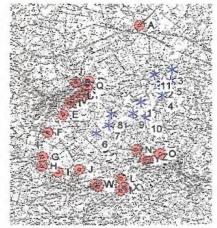
Ausdruck/Seite
12.02.2010 11:27 / 1
Lizonzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

erechnet

12.02.2010 11:27/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4


Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000

★ Existierende WEA

WEA

	GX (Bessel) Zone: 2				WEA-T	ур					Schaff	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Generatortyp	Nenn-	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
								leistung							töne
	GK (Bessel) Zone: 2		[m]					[kVV]	[m]	[m]			[m/s]	[dB(A)]	
1				vorh. WEA 2	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10.0	105.3	0 dB
2				vorh. WEA 3	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10.0	105.3	0 dB
3				3 vorh. WEA 4	Ja	VESTAS	V47-660/200	660	47.0	65,D	USER	WT 802/98	10.0	105,3	0 dB
4	2.583,661	5.586,325	524,4	vorh. WEA 5	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10.0	105.3	O dB
5				vorh, WEA 6	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10,0	105,3	0 dB
6	2.582.301	5.585.538	515,	beantr. WEA 7	Ja	ENERCON	E-82-2.000	2,000	82.0	108,4	USER	red. 1000kW + Sicherheit 2,6 S-A	10.0	101.3	0 dB
7	2.582.561	5.585.703	526,	beantr. WEA 8	Ja	ENERCON	E-82-2.000	2.000	82,0	108.4	USER	Vollast 103.8 + Sicherhelt 2.09 S-A	10.0	105.9	0 dB
8	2.582.621	5.585,936	533,	beantr, WEA 9	Ja	ENERCON	E-82-2.000	2,000	82,0	108,4	USER	red. 1000kW+ Sicherheit 2,6 S-A	10.0	101,3	0 dB
9	2.583,056	5.585.948	525,1	beantr. WEA 10	Ja	ENERCON	E-70 E4 2,3 MW-2,300	2,300	71,0	113,5	USER	Volllast 104,2 + Sicherheit 2.0 S-A	10.0	106.2	0 년원
19				beantr. WEA 11		ENERCON	E-82-2.000	2.000	82,0	108,4	USER	Volltast 103,8 + Sicherheit 2,09 S-A	10.0	105,9	0 dB
11	2.583,495	5.586,763	550,	beantr. WEA 12	Ja	ENERCON	E-70 E4 2,3 MW-2,300	2,300	71,0	113,5	USER	Volllast 104.2 + Sicherheit 2.0 S-A	10.0		

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr. Name	Ost	Nord	Z [m]	Aufpunkthöhe [m]	Schall [dB(A)]	Von WEA [dB(A)]	Schall
A Whs. Appentalerhof	2.583.186	5,587,779	468,6	5,0	45,0	38,0	Ja
B Whs. Winkelweg 10, Weibern	2.581.879	5.586.583	427,5	5,0	40,0	38,0	Ja
C Whs. Waldstr. 2, Weibern	2.582.057	5.586.291	437,2	5,0	45,0	40,1	Ja
D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431.0	5,0	45.0	38.4	Ja
E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0	45.0	36,6	Ja
F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585,546	415.7	5.0	45,0	35.0	Ja
G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5.0	45,0	32,3	Ja
H Whs. Heideweg 6a, Wabern	2.581,182	5,584,848	422,6	5.0	40,0	31,5	Ja
I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0		Ja
J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448.7	5,0			Ja
K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584,430	427,8	5.0			Ja
L Hotel Eifler Seehütte, Rieden	2.582.814	5.584,586	377,5	5,0	40,0	37,0	Ja
M Whs. Waldseestr. 8, Rieden	2.582.807	5,584,347	368,2	5,0	40,0	35,2	Ja
N Whs. Suhrstr. 24, Rieden	2.583.134	5.585,188	400,0	7,5	45.0	42.9	Ja
O Whs. Am Sonnenhang 24, Rieden	2.583.624	5,585.107	414,6	7,5	40,0	38.7	Ja
P Whs. Bahnhofstr. 111, Weibern	2,582,149	5.586.612	427,3	5.0	45,0	39.6	Ja
Q Whs. Löhstr. 5, Weibern	2.582,117	5.586,518	420,0	5,0	45.0	39,6	Ja
R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3	5,0	45.0	39.2	Ja
S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420.0	5,0	40,0		Ja
T Whs. Tannenweg 6, Weibern	2,582,071	5,586,322	429,1	5,0	40,0	40.0	Nein
U Whs. Konnstr. 25, Weibern	2.581.935	5.586,303	420,0	5.0	40.0	39.1	Ja
V Whs. Buchenweg 1, Weibern	2.581.812	5.586.207	415,6	5.0	40.0	38,5	Ja
W Baugrundstück Am Hang, Volkesfeld	2.582.296	5.584,477	437.8	5,0	40,0	34.5	Ja
X Uferterrasse 3, Rieden	2.582.882	5,584,411	370.0	5,0	40,0	35.8	Ja
Y Whs. Geisenberg 19, Rieden		5.585.001		7.5	40.0	39.4	Ja
Z Whs. Am Sonnenhang 40, Rieden		5,585,041		7.5	40.0	38.6	Ja

Projekt Weibern

Ausdruck/Selta
12.02.2010 11:27 / 2
Lüzenzlerter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg

Berechnet

0441 390 34 - 0

12.02,2010 11:27/2,6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4

Abstände (m)

	WEA										
Schall-Immissionsort	1	2	3	4	5	6	7	8	9	10	11
A	1590	1289	1136	1529	1312	2408	2167	1927	1835	1920	1061
В	1395	1766	1996	1801	1957	1127	1113	984	1338	1595	1626
C	1165	1613	1886	1605	1812	792	775	667	1057	1317	1514
D	1456	1930	2210	1907	2130	818	918	887	1311	1568	1838
E	1621	2130	2427	2083	2331	781	967	1003	1438	1684	2059
F	2017	2556	2869	2481	2756	996	1265	1372	1796	2021	2505
G	2325	2891	3224	2781	3086	1212	1518	1685	2070	2261	2875
H	2437	3007	3346	2886	3201	1315	1623	1804	2173	2350	3003
1	2239	2815	3163	2672	3002	1126	1427	1635	1962	2112	2836
J	1893	2466	2819	2304	2645	835	1106	1336	1607	1729	2512
K	1962	2507	2861	2307	2664	1109	1291	1531	1676	1722	2601
L	1653	2155	2502	1935	2293	1082	1146	1365	1384	1367	2282
M	1887	2380	2724	2155	2512	1295	1379	1601	1621	1594	2513
N	1004	1477	1821	1253	1611	904	771	907	764	694	1616
0	1155	1467	1769	1219	1546	1391	1218	1301	1015	821	1661
P	1149	1497	1724	1539	1687	1084	998	824	1124	1376	1355
Q	1149	1529	1772	1556	1723	997	928	770	1099	1355	1400
R	1145	1543	1794	1562	1738	946	886	738	1081	1339	1421
S	1195	1605	1860	1618	1801	923	887	755	1117	1376	1488
T	1154	1595	1864	1591	1793	817	789	672	1054	1315	1492
U	1287	1731	1999	1726	1930	847	867	778	1176	1436	1627
V	1405	1869	2145	1853	2068	828	902	853	1270	1529	1772
W	1943	2493	2848	2297	2653	1061	1254	1495	1655	1711	2581
X	1809	2294	2636	2067	2423	1268	1332	1548	1547	1511	2431
Y	1192	1607	1935	1368	1717	1150	1033	1166	982	861	1771
Z	1176	1543	1859	1298	1638	1274	1128	1237	999	839	1723

Weibern

12.02.2010 11:27 / 3 Ingenieurbüro PLANkon Achtemstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast, SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption

Agr:

Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	A				95% der Ne	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.590	1.595	29,8	Nein	25,43	105,3	3,01	75,05	3,03	4.80	0.00	0.00	82.88	0.00
2	1.289	1.296	33,1	Ja	28,67	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79,64	0,00
3	1.136	1.144	44,4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0.00	0.00	77.81	0,00
4	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0,00	0,00	82,43	0.00
5	1.312	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0.00	0.00	79.87	0.00
6	2.408	2.414	56,2	Ja	17,07	101,3	3,01	78,65	4,59	4.00	0.00	0.00	87.24	0.00
7	2.167	2.174	64,8	Ja	23,26	105,9	3,01	77,74	4,13	3,78	0,00	0,00	85,65	0.00
8	1.927	1.935	74,5	Ja	20,42	101,3	3,01	76,73	3,68	3.48	0.00	0.00	83.89	0,00
9	1.835	1.843	60,2	Ja	25,72	106,2	3,01	76,31	3,50	3,68	0,00	0.00	83,49	0,00
10	1.920	1.927	46,3	Nein	23,75	105,9	3,01	76,70			0.00			0.00
11	1.061	1.079	72,8	Ja	33,02	106.2	3,01	71,66		2.47	0.00		76.19	0.00

37,98

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.395	1.403	49,1	Ja	28,11	105,3	3,01	73,94	2,67	3,60	0,00	0.00	80.20	0.00
2	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0.00	0.00	84.15	0,00
3	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0,00	0,00	85,64	0.00
4	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4.00	0.00	0.00	83.58	0.00
5	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4,80	0,00	0,00	85,39	0.00
6	1.127	1.143	60,7	Ja	27,01	101,3	3,01	72,16	2,17	2,97	0.00	0,00	77,30	0.00
7	1.113	1.131	54,2	Ja	31,54	105.9	3.01	72,07	2.15	3.14	0.00	0.00	77.37	0.00
8	984	1.006	64,1	Ja	28,74	101,3		71,06		2.60	0.00	-1	75.56	0.00
9	1.338	1.353	69,9	Ja	29,99	106.2	3,01	73,63	2.57	3.02	0.00		79.22	0.00
10	1.595	1.607	56,8	Ja	27,15	105,9	3,01	75,12		3,58			81.76	0,00
11	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31		3,50			81,94	0,00

Summe 38,00

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

и	WE					95% der Ne		ng								
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	1	1.165	1.174	31,5	Nein	28,88	105,3	3,01	72,39	2.23		0.00	0.00	79.42	0.00	
ı	2	1.613	1.622	47,2	Nein	25,23	105,3	3,01	75,20	3.08	4.80	0.00	0.00	83.08	0.00	
ı	3	1.886	1.894	31,4	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0.00	0.00	84.94	0.00	
ı	4	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00	
ı																

Fortsetzung auf nächster Seite.

_{Projekt} Weibern

Ausdruce/WSelta
12.02.2010 11:27 / 4
Lizensizerte Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung

		von der vor	igen Seite											
WE.	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
5	1.812	1.819	37,2	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00
6	792	814	42,1	Ja	30,54	101,3	3,00	69,22	1,55	3,00	0,00	0,00	73,77	0,00
7	775	801	34,1	Ja	34,99	105,9	3,00	69,07	1,52	3,32	0,00	0,00	73,91	0,00
8	667	699	40,8	Ja	32,32	101,3	3,00	67,88	1,33	2,76	0,00	0,00	71,98	0,00
9	1.057	1.076	44,1	Nein	30,72	106,2	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
10	1.317	1.331	31,5	Nein	28,10	105,9	3,01	73,48	2,53	4,80	0,00	0,00	80,81	0,00
11	1.514	1.531	75,4	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00

Summe 40.09

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

WE.	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dç	Adiv	Aatm	Agr	Abar	Amisc	A	Cret
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81,89	0,00
2		1.938	47,1	Ja	23,92	105,3	3,01	76,75	3,68	3,97	0,00	0,00	84,39	0,00
3	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00	0,00	86,33	0,00
4	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0,00	0,00	85,08	0,00
5	2.130	2.136	38,5	Ja	22,47	105,3	3,01	77,59	4,06	4,18	0,00	0,00	85,84	0,00
6	818	842	45,7	Ja	30,28	101,3	3,00	69,50	1,60	2,92	0,00	0,00	74,02	0,00
7	918	941	42,8	Ja	33,42	105,9	3,00	70,47	1,79	3,22	0,00	0,00	75,48	0,00
8	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
9	1.311	1.328	36,9	Nein	28,42	106,2	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
10	1.568	1.580	23,4	Nein	26,13	105,9	3,01	74,97	3,00	4,80	0,00	0,00	82,78	0,00
11	1.838	1.853	81,8	Ja	26,04	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00

Summe 38,36

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

ı	AAE	4				95% der No	ennleistui	ng								
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	1	1.621	1,627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0,00	
ı	2	2.130	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86,45	0,00	
ı	3	2.427	2,432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00	
ı	4	2.083	2.088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0,00	86,16	0,00	
ı	5	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00	0,00	87,61	0,00	
ı	6	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0.00	0.00	75,40	0.00	
ı	7	967	985	43,6	Nein	31,36	105,9	3,01	70,87	1,87	4,80	0,00	0,00	77,54	0,00	
ı	8	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0,00	77,93	0.00	
ı	9	1.438	1.451	32,7	Nein	27,42	106,2	3,01	74,23	2,76	4,80	0.00	0.00	81.79	0.00	
١	10	1.684	1.694	23,7	Nein	25,31	105,9	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0.00	
	11	2.059	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00	

Summe 36,58

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0,00	85,77	0,00
2	2.556	2.562	22,1	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88,84	0,00
3	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0,00	90,43	0,00
4	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0,00
5	2.756	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00
6	996	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,79	0,00
7	1.265	1.284	57,0	Ja	30,02	105,9	3,01	73,17	2,44	3,27	0,00	0,00	78,89	0,00
8	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,87	2,64	3,48	0,00	0,00	79,99	0,00
9	1.796	1.810	40,3	Ja	25,58	106,2	3,01	76,15	3,44	4,03	0,00	0,00	83,63	0,00
10	2.021	2.032	33,7	Ja	23,66	105,9	3,01	77,16	3,86	4,23	0,00	0,00	85,25	0,00

Fortsetzung auf nächster Seite..

Weibern

Ausdruck/Selte
12.02.2010 11:27 / 5
Lizeozierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet;

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung

...Fortsetzung von der vorigen Seite

WEA

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Cmet
[m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB]

11 2.505 2.518 62,8 Nein 20,61 106,2 3,01 79,02 4,78 4,80 0,00 0,00 88,60 0,00

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

WE.	A.				95% der Ne	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0,00	87,58	0,00
2	2.891	2.896	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90,54	0,00
3	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00	0,00	92,12	0,00
4	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0,00	0,00	89,99	0,00
5	3.086	3.091	7,6	Nein	16,83	105,3	3,01	80,80	5,87	4,80	0,00	0,00	91,48	0,00
6	1.212	1.230	43,8	Ja	25,60	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
7	1.518	1.533	42,0	Nein	26,48	105,9	3,01	74,71	2,91	4,80	0,00	0,00	82,43	0,00
8	1.685	1,699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0.00
9	2.070	2.082	33,3	Nein	23,09	106,2	3,01	77,37	3,96	4,80	0,00	0,00	86,12	0,00
10	2.261	2.270	32,2	Nein	21,68	105,9	3,01	78,12	4,31	4,80	0,00	0,00	87,23	0,00
11	2.875	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00

Summe 32.27

35.04

Summe

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

AAF	~				32 % del M	ennleistni	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.437	2.442	0,6	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0,00	88,19	0,00
2	3.007	3.013	10,3	Nein	17,21	105,3	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00
3	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4,80	0,00	0,00	92,67	0,00
4	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0,00	0,00	90,51	0,00
5	3.201	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00	0,00	92,01	0,00
6	1.315	1.331	43,1	Ja	24,61	101,3	3,01	73,48	2,53	3,68	0,00	0,00	79,69	0,00
7	1.623	1.637	40,6	Nein	25,72	105,9	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
8	1.804	1.818	43,8	Nein	19,86	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,45	0,00
9	2.173	2.184	33,7	Nein	22,48	106,2	3,01	77,78	4,15	4,80	0,00	0,00	86,73	0,00
10	2.350	2.359	35,2	Nein	21,18	105,9	3,01	78,45	4,48	4,80	0,00	0,00	87,73	0,00
11	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00

Summe 31,54

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	1				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.239	2.243	11,4	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87,08	0,00
2	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90,16	0,00
3	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91,82	0,00
4	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0,00	89,43	0,00
5	3.002	3.005	17,2	Nein	17,24	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,07	0,00
6	1,126	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,66	0,00
7	1.427	1.438	46,0	Ja	28,32	105,9	3,01	74,15	2,73	3,70	0,00	0,00	80,58	0,00
8	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,33	3,13	3,84	0,00	0,00	82,29	0,00
9	1.962	1.970	48,2	Nein	23,78	106,2	3,01	76,89	3,74	4,80	0,00	0,00	85,43	0,00
10	2.112	2.119	53,2	Nein	22,56	105,9	3,01	77,52	4,03	4,80	0,00	0,00	86,35	0,00
11	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00

Summe 33,37

Projekt Weibern Ausdruck/Seite
12.02.2010 11:27 / 6
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnungs

Sci	hall-Imn	nissions	ort: J Baugi	rundstü	ck Sonne	enwinke	I, Vo	lkesfe	eld					
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.893	1.897	17,1	Nein	23,34	105,3	3,01	76,56	3,60	4,80	0,00	0,00	84,96	0,00
2		2.471	25,6	Nein	19,96	105,3	3,01	78,86	4,69	4,80	0,00	0,00	88,35	0,00
3	2.819	2.823	20,5	Nein	18,13	105,3	3,01	80,01	5,36	4,80	0,00	0,00	90,18	0,00
4	2.304	2.308	31,5	Nein	20,86	105,3	3,01	78,26	4,38	4,80	0,00	0,00	87,45	0,00
5	2.645	2.649	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00	0,00	89,29	0,00
6	835	852	39,7	Ja	29,89	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0,00
7	1.106	1.121	41,8		29,99	105,9	3,01	71,99	2,13	4,80	0,00	0,00	78,92	0,00
8	1,336	1.349	38,2	Nein	23,34	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80,96	0,00
9	1.607	1.617	53,5	Nein	26,16	106,2	3,01	75,18	3,07	4,80	0,00	0,00	83,05	0,00
10	1.729	1.738	63,3	Nein	25,01	105,9	3,01	75,80	3,30	4,80	0,00	0,00	83,90	0,00
11	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0,00	88,62	0,00

Summe 35,58

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

WE	4				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.962	1,968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0,00
2	2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4,19	0,00	0,00	87,97	0,00
3	2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0,00	0,00	89,94	0,00
4	2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0,00	0,00	86,72	0,00
5	2.664	2.669	43,1	Ja	19,47	105,3	3,01	79,53	5,07	4,25	0,00	0,00	88,84	0,00
6	1.109	1.125	43,9	Nein	25,34	101,3	3,01	72,03	2,14	4,80	0,00	0,00	78,96	0,00
7	1.291	1.307	59,2	Ja	29,86	105,9	3,01	73,33	2,48	3,24	0,00	0,00	79,05	0,00
8	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,52	0,00
9	1.676	1.688	81,0	Ja	27,30	106,2	3,01	75,55	3,21	3,15	0,00	0,00	81,91	0,00
10	1.722	1.733	82,1	Ja	26,67	105,9	3,01	75,77	3,29	3,17	0,00	0,00	82,24	0,00
11	2,601	2.611	72,7	Ja	21,06	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,15	0,00

Summe 35,04

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.653	1.665	31,6	Ja	25,57	105,3	3,01	75,43	3,16	4,15	0,00	0,00	82,74	0,00
2	2.155	2.167	32,7	Nein	21,68	105,3	3,01	77,72	4,12	4,80	0,00	0,00	86,63	0,00
3	2,502	2.512	21,9	Nein	19,74	105,3	3,01	79,00	4,77	4,80	0,00	0,00	88,57	0,00
4	1.935	1.947	36,7	Ja	23,67	105,3	3,01	76,79	3,70	4,15	0,00	0,00	84,64	0,00
5	2,293	2.303	26,8	Nein	20,89	105,3	3,01	78,25	4,38	4,80	0,00	0,00	87,42	0,00
6	1.082	1.111	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,35	0,00	0,00	77,37	0,00
7	1.146	1.175	60,6	Ja	31,25	105,9	3,01	72,40	2,23	3,02	0,00	0,00	77,66	0,00
8	1.365	1.391	55,5	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0,00
9	1.384	1.409	75,4	Ja	29,60	106,2	3,01	73,98	2,68	2,96	0,00	0,00	79,61	0,00
10	1.367	1.389	78,3	Ja	29,56	105,9	3,01	73,85	2,64	2,86	0,00	0,00	79,35	0,00
11	2.282	2.300	56,8	Ja	22,65	106,2	3,01	78,23	4,37	3,95	0,00	0,00	86,56	0,00

Summe 37,04

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

WE	A				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0,00
2	2.380	2.391	37,2	Ja	20,93	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,38	0,00
3	2.724	2,734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89,73	0,00
4	2.155	2.167	40,9	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
5	2.512	2.522	31,2	Nein	19,68	105,3	3,01	79,04	4,79	4,80	0,00	0,00	88,63	0,00
6	1.295	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00

Fortsetzung auf nächster Seite..

^{Projekt} **We**ibern

Ausdruck/Seite
12.02.2010 11:27 / 7
Uzenzierter Amwender:
Ingenieurbüro PLANkon
Action
DE-26122 Oldenburg
0441 390 34 - 0

Barechnet:

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung

Fo	rtsetzung	von der vor	igen Seite											
WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
7	1.379	1.405	66,2	Ja	29,11	105,9	3,01	73,95	2,67	3,18	0,00	0,00	79,80	0,00
8	1.601	1.624	61,6	Ja	22,51	101,3	3,01	75,21	3,09	3,50	0,00	0,00	81,79	0,00
9	1.621	1.643	82,0	Ja	27,69	106,2	3,01	75,31	3,12	3,08	0,00	0,00	81,52	0,00
10	1.594	1.615	83,8	Ja	27,66	105,9	3,01	75,16	3,07	3,02	0,00	0,00	81,25	0,00
11	2.513	2.530	64,7	Ja	21,41	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,80	0,00

Summe 35,23

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WE	4				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.004	1.018	23,6	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00
2	1.477	1.490	15,0	Nein	26,22	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0,00
3	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0,00	84,54	0,00
4	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0,00
5	1.611	1.622	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
6	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0,00	74,91	0,00
7	771	804	71,5	Ja	36,56	105,9	3,00	69,10	1,53	1,71	0,00	0,00	72,34	0,00
8	907	937	62,2	Ja	29,59	101,3	3,00	70,44	1,78	2,50	0,00	0,00	74,72	0,00
9	764	798	54,4	Ja	36,21	106,2	3,00	69,04	1,52	2,43	0,00	0,00	72,99	0,00
10	694	727	60,2	Ja	37,37	105,9	3,00	68,23	1,38	1,92	0,00	0,00	71,53	0,00
11	1.616	1.636	46,6	Nein	26,02	106,2	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00

Summe 42,85

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

AAF	A .				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
2	1.467	1.478	20,3	Nein	26,31	105,3	3,01	74,39	2,81	4,80	0,00	0,00	82,00	0,00
3	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0,00
4	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0,00
5	1.546	1.556	10,1	Nein	25,72	105,3	3,01	74,84	2,96	4,80	0,00	0,00	82,59	0,00
6	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
7	1.218	1.237	74,8	Nein	28,91	105,9	3,01	72,85	2,35	4,80	0,00	0,00	80,00	0,00
8	1.301	1.320	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,72	0,00
9	1.015	1.037	49,5	Nein	31,11	106,2	3,00	71,32	1,97	4,80	0,00	0,00	78,09	0,00
10	821	845	39,1	Nein	32,96	105,9	3,00	69,54	1,61	4,80	0,00	0,00	75,94	0,00
11	1.661	1.679	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00

Summe 30,00

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00
2	1.497	1.506	30,9	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
3	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00
4	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00
5	1.687	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
6	1.084	1.101	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,21	0,00
7	998	1.018	45,9	Ja	32,58	105,9	3,01	71,16	1,93	3,24	0,00	0,00	76,33	0,00
8	824	850	66,3	Ja	31,00	101,3	3,00	69,59	1,62	2,10	0,00	0,00	73,30	0,00
9	1.124	1.143	71,6	Ja	32,24	106,2	3,01	72,16	2,17	2,64	0,00	0,00	76,97	0,00
10	1.376	1.389	53,5	Ja	28,94	105,9	3,01	73,85	2,64	3,47	0,00	0,00	79,96	0,00
11	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00

Summe 39,58

Weibern

Ausdruck/Seite
12.02.2010 11:27 / 8
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 ~ 0

Berechnet

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung

Scl	hall-Imn	nissions	ort: Q Whs.	Löhstr.	5, Weibe	ern								
WE	4				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.149	1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00
2	1,529	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00
3	1.772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00
4	1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0,00
5	1.723	1.731	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,86	0,00
6	997	1.017	41,3	Nein	26,43	101,3	3,01	71,14	1,93	4,80	0,00	0,00	77,87	0,00
7	928	952	34,3	Ja	32,97	105,9	3,00	70,57	1,81	3,55	0,00	0,00	75,93	0,00
8	770	800	52,0	Ja	31,18	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,12	0,00
9	1.099	1.119	63,2	Ja	32,25	106,2	3,01	71,98	2,13	2,85	0,00	0,00	76,96	0,00
10	1.355	1.369	49,2	Ja	29,01	105,9	3,01	73,73	2,60	3,56	0,00	0,00	79,90	0,00
11	1 400	1.420	56.7	Main	27 66	106.2	2.01	74.05	2 70	4 90	0.00	0.00	94 55	0.00

Summe 39,63

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WE/	1				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.145	1.155	39,1	Nein	29,06	105,3	3,01	72,25	2,19	4,80	0,00	0,00	79,24	0,00
2	1.543	1.553	44.0	Ja	26,71	105,3	3,01	74,82	2,95	3,82	0,00	0,00	81,60	0,00
3	1.794	1.802	20,2	Nein	23,97	105,3	3,01	76,12	3,42	4,80	0,00	0,00	84,34	0,00
4	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92	2,98	4,80	0,00	0,00	82,70	0,00
5	1.738	1.746	32,3	Nein	24,35	105,3	3,01	75,84	3,32	4,80	0,00	0,00	83,96	0,00
6	946	965	42,8	Nein	26,98	101,3	3,01	70,69	1,83	4,80	0,00	0,00	77,33	0,00
7	886	910	34,4	Nein	32,20	105,9	3,00	70,18	1,73	4,80	0,00	0,00	76,71	0,00
8	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72,71	0,00
9	1.081	1.101	59,0	Nein	30,48	106,2	3,01	71,84	2,09	4,80	0,00	0,00	78,73	0,00
10	1.339	1.353	45,9	Nein	27,91	105,9	3,01	73,63	2,57	4,80	0,00	0,00	81,00	0,00
11	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,15	0,00

Summe 39,19

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,71	0,00
2	1.605	1.615	43,0	Nein	25,28	105,3	3,01	75,16	3,07	4,80	0,00	0,00	83,03	0,00
3	1.860	1.869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
4	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	0,00	83,11	0,00
5	1.801	1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00
6	923	945	45,0	Ja	28,85	101,3	3,00	70,50	1,79	3,15	0,00	0,00	75,45	0,00
7	887	912	33,6	Nein	32,18	105,9	3,00	70,20	1,73	4,80	0,00	0,00	76,73	0,00
8	755	785	44,7	Nein	29,11	101,3	3,00	68,90	1,49	4,80	0,00	0,00	75,19	0,00
9	1.117	1.137	51,9	Nein	30,13	106,2	3,01	72,12	2,16	4,80	0,00	0,00	79,08	0,00
10	1.376	1.391	39,3	Nein	27,60	105,9	3,01	73,86	2,64	4,80	0,00	0,00	81,31	0,00
11	1.488	1.507	66,6	Nein	26,99	106,2	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00

Summe 38,57

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0,00
2	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0,00
3	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
4	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00
5	1.793	1.800	37,7	Nein	23,98	105,3	3,01	76,11	3,42	4,80	0,00	0,00	84,33	0,00
6	817	838	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,06	0,00

Fortsetzung auf nächster Seite..

Weibern

AusdruciviSelte
12.02.2010 11:27 / 9
Lizenzilotter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung

Fo	rtsetzung	von der vor	igen Seite											
WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
7	789	814	33,6	Ja	34,77	105,9	3,00	69,22	1,55	3,37	0,00	0,00	74,13	0,00
8	672	703	41,6	Ja	32,28	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
9	1.054	1.074	46,9	Nein	30,75	106,2	3,01	71,62	2,04	4,80	0,00	0,00	78,46	0,00
10	1.315	1.328	34,5	Nein	28,12	105,9	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
11	1.492	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00

Summe 40,02

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
2	1.731	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
3	1.999	2,007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
4	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
5	1.930	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00
6	847	870	43,7	Ja	29,80	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
7	867	892	37,4	Ja	33,86	105,9	3,00	70,00	1,69	3,34	0,00	0,00	75,04	0,00
8	778	807	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
9	1.176	1.195	44,6	Nein	29,59	106,2	3,01	72,55	2,27	4,80	0,00	0,00	79,62	0,00
10	1.436	1.450	31,2	Nein	27,13	105,9	3,01	74,23	2,75	4,80	0,00	0,00	81,78	0,00
11	1.627	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00

Summe 39,10

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

AA E	4				32% det M	ennieistui	1g								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00	
2	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,00	0,00	
3	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00	
4	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00	
5	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00	
6	828	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,90	0,00	0,00	74,14	0,00	
7	902	928	38,6	Ja	33,44	105,9	3,00	70,35	1,76	3,36	0,00	0,00	75,47	0,00	
8	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00	
9	1.270	1.289	37,8	Nein	28,75	106,2	3,01	73,21	2,45	4,80	0,00	0,00	80,45	0,00	
10	1.529	1.543	23,7	Nein	26,41	105,9	3,01	74,76	2,93	4,80	0,00	0,00	82,50	0,00	
11	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00	

Summe 38,50

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00
2	2.493	2.498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00
3	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00
4	2.297	2,302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00
5	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00
6	1.061	1.076	43,1	Nein	25,82	101,3	3,01	71,64	2,05	4,80	0,00	0,00	78,48	0,00
7	1.254	1.269	56,8	Nein	28,63	105,9	3,01	73,07	2,41	4,80	0,00	0,00	80,28	0,00
8	1.495	1.508	52,7	Nein	22,08	101,3	3,01	74,57	2,87	4,80	0,00	0,00	82,23	0,00
9	1.655	1.667	81,7	Nein	25,80	106,2	3,01	75,44	3,17	4,80	0,00	0,00	83,40	0,00
10	1.711	1.721	80,8	Ja	26,74	105,9	3,01	75,71	3,27	3,19	0,00	0,00	82,17	0,00
11	2.581	2.591	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00

Weibern

Ausdruck/Seite
12.02.2010 11:27 / 10
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

[dB]

12.02.2010 11:27/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5x vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Schallberechnung

Aatm

Agr

[dB] [dB] [dB]

Abar Amisc

[dB]

[dB]

Sc	hall-lmn	nissions	ort: X Uferte	errasse	3, Rieder	n		
WE	Α				95% der N	ennleistu	ng	
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adi
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB
1	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,2
2	2.294	2,305	35,6	Ja	21,41	105,3	3,01	78,2
3	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,4

3,46 4,05 0,00 83,71 ,20 0,00 0,00 .25 4,38 4,27 0.00 0,00 86,90 0,00 0,00 5,03 4,80 0,00 0,00 89,28 .45 2,067 2.078 39,6 22,86 Ja 105,3 3,01 77,35 3,95 4,15 0,00 0,00 85,45 0,00 5 2,423 2.433 30,4 Nein 20,16 105,3 3,01 78,72 4,62 4,80 0,00 0,00 88,14 0,00 6 1.268 1.293 59,1 Ja 25,40 101,3 3,01 73,23 2,46 3,22 0,00 0,00 78,91 0,00 1.332 1.357 72,9 Ja 29,73 105,9 3,01 73,65 2,58 2,95 0,00 0,00 79,18 0,00 8 1.548 1.571 67,9 Ja 23,09 101,3 3,01 74,92 2,98 3,31 0,00 0,00 81,22 0,00 1.547 106,2 3,01 74,91 9 1.569 85,1 28,38 2,98 2,93 0,00 0,00 80,83 0,00 Ja 10 1.511 1,531 83,9 2,91 2,92 0,00 0,00 Ja 28,38 105,9 3,01 74,70 0,00 80,52 11 2.431 2.448 66,8 Ja 21,92 106,2 3,01 78,78 4,65 3,87 0,00 0,00 87,29 0,00

Summe 35,83

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

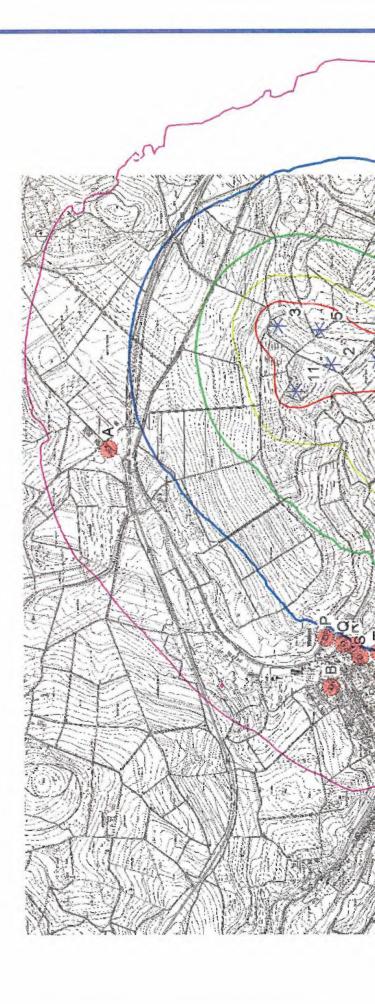
WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0,00
2	1.607	1.618	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
3	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
4	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
5	1.717	1.728	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0,00
6	1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
7	1.033	1.058	82,8	Ja	33,31	105,9	3,00	71,49	2,01	2,09	0,00	0,00	75,59	0,00
8	1.166	1.190	71,1	Ja	26,79	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0,00
9	982	1.010	64,4	Nein	31,40	106,2	3,00	71,08	1,92	4,80	0,00	0,00	77,80	0,00
10	861	888	50,2	Nein	32,44	105,9	3,00	69,97	1,69	4,80	0,00	0,00	76,46	0,00
11	1.771	1.790	42,5	Nein	24,95	106,2	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,00

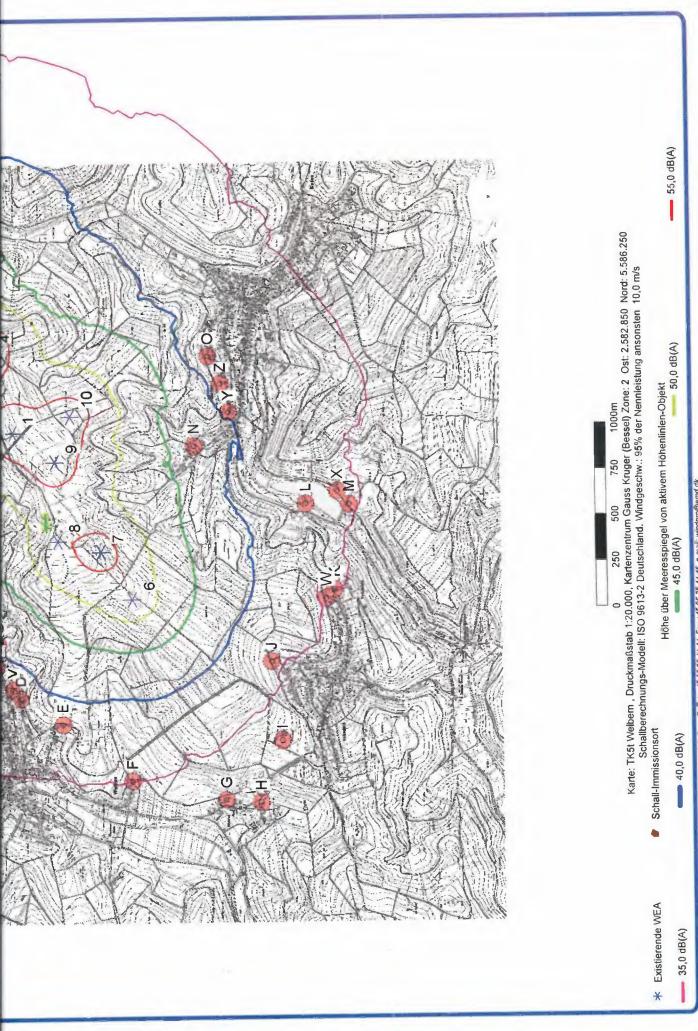
Summe 39,35

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	4				95% der N	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[d8]
1	1.176	1.187	11,3	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
2	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
3	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
4	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
5	1.638	1.648	9,4	Nein	25,04	105,3	3,01	75,34	3,13	4,80	0,00	0,00	83,27	0,00
6	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
7	1.128	1.149	80,6	Nein	29,72	105,9	3,00	72,21	2,18	4,80	0,00	0,00	79,19	0,00
8	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,18	0,00
9	999	1.023	59,2	Nein	31,26	106,2	3,00	71,20	1,94	4,80	0,00	0,00	77,94	0,00
10	839	864	42,9	Nein	32,73	105,9	3,00	69,73	1,64	4,80	0,00	0,00	76,17	0,00
11	1.723	1.740	42,5	Nein	25,29	106.2	3.01	75.81	3.31	4.80	0.00	0.00	83,92	0.00

Summe 38,60


Weibern


Lizenzierier Amwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

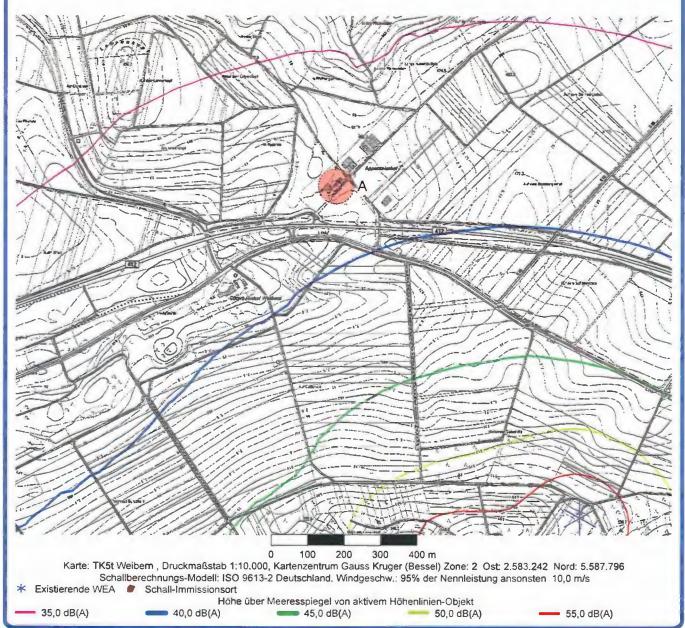
12.02,2010 11:27/2.6.0.235

DECIBEL - TK5t Weibern

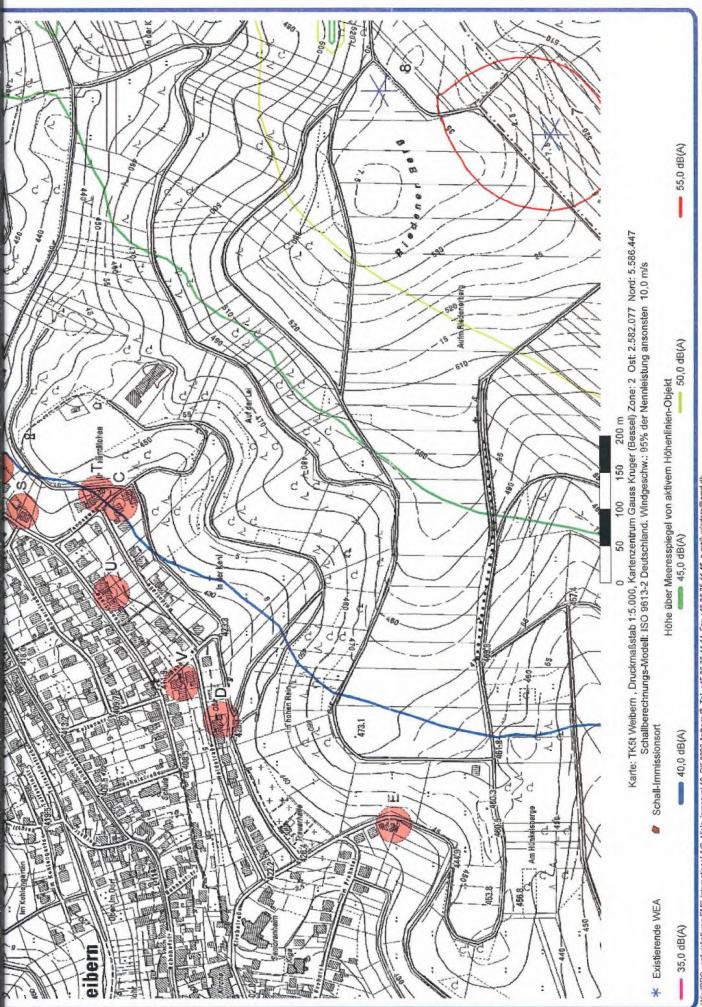
Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Datei: TK5t Weibern.bmi

WindPRO entwicketr von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mali: windpro@emd.dk

Weibern

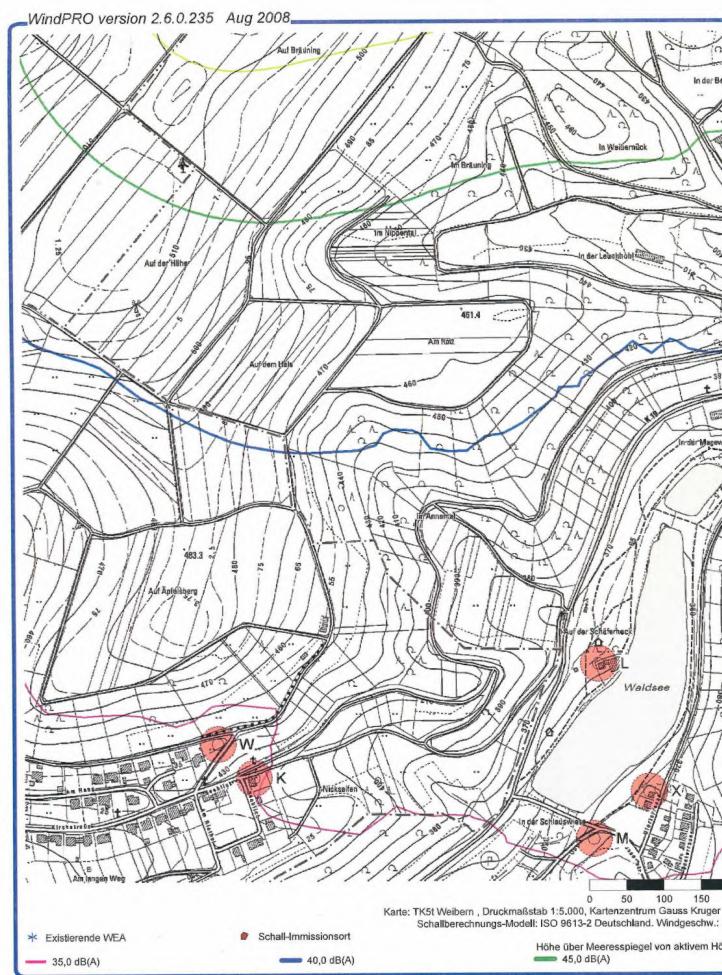

Ausdruck/Seite 25,02,2010 09:38 / 1

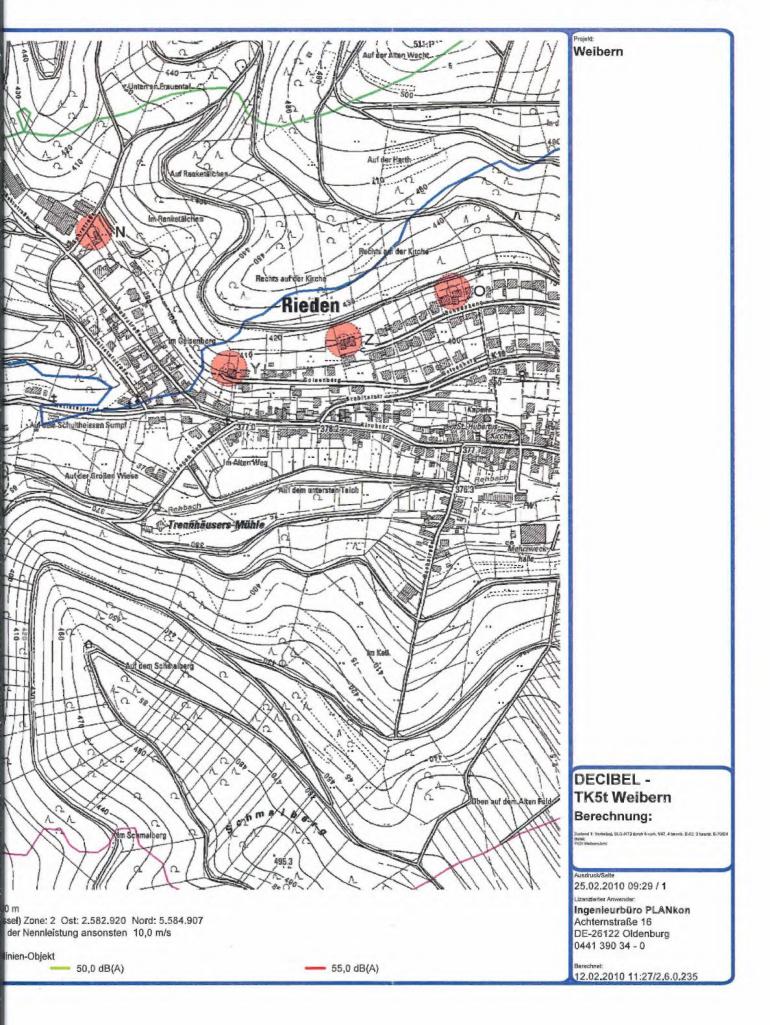
Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0


Berechnet 12.02.2010 11:27/2.6.0.235

DECIBEL - TK5t Weibern

Berechnung: Zustand 1: Vorbelast. SLG-NT2 durch 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Datei: TK5t Weibern.bmj


Weibern



WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

WindPRO entwickeit von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø. Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Weibern

Ausdruck/Seite 12,02,2010 11:32 / 1

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Serechnot

12.02.2010 11:32/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf.

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000

Schall-Immissionsort

Neue WEA

WEA

GK	(Bessel) Zone: 2 Ost	Nord	z	Beschreibung	WEA-T		Generatortyp	Nenn-	Rotordurchmesser		Schall		Windgeschw.	LwA,ref	Einzel-
GH 1	K (Bessel) Zone: 2 2,582,491	5.585.364	[m] 495,3	gepl. WEA 14	Ja	NORDEX	N90/2500 LS-2,500	[kVV] 2.500	[m] 90,0	(m) 100,0	USER	Volllast 3fach-Verm + Sicherheit S-A	[m/s] 10,0	[dB(A)] 105,7	tone odB

Berechnungsergebnisse

Beurteilungspegel

Schall-	Immissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
	A 100- A	0.500.400	F 507 770	[m]	[m]	[dB(A)]	[dB(A)]	
	A Whs. Appentalerhof		5,587,779		5,0			Ja
	B Whs. Winkelweg 10, Weibern		5.586.583		5,0			Ja
	C Whs. Waldstr. 2, Weibern		5.586.291		5.0			Ja
	D Whs. Waldstr. 32, Weibern		5.586.154		5,0			Ja
	E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0	45,0	30,5	Ja
	F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585,546	415,7	5,0	45,0	29,9	Ja
	G Whs. Dorfstr. 10, Wabern	2.581,198	5,585,035	422,1	5,0	45,0	27,8	Ja
	H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0	27,2	Ja
	Whs. Birkenhof, Volkesfeld	2.581.520	5,584,728	460,0	5,0	45,0	30,3	Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5,584,780	448,7	5,0	40,0	34,7	Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584,430	427,8	5,0	40,0	33,3	Ja
	L Hotel Eifler Seehütte, Rieden	2,582,814	5.584.586	377,5	5,0	40,0		Ja
	M Whs, Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	32.0	Ja
	N Whs. Suhrstr. 24, Rieden	2.583,134	5.585,188	400,0	7,5	45,0	37,9	Ja
	O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585.107	414,6	7,5			Ja
	P Whs, Bahnhofstr, 111, Weibern	2,582,149	5,586,612	427.3	5.0	45,0	28,1	Ja
	Q Whs. Löhstr. 5. Weibern	2.582.117	5.586.518	420.0	5,0			Ja
	R Whs. Löhstr. 6, Weibern	2.582,106	5,586,464	427.3	5,0			Ja
	S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420.0	5,0			Ja
	T Whs. Tannenweg 6, Weibern	2.582.071	5.586.322	429.1	5.0			Ja
	U Whs. Konnstr, 25, Weibern	2,581,935	5,586,303	420.0	5,0			Ja
	V Whs. Buchenweg 1, Weibern		5.586.207		5.0			Ja.
	W Baugrundstück Am Hang, Volkesfeld		5,584,477		5,0			Ja
	X Uferterrasse 3, Rieden		5.584,411		5,0			Ja
	Y Whs. Geisenberg 19, Rieden		5,585,001		7,5			Ja
	Z Whs. Am Sonnenhang 40, Rieden		5,585,041		7,5			Ja

Projekt Weibern Ausdruck/Seite 12.02.2010 11:32 / 2

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

12.02,2010 11:32/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14

Abstände (m)

WEA Schall-Immissionsort A 2512 B 1364 C 1024 D 1075 E 1033 F 1199 F 1199 G 1334 H 1407 1 1161 J 794 K 945 L 843 M 1066 N 667 O 1161 P 1294 Q 1213 R 1165 S 1151 T 1046 U 1091 V 1082 W 908 X 1030 Y 903 Z 1035

Weibern

12.02.2010 11:32 / 3 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 11:32/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14 Schallberechnungs-Modell: ISO 9813-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar: Amisc: Dämpfung aufgrund von Abschirmung Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

95% der Nennleistung

[m] [m]

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB(A)] [dB]

2.512 41.4 2.515 Nein 20,12 105,7 3,01 79,01 4,78 4,80 0,00 0,00 88,59

Summe 20.12

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB] [dB] [dB] [dB] [dB] 105,7 3,01 73,76 2,61 3,87 0,00 [dB(A)] [dB] [dB] [dB] [dB] [m] [m] [m] 1.364 1.373 0,00 80,23 28,48

Summe 28,48

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB] Adiv Aatm Agr Abar Amisc Cmet [dB] [dB] [dB] [dB] [dB] [dB] 1.036 18.9 1.024 30,63 105,7 3,01 71,31 1,97 4,80 0,00 0,00 78,08 0.00

Summe 30,63

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

95% der Nennleistung Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB(A)] [m] [m] 1.075 1.088 24.2 Nein 30,11 105,7 3,01 71,73 2,07 4,80 0,00 0,00 78,60

Summe 30.11

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [m] [m] 1.033 1.044 35.8 Nein 30.55 105,7 3,01 71,38 1,98 4,80 0,00 0.00 78.16 0.00

Summe 30,55

Weibern

12.02,2010 11:32 / 4 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 11:32/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

95% der Nennleistung

 WEA
 53/8 del Neimelstang

 Nr. Abstand
 Schallweg Mittlere Höhe
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [dB]</td [dB] 0,00 78,78 0,00

Summe 29,93

Schall-Immissionsort: G Whs, Dorfstr, 10, Wabern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Cmet [m] [m] [m] 1 1.334 22,4 1.346 Nein 27,77 105,7 3,01 73,58 2,56 4,80 0,00 0,00 80,94 0.00

Summe 27.77

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] 27,18 105,7 3,01 74,03 2,69 4,80 0,00 [m] [m] [dB] [dB] [dB] [dB] [dB] 74.03 2.69 4.80 0.00 0.00 [dB] [m] 1 1.407 1.418 Nein 0,00 81,53 0,00

Summe 27.18

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

95% der Nennleistung

 Nr. Abstand
 Schallweg
 Mittlere Höhe
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 Cmet 0.00 78,38 0.00

Summe 30,32

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [m] 33,9 794 807 34,69 105,7 3,00 69,14 1,53 3,34 0,00

Summe 34,69

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] 959 945 50.1 Ja 33,25

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

95% der Nennleistung

 Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1 843 872 50,6 Ja 34,46 105,7 3,00 69,81 1,66 2,79 0,00 0,00 74,25
 Cmet

Summe 34,46

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

95% der Nennleistung

Cmet 1.090 59.2 1 1.066 Ja 105,7 3,01 71,75 2,07 2,92 0,00 31.96 0.00 76.74

Summe 31,96 Projekt Weibern Ausdruck/Seite
12.02.2010 11:32 / 5
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 11:32/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14 Schallberechnungs-Modell: Iso 9613-2 Deutschland 10,0 m/s.

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WEA

95% der Nennleistung

Summe 37,88

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WEA

95% der Nennleistung

Summe 29,28

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

WEA

95% der Nennleistung

 Nr. Abstand
 Schallweg
 Mittlere Höhe
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A
 Cmet

 [m]
 [m]
 [m]
 [dB]
 <td

Summe 28,13

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

WEA

95% der Nennleistung

 Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A
 Cmet

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [dB]

Summe 28,82

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WEA

95% der Nennleistung

Summe 29 26

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WEA

95% der Nennleistung

 Nr. Abstand Schallweg
 Mittlere Höhe
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A
 Cmet

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [dB]

Summe 29,38

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WEA

95% der Nennleistung

 Nr.
 Abstand
 Schallweg
 Mittlere H\u00f6he
 Sichtbar
 Berechnet
 LwA, ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A
 Cmet

 [m]
 [m]
 [m]
 [dB]
 <t

Summe 30,41

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

WEA

95% der Nennleistung

 Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A
 Cme

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [dB]

Summe 29,95

Weibern

12.02.2010 11:32 / 6 Lizenzierter Anwender Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 11:32/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14 Schallberechnungs-Modell: Iso 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc $[dB(A)] \quad [dB(A)] \quad [dB] \quad [dB] \quad [dB] \quad [dB] \quad [dB] \quad [dB]$ [m][m] 1 1.082 1.096 23.8 Nein 30,03 105,7 3,01 71,80 2,08 4,80 0,00 0,00 78,68 0,00

Summe 30,03

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

95% der Nennleistung

 Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar Amisc
 A [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB]

 1
 908
 921
 47,4
 Nein
 31,87
 105,7
 3,01
 70,28
 1,75
 4,80
 0,00
 0,00
 76,83
 [dB] 0,00 76,83 0.00

Summe 31,87

Schall-Immissionsort: X Uferterrasse 3, Rieden

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] Adiv Aatm Agr Abar Amisc Cmet [dB] [dB] [dB] [dB] [dB] 1.030 1.054 62,4 1 .la 32,50 105,7 3,01 71,45 2,00 2,75 0,00 0,00 76,21 0,00

Summe 32,50

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

95% der Nennleistung

[dB] 0,00 73,98 0,00

Summe 34,72

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

95% der Nennleistung

 Nr. Abstand
 Schallweg
 Mittlere Höhe
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A [m]

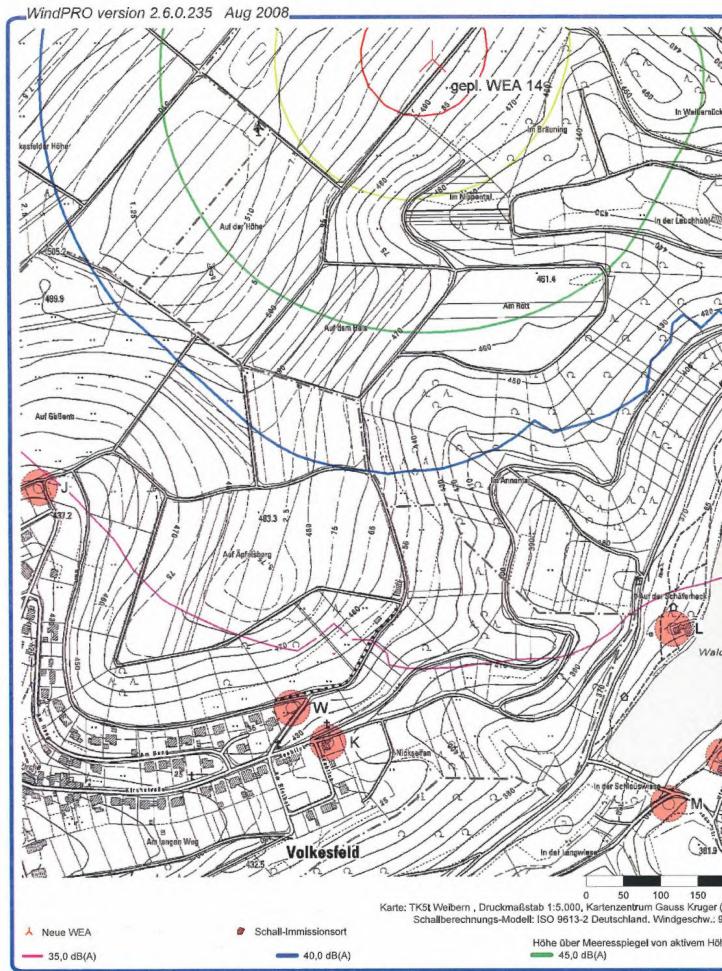
 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [m] 76,6 0.00

Summe 33,01

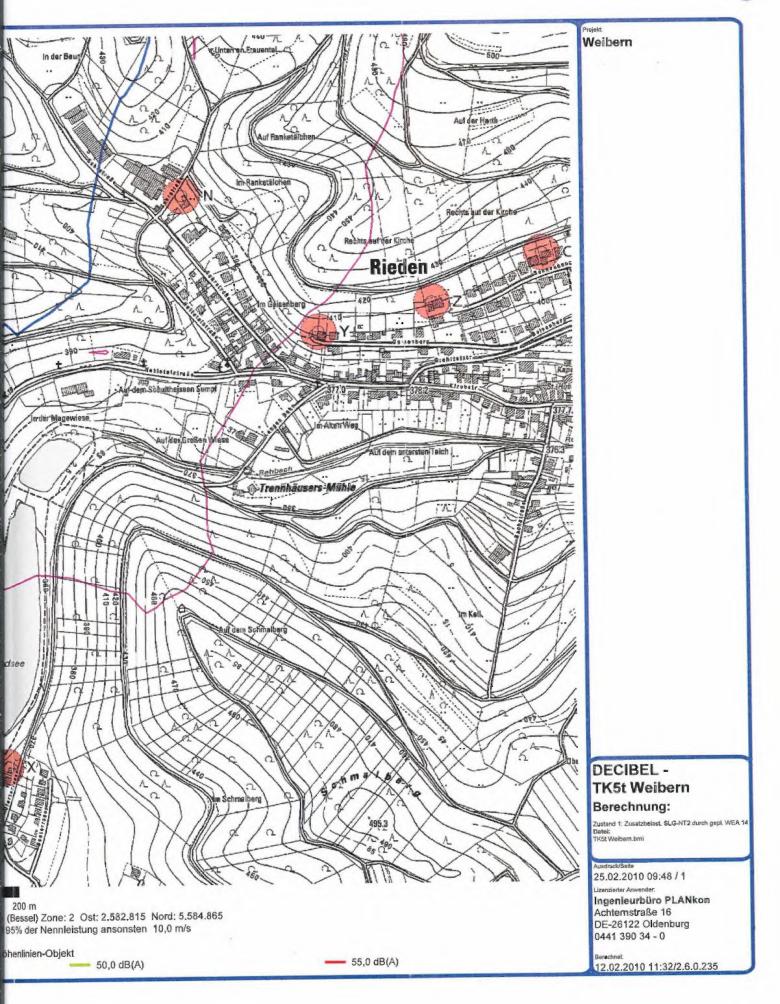
Weibern

25.02.2010 09:43 / 1

Lizenzierter Amvender. Ingenieurbüro PLANkon Achtermstraße 16 DE-26122 Oldenburg 0441390 34 - 0


Bervehnet 12.02.2010 11;32/2.6.0.235

DECIBEL - TK5t Weibern


Berechnung: Zustand 1: Zusatzbelast. SLG-NT2 durch gepl. WEA 14 Datei: TK5t Weibern.bmi

MndPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Weibern

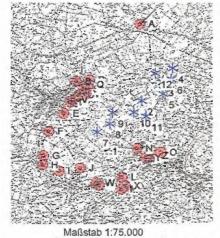
Ausdruck/Selte 12.02.2010 11:44 / 1

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 12.02.2010 11:35/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4


Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw, in 10 m Höhe: 10,0 m/s Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Neue WEA ★ Exist

* Existierende WEA

Schall-Immissionsort

WEA

	GK (Bessel) Zone:	2				WEA-T	VP					Schall	werte			
	Ost		Nord	Z	Beschreibung	Aktuell	Hersteller	Generatortyp	Nenn- leistung	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel- tône
	GK (Bessel) Zone:	2		[m]					(kWV)	[m]	[m]			[m/s]	[dB(A)]	tane
1	2,582,49	11 5	5.585.364	495,3	gepl. WEA 14	Ja	NORDEX	N90/2500 LS-2.500	2.500	90,0	100,0	USER	Volllast 3fach-Verm + Sicherheit S-A	10,0	105,7	0 dB
2	2,583.2	7 5	5,586,188	515,0	vorh. WEA 2	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10,0	105,3	0 dB
3	2.583.64	15 5	5.586.574	536,3	vorh, WEA 3	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	VVT 802/98	10,0	105,3	0 dB
4	2,583,8	55 5	5,586,860	536,8	vorh. WEA 4	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10.0	105,3	0 dB
5	2,583.66	31 5	5.586.325	524,4	varin, WEA 5	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	VVT 802/98	10,0	105,3	0 dB
6	2.583.83	35 5	5.586.638	530,1	vorh, WEA 6	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10,0	105,3	0 dB
7	2.582.30	11 5	5,585,538	515,8	beantr. WEA 7	Ja	ENERCON	E-82-2.000	2,000	82,0	108,4	USER	red, 1000kW + Sicherheit 2,6 S-A	10.0	101.3	0 dB
8	2.582.56	51 4	5.585.703	526,5	beantr, WEA 8	Ja	ENERCON	E-82-2.000	2.000	82.0	108,4	USER	Volllast 103,8 + Sicherheit 2,09 S-A	10,0	105,9	0 dB
9	2.582.63	21 5	5.585.936	533,7	beantr, WEA 9	Ja	ENERCON	E-82-2.000	2.000	82.0	108.4	USER	red, 1000kW + Sicherheit 2,6 S-A	10.0	101.3	0 dB
10	2.583.0	56 5	5.585.948	525,0	beant, WEA 10	Ja	ENERCON	E-70 E4 2,3 MW-2,300	2,300	71.0	113,5	USER	Volllast 104.2 + Sicherheit 2.0 S-A	10,0	106,2	0 dB
11	2,583,36	12 5	5,585,862	515,0	beantr. WEA 11	Ja	ENERCON	E-82-2.000	2.000	82.0	108,4	USER	Volllast 103,8 + Sicherheit 2,09 S-A	10,0	105,9	0 dB
12	2,583,4	95 5	5,586,763	550,0	beantr. WEA 12	Ja	ENERCON	E-70 E4 2,3 MW-2.300	2,300	71,0	113,5	USER	Vollast 104.2 + Sicherheit 2,0 S-A	10,0	106,2	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-	Immissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt
Nr.	Name	Ost	Nord	Z [m]	Aufpunkthöhe [m]	Schall [dB(A)]	Von WEA [dB(A)]	Schall
	A Whs. Appentalerhof	2.583.186	5.587.779		5,0			Ja
	B Whs. Winkelweg 10, Weibern	2.581,879	5,586,583	427.5	5,0	40,0	38,5	Ja
	C Whs. Waldstr, 2, Weibern	2,582,057	5,586,291	437.2	5.0			Ja
	D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5,0	45,0	39,0	Ja
	E Whs, Kirchstr. 27, Weibern	2.581.618	5.585,918	443,3	5,0	45,0	37,5	Ja
	F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585.546	415,7	5,0	45,0	36,2	Ja
	G Whs. Dorfstr. 10, Wabern	2,581,198	5,585,035	422,1	5,0	45,0	33,6	Ja
	H Whs. Heideweg 6a, Wabenn	2.581.182	5.584.848	422,6	5,0	40,0	32,9	Ja
	I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0	35,1	Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448,7	5.0			Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584,430	427,8	5,0	40,0	37,3	Ja
	L Hotel Eifler Seehütte, Rieden	2.582.814	5.584.586	377,5	5,0	40,0	38,9	Ja
	M Whs. Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	36,9	Ja
	N Whs. Suhrstr. 24, Rieden	2,583,134	5,585,188	400,0	7,5	45,0	44,1	Ja
	O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585.107	414,6	7,5	40,0	39,1	Ja
	P Whs. Bahnhofstr. 111, Weibern	2.582.149	5.586.612	427,3	5,0	45,0	39,9	Ja
	Q Whs. Löhstr. 5, Weibern	2.582,117	5,586,518	420,0	5,0	45,0	40,0	Ja
	R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3	5,0	45,0	39,6	Ja
	S Whs. Konnstr. 41, Weibern	2,582,046	5.586,426	420,0	5,0	40,0	39,1	Ja
	T Whs. Tannenweg 6, Weibern	2.582.071	5,586,322	429,1	5,0	40,0	40,5	Nein
	U Whs. Konnstr. 25, Weibern	2.581.935	5,586,303	420,0	5,0	40,0	39,6	Ja
	V Whs. Buchenweg 1, Weibern	2,581.812	5,586,207	415,6	5,0	40,0	39,1	Ja
	W Baugrundstück Am Hang, Volkesfeld	2,582,296	5,584,477	437,8	5,0	40,0	36,4	Ja
	X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0	5,0	40,0	37,5	Ja
	Y Whs. Geisenberg 19, Rieden	2,583,318	5,585,001	398,6	7,5			Nein

Weibern

12.02.2010 11:44 / 2 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 12.02.2010 11:35/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4

	Fortsetzung von der vorigen Seite							
ı	Schall-Immissionsort	GK (Besse	I) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
ı	Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
١				[m]	[m]	[dB(A)]	[dB(A)]	
ı	Z Whs. Am Sonnenhang 40, Rieden	2.583.474	5.585.041	410,9	7,5	40,0	39,7	Ja

Abstände (m)

Abstance (III)												
	WEA											
Schall-Immissionsort	1	2	3	4	5	6	7	8	9	10	11	12
A	2512	1590	1289	1136	1529	1312	2408	2167	1927	1835	1920	1061
В	1364	1395	1766	1996	1801	1957	1127	1113	984	1338	1595	1626
C	1024	1165	1613	1886	1605	1812	792	775	667	1057	1317	1514
D	1075	1456	1930	2210	1907	2130	818	918	887	1311	1568	1838
E	1033	1621	2130	2427	2083	2331	781	967	1003	1438	1684	2059
F	1199	2017	2556	2869	2481	2756	996	1265	1372	1796	2021	2505
G	1334	2325	2891	3224	2781	3086	1212	1518	1685	2070	2261	2875
Н	1407	2437	3007	3346	2886	3201	1315	1623	1804	2173	2350	3003
!	1161	2239	2815	3163	2672	3002	1126	1427	1635	1962	2112	2836
J	794	1893	2466	2819	2304	2645	835	1106	1336	1607	1729	2512
K	945	1962	2507	2861	2307	2664	1109	1291	1531	1676	1722	2601
L	843	1653	2155	2502	1935	2293	1082	1146	1365	1384	1367	2282
M	1066	1887	2380	2724	2155	2512	1295	1379	1601	1621	1594	2513
N	667	1004	1477	1821	1253	1611	904	771	907	764	694	1616
0	1161	1155	1467	1769	1219	1546	1391	1218	1301	1015	821	1661
Р	1294	1149	1497	1724	1539	1687	1084	998	824	1124	1376	1355
Q	1213	1149	1529	1772	1556	1723	997	928	770	1099	1355	1400
R	1165	1145	1543	1794	1562	1738	946	886	738	1081	1339	1421
S	1151	1195	1605	1860	1618	1801	923	887	755	1117	1376	1488
Ţ	1046	1154	1595	1864	1591	1793	817	789	672	1054	1315	1492
U	1091	1287	1731	1999	1726	1930	847	867	778	1176	1436	1627
V	1082	1405	1869	2145	1853	2068	828	902	853	1270	1529	1772
W	908	1943	2493	2848	2297	2653	1061	1254	1495	1655	1711	2581
X	1030	1809	2294	2636	2067	2423	1268	1332	1548	1547	1511	2431
Y	903	1192	1607	1935	1368	1717	1150	1033	1166	982	861	1771
Z	1035	1176	1543	1859	1298	1638	1274	1128	1237	999	839	1723

Weibern

Ausdruck/Selte
12.02.2010 11:44 / 3
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet 12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar: Amisc: Dämpfung aufgrund von Abschirmung Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	4				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.512	2.515	41,4	Nein	20,12	105,7	3,01	79,01	4,78	4,80	0,00	0,00	88,59	0,00
2	1.590	1.595	29,8	Nein	25,43	105,3	3,01	75,05	3,03	4,80	0,00	0,00	82,88	0,00
3	1.289	1.296	33,1	Ja	28,67	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79,64	0,00
4	1.136	1.144	44.4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0,00	0,00	77,81	0,00
5	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0,00	0,00	82,43	0,00
6	1.312	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79,87	0,00
7	2.408	2.414	56,2	Ja	17,07	101,3	3,01	78,65	4,59	4,00	0,00	0,00	87,24	0,00
8	2.167	2.174	64,8	Ja	23,26	105,9	3,01	77,74	4,13	3,78	0,00	0,00	85,65	0,00
9	1.927	1.935	74,5	Ja	20,42	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0,00
10	1.835	1.843	60,2	Ja	25,72	106,2	3,01	76,31	3,50	3,68	0,00	0,00	83,49	0,00
11	1.920	1.927	46,3	Nein	23,75	105,9	3,01	76,70	3,66	4,80	0,00	0,00	85,16	0,00
12	1.061	1.079	72,8	Ja	33,02	106,2	3,01	71,66	2,05	2,47	0,00	0,00	76,19	0,00

Summe 38,05

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WEA	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1,364	1.373	37,2	Ja	28,48	105,7	3,01	73,76	2,61	3,87	0,00	0,00	80,23	0,00
2	1.395	1.403	49,1	Ja	28,11	105,3	3,01	73,94	2,67	3,60	0,00	0,00	80,20	0,00
3	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0,00	0,00	84,15	0,00
4	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0,00	0,00	85,64	0,00
5	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4,00	0,00	0,00	83,58	0,00
6	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4,80	0,00	0,00	85,39	0,00
7	1,127	1.143	60,7	Ja	27,01	101,3	3,01	72,16	2,17	2,97	0,00	0,00	77,30	0,00
8	1.113	1.131	54,2	Ja	31,54	105,9	3,01	72,07	2,15	3,14	0,00	0,00	77,37	0,00
9	984	1.006	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2,60	0,00	0,00	75,56	0,00
10	1.338	1.353	69,9	Ja	29,99	106,2	3,01	73,63	2,57	3,02	0,00	0,00	79,22	0,00
11	1.595	1.607	56,8	Ja	27,15	105,9	3,01	75,12	3,05	3,58	0,00	0,00	81,76	0,00
12	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12	3,50	0,00	0,00	81,94	0,00

Summe 38,46

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

ı	WE	A				95% der No	ennleistur	ng							
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	1	1.024	1.036	18,9	Nein	30,63	105,7	3,01	71,31	1,97	4,80	0,00	0,00	78,08	0,00
ı	2	1,165	1,174	31,5	Nein	28,88	105,3	3,01	72,39	2,23	4,80	0,00	0,00	79,42	0,00

Fortsetzung auf nächster Seite.

Projekt Weibern Ausdruck/Selte 12.02.2010 11:44 / 4
Lizenzierter Anwender:
Ingenieurbüro PLANkon Achternstraße 16
DE-26122 Oldenburg 0441 390 34 - 0

prechast

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

Fo	rtsetzung	von der von	igen Seite											
WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	1.613	1.622	47,2	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
4	1,886	1.894	31,4	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0,00	0,00	84,94	0,00
5	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00
6	1.812	1.819	37,2	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00
7	792	814	42,1	Ja	30,54	101,3	3,00	69,22	1,55	3,00	0,00	0,00	73,77	0,00
8	775	801	34,1	Ja	34,99	105,9	3,00	69,07	1,52	3,32	0,00	0,00	73,91	0,00
9	667	699	40,8	Ja	32,32	101,3	3,00	67,88	1,33	2,76	0,00	0,00	71,98	0,00
10	1.057	1.076	44,1	Nein	30,72	106,2	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
11	1.317	1.331	31,5	Nein	28,10	105,9	3,01	73,48	2,53	4,80	0,00	0,00	80,81	0,00
12	1.514	1.531	75,4	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00

Summe 40,55

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[d8]
1	1.075	1.088	24,2	Nein	30,11	105,7	3,01	71,73	2,07	4,80	0,00	0,00	78,60	0,00
2	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81,89	0,00
3	1.930	1.938	47,1	Ja	23,92	105,3	3,01	76,75	3,68	3,97	0,00	0,00	84,39	0,00
4	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00	0,00	86,33	0,00
5	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0,00	0,00	85,08	0,00
6	2.130	2.136	38,5	Ja	22,47	105,3	3,01	77,59	4,06	4,18	0,00	0,00	85,84	0,00
7	818	842	45,7	Ja	30,28	101,3	3,00	69,50	1,60	2,92	0,00	0,00	74,02	0,00
8	918	941	42,8	Ja	33,42	105,9	3,00	70,47	1,79	3,22	0,00	0,00	75,48	0,00
9	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
10	1.311	1.328	36,9	Nein	28,42	106,2	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
11	1.568	1.580	23,4	Nein	26,13	105,9	3,01	74,97	3,00	4,80	0,00	0,00	82,78	0,00
12	1,838	1.853	81,8	Ja	26,04	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00

Summe 38,97

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

WE														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.033	1.044	35,8	Nein	30,55	105,7	3,01	71,38	1,98	4,80	0,00	0,00	78,16	0,00
2	1.621	1.627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0,00
3	2.130	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86,45	0,00
4	2.427	2.432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
5	2.083	2,088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0,00	86,16	0,00
6	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00	0,00	87,61	0,00
7	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0,00	0,00	75,40	0,00
8	967	985	43,6	Nein	31,36	105,9	3,01	70,87	1,87	4,80	0,00	0,00	77,54	0,00
9	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0,00	77,93	0,00
10	1.438	1.451	32,7	Nein	27,42	106,2	3,01	74,23	2,76	4,80	0,00	0,00	81,79	0,00
11	1.684	1.694	23,7	Nein	25,31	105,9	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
12	2.059	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00

Summe 37,54

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.199	1.213	35,1	Ja	29,93	105,7	3,01	72,67	2,30	3,80	0,00	0,00	78,78	0,00
2	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0,00	85,77	0,00
3	2.556	2.562	22,1	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88,84	0,00
4	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0,00	90,43	0,00
5	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0,00

Fortsetzung auf nächster Seite..

Projekt Weibern

Ausdruck/Seite
12.02.2010 11:44 / 5
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast, SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

Fo	ntsetzung	von der vor	igen Seite											
WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
6	2.756	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00
7	996	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,79	0,00
8	1.265	1.284	57,0	Ja	30,02	105,9	3,01	73,17	2,44	3,27	0,00	0,00	78,89	0,00
9	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,87	2,64	3,48	0,00	0,00	79,99	0,00
10	1.796	1.810	40,3	Ja	25,58	106,2	3,01	76,15	3,44	4,03	0,00	0,00	83,63	0,00
11	2.021	2,032	33,7	Ja	23,66	105,9	3,01	77,16	3,86	4,23	0,00	0,00	85,25	0,00
12	2.505	2.518	62,8	Nein	20,61	106,2	3,01	79,02	4,78	4,80	0,00	0,00	88,60	0,00

Summe 36,21

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.334	1.346	22,4	Nein	27,77	105,7	3,01	73,58	2,56	4,80	0,00	0,00	80,94	0,00
2	2.325	2,331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0,00	87,58	0,00
3	2.891	2.896	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90,54	0,00
4	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00	0,00	92,12	0,00
5	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0,00	0,00	89,99	0,00
6	3.086	3.091	7,6	Nein	16,83	105,3	3,01	80,80	5,87	4,80	0,00	0,00	91,48	0,00
7	1.212	1.230	43,8	Ja	25,60	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
8	1.518	1.533	42,0	Nein	26,48	105,9	3,01	74,71	2,91	4,80	0,00	0,00	82,43	0,00
9	1.685	1.699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0,00
10	2.070	2.082	33,3	Nein	23,09	106,2	3,01	77,37	3,96	4,80	0,00	0,00	86,12	0,00
11	2.261	2.270	32,2	Nein	21,68	105,9	3,01	78,12	4,31	4,80	0,00	0,00	87,23	0,00
12	2.875	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00

Summe 33,59

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

WE/	1				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Do	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.407	1.418	24,7	Nein	27,18	105,7	3,01	74,03	2,69	4,80	0,00	0,00	81,53	0,00
2	2.437	2.442	0,6	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0,00	88,19	0,00
3	3.007	3.013	10,3	Nein	17,21	105,3	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00
4	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4,80	0,00	0,00	92,67	0,00
5	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0,00	0,00	90,51	0,00
6	3.201	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00	0,00	92,01	0,00
7	1.315	1.331	43,1	Ja	24,61	101,3	3,01	73,48	2,53	3,68	0,00	0,00	79,69	0,00
8	1.623	1.637	40,6	Nein	25,72	105,9	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
9	1.804	1.818	43,8	Nein	19,86	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,45	0,00
10	2,173	2.184	33,7	Nein	22,48	106,2	3,01	77,78	4,15	4,80	0,00	0,00	86,73	0,00
11	2.350	2,359	35,2	Nein	21,18	105,9	3,01	78,45	4,48	4,80	0,00	0,00	87,73	0,00
12	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00
12	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91	,10

Summe 32,90

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	A				95% der Nennleistung									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.161	1.169	33,8	Ja	30,32	105,7	3,01	72,36	2,22	3,80	0,00	0,00	78,38	0,00
2	2.239	2.243	11,4	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87,08	0,00
3	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90,16	0,00
4	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91,82	0,00
5	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0,00	89,43	0,00
6	3.002	3.005	17,2	Nein	17,24	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,07	0,00
7	1.126	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,66	0,00
8	1.427	1.438	46,0	Ja	28,32	105,9	3,01	74,15	2,73	3,70	0,00	0,00	80,58	0,00

Fortsetzung auf nächster Seite...

Weibern

Summe

Ausdruck/Seite 12,02,2010 11:44 / 6

Lizenzierter Anwenden

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

F0	ntsetzung	von der vor	igen Seite											
WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
9	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,33	3,13	3,84	0,00	0,00	82,29	0,00
10	1.962	1.970	48,2	Nein	23,78	106,2	3,01	76,89	3.74	4,80	0,00	0,00	85,43	0,00
11	2.112	2.119	53,2	Nein	22,56	105,9	3,01	77,52	4,03	4,80	0,00	0,00	86,35	0,00
12	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

WEA	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	794	807	33,9	Ja	34,69	105,7	3,00	69,14	1,53	3,34	0,00	0,00	74,01	0,00
2	1.893	1.897	17,1	Nein	23,34	105,3	3,01	76,56	3,60	4,80	0,00	0,00	84,96	0,00
3	2.466	2.471	25,6	Nein	19,96	105,3	3,01	78,86	4,69	4,80	0,00	0,00	88,35	0,00
4	2.819	2.823	20,5	Nein	18,13	105,3	3,01	80,01	5,36	4,80	0,00	0,00	90,18	0,00
5	2,304	2.308	31,5	Nein	20,86	105,3	3,01	78,26	4,38	4,80	0,00	0,00	87,45	0,00
6	2.645	2.649	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00	0,00	89,29	0,00
7	835	852	39,7	Ja	29,89	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0,00
8	1.106	1.121	41,8	Nein	29,99	105,9	3,01	71,99	2,13	4,80	0,00	0,00	78,92	0,00
9	1.336	1.349	38,2	Nein	23,34	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80,96	0,00
10	1.607	1.617	53,5	Nein	26,16	106,2	3,01	75,18	3,07	4,80	0,00	0,00	83,05	0,00
11	1.729	1.738	63,3	Nein	25,01	105,9	3,01	75,80	3,30	4,80	0,00	0,00	83,90	0,00
12	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0,00	88,62	0,00

Summe 38,17

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	945	959	50,1	Ja	33,25	105,7	3,01	70,64	1,82	2,99	0,00	0,00	75,45	0,00
2	1.962	1.968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0,00
3	2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4,19	0,00	0,00	87,97	0,00
4	2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0,00	0,00	89,94	0,00
5	2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0,00	0,00	86,72	0,00
6	2.664	2.669	43,1	Ja	19,47	105,3	3,01	79,53	5,07	4,25	0,00	0,00	88,84	0,00
7	1.109	1.125	43,9	Nein	25,34	101,3	3,01	72,03	2,14	4,80	0,00	0,00	78,96	0,00
8	1.291	1.307	59,2	Ja	29,86	105,9	3,01	73,33	2,48	3,24	0,00	0,00	79,05	0,00
9	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,52	0,00
10	1.676	1.688	81,0	Ja	27,30	106,2	3,01	75,55	3,21	3,15	0,00	0,00	81,91	0,00
11	1.722	1.733	82,1	Ja	26,67	105,9	3,01	75,77	3,29	3,17	0,00	0,00	82,24	0,00
12	2.601	2.611	72,7	Ja	21,06	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,15	0,00

Summe 37,25

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

WEA	A				95% der Ne	ennleistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	843	872	50,6	Ja	34,46	105,7	3,00	69,81	1,66	2,79	0,00	0.00	74,25	0,00
2	1.653	1.665	31,6	Ja	25,57	105,3	3,01	75,43	3,16	4,15	0,00	0,00	82,74	0,00
3	2.155	2.167	32,7	Nein	21,68	105,3	3,01	77,72	4,12	4,80	0,00	0,00	86,63	0,00
4	2.502	2.512	21,9	Nein	19,74	105,3	3,01	79,00	4,77	4,80	0,00	0,00	88,57	0,00
5	1.935	1.947	36,7	Ja	23,67	105,3	3,01	76,79	3,70	4,15	0,00	0,00	84,64	0,00
6	2.293	2.303	26,8	Nein	20,89	105,3	3,01	78,25	4,38	4,80	0,00	0,00	87,42	0,00
7	1.082	1.111	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,35	0,00	0,00	77,37	0,00
8	1.146	1.175	60,6	Ja	31,25	105,9	3,01	72,40	2,23	3,02	0,00	0,00	77,66	0,00
9	1.365	1.391	55,5	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0,00
10	1.384	1.409	75,4	Ja	29,60	106,2	3,01	73,98	2,68	2,96	0,00	0,00	79,61	0,00
11	1.367	1.389	78,3	Ja	29,56	105,9	3,01	73,85	2,64	2,86	0,00	0,00	79,35	0,00

Projekt Weibern

Ausdruck/Seite
12.02.2010 11:44 / 7

Uzenziertar Amwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

serechnet:

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

...Fortsetzung von der vorigen Seite 95% der Nennleistung Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 22,65 106,2 3,01 78,23 4,37 3,95 0,00 0,00 [dB] [dB] [m] 2.282 [m] 2.300 [m] 56.8 Ja 22,65 12 0,00 86,56 0,00 Summe 38,95

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

				95% der Ne	ennleistur	1g							
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.066	1.090	59,2	Ja	31,96	105,7	3,01	71,75	2,07	2,92	0,00	0,00	76,74	0,00
1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0,00
2.380	2.391	37,2	Ja	20,93	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,38	0,00
2.724	2.734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89,73	0,00
2.155	2.167	40,9	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
2.512	2.522	31,2	Nein	19,68	105,3	3,01	79,04	4,79	4,80	0,00	0,00	88,63	0,00
1.295	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00
1.379	1.405	66,2	Ja	29,11	105,9	3,01	73,95	2,67	3,18	0,00	0,00	79,80	0,00
1.601	1.624	61,6	Ja	22,51	101,3	3,01	75,21	3,09	3,50	0,00	0,00	81,79	0,00
1.621	1.643	82,0	Ja	27,69	106,2	3,01	75,31	3,12	3,08	0,00	0,00	81,52	0,00
1.594	1.615	83,8	Ja	27,66	105,9	3,01	75,16	3,07	3,02	0,00	0,00	81,25	0,00
2.513	2.530	64,7	Ja	21,41	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,80	0,00
	Abstand [m] 1.066 1.887 2.380 2.724 2.155 2.512 1.295 1.379 1.601 1.621 1.594	Abstand Schallweg [m] [m] 1.066 1.090 1.887 1.899 2.380 2.391 2.724 2.734 2.155 2.167 2.512 2.522 1.295 1.320 1.379 1.405 1.601 1.624 1.621 1.643 1.594 1.615	Abstand Schallweg Mittlere Höhe [m] [m] [m] [m] 1.066 1.090 59,2 1.887 1.899 38,1 2.380 2.391 37,2 2.724 2.734 26,6 2.155 2.167 40,9 2.512 2.522 31,2 1.295 1.320 55,5 1.379 1.405 66,2 1.601 1.624 61,6 1.621 1.643 82,0 1.594 1.615 83,8	Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] [m] 1.066 1.090 59,2 Ja 1.887 1.899 38,1 Ja 2.380 2.391 37,2 Ja 2.724 2.734 26,6 Nein 2.155 2.167 40,9 Ja 2.512 2.522 31,2 Nein 1.295 1.320 55,5 Ja 1.379 1.405 66,2 Ja 1.601 1.624 61,6 Ja 1.621 1.643 82,0 Ja 1.594 1.615 83,8 Ja	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] 1.066 1.090 59,2 Ja 31,96 1.887 1.899 38,1 Ja 24,02 2.380 2.391 37,2 Ja 20,93 2.724 2.734 26,6 Nein 18,58 2.155 2.167 40,9 Ja 22,32 2.512 2.522 31,2 Nein 19,68 1.295 1.320 55,5 Ja 25,04 1.379 1.405 66,2 Ja 29,11 1.601 1.624 61,6 Ja 22,51 1.621 1.643 82,0 Ja 27,69 1.594 1.615 83,8 Ja 27,66	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] 1.066 1.090 59,2 Ja 31,96 105,7 1.887 1.899 38,1 Ja 24,02 105,3 2.380 2.391 37,2 Ja 20,93 105,3 2.724 2.734 26,6 Nein 18,58 105,3 2.155 2.167 40,9 Ja 22,32 105,3 2.512 2.522 31,2 Nein 19,68 105,3 1.295 1.320 55,5 Ja 25,04 101,3 1.379 1.405 66,2 Ja 29,11 105,9 1.601 1.624 61,6 Ja 22,51 101,3 1.621 1.643 82,0 Ja 27,69 106,2 1.594 1.615 83,8 Ja 27,66 105,9	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] [dB(A)] </th <th>Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 2.155 2.167 40,9 Ja 22,32 105,3 3,01 77,72 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 1.295 1.320 55,5 Ja 25,04 101,3 3,01 73,41 1.379 1.405 66,2 Ja 29,11 105,9 3,01 73,95 1.601 1.624 61,6 Ja 22,51 101,3 3,01 75,21 1.621 1.643 82,0 Ja 27,69 106,2</th> <th>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 2.5512 2.522 31,2 Nein 19,68 105,3 3,01 77,72 4,12 2.5512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 1.295 1.320 55,5 Ja 25,04 101,3 3,01 73,41 2,51 1.379 1.405 66,2 Ja 29,11 105,9 3,01 73,95 2,67 1.601 1.624 61,6 Ja 22,51</th> <th>Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Eerechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] Agr [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 2,92 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 4,11 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 4,27 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 4,80 2.155 2.167 40,9 Ja 22,32 105,3 3,01 77,72 4,12 4,15 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 4,80 1.295 1.320 55,5 Ja 25,04 101,3 3,01 73,41 2,51 3,35 1.379 1.405 66,2 Ja 29,11 105,9 <t< th=""><th>Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] Agr [dB] Abar [dB] Adiv [dB] [dB]</th><th>Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Amisc [dB]</th></t<><th>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet Berechnet LwA,ref [dB(A)] Dc [dB] [dB] Adiv [dB] Aatm [dB] Apr [dB] Amisc [dB] A [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 2,92 0,00 0,00 76,74 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 4,11 0,00 0,00 84,29 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 4,27 0,00 0,00 89,73 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 4,80 0,00 0,00 89,73 2.515 2.167 40,9 Ja 22,32 105,3 3,01 79,74 5,19 4,80 0,00 0,00 89,73 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 <t< th=""></t<></th></th>	Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 2.155 2.167 40,9 Ja 22,32 105,3 3,01 77,72 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 1.295 1.320 55,5 Ja 25,04 101,3 3,01 73,41 1.379 1.405 66,2 Ja 29,11 105,9 3,01 73,95 1.601 1.624 61,6 Ja 22,51 101,3 3,01 75,21 1.621 1.643 82,0 Ja 27,69 106,2	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 2.5512 2.522 31,2 Nein 19,68 105,3 3,01 77,72 4,12 2.5512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 1.295 1.320 55,5 Ja 25,04 101,3 3,01 73,41 2,51 1.379 1.405 66,2 Ja 29,11 105,9 3,01 73,95 2,67 1.601 1.624 61,6 Ja 22,51	Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Eerechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] Agr [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 2,92 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 4,11 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 4,27 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 4,80 2.155 2.167 40,9 Ja 22,32 105,3 3,01 77,72 4,12 4,15 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 4,80 1.295 1.320 55,5 Ja 25,04 101,3 3,01 73,41 2,51 3,35 1.379 1.405 66,2 Ja 29,11 105,9 <t< th=""><th>Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] Agr [dB] Abar [dB] Adiv [dB] [dB]</th><th>Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Amisc [dB]</th></t<> <th>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet Berechnet LwA,ref [dB(A)] Dc [dB] [dB] Adiv [dB] Aatm [dB] Apr [dB] Amisc [dB] A [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 2,92 0,00 0,00 76,74 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 4,11 0,00 0,00 84,29 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 4,27 0,00 0,00 89,73 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 4,80 0,00 0,00 89,73 2.515 2.167 40,9 Ja 22,32 105,3 3,01 79,74 5,19 4,80 0,00 0,00 89,73 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 <t< th=""></t<></th>	Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB] Aatm [dB] Agr [dB] Abar [dB] Adiv [dB] [dB]	Abstand Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Amisc [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet Berechnet LwA,ref [dB(A)] Dc [dB] [dB] Adiv [dB] Aatm [dB] Apr [dB] Amisc [dB] A [dB] 1.066 1.090 59,2 Ja 31,96 105,7 3,01 71,75 2,07 2,92 0,00 0,00 76,74 1.887 1.899 38,1 Ja 24,02 105,3 3,01 76,57 3,61 4,11 0,00 0,00 84,29 2.380 2.391 37,2 Ja 20,93 105,3 3,01 78,57 4,54 4,27 0,00 0,00 89,73 2.724 2.734 26,6 Nein 18,58 105,3 3,01 79,74 5,19 4,80 0,00 0,00 89,73 2.515 2.167 40,9 Ja 22,32 105,3 3,01 79,74 5,19 4,80 0,00 0,00 89,73 2.512 2.522 31,2 Nein 19,68 105,3 3,01 79,04 4,79 <t< th=""></t<>

Summe 36,91

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WE	4				95% der No	ennleistur	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	667	693	61,8	Ja	37,88	105,7	3,00	67,81	1,32	1,69	0,00	0,00	70,82	0,00	
2	1.004	1.018	23,6	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00	
3	1.477	1.490	15,0	Nein	26,22	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0,00	
4	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0,00	84,54	0,00	
5	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0,00	
6	1.611	1,622	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00	
7	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0,00	74,91	0,00	
8	771	804	71,5	Ja	36,56	105,9	3,00	69,10	1,53	1,71	0,00	0,00	72,34	0,00	
9	907	937	62,2	Ja	29,59	101,3	3,00	70,44	1,78	2,50	0,00	0,00	74,72	0,00	
10	764	798	54,4	Ja	36,21	106,2	3,00	69,04	1,52	2,43	0,00	0,00	72,99	0,00	
11	694	727	60,2	Ja	37,37	105,9	3,00	68,23	1,38	1,92	0,00	0,00	71,53	0,00	
12	1.616	1.636	46,6	Nein	26,02	106,2	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00	

Summe 44,05

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.161	1.174	71,8	Nein	29,28	105,7	3,01	72,40	2,23	4,80	0,00	0,00	79,43	0,00
2	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
3	1.467	1.478	20,3	Nein	26,31	105,3	3,01	74,39	2,81	4,80	0,00	0,00	82,00	0,00
4	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0,00
5	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0,00
6	1.546	1,556	10,1	Nein	25,72	105,3	3,01	74,84	2,96	4,80	0,00	0,00	82,59	0,00
7	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
8	1.218	1.237	74,8	Nein	28,91	105,9	3,01	72,85	2,35	4,80	0,00	0,00	80,00	0,00
9	1.301	1.320	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,72	0,00
10	1.015	1.037	49,5	Nein	31,11	106,2	3,00	71,32	1,97	4,80	0,00	0,00	78,09	0,00
11	821	845	39,1	Nein	32,96	105,9	3,00	69,54	1,61	4,80	0,00	0,00	75,94	0,00
12	1.661	1.679	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00

Summe 39,15

Weibern

Ausdruchi/Seite
12.02.2010 11:44 / 8
Literatierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

erechnet

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

Scl	nall-Imn	nissions	ort: P Whs.	Bahnho	ofstr. 111	, Weiber	rn							
WE	Д				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.294	1.304	23,8	Nein	28,13	105,7	3,01	73,30	2,48	4,80	0,00	0,00	80,58	0,00
2	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00
3	1.497	1.506	30,9	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
4	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00
5	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00
6	1.687	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
7	1.084	1.101	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,21	0,00
8	998	1.018	45,9	Ja	32,58	105,9	3,01	71,16	1,93	3,24	0,00	0,00	76,33	0,00
9	824	850	66,3	Ja	31,00	101,3	3,00	69,59	1,62	2,10	0,00	0,00	73,30	0,00
10	1.124	1.143	71,6	Ja	32,24	106,2	3,01	72,16	2,17	2,64	0,00	0,00	76,97	0,00
11	1.376	1.389	53,5	Ja	28,94	105,9	3,01	73,85	2,64	3,47	0,00	0,00	79,96	0,00
12	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00

Summe 39,88

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

AAF	4				95% der N	ennieistui	1g							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.213	1.225	16,5	Nein	28,82	105,7	3,01	72,76	2,33	4,80	0,00	0,00	79,89	0,00
2	1.149	1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00
3	1.529	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00
4	1.772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00
5	1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0,00
6	1.723	1.731	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,86	0,00
7	997	1.017	41,3	Nein	26,43	101,3	3,01	71,14	1,93	4,80	0,00	0,00	77,87	0,00
8	928	952	34,3	Ja	32,97	105,9	3,00	70,57	1,81	3,55	0,00	0,00	75,93	0,00
9	770	800	52,0	Ja	31,18	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,12	0,00
10	1.099	1,119	63,2	Ja	32,25	106,2	3,01	71,98	2,13	2,85	0,00	0,00	76,96	0,00
11	1.355	1,369	49,2	Ja	29,01	105,9	3,01	73,73	2,60	3,56	0,00	0,00	79,90	0,00
12	1.400	1.420	56,7	Nein	27,66	106,2	3,01	74,05	2,70	4,80	0,00	0,00	81,55	0,00

Summe 39,98

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.165	1.177	18,1	Nein	29,26	105,7	3,01	72,41	2,24	4,80	0,00	0,00	79,45	0,00
2	1.145	1.155	39,1	Nein	29,06	105,3	3,01	72,25	2,19	4,80	0,00	0,00	79,24	0,00
3	1.543	1.553	44,0	Ja	26,71	105,3	3,01	74,82	2,95	3,82	0,00	0,00	81,60	0,00
4	1.794	1.802	20,2	Nein	23,97	105,3	3,01	76,12	3,42	4,80	0,00	0,00	84,34	0,00
5	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92	2,98	4,80	0,00	0,00	82,70	0,00
6	1.738	1.746	32,3	Nein	24,35	105,3	3,01	75,84	3,32	4,80	0,00	0,00	83,96	0,00
7	946	965	42,8	Nein	26,98	101,3	3,01	70,69	1,83	4,80	0,00	0,00	77,33	0,00
8	886	910	34,4	Nein	32,20	105,9	3,00	70,18	1,73	4,80	0,00	0,00	76,71	0,00
9	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72,71	0,00
10	1.081	1.101	59,0	Nein	30,48	106,2	3,01	71,84	2,09	4,80	0,00	0,00	78,73	0,00
11	1.339	1.353	45,9	Nein	27,91	105,9	3,01	73,63	2,57	4,80	0,00	0,00	81,00	0,00
12	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,15	0,00

Summe 39,61

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.151	1.163	19,6	Nein	29,38	105,7	3,01	72,31	2,21	4,80	0,00	0,00	79,32	0,00
2	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,71	0,00
3	1.605	1.615	43,0	Nein	25,28	105,3	3,01	75,16	3,07	4,80	0,00	0,00	83,03	0,00

Projekt Weibern

Ausdruck/Selte 12,02,2010 11:44 / 9

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnot

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

Fo	rtsetzung	von der von	igen Seite											
WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
4	1.860	1.869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
5	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	0,00	83,11	0,00
6	1.801	1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00
7	923	945	45,0	Ja	28,85	101,3	3,00	70,50	1,79	3,15	0,00	0,00	75,45	0,00
8	887	912	33,6	Nein	32,18	105,9	3,00	70,20	1,73	4,80	0,00	0,00	76,73	0,00
9	755	785	44,7	Nein	29,11	101,3	3,00	68,90	1,49	4,80	0,00	0,00	75,19	0,00
10	1.117	1.137	51,9	Nein	30,13	106,2	3,01	72,12	2,16	4,80	0,00	0,00	79,08	0,00
11	1.376	1.391	39,3	Nein	27,60	105,9	3,01	73,86	2,64	4,80	0,00	0,00	81,31	0,00
12	1.488	1.507	66,6	Nein	26,99	106,2	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00

Summe 39,07

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.046	1.058	19,6	Nein	30,41	105,7	3,01	71,49	2,01	4,80	0,00	0,00	78,30	0,00
2	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0,00
3	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0,00
4	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
5	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00
6	1.793	1.800	37,7	Nein	23,98	105,3	3,01	76,11	3,42	4,80	0,00	0,00	84,33	0,00
7	817	838	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,06	0,00
8	789	814	33,6	Ja	34,77	105,9	3,00	69,22	1,55	3,37	0,00	0,00	74,13	0,00
9	672	703	41,6	Ja	32,28	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
10	1.054	1.074	46,9	Nein	30,75	106,2	3,01	71,62	2,04	4,80	0,00	0,00	78,46	0,00
11	1.315	1.328	34,5	Nein	28,12	105,9	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
12	1,492	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00

Summe 40,47

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

WE	1				95% der No	ennleistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.091	1.104	20,0	Nein	29,95	105,7	3,01	71,86	2,10	4,80	0,00	0,00	78,76	0,00
2	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
3	1.731	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
4	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
5	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
6	1.930	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00
7	847	870	43,7	Ja	29,80	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
8	867	892	37,4	Ja	33,86	105,9	3,00	70,00	1,69	3,34	0,00	0,00	75,04	0,00
9	778	807	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
10	1,176	1,195	44,6	Nein	29,59	106,2	3,01	72,55	2,27	4,80	0,00	0,00	79,62	0,00
11	1.436	1.450	31,2	Nein	27,13	105,9	3,01	74,23	2,75	4,80	0,00	0,00	81,78	0,00
12	1.627	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00

Summe 39,60

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.082	1.096	23,8	Nein	30,03	105,7	3,01	71,80	2,08	4,80	0,00	0,00	78,68	0,00
2	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00
3	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,00	0,00
4	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00
5	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00
6	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00

_{Projekt} Weibern

Ausdruck/Selte
12.02.2010 11:44 / 10
Lizenzlerter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berachnut

12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

Fo	rtsetzung	von der vor	igen Seite											
WE.	A				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
7	828	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,90	0,00	0,00	74,14	0,00
8	902	928	38,6	Ja	33,44	105,9	3,00	70,35	1,76	3,36	0,00	0,00	75,47	0,00
9	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
10	1.270	1.289	37,8	Nein	28,75	106,2	3,01	73,21	2,45	4,80	0,00	0,00	80,45	0,00
11	1.529	1.543	23,7	Nein	26,41	105,9	3,01	74,76	2,93	4,80	0,00	0,00	82,50	0,00
12	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00

Summe 39.08

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

l	WE	4				95% der No	ennleistur	ng								
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	1	908	921	47,4	Nein	31,87	105,7	3,01	70,28	1,75	4,80	0,00	0,00	76,83	0,00	
ı	2	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00	
ı	3	2.493	2,498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00	
ı	4	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00	
ı	5	2.297	2,302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00	
ı	6	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00	
ı	7	1.061	1.076	43,1	Nein	25,82	101,3	3,01	71,64	2,05	4,80	0,00	0,00	78,48	0,00	
١	8	1.254	1.269	56,8	Nein	28,63	105,9	3,01	73,07	2,41	4,80	0,00	0,00	80,28	0,00	
ı	9	1.495	1.508	52,7	Nein	22,08	101,3	3,01	74,57	2,87	4,80	0,00	0,00	82,23	0,00	
ı	10	1.655	1.667	81,7	Nein	25,80	106,2	3,01	75,44	3,17	4,80	0,00	0,00	83,40	0,00	
ı	11	1.711	1.721	80,8	Ja	26,74	105,9	3,01	75,71	3,27	3,19	0,00	0,00	82,17	0,00	
١	12	2.581	2.591	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00	

Summe 36,36

Schall-Immissionsort: X Uferterrasse 3, Rieden

WE	A				95% der No	ennleistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.030	1.054	62,4	Ja	32,50	105,7	3,01	71,45	2,00	2,75	0,00	0,00	76,21	0,00
2	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0,00	0,00	83,71	0,00
3	2.294	2.305	35,6	Ja	21,41	105,3	3,01	78,25	4,38	4,27	0,00	0,00	86,90	0,00
4	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45	5,03	4,80	0,00	0,00	89,28	0,00
5	2.067	2.078	39,6	Ja	22,86	105,3	3,01	77,35	3,95	4,15	0,00	0,00	85,45	0,00
6	2.423	2.433	30,4	Nein	20,16	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
7	1.268	1.293	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0,00	0,00	78,91	0,00
8	1.332	1.357	72,9	Ja	29,73	105,9	3,01	73,65	2,58	2,95	0,00	0,00	79,18	0,00
9	1.548	1.571	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0,00	0,00	81,22	0,00
10	1.547	1.569	85,1	Ja	28,38	106,2	3,01	74,91	2,98	2,93	0,00	0,00	80,83	0,00
11	1.511	1.531	83,9	Ja	28,38	105,9	3,01	74,70	2,91	2,92	0,00	0,00	80,52	0,00
12	2.431	2.448	66,8	Ja	21,92	106,2	3,01	78,78	4,65	3,87	0,00	0,00	87,29	0,00

Summe 37,4

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	903	923	76,7	Ja	34,72	105,7	3,00	70,30	1,75	1,92	0,00	0,00	73,98	0,00
2	1.192	1,204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0,00
3	1.607	1.618	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
4	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
5	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
6	1.717	1.728	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0,00
7	1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
8	1.033	1,058	82,8	Ja	33,31	105,9	3,00	71,49	2,01	2,09	0,00	0,00	75,59	0,00
9	1.166	1.190	71,1	Ja	26,79	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0,00

_{Projekt:} Weibern

12.02.2010 11:44 / 11

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 12.02.2010 11:35/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 S

0	risetzung	von der von	igen Seite											
WE	Ą				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Arnisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
10	982	1.010	64,4	Nein	31,40	106,2	3,00	71,08	1,92	4,80	0,00	0,00	77,80	0,00
11	861	888	50,2	Nein	32,44	105,9	3,00	69,97	1,69	4,80	0,00	0,00	76,46	0,00
12	1.771	1.790	42,5	Nein	24,95	106,2	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,00

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	Ą				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.035	1.050	76,6	Ja	33,01	105,7	3,00	71,42	2,00	2,28	0,00	0,00	75,70	0,00
2	1.176	1.187	11,3	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
3	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
4	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
5	1,298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
6	1.638	1.648	9,4	Nein	25,04	105,3	3,01	75,34	3,13	4,80	0,00	0,00	83,27	0,00
7	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
8	1.128	1.149	80,6	Nein	29,72	105,9	3,00	72,21	2,18	4,80	0,00	0,00	79,19	0,00
9	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,18	0,00
10	999	1.023	59,2	Nein	31,26	106,2	3,00	71,20	1,94	4,80	0,00	0,00	77,94	0,00
11	839	864	42,9	Nein	32,73	105,9	3,00	69,73	1,64	4,80	0,00	0,00	76,17	0,00
12	1.723	1.740	42,5	Nein	25,29	106,2	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00

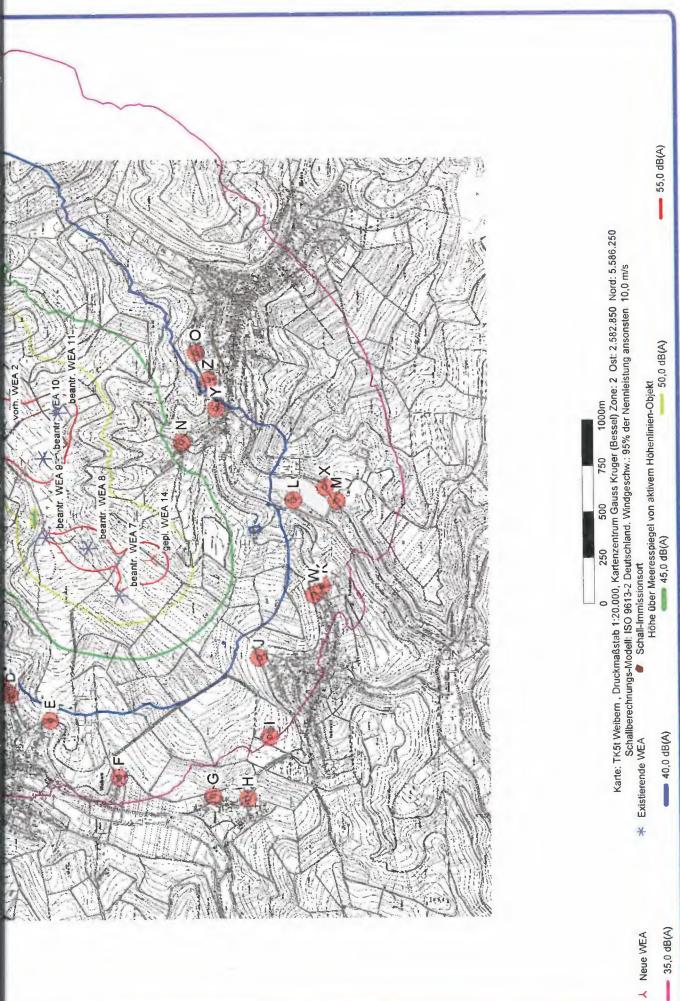
Summe 39,66

40,64

Summe

Weibern

Ausdruck/Salte 25.02.2010 09:55 / 1


Lizerbinter Amender.
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

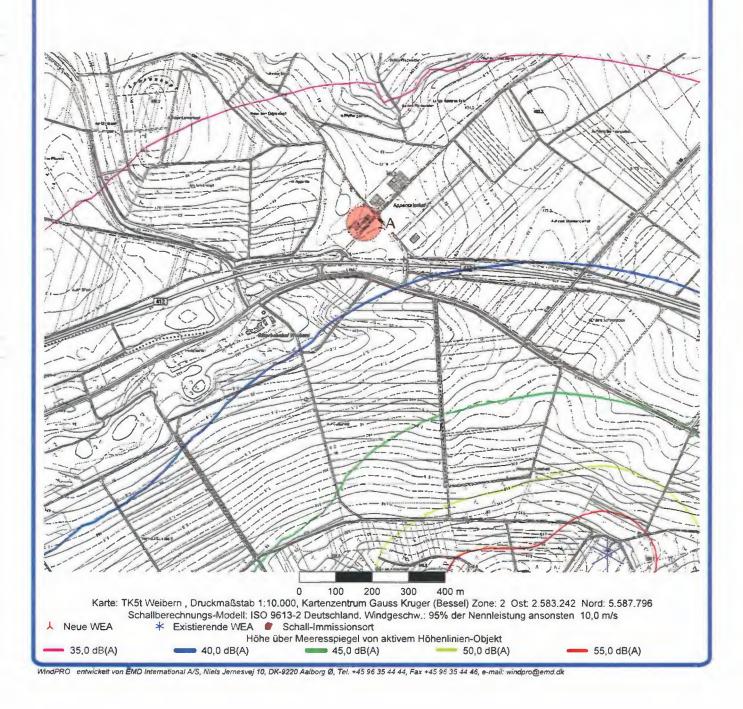
12.02.2010 11:35/2.6.0.235

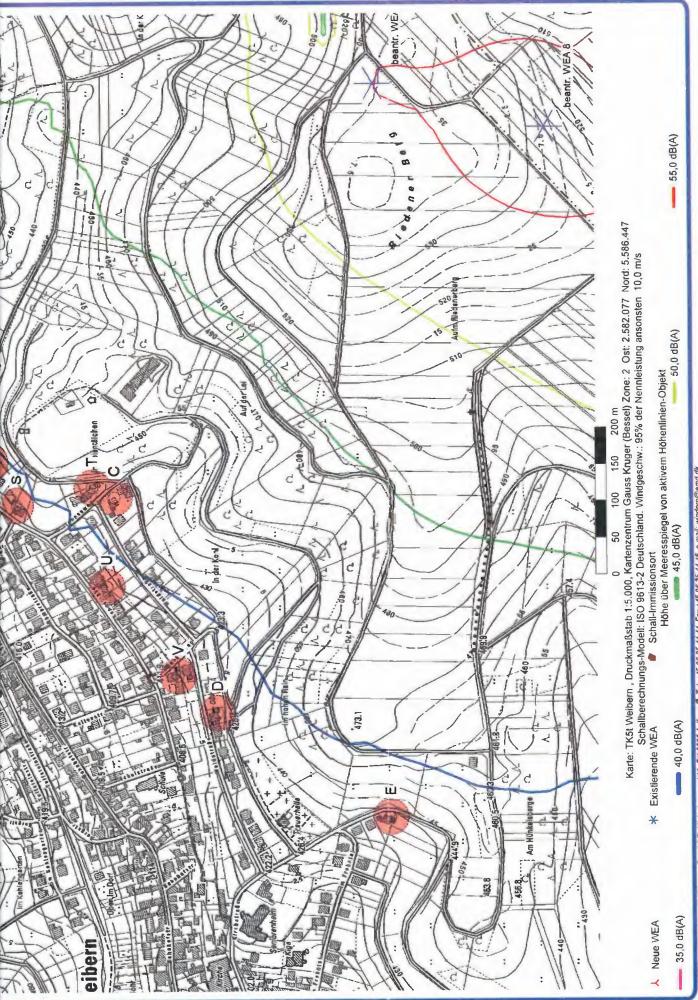
DECIBEL - TK5t Weibern

Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Datei: TK5t Weibern.bmi

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

81


Weibern

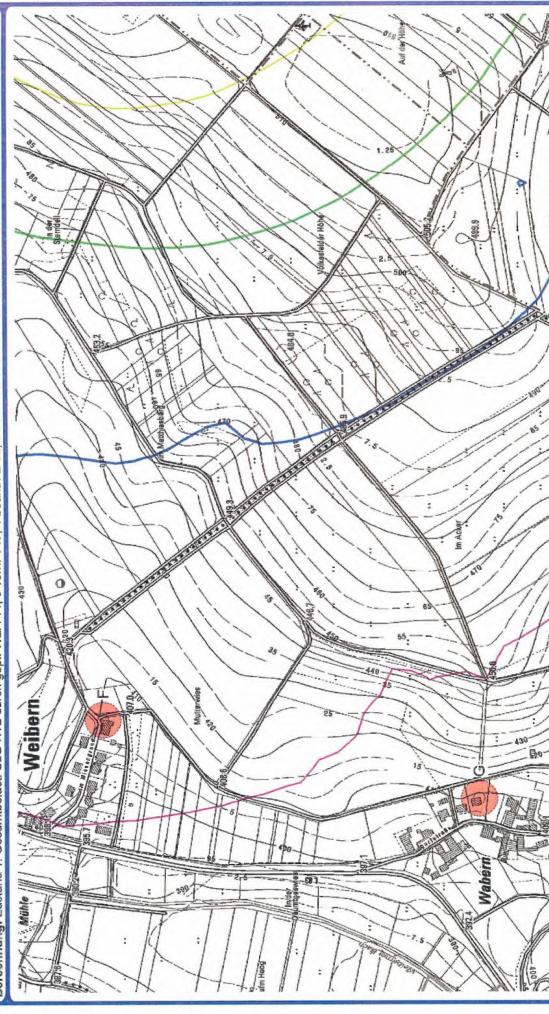

Ausdruck/Seite
25.02.2010 10:14 / 1
Lizenzierter Anwender.
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

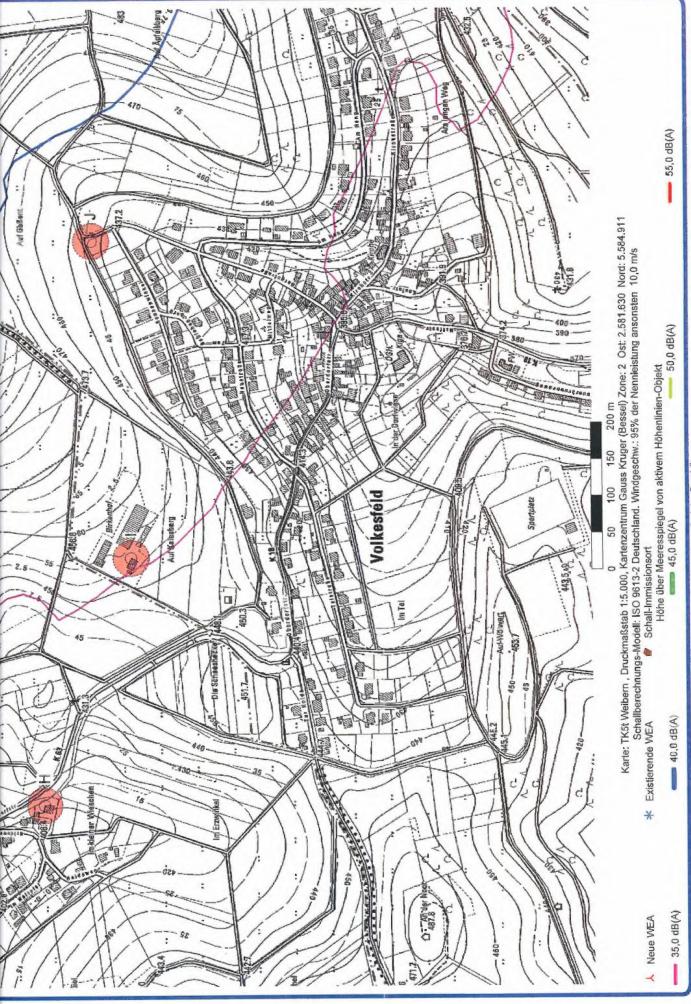
Berechnet 12.02.2010 11:35/2.6.0.235

DECIBEL - TK5t Weibern

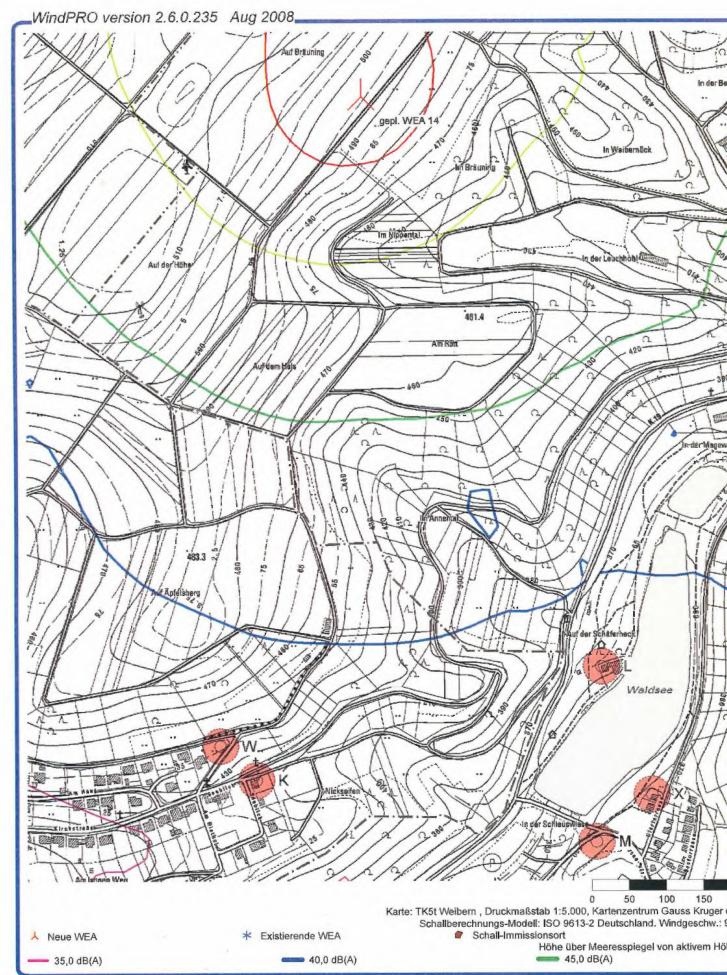
Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4

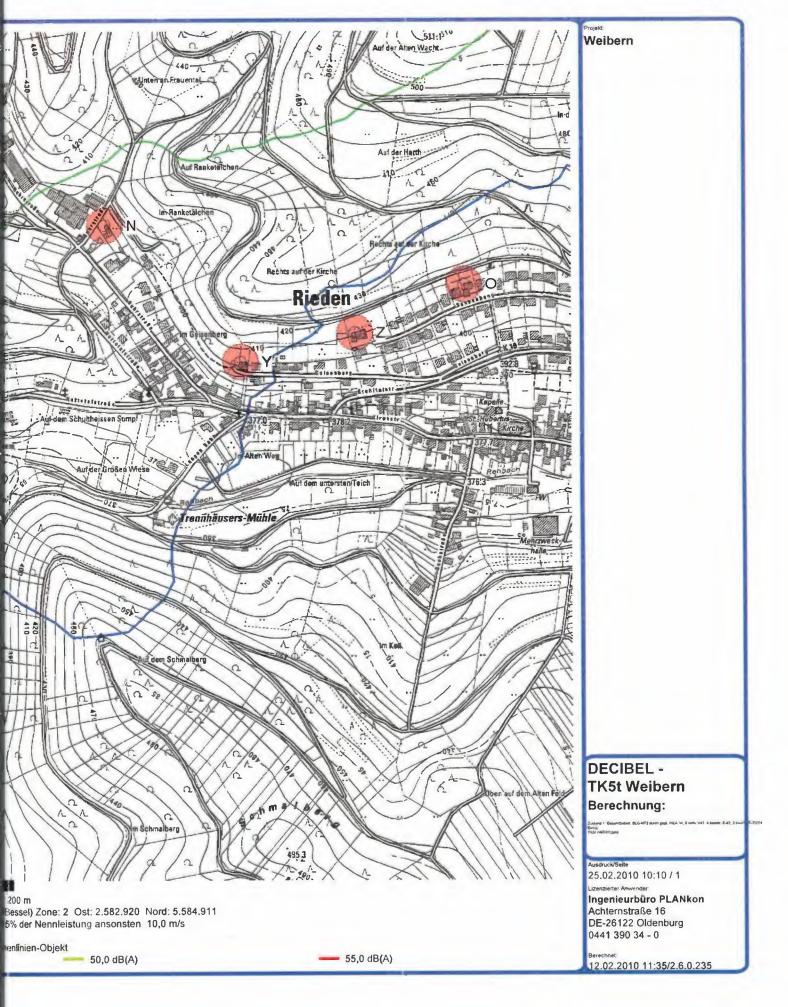
WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Q. Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk


Projekt: Weibern


Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0 25.02.2010 10:06 / 1

12.02.2010 11:35/2.6.0.235


DECIBEL - TK5t Weibern


Berechnung: Zustand 1: Gesamtbelast. SLG-NT2 durch gepl. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Datei: TK5t Weibern.bmi

WindPRO entwickelt von EMD International A/S, Mels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Windpark Weibern

Vorbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP P (Whs. Bahnhofstr. 111, Weibern)

t. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		39,58	9078,21	
2	Wolfcraft		31,00	1258,93	

S	umme aus
7	eilpegeln
	Lr
	40,14

Gesamtbelastung: 12 WEA + Gewerbe

Immissionspunkt: IP P (Whs. Bahnhofstr. 111, Weibern)

t. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		39,88	9727,47	
2	Wolfcraft		31,00	1258,93	

-	Summe aus
1	Teilpegeln
İ	Lr
ĺ	40.41

Windpark Weibern

Vorbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP Q (Whs. Löhstr. 5, Weibern)

t. Dāmpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		39,63	9183,33	
2	Wolfcraft		34,00	2511,89	

Summe aus	,			
Teilpegeln				
Lr				
40,68				

Gesamtbelastung: 12 WEA + Gewerbe

Immissionspunkt: IP Q (Whs. Löhstr. 5, Weibern)

t. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		39,98	9954,05	
2	Wolfcraft		34,00	2511,89	

	-
1	Summe aus
	Teilpegeln
1	Lr
1	40,96

Windpark Weibern

Vorbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP R (Whs. Löhstr. 6, Weibern)

t. Dämpfungskoeffizient Co: 0

Teilpegel Pegeländeru ng mit

AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	ng mit Vorzeichen
WEAs		39,19	8298,51	
Wolfcraft		31,00	1258,93	
	WEAs	WEAs	AnlBez. Pegel WEA Lp,j WEAs 39,19	AnlBez. Pegel WEA Lp,j Hilfswerte WEAs 39,19 8298,51

Summe aus
Teilpegeln
Lr
39,80

Gesamtbelastung: 12 WEA + Gewerbe

Immissionspunkt: IP R (Whs. Löhstr. 6, Weibern)

t. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		39,61	9141,13	
2	Wolfcraft		31,00	1258,93	

	Summe aus
ı	Teilpegeln
Г	Lr
Γ	40,17

Windpark Weibern

Vorbelastung: 11 WEA + Gewerbe

Immissionspunkt: IPS (Whs. Konnstr. 41, Weibern)

Met. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländer ung mit Vorzeichen
1	WEAs		38,57	7194,49	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
39,27

Gesamtbelastung: 12 WEA + Gewerbe

Immissionspunkt: IP S (Whs. Konnstr. 41, Weibern)

Met. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländer ung mit Vorzeichen
1	WEAs		39,07	8072,35	
2	Wolfcraft		31,00	1258,93	

Γ	Summe aus
L	Teilpegeln
	Lr
	39,70

Weibern

Ausdruck/Seite 12,02,2010 12:00 / 1

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

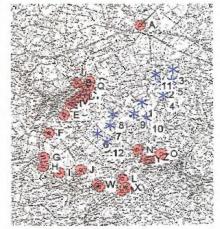
lerechnet

12.02.2010 12:00/2.6,0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet, Außenbereich: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000

★ Existierende WEA Schall-Immissionsort

WEA

	SK (Bessell) Zone: 2				WEA-T	Гур					Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Generalortyp	Nenn-	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
								leistung							tône
- 9	GK (Bessel) Zone: 2		[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
1	2.583.217	5,586,188	515,	vorh. WEA 2	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10.0	105,3	0 dB
2	2,583,645	5.588.574	536.5	worh, WEA 3	Ja	VESTAS	V47-660/200	660	47.0	65.D	USER	WT 802/98	10.0	105,3	0 dB
3	2,583,855	5,586,860	536.	3 vorh. WEA 4	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10,0	105,3	0 dB
4	2,583,661	5,586,325	524	vorh, WEA 5	Ja	VESTAS	V47-669/200	660	47.0	65,0	USER	WT 802/98	10.0	105,3	0 dB
5	2,583.835	5,586,638	530.	worh, WEA 6	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB
6	2,582,301	5.585.538	515.4	B beantr, WEA 7	Ja	ENERCON	E-82-2.000	2.000	82.0	108.4	USER	red. 1000kW + Sicherheit 2,6 S-A	10.0	101,3	0 dB
7	2,582,561	5,585,703	526.	5 beantr, WEA 8	Ja	ENERCON	E-82-2.000	2.080	82.0	108.4	USER	Volllast 103.8 + Sicherhelt 2,09 S-A	10.0	105,9	0 dB
8	2,582,621	5,585,936	533.	7 beantr, WEA 9	Ja	ENERCON	E-82-2,000	2,000	82.0	108.4	USER	red, 1000kW . Sicherheit 2,6 S-A	10.0	101,3	0 dB
9	2,583,056	5.585.948	525.1	beantr. WEA 10	Ja	ENERCON	E-70 E4 2,3 MW-2,300	2,300	71.0	113,5	USER	Vollast 104,2 + Sicherheit 2,0 S-A	10,0	105.2	0 dB
10	2,583,302	5,585,862	515,	beantr. WEA 11	Ja	ENERCON	E-82-2.000	2,000	82.0	108,4	USER	Vollast 103,8 + Sicherheit 2,09 S-A	10,0	105,9	6b 0
11	2.583.495	5.586,763	550.	beantr, WEA 12	Ja	ENERCON	E-70 E4 2.3 MW-2.300	2.300	71.0	113.5	USER	Vollast 104,2 + Sicherheit 2,0 S-A	10,0	106,2	0 dB
12	2 582 491	5.585.364	495	beantr. WEA 14	Ja	NORDEX	N90/2500 LS-2,500	2.500	90.0	100.0	USER	Vollast 3fach-Verm + Sicherheit S-A	10.0	105.7	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-	Immissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe		Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	
	A Whs. Appentalerhof	2.583.186	5.587.779	468,6	5,0	45,0	38,1	Ja
	B Whs. Winkelweg 10, Weibern	2.581.879	5,586,583	427,5	5,0	40,0	38,5	Ja
	C Whs. Waldstr. 2, Weibern	2,582.057	5.586.291	437,2	5,0	45.0	40,6	Ja
	D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5,0	45,0		Ja
	E Whs. Kirchstr. 27, Weibern	2.581.618	5,585,918	443,3	5,0	45.0	37,5	Ja
	F Whs. Im Wiesengrund 13, Weibern	2,581,306	5.585,546	415,7	5,0	45,0	36,2	Ja
	G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5,0	45,0	33,6	Ja
	H Whs. Heideweg 6a, Wabern	2.581.182	5,584,848	422,6	5,0	40,0	32,9	Ja
	I Whs. Birkenhof, Volkesfeld	2.581,520	5.584.728	460,0	5,0	45,0	35,1	Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448.7	5.0	40,0	38,2	Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584.430	427,8	5,0	40,0	37,3	Ja
	L Hotel Eifler Seehütte, Rieden	2.582.814	5.584,586	377,5	5,0	40,0	38,9	Ja
	M Whs, Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	36,9	Ja
	N Whs. Suhrstr. 24, Rieden	2,583.134	5.585.188	400,0	7,5	45,0	44,1	Ja
	O Whs. Am Sonnenhang 24, Rieden	2.583.624	5,585,107	414,6	7,5	40,0	39,1	Ja
	P Whs. Bahnhofstr. 111, Weibern	2.582.149	5.586.612	427,3	5,0	45,0	39,9	Ja
	Q Whs. Löhstr. 5, Weibern	2,582,117	5,586,518	420,0	5,0	45.0	40,0	Ja
	R Whs, Löhstr, 6, Weibern	2.582.106	5.586.464	427,3	5,0	45,0	39,6	Ja
	S Whs. Konnstr. 41, Weibern	2,582.046	5.586,426	420,0	5,0	40,0	39,1	Ja
	T Whs, Tannenweg 6, Weibern	2.582.071	5.586.322	429,1	5,0	40,0	40,5	Nein
	U Whs. Konnstr. 25, Weibern	2,581,935	5,586,303	420,0	5,0	40,0	39,6	Ja
	V Whs. Buchenweg 1, Weibern	2.581.812	5.586.207	415,6	5,0	40,0	39,1	Ja
	W Baugrundstück Am Hang, Volkesfeld	2,582,296	5,584,477	437,8	5,0	40.0	36,4	Ja
	X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0	5,0	40,0	37,5	Ja
	Y Whs. Geisenberg 19, Rieden	2,583,318	5,585,001	398,6	7,5	40,0	40,6	Nein
	Z Whs. Am Sonnenhang 40, Rieden		5,585,041					Ja

Projekt Weibern

Ausdruck/Seite
12.02.2010 12:00 / 2
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4

Abstände (m)

	WEA											
Schall-Immissionsort	1	2	3	4	5	6	7	8	9	10	11	12
A	1590	1289	1136	1529	1312	2408	2167	1927	1835	1920	1061	2513
В	1395	1766	1996	1801	1957	1127	1113	984	1338	1595	1626	1364
C	1165	1613	1886	1605	1812	792	775	667	1057	1317	1514	1024
D	1456	1930	2210	1907	2130	818	918	887	1311	1568	1838	1075
E	1621	2130	2427	2083	2331	781	967	1003	1438	1684	2059	1033
F	2017	2556	2869	2481	2756	996	1265	1372	1796	2021	2505	1199
G	2325	2891	3224	2781	3086	1212	1518	1685	2070	2261	2875	1334
H	2437	3007	3346	2886	3201	1315	1623	1804	2173	2350	3003	1407
1	2239	2815	3163	2672	3002	1126	1427	1635	1962	2112	2836	1161
J	1893	2466	2819	2304	2645	835	1106	1336	1607	1729	2512	794
K	1962	2507	2861	2307	2664	1109	1291	1531	1676	1722	2601	945
L	1653	2155	2502	1935	2293	1082	1146	1365	1384	1367	2282	843
M	1887	2380	2724	2155	2512	1295	1379	1601	1621	1594	2513	1065
N	1004	1477	1821	1253	1611	904	771	907	764	694	1616	667
0	1155	1467	1769	1219	1546	1391	1218	1301	1015	821	1661	1161
P	1149	1497	1724	1539	1687	1084	998	824	1124	1376	1355	1294
Q	1149	1529	1772	1556	1723	997	928	770	1099	1355	1400	1213
R	1145	1543	1794	1562	1738	946	886	738	1081	1339	1421	1166
S	1195	1605	1860	1618	1801	923	887	755	1117	1376	1488	1151
T	1154	1595	1864	1591	1793	817	789	672	1054	1315	1492	1046
U	1287	1731	1999	1726	1930	847	867	778	1176	1436	1627	1091
V	1405	1869	2145	1853	2068	828	902	853	1270	1529	1772	1082
W	1943	2493	2848	2297	2653	1061	1254	1495	1655	1711	2581	908
X	1809	2294	2636	2067	2423	1268	1332	1548	1547	1511	2431	1030
Y	1192	1607	1935	1368	1717	1150	1033	1166	982	861	1771	903
Z	1176	1543	1859	1298	1638	1274	1128	1237	999	839	1723	1035

Weibern

Ausdruck/Solte 12.02.2010 12:00 / 3 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.590	1.595	29,8	Nein	25,43	105,3	3,01	75,05	3,03	4,80	0,00	0,00	82,88	0,00
2	1.289	1.296	33,1	Ja	28,67	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79,64	0,00
3	1.136	1.144	44,4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0,00	0,00	77,81	0,00
4	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0,00	0,00	82,43	0,00
5	1.312	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79,87	0,00
6	2.408	2.414	56,2	Ja	17,07	101,3	3,01	78,65	4,59	4,00	0,00	0,00	87,24	0,00
7	2.167	2.174	64,8	Ja	23,26	105,9	3,01	77,74	4,13	3,78	0,00	0,00	85,65	0,00
8	1.927	1.935	74,5	Ja	20,42	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0,00
9	1.835	1.843	60,2	Ja	25,72	106,2	3,01	76,31	3,50	3,68	0,00	0,00	83,49	0,00
10	1.920	1.927	46,3	Nein	23,75	105,9	3,01	76,70	3,66	4,80	0,00	0,00	85,16	0,00
11	1.061	1.079	72,8	Ja	33,02	106,2	3,01	71,66	2,05	2,47	0,00	0,00	76,19	0,00
12	2.513	2.516	41,4	Nein	20,12	105,7	3,01	79,01	4,78	4,80	0,00	0,00	88,59	0,00

Summe 38,05

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE/	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.395	1.403	49,1	Ja	28,11	105,3	3,01	73,94	2,67	3,60	0,00	0,00	80,20	0,00
2	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0,00	0,00	84,15	0,00
3	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0,00	0,00	85,64	0,00
4	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4,00	0,00	0,00	83,58	0,00
5	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4,80	0,00	0,00	85,39	0,00
6	1.127	1.143	60,7	Ja	27,01	101,3	3,01	72,16	2,17	2,97	0,00	0,00	77,30	0,00
7	1.113	1.131	54,2	Ja	31,54	105,9	3,01	72,07	2,15	3,14	0,00	0,00	77,37	0,00
8	984	1.006	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2,60	0,00	0,00	75,56	0,00
9	1.338	1.353	69,9	Ja	29,99	106,2	3,01	73,63	2,57	3,02	0,00	0,00	79,22	0,00
10	1.595	1.607	56,8	Ja	27,15	105,9	3,01	75,12	3,05	3,58	0,00	0,00	81,76	0,00
11	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12	3,50	0,00	0,00	81,94	0,00
12	1.364	1.374	37,2	Ja	28,47	105,7	3,01	73,76	2,61	3,87	0,00	0,00	80,24	0,00

Summe 38,46

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

WE.	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.165	1.174	31,5	Nein	28,88	105,3	3,01	72,39	2,23	4,80	0,00	0,00	79,42	0,00
2	1.613	1.622	47,2	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00

Projekt Weibern

Ausdruck/Seite
12,02,2010 12;00 / 4
Lizeniserter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

Fo	rtsetzung	von der vor	igen Seite											
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	1.886	1.894	31,4	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0,00	0,00	84,94	0,00
4	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00
5	1.812	1.819	37,2	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00
6	792	814	42,1	Ja	30,54	101,3	3,00	69,22	1,55	3,00	0,00	0,00	73,77	0,00
7	775	801	34,1	Ja	34,99	105,9	3,00	69,07	1,52	3,32	0,00	0,00	73,91	0,00
8	667	699	40,8	Ja	32,32	101,3	3,00	67,88	1,33	2,76	0,00	0,00	71,98	0,00
9	1.057	1,076	44,1	Nein	30,72	106,2	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
10	1.317	1.331	31,5	Nein	28,10	105,9	3,01	73,48	2,53	4,80	0,00	0,00	80,81	0,00
11	1.514	1.531	75,4	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00
12	1.024	1.037	18,9	Nein	30,62	105,7	3,01	71,31	1,97	4,80	0,00	0,00	78,08	0,00

Summe 40,55

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81,89	0,00
2	1.930	1.938	47,1	Ja	23,92	105,3	3,01	76,75	3,68	3,97	0,00	0,00	84,39	0,00
3	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00	0,00	86,33	0,00
4	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0,00	0,00	85,08	0,00
5	2.130	2.136	38,5	Ja	22,47	105,3	3,01	77,59	4,06	4,18	0,00	0,00	85,84	0,00
6	818	842	45,7	Ja	30,28	101,3	3,00	69,50	1,60	2,92	0,00	0,00	74,02	0,00
7	918	941	42,8	Ja	33,42	105,9	3,00	70,47	1,79	3,22	0,00	0,00	75,48	0,00
8	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
9	1.311	1.328	36,9	Nein	28,42	106,2	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
10	1.568	1.580	23,4	Nein	26,13	105,9	3,01	74,97	3,00	4,80	0,00	0,00	82,78	0,00
11	1.838	1.853	81,8	Ja	26,04	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00
12	1.075	1.088	24,2	Nein	30,10	105,7	3,01	71,73	2,07	4,80	0,00	0,00	78,60	0,00

Summe 38,97

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.621	1.627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0,00
2	2.130	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86,45	0,00
3	2.427	2.432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
4	2.083	2.088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0,00	86,16	0,00
5	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00	0,00	87,61	0,00
6	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0,00	0,00	75,40	0,00
7	967	985	43,6	Nein	31,36	105,9	3,01	70,87	1,87	4,80	0,00	0,00	77,54	0,00
8	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0,00	77,93	0,00
9	1.438	1.451	32,7	Nein	27,42	106,2	3,01	74,23	2,76	4,80	0,00	0,00	81,79	0,00
10	1.684	1.694	23,7	Nein	25,31	105,9	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
11	2.059	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00
12	1.033	1.044	35,8	Nein	30,55	105,7	3,01	71,38	1,98	4,80	0,00	0,00	78,16	0,00

Summe 37,54

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

W	EA	1				95% der No	ennleistur	ng							
N	Γ.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0,00	85,77	0,00
	2	2.556	2.562	22,1	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88,84	0,00
	3	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0,00	90,43	0,00
	4	2.481	2,487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0,00
	5	2.756	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00

^{Projekt} Weibern

AusdruckSeite
12.02.2010 12:00 / 5
Likenzlerter Anwender:
Ingenieurbüro PLANkon
Achtemstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02,2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

Fc	rtsetzung	von der vor	igen Seite											
WE.	A				95% der N	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
6	996	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,79	0,00
7	1.265	1.284	57,0	Ja	30,02	105,9	3,01	73,17	2,44	3,27	0,00	0,00	78,89	0,00
8	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,87	2,64	3,48	0,00	0,00	79,99	0,00
9	1.796	1.810	40,3	Ja	25,58	106,2	3,01	76,15	3,44	4,03	0,00	0,00	83,63	0,00
10	2.021	2.032	33,7	Ja	23,66	105,9	3,01	77,16	3,86	4,23	0,00	0,00	85,25	0,00
11	2.505	2.518	62,8	Nein	20,61	106,2	3,01	79,02	4,78	4,80	0,00	0,00	88,60	0,00
12	1.199	1.213	35,1	Ja	29,93	105,7	3,01	72,67	2,30	3,80	0,00	0,00	78,78	0,00

Summe 36.21

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

WE	4				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2,325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0,00	87,58	0,00
2	2.891	2.896	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90,54	0,00
3	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00	0,00	92,12	0,00
4	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0,00	0,00	89,99	0,00
5	3.086	3.091	7,6	Nein	16,83	105,3	3,01	80,80	5,87	4,80	0,00	0,00	91,48	0,00
6	1.212	1.230	43,8	Ja	25,60	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
7	1.518	1.533	42,0	Nein	26,48	105,9	3,01	74,71	2,91	4,80	0,00	0,00	82,43	0,00
8	1.685	1.699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0,00
9	2.070	2.082	33,3	Nein	23,09	106,2	3,01	77,37	3,96	4,80	0,00	0,00	86,12	0,00
10	2.261	2.270	32,2	Nein	21,68	105,9	3,01	78,12	4,31	4,80	0,00	0,00	87,23	0,00
11	2.875	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00
12	1.334	1.345	22,4	Nein	27,77	105,7	3,01	73,58	2,56	4,80	0,00	0,00	80,93	0,00

Summe 33,59

Summe

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

WE														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.437	2.442	0,6	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0,00	88,19	0,00
2	3.007	3.013	10,3	Nein	17,21	105,3	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00
3	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4,80	0,00	0,00	92,67	0.00
4	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0,00	0,00	90,51	0,00
5	3.201	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00	0,00	92,01	0,00
6	1.315	1.331	43,1	Ja	24,61	101,3	3,01	73,48	2,53	3,68	0,00	0,00	79,69	0,00
7	1.623	1.637	40,6	Nein	25,72	105,9	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
8	1.804	1.818	43,8	Nein	19,86	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,45	0,00
9	2.173	2.184	33,7	Nein	22,48	106,2	3,01	77,78	4,15	4,80	0,00	0,00	86,73	0,00
10	2.350	2.359	35,2	Nein	21,18	105,9	3,01	78,45	4,48	4,80	0,00	0,00	87,73	0,00
11	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0.00
12	1.407	1.418	24,7	Nein	27,18	105,7	3,01	74,03	2,69	4,80	0,00	0,00	81,52	0,00

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

301	chair-immissionsort: I was. Dirkemoi, voikesield													
WE	A				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.239	2.243	11,4	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87,08	0,00
2	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90,16	0,00
3	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91,82	0,00
4	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0,00	89,43	0,00
5	3.002	3.005	17,2	Nein	17,24	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,07	0,00
6	1.126	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,66	0,00
7	1.427	1.438	46,0	Ja	28,32	105,9	3,01	74,15	2,73	3,70	0,00	0,00	80,58	0,00
8	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,33	3,13	3,84	0,00	0,00	82,29	0,00

Fortsetzung auf nächster Seite..

32,90

95

Projekt Weibern

Ausdruck/Seite
12.02.2010 12:00 / 6
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

Fo	rtsetzung	von der vor	igen Seite											
WE	4				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
9	1.962	1.970	48,2	Nein	23,78	106,2	3,01	76,89	3,74	4,80	0,00	0,00	85,43	0,00
10	2.112	2.119	53,2	Nein	22,56	105,9	3,01	77,52	4,03	4,80	0,00	0,00	86,35	0,00
11	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00
12	1.161	1.169	33,8	Ja	30,33	105,7	3,01	72,36	2,22	3,80	0,00	0,00	78,38	0,00

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

WE	A	95% der Nennleistung ostand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Crnet												
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.893	1.897	17,1	Nein	23,34	105,3	3,01	76,56	3,60	4,80	0,00	0,00	84,96	0,00
2	2.466	2.471	25,6	Nein	19,96	105,3	3,01	78,86	4,69	4,80	0,00	0,00	88,35	0,00
3	2.819	2.823	20,5	Nein	18,13	105,3	3,01	80,01	5,36	4,80	0,00	0,00	90,18	0,00
4	2.304	2.308	31,5	Nein	20,86	105,3	3,01	78,26	4,38	4,80	0,00	0,00	87,45	0,00
5	2.645	2.649	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00	0,00	89,29	0,00
6	835	852	39,7	Ja	29,89	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0,00
7	1,106	1.121	41,8	Nein	29,99	105,9	3,01	71,99	2,13	4,80	0,00	0,00	78,92	0,00
8	1.336	1.349	38,2	Nein	23,34	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80,96	0,00
9	1.607	1.617	53,5	Nein	26,16	106,2	3,01	75,18	3,07	4,80	0,00	0,00	83,05	0,00
10	1.729	1.738	63,3	Nein	25,01	105,9	3,01	75,80	3,30	4,80	0,00	0,00	83,90	0,00
11	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0,00	88,62	0,00
12	794	807	33,9	Ja	34,70	105,7	3,00	69,13	1,53	3,34	0,00	0,00	74,01	0,00

Summe 38,17

35,12

Summe

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

4				95% der No	ennleistur	ng							
Abstand	Schallweg	Mîttlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.962	1,968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0,00
2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4,19	0,00	0,00	87,97	0,00
2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0,00	0,00	89,94	0,00
2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0,00	0,00	86,72	0,00
2.664	2.669	43,1	Ja	19,47	105,3	3,01	79,53	5,07	4,25	0,00	0,00	88,84	0,00
1.109	1.125	43,9	Nein	25,34	101,3	3,01	72,03	2,14	4,80	0,00	0,00	78,96	0,00
1.291	1.307	59,2	Ja	29,86	105,9	3,01	73,33	2,48	3,24	0,00	0,00	79,05	0,00
1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,52	0,00
1.676	1.688	81,0	Ja	27,30	106,2	3,01	75,55	3,21	3,15	0,00	0,00	81,91	0,00
1.722	1.733	82,1	Ja	26,67	105,9	3,01	75,77	3,29	3,17	0,00	0,00	82,24	0,00
2.601	2.611	72,7	Ja	21,06	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,15	0,00
945	959	50,1	Ja	33,26	105,7	3,01	70,63	1,82	2,99	0,00	0,00	75,45	0,00
	Abstand [m] 1.962 2.507 2.861 2.307 2.664 1.109 1.531 1.676 1.722 2.601	Abstand Schallweg [m] [m] [m] 1.962 1.968 2.507 2.513 2.861 2.866 2.307 2.313 2.664 2.669 1.109 1.125 1.291 1.307 1.531 1.545 1.676 1.688 1.722 1.733 2.601 2.611	Abstand Schallweg Mittlere Höhe [m] [m] [m] [m] 1.962 1.968 43,2 2.507 2.513 44,6 2.861 2.866 38,0 2.307 2.313 51,3 2.664 2.669 43,1 1.109 1.125 43,9 1.291 1.307 59,2 1.531 1.545 54,7 1.676 1.688 81,0 1.722 1.733 82,1 2.601 2.611 72,7	Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] [m] 1.962 1.968 43,2 Nein 2.507 2.513 44,6 Ja 2.861 2.866 38,0 Ja 2.307 2.313 51,3 Ja 2.664 2.669 43,1 Ja 1.109 1.125 43,9 Nein 1.291 1.307 59,2 Ja 1.531 1.545 54,7 Nein 1.676 1.688 81,0 Ja 1.722 1.733 82,1 Ja 2.601 2.611 72,7 Ja	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] 1.962 1.968 43,2 Nein 22,89 2.507 2.513 44,6 Ja 20,34 2.861 2.866 38,0 Ja 18,37 2.307 2.313 51,3 Ja 21,59 2.664 2.669 43,1 Ja 19,47 1.109 1.125 43,9 Nein 25,34 1.291 1.307 59,2 Ja 29,86 1.531 1.545 54,7 Nein 21,79 1.676 1.688 81,0 Ja 27,30 1.722 1.733 82,1 Ja 26,67 2.601 2.611 72,7 Ja 21,06	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar Berechnet [dB(A)] LwA,ref [dB(A)] 1.962 1.968 43,2 Nein 22,89 105,3 2.507 2.513 44,6 Ja 20,34 105,3 2.861 2.866 38,0 Ja 18,37 105,3 2.307 2.313 51,3 Ja 21,59 105,3 2.664 2.669 43,1 Ja 19,47 105,3 1.109 1.125 43,9 Nein 25,34 101,3 1.291 1.307 59,2 Ja 29,86 105,9 1.531 1.545 54,7 Nein 21,79 101,3 1.676 1.688 81,0 Ja 27,30 106,2 1.722 1.733 82,1 Ja 26,67 105,9 2.601 2.611 72,7 Ja 21,06 106,2	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] 1.962 1.968 43,2 Nein 22,89 105,3 3,01 2.507 2.513 44,6 Ja 20,34 105,3 3,01 2.861 2.866 38,0 Ja 18,37 105,3 3,01 2.307 2.313 51,3 Ja 21,59 105,3 3,01 2.664 2.669 43,1 Ja 19,47 105,3 3,01 1.109 1.125 43,9 Nein 25,34 101,3 3,01 1.291 1.307 59,2 Ja 29,86 105,9 3,01 1.531 1.545 54,7 Nein 21,79 101,3 3,01 1.676 1.688 81,0 Ja 27,30 106,2 3,01 1.722 1.733 82,1 Ja	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.962 1.968 43,2 Nein 22,89 105,3 3,01 76,88 2.507 2.513 44,6 Ja 20,34 105,3 3,01 79,00 2.861 2.866 38,0 Ja 18,37 105,3 3,01 79,00 2.307 2.313 51,3 Ja 21,59 105,3 3,01 78,28 2.664 2.669 43,1 Ja 19,47 105,3 3,01 79,53 1.109 1.125 43,9 Nein 25,34 101,3 3,01 72,03 1.291 1.307 59,2 Ja 29,86 105,9 3,01 73,33 1.531 1.545 54,7 Nein 21,79 101,3 3,01 74,78 1.676 1.688 81,0 Ja 27,30 106,2 3,01 75,55	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB] Dc Adiv [dB] Aatm [dB] 1.962 1.968 43,2 Nein 22,89 105,3 3,01 76,88 3,74 2.507 2.513 44,6 Ja 20,34 105,3 3,01 79,00 4,77 2.861 2.866 38,0 Ja 18,37 105,3 3,01 80,15 5,45 2.307 2.313 51,3 Ja 21,59 105,3 3,01 78,28 4,39 2.664 2.669 43,1 Ja 19,47 105,3 3,01 79,53 5,07 1.109 1.125 43,9 Nein 25,34 101,3 3,01 72,03 2,14 1.531 1.545 54,7 Nein 21,79 101,3 3,01 73,33 2,48 1.576 1.688 81,0 Ja 27,30 106,2 3,01 75,55 3,21 1.722 1.733 82,1 Ja 26,67	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] 1,962 1,968 43,2 Nein 22,89 105,3 3,01 76,88 3,74 4,80 2,507 2,513 44,6 Ja 20,34 105,3 3,01 79,00 4,77 4,19 2,861 2,866 38,0 Ja 18,37 105,3 3,01 80,15 5,45 4,35 2,307 2,313 51,3 Ja 21,59 105,3 3,01 78,28 4,39 4,04 2,664 2,669 43,1 Ja 19,47 105,3 3,01 79,53 5,07 4,25 1,109 1,125 43,9 Nein 25,34 101,3 3,01 72,03 2,14 4,80 1,291 1,307 59,2 Ja 29,86 105,9 3,01 73,33 2,24 3,24 1,531 1,545 54,7 Nein 21,79 101,3	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr Abar [dB] Abar [dB] Agr Abar [dB] Agr Abar [dB] Adiv [dB] </td <td>Abstand Schallweg [m] Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]</td> <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [dB] [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]</td>	Abstand Schallweg [m] Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [dB] [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]

Summe 37,25

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

WE	A	95% der Nennleistung												
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.653	1.665	31,6	Ja	25,57	105,3	3,01	75,43	3,16	4,15	0,00	0,00	82,74	0,00
2	2.155	2.167	32,7	Nein	21,68	105,3	3,01	77,72	4,12	4,80	0,00	0,00	86,63	0,00
3	2.502	2,512	21,9	Nein	19,74	105,3	3,01	79,00	4,77	4,80	0,00	0,00	88,57	0,00
4	1.935	1.947	36,7	Ja	23,67	105,3	3,01	76,79	3,70	4,15	0,00	0,00	84,64	0,00
5	2.293	2.303	26,8	Nein	20,89	105,3	3,01	78,25	4,38	4,80	0,00	0,00	87,42	0,00
6	1.082	1.111	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,35	0,00	0,00	77,37	0,00
7	1.146	1.175	60,6	Ja	31,25	105,9	3,01	72,40	2,23	3,02	0,00	0,00	77,66	0,00
8	1.365	1.391	55,5	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0,00
9	1.384	1.409	75,4	Ja	29,60	106,2	3,01	73,98	2,68	2,96	0,00	0,00	79,61	0,00
10	1.367	1.389	78,3	Ja	29,56	105,9	3,01	73,85	2,64	2,86	0,00	0,00	79,35	0,00
11	2.282	2.300	56,8	Ja	22,65	106,2	3,01	78,23	4,37	3,95	0,00	0,00	86,56	0,00

96

Weibern

Ausdruck/Selte
12.02.2010 12:00 / 7
Lizenzierter Anwender:
Ingenieurbüro PŁANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

..Fortsetzung von der vorigen Seite 95% der Nennleistung Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)] [dB(A)] [dB] [dB] 34,46 105,7 3,00 69,80 [m] 871 [dB] [dB] [dB] [dB] [dB] [m] [m] [dB] 0,00 74,24 0,00 843 Ja 34,46 1,66 2,79 0,00

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

WE	1				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0,00
2	2.380	2.391	37,2	Ja	20,93	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,38	0,00
3	2.724	2.734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89,73	0,00
4	2.155	2.167	40,9	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
5	2.512	2.522	31,2	Nein	19,68	105,3	3,01	79,04	4,79	4,80	0,00	0,00	88,63	0,00
6	1.295	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00
7	1.379	1.405	66,2	Ja	29,11	105,9	3,01	73,95	2,67	3,18	0,00	0,00	79,80	0,00
8	1.601	1.624	61,6	Ja	22,51	101,3	3,01	75,21	3,09	3,50	0,00	0,00	81,79	0,00
9	1.621	1.643	82,0	Ja	27,69	106,2	3,01	75,31	3,12	3,08	0,00	0,00	81,52	0,00
10	1.594	1.615	83,8	Ja	27,66	105,9	3,01	75,16	3,07	3,02	0,00	0,00	81,25	0,00
11	2.513	2,530	64,7	Ja	21,41	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,80	0,00
12	1.065	1.089	59,2	Ja	31,97	105,7	3,01	71,74	2,07	2,92	0,00	0,00	76,74	0,00

Summe 36,91

Summe 38,95

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

AAE	H				32% del M	ennieistur	19							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.004	1.018	23,6	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00
2	1.477	1.490	15,0	Nein	26,22	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0,00
3	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0,00	84,54	0,00
4	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0,00
5	1.611	1.622	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
6	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0,00	74,91	0,00
7	771	804	71,5	Ja	36,56	105,9	3,00	69,10	1,53	1,71	0,00	0,00	72,34	0,00
8	907	937	62,2	Ja	29,59	101,3	3,00	70,44	1,78	2,50	0,00	0,00	74,72	0,00
9	764	798	54,4	Ja	36,21	106,2	3,00	69,04	1,52	2,43	0,00	0,00	72,99	0,00
10	694	727	60,2	Ja	37,37	105,9	3,00	68,23	1,38	1,92	0,00	0,00	71,53	0,00
11	1.616	1.636	46,6	Nein	26,02	106,2	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
12	667	693	61,8	Ja	37,88	105,7	3,00	67,81	1,32	1,69	0,00	0,00	70,82	0,00

Summe 44,05

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
2	1.467	1.478	20,3	Nein	26,31	105,3	3,01	74,39	2,81	4,80	0,00	0,00	82,00	0,00
3	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0,00
4	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0,00
5	1.546	1.556	10,1	Nein	25,72	105,3	3,01	74,84	2,96	4,80	0,00	0,00	82,59	0,00
6	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
7	1.218	1,237	74,8	Nein	28,91	105,9	3,01	72,85	2,35	4,80	0,00	0,00	80,00	0,00
8	1.301	1.320	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,72	0,00
9	1.015	1.037	49,5	Nein	31,11	106,2	3,00	71,32	1,97	4,80	0,00	0,00	78,09	0,00
10	821	845	39,1	Nein	32,96	105,9	3,00	69,54	1,61	4,80	0,00	0,00	75,94	0,00
11	1.661	1.679	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00
12	1.161	1.174	71,8	Nein	29,28	105,7	3,01	72,40	2,23	4,80	0,00	0,00	79,43	0,00

Summe 39,15

Projekt Weibern

Ausdruck/Selte
12.02.2010 12:00 / 8
Lizenzieriar Amwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

erechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

Scl	Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern													
WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00
2	1.497	1.506	30,9	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
3	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00
4	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00
5	1.687	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
6	1.084	1.101	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,21	0,00
7	998	1.018	45,9	Ja	32,58	105,9	3,01	71,16	1,93	3,24	0,00	0,00	76,33	0,00
8	824	850	66,3	Ja	31,00	101,3	3,00	69,59	1,62	2,10	0,00	0,00	73,30	0,00
9	1.124	1.143	71,6	Ja	32,24	106,2	3,01	72,16	2,17	2,64	0,00	0,00	76,97	0,00
10	1.376	1.389	53,5	Ja	28,94	105,9	3,01	73,85	2,64	3,47	0,00	0,00	79,96	0,00
11	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00
12	1.294	1.304	23,8	Nein	28,12	105,7	3,01	73,31	2,48	4,80	0,00	0,00	80,59	0,00

Summe 39,88

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

W	=A	95% der Nennielstung Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Cmet													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1 1.149	1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00	
	2 1.529	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00	
	3 1.772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00	
	4 1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0,00	
	5 1.723	1.731	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,86	0,00	
	6 997	1.017	41,3	Nein	26,43	101,3	3,01	71,14	1,93	4,80	0,00	0,00	77,87	0,00	
	7 928	952	34,3	Ja	32,97	105,9	3,00	70,57	1,81	3,55	0,00	0,00	75,93	0,00	
	8 770	800	52,0	Ja	31,18	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,12	0,00	
	9 1.099	1.119	63,2	Ja	32,25	106,2	3,01	71,98	2,13	2,85	0,00	0,00	76,96	0,00	
1	0 1.355	1.369	49,2	Ja	29,01	105,9	3,01	73,73	2,60	3,56	0,00	0,00	79,90	0,00	
1	1 1.400	1.420	56,7	Nein	27,66	106,2	3,01	74,05	2,70	4,80	0,00	0,00	81,55	0,00	
1	2 1.213	1.225	16,5	Nein	28,81	105,7	3,01	72,76	2,33	4,80	0,00	0,00	79,89	0,00	

Summe 39,98

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WEA	1				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.145	1.155	39,1	Nein	29,06	105,3	3,01	72,25	2,19	4,80	0,00	0,00	79,24	0,00
2	1.543	1.553	44,0	Ja	26,71	105,3	3,01	74,82	2,95	3,82	0,00	0,00	81,60	0,00
3	1.794	1.802	20,2	Nein	23,97	105,3	3,01	76,12	3,42	4,80	0,00	0,00	84,34	0,00
4	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92	2,98	4,80	0,00	0,00	82,70	0,00
5	1.738	1.746	32,3	Nein	24,35	105,3	3,01	75,84	3,32	4,80	0,00	0,00	83,96	0,00
6	946	965	42,8	Nein	26,98	101,3	3,01	70,69	1,83	4,80	0,00	0,00	77,33	0,00
7	886	910	34,4	Nein	32,20	105,9	3,00	70,18	1,73	4,80	0,00	0,00	76,71	0,00
8	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72,71	0,00
9	1.081	1.101	59,0	Nein	30,48	106,2	3,01	71,84	2,09	4,80	0,00	0,00	78,73	0,00
10	1.339	1.353	45,9	Nein	27,91	105,9	3,01	73,63	2,57	4,80	0,00	0,00	81,00	0,00
11	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,15	0,00
12	1.166	1.177	18,1	Nein	29,25	105,7	3,01	72,42	2,24	4,80	0,00	0,00	79,45	0,00

Summe 39,61

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE	A				95% der N	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,71	0,00
2	1.605	1.615	43,0	Nein	25,28	105,3	3,01	75,16	3,07	4,80	0,00	0,00	83,03	0,00
3	1.860	1.869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00

Projekt Weibern

Ausdruck/Solte
12.02.2010 12:00 / 9
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

Fo	rtsetzung	von der vor	igen Seite											
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
4	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	0,00	83,11	0,00
5	1.801	1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00
6	923	945	45,0	Ja	28,85	101,3	3,00	70,50	1,79	3,15	0,00	0,00	75,45	0,00
7	887	912	33,6	Nein	32,18	105,9	3,00	70,20	1,73	4,80	0,00	0,00	76,73	0,00
8	755	785	44,7	Nein	29,11	101,3	3,00	68,90	1,49	4,80	0,00	0,00	75,19	0,00
9	1.117	1.137	51,9	Nein	30,13	106,2	3,01	72,12	2,16	4,80	0,00	0,00	79,08	0,00
10	1.376	1.391	39,3	Nein	27,60	105,9	3,01	73,86	2,64	4,80	0,00	0,00	81,31	0,00
11	1.488	1.507	66,6	Nein	26,99	106,2	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
12	1.151	1.164	19,6	Nein	29,38	105,7	3,01	72,32	2,21	4,80	0,00	0,00	79,33	0,00

Summe 39,07

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0,00
2	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0,00
3	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
4	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00
5	1.793	1.800	37,7	Nein	23,98	105,3	3,01	76,11	3,42	4,80	0,00	0,00	84,33	0,00
6	817	838	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,06	0,00
7	789	814	33,6	Ja	34,77	105,9	3,00	69,22	1,55	3,37	0,00	0,00	74,13	0,00
8	672	703	41,6	Ja	32,28	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
9	1.054	1.074	46,9	Nein	30,75	106,2	3,01	71,62	2,04	4,80	0,00	0,00	78,46	0,00
10	1.315	1.328	34,5	Nein	28,12	105,9	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
11	1.492	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00
12	1.046	1.058	19,6	Nein	30,40	105,7	3,01	71,49	2,01	4,80	0,00	0,00	78,30	0,00

Summe 40,47

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

WE	1				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
2	1.731	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
3	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
4	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
5	1.930	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00
6	847	870	43,7	Ja	29,80	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
7	867	892	37,4	Ja	33,86	105,9	3,00	70,00	1,69	3,34	0,00	0,00	75,04	0,00
8	778	807	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
9	1.176	1.195	44,6	Nein	29,59	106,2	3,01	72,55	2,27	4,80	0,00	0,00	79,62	0,00
10	1.436	1.450	31,2	Nein	27,13	105,9	3,01	74,23	2,75	4,80	0,00	0,00	81,78	0,00
11	1.627	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00
12	1.091	1.104	20,0	Nein	29,95	105,7	3,01	71,86	2,10	4,80	0,00	0,00	78,76	0,00

Summe 39,60

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00
2	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,00	0,00
3	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00
4	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00
5	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00
6	828	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,90	0,00	0,00	74,14	0,00

09

Projekt Weibern

12.02.2010 12:00 / 10
Lizenzierter Anwender:
Ingenieurbüro PLANkon

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc

Fo	rtsetzung	von der vor	igen Seite											
WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
7	902	928	38,6	Ja	33,44	105,9	3,00	70,35	1,76	3,36	0,00	0,00	75,47	0,00
8	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
9	1.270	1.289	37,8	Nein	28,75	106,2	3,01	73,21	2,45	4,80	0,00	0,00	80,45	0,00
10	1.529	1.543	23,7	Nein	26,41	105,9	3,01	74,76	2,93	4,80	0,00	0,00	82,50	0,00
11	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00
12	1.082	1.096	23,8	Nein	30,02	105,7	3,01	71,80	2,08	4,80	0,00	0,00	78,68	0,00

Summe 39,08

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

WEA	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1,943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00
2	2.493	2,498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00
3	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00
4	2.297	2.302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00
5	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00
6	1.061	1.076	43,1	Nein	25,82	101,3	3,01	71,64	2,05	4,80	0,00	0,00	78,48	0,00
7	1.254	1.269	56,8	Nein	28,63	105,9	3,01	73,07	2,41	4,80	0,00	0,00	80,28	0,00
8	1.495	1.508	52,7	Nein	22,08	101,3	3,01	74,57	2,87	4,80	0,00	0,00	82,23	0,00
9	1.655	1.667	81,7	Nein	25,80	106,2	3,01	75,44	3,17	4,80	0,00	0,00	83,40	0,00
10	1.711	1.721	80,8	Ja	26,74	105,9	3,01	75,71	3,27	3,19	0,00	0,00	82,17	0,00
11	2.581	2.591	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00
12	908	920	47,4	Nein	31,88	105,7	3,01	70,28	1,75	4,80	0,00	0,00	76,83	0,00

Summe 36,37

Schall-Immissionsort: X Uferterrasse 3, Rieden

WE	4				95% der No	ennleistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0,00	0,00	83,71	0,00
2	2.294	2.305	35,6	Ja	21,41	105,3	3,01	78,25	4,38	4,27	0,00	0,00	86,90	0,00
3	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45	5,03	4,80	0,00	0,00	89,28	0,00
4	2.067	2.078	39,6	Ja	22,86	105,3	3,01	77,35	3,95	4,15	0,00	0,00	85,45	0,00
5	2.423	2.433	30,4	Nein	20,16	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
6	1.268	1.293	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0,00	0,00	78,91	0,00
7	1.332	1.357	72,9	Ja	29,73	105,9	3,01	73,65	2,58	2,95	0,00	0,00	79,18	0,00
8	1.548	1.571	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0,00	0,00	81,22	0,00
9	1.547	1.569	85,1	Ja	28,38	106,2	3,01	74,91	2,98	2,93	0,00	0,00	80,83	0,00
10	1.511	1.531	83,9	Ja	28,38	105,9	3,01	74,70	2,91	2,92	0,00	0,00	80,52	0,00
11	2.431	2,448	66,8	Ja	21,92	106,2	3,01	78,78	4,65	3,87	0,00	0,00	87,29	0,00
12	1.030	1.053	62,4	Ja	32,50	105,7	3,01	71,45	2,00	2,75	0,00	0,00	76,21	0,00

Summe 37,49

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

WE	Ą				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Do	Adiv	Aatm	Agr	Abar	Amisc	A	Cret
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0,00
2	1,607	1.618	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
3	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
4	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
5	1.717	1.728	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00		83,83	0,00
6	1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
7	1.033	1.058	82,8	Ja	33,31	105,9	3,00	71,49	2,01	2,09	0,00	0,00	75,59	0,00
8	1.166	1.190	71,1	Ja	26,79	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0,00
9	982	1.010	64,4	Nein	31,40	106,2	3,00	71,08	1,92	4,80	0,00	0,00	77,80	0,00

Projekt Weibern

Ausdruck/Seite
12.02.2010 12:00 / 11
Lizenzlierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg

Berechnet

0441 390 34 - 0

12.02.2010 12:00/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Sc ...

Fo	rtsetzung	von der vor	igen Seite											
WE	A				95% der Ne	ennleistur	ig							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
10	861	888	50,2	Nein	32,44	105,9	3,00	69,97	1,69	4,80	0,00	0,00	76,46	0,00
11	1.771	1.790	42,5	Nein	24,95	106,2	3,01	75,06	3,40	4,80	0,00	0,00	84,26	0,00
12	903	923	76,7	Ja	34,73	105,7	3,00	70,30	1,75	1,92	0,00	0,00	73,98	0,00

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.176	1.187	11,3	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
2	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
3	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
4	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
5	1.638	1.648	9,4	Nein	25,04	105,3	3,01	75,34	3,13	4,80	0,00	0,00	83,27	0,00
6	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
7	1.128	1.149	80,6	Nein	29,72	105,9	3,00	72,21	2,18	4,80	0,00	0,00	79,19	0,00
8	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,18	0,00
9	999	1.023	59,2	Nein	31,26	106,2	3,00	71,20	1,94	4,80	0,00	0,00	77,94	0,00
10	839	864	42,9	Nein	32,73	105,9	3,00	69,73	1,64	4,80	0,00	0,00	76,17	0,00
11	1.723	1.740	42,5	Nein	25,29	106,2	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
12	1.035	1.050	76,6	Ja	33,01	105,7	3,00	71,42	2,00	2,28	0,00	0,00	75,70	0,00

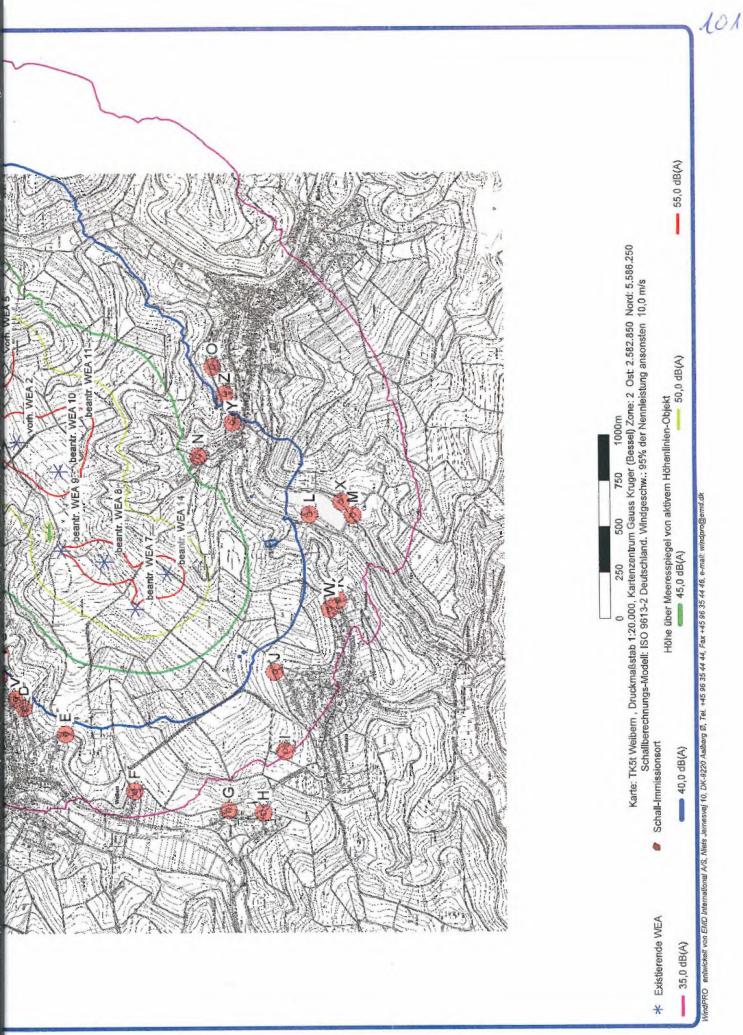
Summe 39,66

40,64

Summe

Projekt Weibern

25.02.2010 10:22 / 1


Liberationer Anwerder.
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

12.02.2010 12:00/2.6.0.235

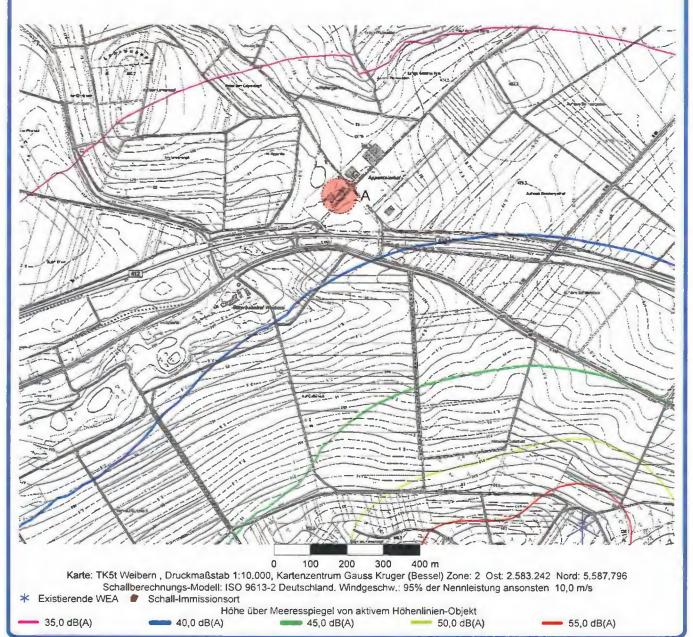
DECIBEL - TK5t Weibern

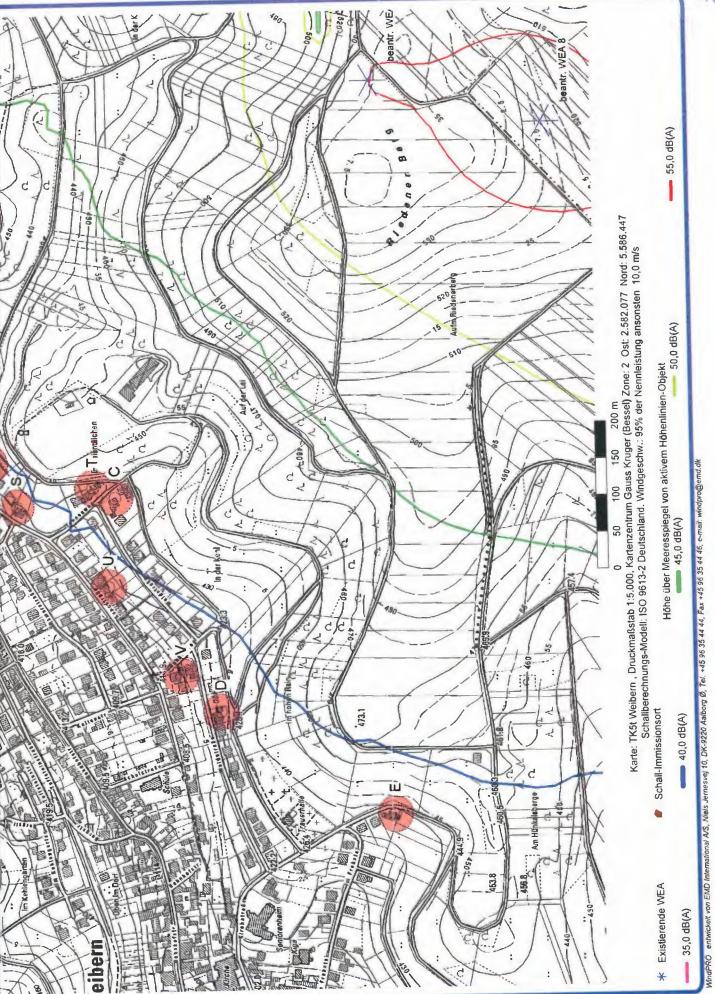
Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Datei: TK5t Weibern.bmi

ndPRO entwickelt von EMD International A/S, Niets Jernesvel 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mall: windpro@emd.dk

Projekt Weibern

Ausdruck/Scita
25.02.2010 10:47 / 1
Lizenzierter Anwender.
Ingenieurbüro PLANkon
Achternstraße 16

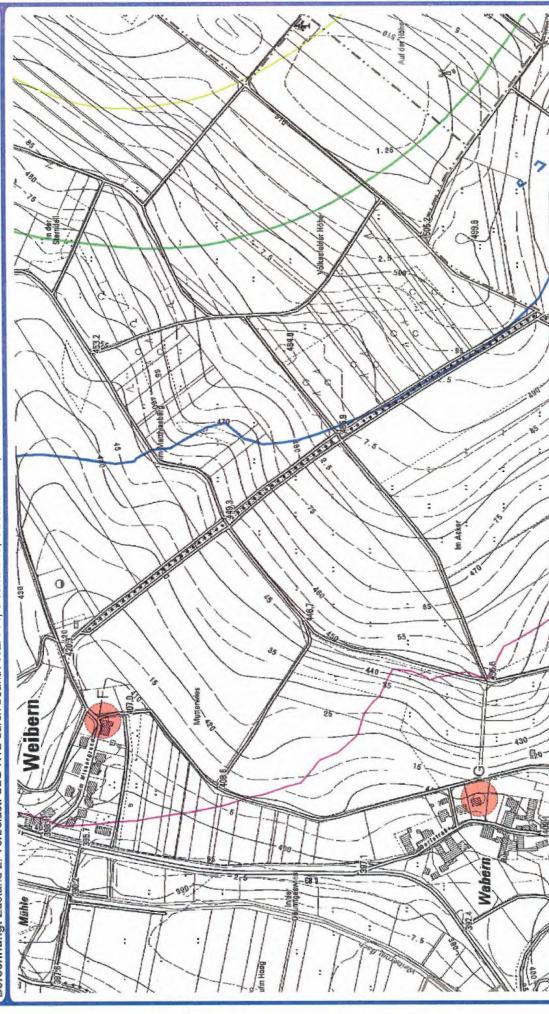

Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

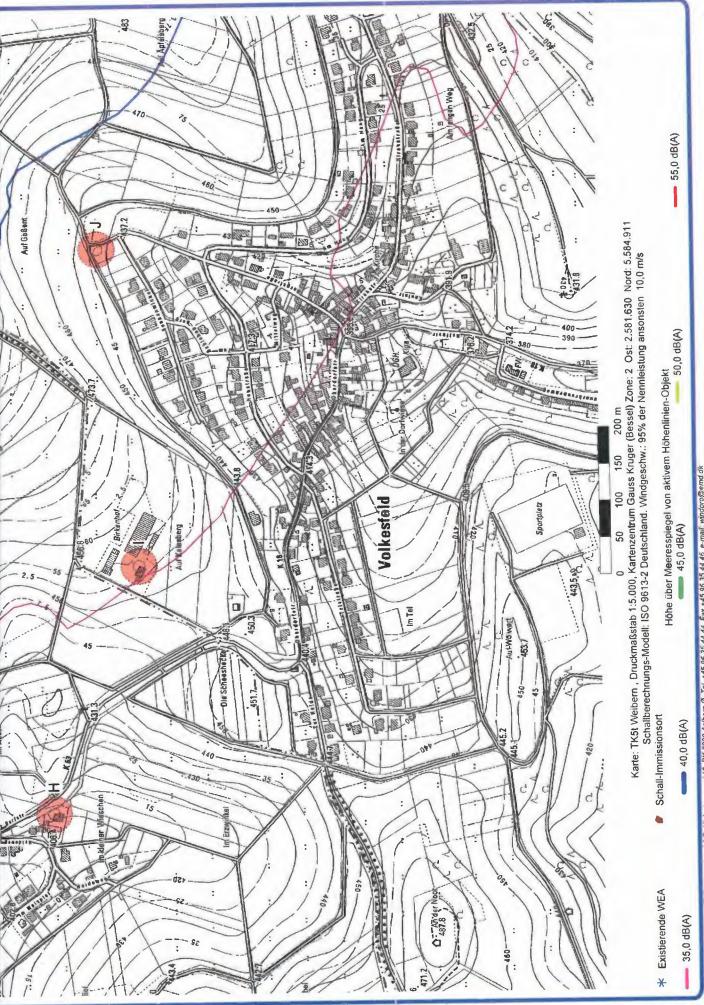

Borechnet

12.02.2010 12:00/2.6.0.235

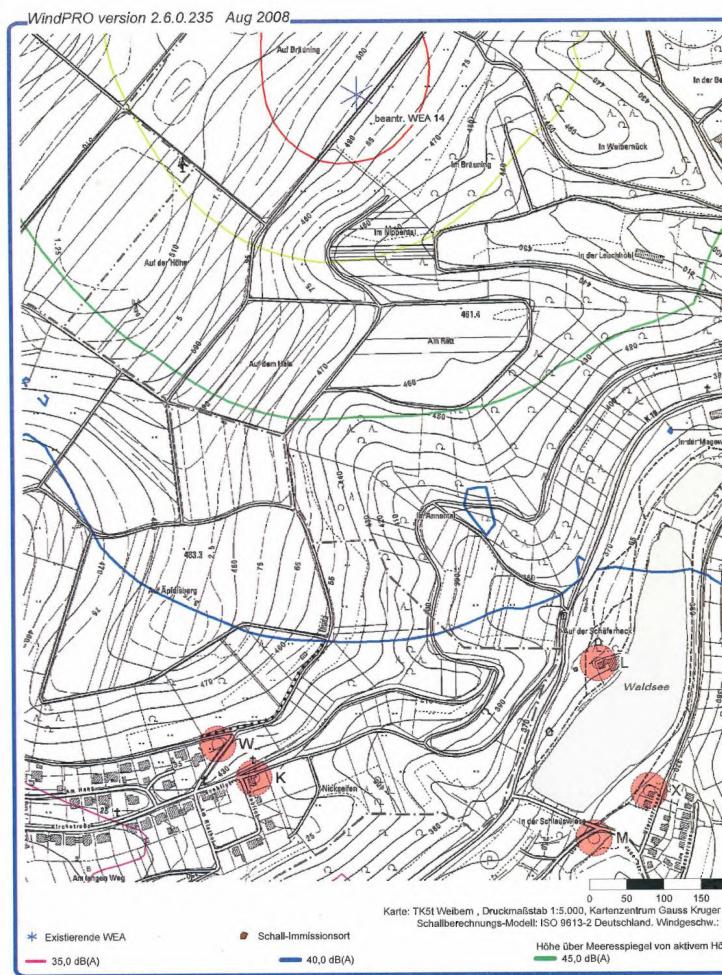
DECIBEL - TK5t Weibern

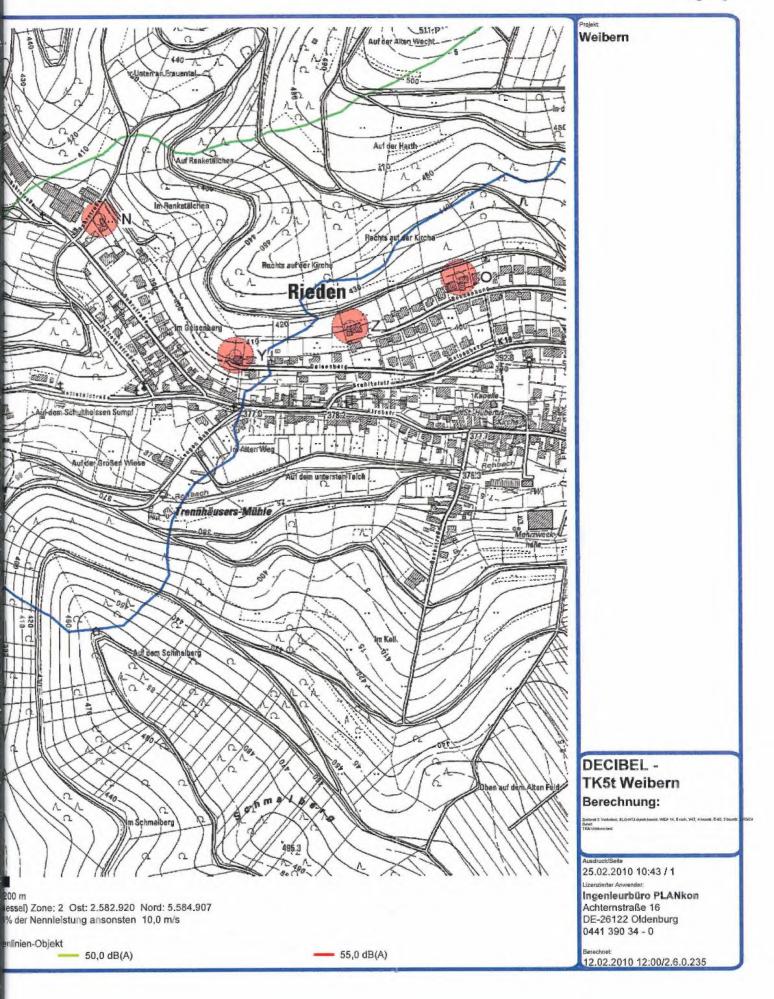
Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Da


Projekt Weibern


Lizantiurter Anwender.
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg 25.02,2010 10:31 / 1 0441 390 34 - 0

12.02.2010 12:00/2.6.0.235


DECIBEL - TK5t Weibern


Berechnung: Zustand 2: Vorbelast. SLG-NT2 durch beantr. WEA 14, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4 Datei: TK5t Weibern.bmi

WindPRO entwickett von EMD International A/S. Niels Jemesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail. windpro@emd.dk

Weibern

Ausdruck/Selte 12.02.2010 12:09 / 1

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 12:09/2.6.0.235

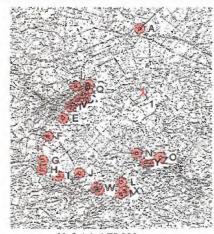
DECIBEL - Hauptergebnis

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw, in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A)

Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1;75,000 Schall-Immissionsort

WEA

GK (Bessel) 2 Ost	Zone: 2	Nord	z	Beschreibung	WEA-T Aktuell		Generatortyp		Rotordurchmesser	Nabenhöhe	Schall		Windgeschw.	LwA,ref	Einzel-
GK (Bessel) 2 1 2,5			[m] 493,3	gepl. WEA 17	Ja	NORDEX	N90/2500 LS-2,500	leistung [kW] 2.500	[m] 90,0	[m] 100,0	USER	Volllast 3fach-Verm + Sicherheit S-A	[m/s] 10,0	[dB(A)] 105,7	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-l	mmissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z [m]	Aufpunkthöhe [m]	Schall [dB(A)]	Von WEA [dB(A)]	Schall
	A Whs. Appentalerhof	2,583,186	5,587,779					Ja
	B Whs. Winkelweg 10, Weibern	2,581,879	5.586.583	427.5	5,0	40.0	28.8	Ja
	C Whs. Waldstr. 2, Weibern	2,582,057	5,586,291	437.2			28,9	Ja
	D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5.0			Ja
	E Whs. Kirchstr. 27, Weibern	2.581,618	5.585,918	443,3	5.0	45,0	24.9	Ja
	F Whs, Im Wiesengrund 13, Weibern	2.581,306	5,585,546	415.7	5,0	45,0	22,1	Ja
	G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5,0	45,0	20,2	Ja
	H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0	19,5	Ja
	I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0	20,5	Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448,7	5,0	40,0	22,3	Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5,584,430	427,8	5.0	40,0	21,8	Ja
	L Hotel Eifler Seehütte, Rieden	2,582,814	5,584,586	377,5	5,0	40,0	24,1	Ja
	M Whs. Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	22,7	Ja
	N Whs. Suhrstr. 24, Rieden	2.583,134	5.585,188	400,0	7,5	45,0	28,3	Ja
	O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585,107	414,6	7,5	40,0	27,3	Ja
	P Whs. Bahnhofstr. 111, Weibern	2,582,149	5.586.612	427,3	5,0	45,0	29,7	Ja
	Q Whs. Löhstr. 5, Weibern	2,582,117	5,586,518	420,0	5,0	45,0	30,9	Ja
	R Whs. Löhstr, 6, Weibern	2,582,106	5.586,464	427,3	5,0	45,0	31,0	Ja
	S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420,0	5,0	40,0	28.8	Ja
	T Whs. Tannenweg 6, Weibern	2,582,071	5.586.322	429,1	5,0	40,0	29,0	Ja
	U Whs, Konnstr. 25, Weibern	2,581,935	5,586,303	420,0	5,0	40,0	27,8	Ja
	V Whs. Buchenweg 1, Weibern	2.581.812	5,586,207	415,6	5,0	40,0	27,9	Ja
	W Baugrundstück Am Hang, Volkesfeld	2,582,296	5.584,477	437,8	5,0	40,0	21,9	Ja
	X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0	5,0	40,0	23,2	Ja
	Y Whs. Geisenberg 19, Rieden	2.583.318	5.585.001	398,6	7,5	40,0	26,8	Ja
	Z Whs. Am Sonnenhang 40, Rieden	2.583.474	5.585.041	410,9	7,5	40,0	27,0	Ja

_{Projekt} Weibern

12.02.2010 12:09 / 2 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 12.02.2010 12:09/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17

Abstände (m)

WEA Schall-Immissionsort 1330 В 1384 C 1210 D 1524 E 1722 F 2150 G 2498 H 2621 1 2446 J 2119 K 2216 L 1917 M 2151 N 1268 0 1393 1119 Q 1141 1151 R S 1210 T 1193 U 1329 V 1464 W 2194 X 2074 Y 1451 1451 Z 1426

Weibern

12.02.2010 12:09 / 3 Lizenzierter Anwe Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 12:09/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17 Schallberechnungs-Modell: 150 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA.ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc;

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WEA

95% der Nennleistung

[m] [m] [m]

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB]

1.330 1.336 37.8 Ja 28,83 105,7 3,01 73,52 2,54 3,83 0,00 0,00 79,88 0.00

Summe

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB] [dB] [dB] [dB] [dB] 105,7 3,01 73,88 2,65 3,39 0,00 [dB(A)][dB] [dB] 1.393 57.0 1.384 0,00 79,92 0,00

28.79 Summe

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] Adiv Aatm Agr Abar Amisc Cmet [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.210 1.220 Nein 28,86 105,7 3,01 72,73 2,32 4,80 0,00 0.00 79.85 0.00

Summe 28,86

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB] [dB] [dB] [dB] [m] [m] [m] [dB(A)][dB(A)] [dB] 1,524 1.533 49,6 27,40 105,7 3,01 74,71 2,91 3,69 0,00 0,00 81,31

Summe 27,40

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)] [dB(A)] [dB] [dB] 24,87 105,7 3,01 75,75 [dB] [m] [m] [dB] [dB] [dB] [dB] [dB] [m] 1.722 1.729 40.1 Nein 24.87 3,28 4,80 0,00 0.00 83.84 0.00

Summe 24,87

Weibern

12.02.2010 12:09 / 4 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 12.02.2010 12:09/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

95% der Nennleistung

 Nr.
 Abstand
 Schallweg
 Mittlere H\u00f6he
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 [dB] 0.00 86,58

Summe 22,13

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Cmet [m] [m][m] 2.504 2.498 22.0 Nein 20.18 105,7 3,01 78,97 4,76 4,80 0,00 0,00 88,53 0,00

Summe 20.18

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc (B(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 105,7 3,01 79,39 4,99 4,80 0,00 0,00 [m] [m][dB(A)] [dB(A)] [dB] [dB] 16.5 Nein 1 2.621 2.627 19,53

Summe 19.53

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] Cmet [dB] 1 2.446 20.0 2.450 Nein 105,7 3,01 78,78 4,65 4,80 0,00 20.47 0.00 88.24

Summe 20,47

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Cmet
[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [m] 17,5 1 2.119 2.123 Nein 22,33 105,7 3,01 77,54 4,03 4,80 0,00

Summe 22,33

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] 1 2.216 2.222 Nein 21,75

Summe 21.75

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

95% der Nennleistung

Cmet [dB]

Summe 24,08

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet lerc [m] 36,4 [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [m] 2.151 2.163 Ja 22,68 105,7 3,01 77,70 4,11 4,22 0,00 0.00 86.03

Summe 22,68

Weibern

WindPRO version 2.6.0.235 Aug 2008

12.02.2010 12:09 / 5

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02.2010 12:09/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A
[m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1 1.268 1.282 23 4 Nein 28,32 105,7 3,01 73,16 2,44 4,80 0,00 0,00 80,39

Summe 28,32

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A Cmet [m] [m] [m] [dB] 1.393 1.403 0.00

Summe 27.30

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] Adiv Aatm Agr Abar Amisc Cmet [dB] [dB] [dB] [dB] [dB] 1.119 1.130 414 Nein 29.69 105,7 3,01 72,07 2,15 4,80 0,00 0,00 79,01 0,00

Summe 29,69

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

95% der Nennleistung

Cmet [dB] 0.00 77,77

Summe 30.93

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

95% der Nennleistung

 Nr.
 Abstand
 Schallweg
 Mittlere Höhe
 Sichtbar
 Berechnet
 LwA,ref
 Dc
 Adiv
 Aatm
 Agr
 Abar
 Amisc
 A

 [m]
 [m]
 [m]
 [dB(A)]
 [dB(A)]
 [dB]
 <t 0,00 77,75

30,96 Summe

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

95% der Nennleistung

 Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB]
 Adiv Aatm Agr Abar Amisc [dB(A)] [dB] [dB] [dB] [dB] [dB]

 1 1.210 1.222 50,7 Nein 28,85 105,7 3,01 72,74 2,32 4,80 0,00 0,00
 [dB] [dB] 0.00 79.86 0.00

Summe 28.85

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

95% der Nennleistung

Crnet [dB] 0.00 79.69 0.00

Summe 29,01

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] 53,0 1.329 1.340 Nein 27,82 105,7 3,01 73,54 2,55 4,80 0,00

27,82 Summe

Weibern

12.02.2010 12:09 / 6 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg

0441 390 34 - 0

12.02.2010 12:09/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] 1.474 [m] [dB] [dB] 1.464 49.1 Ja 0,00 80,83 0,00

Summe 27.88

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

95% der Nennleistung

[dB] [dB] 0,00 86,82 0.00

Summe 21,89

Schall-Immissionsort: X Uferterrasse 3, Rieden

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] Adiv Aatm Agr Abar Amisc Cmet [m] 37,7 [dB] [dB] [dB] [dB] [dB] 2.085 2.074 Ja 105,7 3,01 77,38 3,96 4,18 0,00 23,19 0,00 85,52

Summe 23,19

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

95% der Nennleistung

0,00 81,88 0,00

26.82 Summe

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

95% der Nennleistung

 Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc
 Adiv Aatm
 Agr Abar Amisc
 A
 Cmet

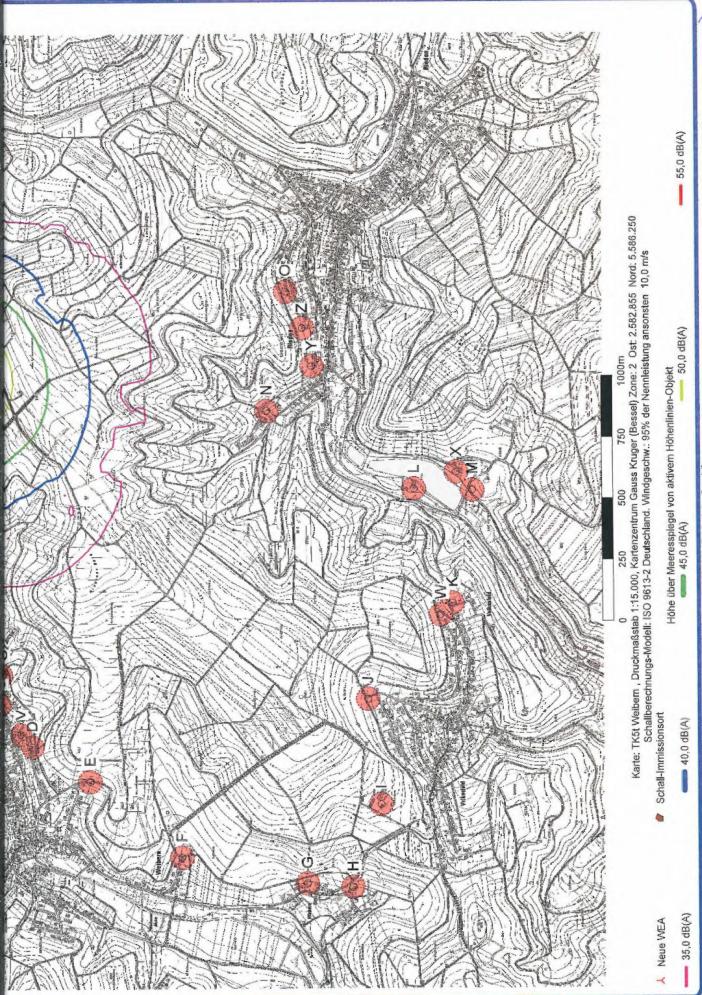
 [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB]
 [dB] [dB] [dB] [dB]
 [dB] [dB] [dB] [dB]

 1 1.426 1.437 14,0 Nein 27,03
 105,7 3,01 74,15 2,73 4,80 0,00 0,00 81,68 0,00
 [m] 14,0

Summe 27,03

Projekt: Weibern

25.02,2010 10:52 / 1


Lizenzierter Amender.
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet 12.02,2010 12:09/2.6.0.235

DECIBEL - TK5t Weibern

Berechnung: Zustand 2: Zusatzbelast. SLG-NT2 durch gepl. WEA 17 Datei: TK5t Weibern.bmi

MindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalthorg Ø, Tel. +45 98 35 44 44, Fax +45 96 35 44 46, e-melt: windpro@emd.dk

Weibern

12.02.2010 12:20 / 1
Uzenzierter Arwender:
Ingenieurbüro PLANkon
Achternstraße 16

DE-26122 Oldenburg 0441 390 34 - 0

erechnet

12.02.2010 12:20/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw, in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Dorr- und Mischgebiet; Außenbereich: 4 Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1:75.000

* Existierende WEA

Schall-Immissionsort

WEA

	GK (Bessel) Zone: 2				WEA-T	ур					Schall	werto				
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Generatoriyp	Nenn-	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-	
								telstung							täne	
	GK (Bessel) Zone: 2		[m]					[kW/]	[m]	[m]			[m/s]	[dB(A)]		
1	2.583,256	5.586.450	493,3	gepl. WEA 17	J ₂	NORDEX	N90/2500 LS-2.500	2.500	90,0	100,0	USER	Vollast 3fach-Verm + Sicherheit S-A	10,0		0 dB	
2	2.583,217	5.586.188	515,0	vorh. WEA 2	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10.0	105,3	0 dB	
3				vorh. WEA 3	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB	
4	2.583.855	5.586.860	535,8	vorh. WEA 4	Ja	VESTAS	V47-660/200	660	47,0	65.0	USER	WT 802/98	10.0	105,3	0 dB	
5				verh. WEA 5	Ja	VESTAS	V47-660/200	660	47.0	65.0	USER	WT 802/98	10.0	105,3	0 dB	
6	2,583,835	5.586.638	530,1	vorh. WEA 6	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10,0	105,3	0 dB	
7	2,582,301	5.585,538	515,8	beantr. WEA 7	Ja	ENERCON	E-82-2.000	2,000	82.0	108.4	USER	red. 1000kW + Sicherheit 2.6 S-A	10.0	101.3	0 國思	
8	2.582.561	5.585.703	526,5	beantr, WEA 8	Ja	ENERCON	E-82-2.000	2.000	82.0	108,4	USER	Volllast 103,8 + Sicherhelt 2,09 S-A	10,0	105,9	0 dB	
9	2.582,621	5.585.936	533,7	beantr. WEA 9	Ja	ENERCON	E-82-2.000	2.000	62.0	108.4	USER	red. 1000kW + Sicherheit 2,8 S-A	10,0	101.3	0 48	
10				beantr. WEA 10		ENERCON	E-70 E4 2,3 MW-2,300	2.300	71.0	113,5	USER	Volllast 104,2 + Sicherheit 2,0 S-A	10,0	106,2	0 48	
11		5,585.862	515,0	beantr. WEA 11	Ja	ENERCON	E-82-2.000	2.000	82.0	108.4	USER	Volltast 103,8 + Sicherhelt 2,09 S-A	10,0	105.9	0 dB	
12	2,583,495	5.586,763	550,0	beantr, WEA 12	Ja	ENERCON	E-70 E4 2,3 MW-2,300	2,300	71.0	113,5	USER	Volltast 104,2 + Sicherhelt 2,0 S-A	10,0	106.2	0 dB	
13	2,582,491	5,585,364	495,2	beantr. WEA 14	Ja	NORDEX	N90/2500 LS-2,500	2.500	90.0	100.0	USER	Volllast 3fach-Verm + Sicherheit S-A	10.0	105.7	0 dB	

Berechnungsergebnisse

Beurteilungspegel

Schall	Immissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	
	A Whs. Appentalerhof	2.583.186	5,587,779	468,6	5,0	45,0	38,5	Ja
	B Whs. Winkelweg 10, Weibern	2.581.879	5,586,583	427,5	5,0	40,0	38,9	Ja
	C Whs. Waldstr. 2, Weibern	2.582.057	5.586.291	437,2	5.0	45,0	40,8	Ja
	D Whs. Waldstr. 32, Weibern	2.581.761	5,586,154	431,0	5,0	45,0	39,3	Ja
	E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0	45,0	37,8	Ja
	F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585.546	415,7	5,0	45,0	36,4	Ja
	G Whs. Dorfstr. 10, Wabern	2,581,198	5,585,035	422,1	5,0	45,0	33,8	Ja
	H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0	33,1	Ja
	I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0	35,3	Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5,584,780	448,7	5,0	40,0	38,3	Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584.430	427,8	5,0	40,0	37,4	Ja
	L Hotel Eifler Seehütte, Rieden	2,582,814	5.584,586	377,5	5,0	40,0	39,1	Ja
	M Whs. Waldseestr. 8, Rieden	2.582.807	5,584.347	368,2	5,0	40.0	37.1	Ja
	N Whs. Suhrstr. 24, Rieden	2.583.134	5.585.188	400,0	7,5	45,0	44,2	Ja
	O Whs. Am Sonnenhang 24, Rieden	2,583,624	5.585.107	414,6	7,5	40,0	39,4	Ja
	P Whs. Bahnhofstr. 111, Weibern	2.582.149	5,586,612	427,3	5,0	45,0	40,3	Ja
	Q Whs. Löhstr. 5, Weibern	2.582.117	5.586.518	420,0	5,0	45,0	40.5	Ja
	R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3	5,0	45,0	40,2	Ja
	S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420,0	5,0	40,0	39,5	Ja
	T Whs. Tannenweg 6, Weibern	2,582,071	5,586,322	429,1	5,0	40,0	40,8	Nein
	U Whs. Konnstr. 25, Weibern	2.581.935	5.586,303	420,0	5,0	40,0	39,9	Ja
	V Whs. Buchenweg 1, Weibern	2,581,812	5,586,207	415,6	5,0	40,0	39,4	Ja
	W Baugrundstück Am Hang, Volkesfeld	2.582.296	5.584,477	437,8	5,0			Ja
	X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0				Ja

114

WindPRO version 2.6.0.235 Aug 2008

Projekt Weibern

Ausdruck/Seits
12.02.2010 12:20 / 2
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet.

12.02.2010 12:20/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Fortsetzung von Schall-immission		rigen S	eite			CVI	Paganti	Zone:	2			4-4			Daniel Income	A = 5 = -1 = -1 = -1 = -1 = 1 1 1 1 1 1 1 1 1
Nr. Nar							st	Nord	Z	Anti	ounkthö		Schal		Von WEA	Anforderungen erfüllt? Schall
ivi. ive	1110					0	o.	Nord	[m]		[m]	ile.	[dB(A)		[dB(A)]	ognali
Y Wh	s. Geise	nbera 1	9. Ried	en		2.58	3,318	5,585,0				7,5	[ab(r)	40.0	40,8	Nein
	s. Am So				1			5.585.0		•		7,5		40,0	39,9	Ja
Abstände (m)															
		WEA														
Schall-Immissi	ionsort	1	2	3	4	5	6	7	8	9	10	11	12	13		
	Α	1330	1590	1289	1136	1529	1312	2408	2167	1927	1835	1920	1061	2513	3	
	В	1384	1395	1766	1996	1801	1957	1127	1113	984	1338	1595	1626	1364	1	
	C	1210	1165	1613	1886	1605	1812	792	775	667	1057	1317	1514	1024	1	
	D	1524	1456	1930	2210	1907	2130	818	918	887	1311	1568	1838	1075	5	
	E	1722	1621	2130	2427	2083	2331	781	967	1003	1438	1684	2059	1033	3	
	F	2150	2017	2556	2869	2481	2756	996	1265	1372	1796	2021	2505	1199)	
	G	2498	2325	2891	3224	2781	3086	1212	1518	1685	2070	2261	2875	1334	1	
	Н	2621	2437	3007	3346	2886	3201	1315	1623	1804	2173	2350	3003	1407	7	
	1	2446	2239	2815	3163	2672	3002	1126	1427	1635	1962	2112	2836	1161		
	J	2119	1893	2466	2819	2304	2645	835	1106	1336	1607	1729	2512	794	1	
	K	2216	1962	2507	2861	2307	2664	1109	1291	1531	1676	1722	2601	945	5	
	L	1917	1653	2155	2502	1935	2293	1082	1146	1365	1384	1367	2282	843	3	
	M	2151	1887	2380	2724	2155	2512	1295	1379	1601	1621	1594	2513	1065	5	
	N	1268	1004	1477	1821	1253	1611	904	771	907	764	694	1616	667	7	
	0	1393	1155	1467	1769	1219	1546	1391	1218	1301	1015	821	1661	1161	l	
	P	1119	1149	1497	1724	1539	1687	1084	998	824	1124	1376	1355	1294	1	
	Q	1141	1149	1529	1772	1556	1723	997	928	770	1099			1213		
	R	1151	1145			1562		946	886	738			1421	1166	3	
	S		1195			1618		923	887					1151		
	T		1154	1595			1793	817	789	672	1054	1315	1492	1046	3	
	U	1329	1287		1999		1930	847	867	778		1436		1091		
	V	1464	1405			1853		828	902	853		1529		1082		
		2194				2297			1254	1495	1655	1711		908		
	-	2074				2067		1268	1332		1547	1511	2431	1030)	
	Y	1451	1192			1368		1150	1033		982	861	1771	903		
	Z	1426	1176	1543	1859	1298	1638	1274	1128	1237	999	839	1723	1035	5	

Weibern

Ausdruck/Selbe
12.02.2010 12:20 / 3
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc;

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption

Agr:

Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung

Abar: Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.330	1.336	37,8	Ja	28,83	105,7	3,01	73,52	2,54	3,83	0,00	0,00	79,88	0,00
2	1.590	1.595	29,8	Nein	25,43	105,3	3,01	75,05	3,03	4,80	0,00	0,00	82,88	0,00
3	1.289	1.296	33,1	Ja	28,67	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79,64	0,00
4	1.136	1.144	44,4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0,00	0,00	77,81	0,00
5	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0,00	0,00	82,43	0,00
6	1.312	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79,87	0,00
7	2.408	2.414	56,2	Ja	17,07	101,3	3,01	78,65	4,59	4,00	0,00	0,00	87,24	0,00
8	2.167	2.174	64,8	Ja	23,26	105,9	3,01	77,74	4,13	3,78	0,00	0,00	85,65	0,00
9	1.927	1.935	74,5	Ja	20,42	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0,00
10	1.835	1.843	60,2	Ja	25,72	106,2	3,01	76,31	3,50	3,68	0,00	0,00	83,49	0,00
11	1.920	1.927	46,3	Nein	23,75	105,9	3,01	76,70	3,66	4,80	0,00	0,00	85,16	0,00
12	1.061	1.079	72,8	Ja	33,02	106,2	3,01	71,66	2,05	2,47	0,00	0,00	76,19	0,00
13	2.513	2.516	41,4	Nein	20,12	105,7	3,01	79,01	4,78	4,80	0,00	0,00	88,59	0,00

Summe 38,54

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	A				95% der N	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.384	1.393	57,0	Ja	28,79	105,7	3,01	73,88	2,65	3,39	0,00	0,00	79,92	0,00
2		1,403		Ja	28,11	105,3	3,01	73,94	2,67	3,60	0,00	0,00	80,20	0,00
3	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0,00	0,00	84,15	0,00
4	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0,00	0,00	85,64	0,00
5	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4,00	0,00	0,00	83,58	0,00
6	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4,80	0,00	0,00	85,39	0,00
7	1,127	1.143	60,7	Ja	27,01	101,3	3,01	72,16	2,17	2,97	0,00	0,00	77,30	0,00
8	1.113	1.131	54,2	Ja	31,54	105,9	3,01	72,07	2,15	3,14	0,00	0,00	77,37	0,00
9	984	1.006	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2,60	0,00	0,00	75,56	0,00
10	1.338	1.353	69,9	Ja	29,99	106,2	3,01	73,63	2,57	3,02	0,00	0,00	79,22	0,00
11	1.595	1.607	56,8	Ja	27,15	105,9	3,01	75,12	3,05	3,58	0,00	0,00	81,76	0,00
12	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12	3,50	0,00	0,00	81,94	0,00
13	1.364	1.374	37,2	Ja	28,47	105,7	3,01	73,76	2,61	3,87	0,00	0,00	80,24	0,00

Summe 38,90

Projekt Weibern

Austruck/Seite
12.02.2010 12:20 / 4
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet 12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Sch	all-Imn	nissions	ort: C Whs.	Waldst	r. 2, Weit	ern								
WE	4				95% der N	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.210	1,220	52,6	Nein	28,86	105,7	3,01	72,73	2,32	4,80	0,00	0,00	79,85	0,00
2	1.165	1.174	31,5	Nein	28,88	105,3	3,01	72,39	2,23	4,80	0,00	0,00	79,42	0,00
3	1.613	1.622	47,2	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
4	1.886	1.894	31,4	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0,00	0,00	84,94	0,00
5	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00
6	1.812	1.819	37,2	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00
7	792	814	42,1	Ja	30,54	101,3	3,00	69,22	1,55	3,00	0,00	0,00	73,77	0,00
8	775	801	34,1	Ja	34,99	105,9	3,00	69,07	1,52	3,32	0,00	0,00	73,91	0,00
9	667	699	40,8	Ja	32,32	101,3	3,00	67,88	1,33	2,76	0,00	0,00	71,98	0,00
10	1.057	1.076	44,1	Nein	30,72	106,2	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
11	1.317	1.331	31,5	Nein	28,10	105,9	3,01	73,48	2,53	4,80	0,00	0,00	80,81	0,00
12	1.514	1.531	75,4	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00
13	1.024	1.037	18,9	Nein	30,62	105,7	3,01	71,31	1,97	4,80	0,00	0,00	78,08	0,00

Summe 40,84

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1,524	1.533	49,6	Ja	27,40	105,7	3,01	74,71	2,91	3,69	0,00	0,00	81,31	0,00
2	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81,89	0,00
3	1.930	1.938	47,1	Ja	23,92	105,3	3,01	76,75	3,68	3,97	0,00	0,00	84,39	0,00
4	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00	0,00	86,33	0,00
5	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0,00	0,00	85,08	0,00
6	2.130	2,136	38,5	Ja	22,47	105,3	3,01	77,59	4,06	4,18	0,00	0,00	85,84	0,00
7	818	842	45,7	Ja	30,28	101,3	3,00	69,50	1,60	2,92	0,00	0,00	74,02	0,00
8	918	941	42,8	Ja	33,42	105,9	3,00	70,47	1,79	3,22	0,00	0,00	75,48	0,00
9	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
10	1.311	1.328	36,9	Nein	28,42	106,2	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
11	1.568	1.580	23,4	Nein	26,13	105,9	3,01	74,97	3,00	4,80	0,00	0,00	82,78	0,00
12	1.838	1.853	81,8	Ja	26,04	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00
13	1.075	1.088	24,2	Nein	30,10	105,7	3,01	71,73	2,07	4,80	0,00	0,00	78,60	0,00

Summe 39,26

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

WE	4				95% der Ne	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.722	1.729	40,1	Nein	24,87	105,7	3,01	75,75	3,28	4,80	0,00	0,00	83,84	0,00
2	1.621	1.627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0,00
3	2.130	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86,45	0,00
4	2.427	2,432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
5	2.083	2.088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0,00	86,16	0,00
6	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4.44	4,80	0,00	0,00	87,61	0,00
7	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0,00	0,00	75,40	0,00
8	967	985	43,6	Nein	31,36	105,9	3,01	70,87	1,87	4,80	0,00	0,00	77,54	0,00
9	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0,00	77,93	0,00
10	1.438	1.451	32,7	Nein	27,42	106,2	3,01	74,23	2,76	4,80	0,00	0,00	81,79	0,00
11	1.684	1.694	23,7	Nein	25,31	105,9	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
12	2.059	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00
13	1.033	1.044	35,8	Nein	30,55	105,7	3,01	71,38	1,98	4,80	0,00	0,00	78,16	0,00

Summe 37,77

Projekt Weibern

Ausdruck/Seite
12.02.2010 12:20 / 5
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

rechnet

12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

5	Sci	nall-Imn	nissions	ort: F Whs.	Im Wies	sengrund	13, We	iberr	1							
٧	VE	4				95% der No	ennleistur	ng								
N	۱r.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	1	2.150	2,158	24,9	Nein	22,13	105,7	3,01	77,68	4,10	4,80	0,00	0,00	86,58	0,00	
	2	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0,00	85,77	0,00	
	3	2.556	2.562	22,1	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88,84	0,00	
	4	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0,00	90,43	0,00	
	5	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0,00	
ı	6	2.756	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00	
	7	996	1.017		Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,79	0,00	
1	8	1.265	1.284	57,0	Ja	30,02	105,9	3,01	73,17	2,44	3,27	0,00	0,00	78,89	0,00	
	9	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,87	2,64	3,48	0,00	0,00	79,99	0,00	
	10	1.796	1.810	40,3	Ja	25,58	106,2	3,01	76,15	3,44	4,03	0,00	0,00	83,63	0,00	
	11	2.021	2.032	33,7	Ja	23,66	105,9	3,01	77,16	3,86	4,23	0,00	0,00	85,25	0,00	
	12	2.505	2,518	62,8	Nein	20,61	106,2	3,01	79,02	4,78	4,80	0,00	0,00	88,60	0,00	
	13	1.199	1.213	35.1	.Ja	29.93	105.7	3.01	72 67	2 30	3.80	0.00	0.00	78 78	0.00	

Summe 36,37

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

AAC	4				32% det M	ennieistui	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.498	2.504	22,0	Nein	20,18	105,7	3,01	78,97	4,76	4,80	0,00	0,00	88,53	0,00
2	2.325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0,00	87,58	0,00
3	2.891	2.896	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90,54	0,00
4	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00	0,00	92,12	0,00
5	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0,00	0,00	89,99	0,00
6	3.086	3.091	7,6	Nein	16,83	105,3	3,01	80,80	5,87	4,80	0,00	0,00	91,48	0,00
7	1.212	1.230	43,8	Ja	25,60	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
8	1.518	1.533	42,0	Nein	26,48	105,9	3,01	74,71	2,91	4,80	0,00	0,00	82,43	0,00
9	1.685	1.699	47.7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0,00
10	2.070	2.082	33,3	Nein	23,09	106,2	3,01	77,37	3,96	4,80	0,00	0,00	86,12	0,00
11	2.261	2.270	32,2	Nein	21,68	105,9	3,01	78,12	4,31	4,80	0,00	0,00	87,23	0,00
12	2.875	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00
13	1.334	1.345	22,4	Nein	27,77	105,7	3,01	73,58	2,56	4,80	0,00	0,00	80,93	0,00

Summe 33,78

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.621	2.627	16,5	Nein	19,53	105,7	3,01	79,39	4,99	4,80	0,00	0,00	89,18	0,00
2	2.437	2.442	0,6	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0,00	88,19	0,00
3	3.007	3.013	10,3	Nein	17,21	105,3	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00
4	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4,80	0,00	0,00	92,67	0,00
5	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0,00	0,00	90,51	0,00
6	3.201	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00	0,00	92,01	0,00
7	1.315	1.331	43,1	Ja	24,61	101,3	3,01	73,48	2,53	3,68	0,00	0,00	79,69	0,00
8	1.623	1.637	40,6	Nein	25,72	105,9	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
9	1.804	1.818	43,8	Nein	19,86	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,45	0,00
10	2.173	2.184	33,7	Nein	22,48	106,2	3,01	77,78	4,15	4,80	0,00	0,00	86,73	0,00
11	2.350	2.359	35,2	Nein	21,18	105,9	3,01	78,45	4,48	4,80	0,00	0,00	87,73	0,00
12	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00
13	1.407	1.418	24,7	Nein	27,18	105,7	3,01	74,03	2,69	4,80	0,00	0,00	81,52	0,00

Summe 33,09

WindPRO version 2.6.0.235 Aug 2008

Projekt Weibern Aundruck/Selte 12.02.2010 12:20 / 6

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	1				95% der No	ennleistu	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Crnet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	2.446	2,450	20,0	Nein	20,47	105,7	3,01	78,78	4,65	4,80	0,00	0,00	88,24	0,00	
2	2,239	2,243	11,4	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87,08	0,00	
3	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90,16	0,00	
4	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91,82	0,00	
5	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0,00	89,43	0,00	
6	3.002	3.005	17,2	Nein	17,24	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,07	0,00	
7	1.126	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,66	0,00	
8	1.427	1.438	46,0	Ja	28,32	105,9	3,01	74,15	2,73	3,70	0,00	0,00	80,58	0,00	
9	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,33	3,13	3,84	0,00	0,00	82,29	0,00	
10	1.962	1.970	48,2	Nein	23,78	106,2	3,01	76,89	3,74	4,80	0,00	0,00	85,43	0,00	
11	2.112	2,119	53,2	Nein	22,56	105,9	3,01	77,52	4,03	4,80	0,00	0,00	86,35	0,00	
12	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00	
13	1.161	1.169	33,8	Ja	30,33	105,7	3,01	72,36	2,22	3,80	0,00	0,00	78,38	0,00	

Summe 35,26

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

١	WE	4				95% der Ni	ennleistur	1g								
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
l	1	2.119	2.123	17,5	Nein	22,33	105,7	3,01	77,54	4,03	4,80	0,00	0,00	86,38	0,00	
ı	2	1.893	1.897	17,1	Nein	23,34	105,3	3,01	76,56	3,60	4,80	0,00	0,00	84,96	0,00	
١	3	2.466	2.471	25,6	Nein	19,96	105,3	3,01	78,86	4,69	4,80	0,00	0,00	88,35	0,00	
١	4	2.819	2.823	20,5	Nein	18,13	105,3	3,01	80,01	5,36	4,80	0,00	0,00	90,18	0,00	
ı	5	2.304	2.308	31,5	Nein	20,86	105,3	3,01	78,26	4,38	4,80	0,00	0,00	87,45	0,00	
ı	6	2.645	2.649	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00	0,00	89,29	0,00	
ı	7	835	852	39,7	Ja	29,89	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0,00	
ı	8	1.106	1.121	41,8	Nein	29,99	105,9	3,01	71,99	2,13	4,80	0,00	0,00	78,92	0,00	
	9	1.336	1.349	38,2	Nein	23,34	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80,96	0,00	
ı	10	1.607	1.617	53,5	Nein	26,16	106,2	3,01	75,18	3,07	4,80	0,00	0,00	83,05	0,00	
ı	11	1.729	1.738	63,3	Nein	25,01	105,9	3,01	75,80	3,30	4,80	0,00	0,00	83,90	0,00	
١	12	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0,00	88,62	0,00	
ı	13	794	807	33,9	Ja	34,70	105,7	3,00	69,13	1,53	3,34	0,00	0,00	74,01	0,00	

Summe 38,28

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.216	2.222	44.4	Nein	21,75	105,7	3,01	77,93	4,22	4,80	0,00	0,00	86,96	0,00
2	1.962	1.968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0,00
3	2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4,19	0,00	0,00	87,97	0,00
4	2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0,00	0,00	89,94	0,00
5	2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0,00	0,00	86,72	0,00
6	2.664	2.669	43,1	Ja	19,47	105,3	3,01	79,53	5,07	4,25	0,00	0,00	88,84	0,00
7	1.109	1.125	43,9	Nein	25,34	101,3	3,01	72,03	2,14	4,80	0,00	0,00	78,96	0,00
8	1.291	1.307	59,2	Ja	29,86	105,9	3,01	73,33	2,48	3,24	0,00	0,00	79,05	0,00
9	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,52	0,00
10	1.676	1,688	81,0	Ja	27,30	106,2	3,01	75,55	3,21	3,15	0,00	0,00	81,91	0,00
11	1.722	1.733	82,1	Ja	26,67	105,9	3,01	75,77	3,29	3,17	0,00	0,00	82,24	0,00
12	2.601	2.611	72,7	Ja	21,06	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,15	0,00
13	945	959	50,1	Ja	33,26	105,7	3,01	70,63	1,82	2,99	0,00	0,00	75,45	0,00

Summe 37,37

Projekt Weibern

Ausdruck/Seite 12.02.2010 12:20 / 7 Lizenzierter Anwender;

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet:

12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast, SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

SCI	hall-Imn	nissions	ort: L H	otel	Litter	Seenutte,	Rieden	
WE	A					95% der Ne	ennleistu	ng
Mir	Abetand	Schallwaa	Mittlera	Häha	Cinhtha	Pornohnot	Luch rot	D

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.917	1.929	30,4	Ja	24,08	105,7	3,01	76,71	3,67	4,26	0,00	0,00	84,63	0,00
2	1.653	1.665	31,6	Ja	25,57	105,3	3,01	75,43	3,16	4,15	0,00	0,00	82,74	0,00
3	2.155	2.167	32,7	Nein	21,68	105,3	3,01	77,72	4,12	4,80	0,00	0,00	86,63	0,00
4	2.502	2.512	21,9	Nein	19,74	105,3	3,01	79,00	4,77	4,80	0,00	0,00	88,57	0,00
5	1.935	1.947	36,7	Ja	23,67	105,3	3,01	76,79	3,70	4,15	0,00	0,00	84,64	0,00
6	2.293	2.303	26,8	Nein	20,89	105,3	3,01	78,25	4,38	4,80	0,00	0,00	87,42	0,00
7	1.082	1.111	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,35	0,00	0,00	77,37	0,00
8	1.146	1.175	60,6	Ja	31,25	105,9	3,01	72,40	2,23	3,02	0,00	0,00	77,66	0,00
9	1.365	1.391	55,5	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0,00
10	1.384	1.409	75,4	Ja	29,60	106,2	3,01	73,98	2,68	2,96	0,00	0,00	79,61	0,00
11	1.367	1.389	78,3	Ja	29,56	105,9	3,01	73,85	2,64	2,86	0,00	0,00	79,35	0,00
12	2.282	2.300	56,8	Ja	22,65	106,2	3,01	78,23	4,37	3,95	0,00	0,00	86,56	0,00
13	843	871	50,6	Ja	34,46	105,7	3,00	69,80	1,66	2,79	0,00	0,00	74,24	0,00

Summe 39,09

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

ı	AAF	4				95% der No	ennieistui	1g							
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	1	2.151	2.163	36,4	Ja	22,68	105,7	3,01	77,70	4,11	4,22	0,00	0,00	86,03	0,00
ł	2	1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0,00
ı	3	2.380	2.391	37,2	Ja	20,93	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,38	0,00
	4	2.724	2.734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89,73	0,00
	5	2.155	2.167	40,9	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
ı	6	2.512	2,522	31,2	Nein	19,68	105,3	3,01	79,04	4,79	4,80	0,00	0,00	88,63	0,00
	7	1.295	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00
	8	1.379	1.405	66,2	Ja	29,11	105,9	3,01	73,95	2,67	3,18	0,00	0,00	79,80	0,00
	9	1.601	1.624	61,6	Ja	22,51	101,3	3,01	75,21	3,09	3,50	0,00	0,00	81,79	0,00
	10	1.621	1.643	82,0	Ja	27,69	106,2	3,01	75,31	3,12	3,08	0,00	0,00	81,52	0,00
ı	11	1.594	1.615	83,8	Ja	27,66	105,9	3,01	75,16	3,07	3,02	0,00	0,00	81,25	0,00
ı	12	2.513	2.530	64,7	Ja	21,41	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,80	0,00
	13	1.065	1.089	59,2	Ja	31,97	105,7	3,01	71,74	2,07	2,92	0,00	0,00	76,74	0,00

Summe 37,07

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.268	1.282	23,4	Nein	28,32	105,7	3,01	73,16	2,44	4,80	0,00	0,00	80,39	0,00
2	1.004	1.018	23,6	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00
3	1.477	1.490	15,0	Nein	26,22	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0,00
4	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0,00	84,54	0,00
5	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0,00
6	1.611	1.622	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
7	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0,00	74,91	0,00
8	771	804	71,5	Ja	36,56	105,9	3,00	69,10	1,53	1,71	0,00	0,00	72,34	0,00
9	907	937	62,2	Ja	29,59	101,3	3,00	70,44	1,78	2,50	0,00	0,00	74,72	0,00
10	764	798	54,4	Ja	36,21	106,2	3,00	69,04	1,52	2,43	0,00	0,00	72,99	0,00
11	694	727	60,2	Ja	37,37	105,9	3,00	68,23	1,38	1,92	0,00	0,00	71,53	0,00
12	1.616	1.636	46,6	Nein	26,02	106,2	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
13	667	693	61,8	Ja	37,88	105,7	3,00	67,81	1,32	1,69	0,00	0,00	70,82	0,00

Summe 44,17

_{Projekt} Weibern

Ausdruck/Seite
12.02.2010 12;20 / 8
Uzen/Seiter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

erechnet

12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Scl	nall-Imn	nissions	ort: O Whs.	Am So	nnenhan	g 24, Rie	eden							
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.393	1.403	12,9	Nein	27,30	105,7	3,01	73,94	2,67	4,80	0,00	0,00	81,41	0,00
2	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
3	1.467	1.478	20,3	Nein	26,31	105,3	3,01	74,39	2,81	4,80	0,00	0,00	82,00	0,00
4	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0,00
5	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0,00
6	1.546	1.556	10,1	Nein	25,72	105,3	3,01	74,84	2,96	4,80	0,00	0,00	82,59	0,00
7	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
8	1.218	1.237	74,8	Nein	28,91	105,9	3,01	72,85	2,35	4,80	0,00	0,00	80,00	0,00
9	1.301	1.320	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,72	0,00
10	1.015	1.037	49,5	Nein	31,11	106,2	3,00	71,32	1,97	4,80	0,00	0,00	78,09	0,00
11	821	845	39,1	Nein	32,96	105,9	3,00	69,54	1,61	4,80	0,00	0,00	75,94	0,00
12	1.661	1.679	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00
13	1.161	1.174	71,8	Nein	29,28	105,7	3,01	72,40	2,23	4,80	0,00	0,00	79,43	0,00

Summe 39,42

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

WE	A				95% der No	ennleistur	ng .								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.119	1.130	41,4	Nein	29,69	105,7	3,01	72,07	2,15	4,80	0,00	0,00	79,01	0,00	
2	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00	
3	1.497	1.506	30,9	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00	
4	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00	
5	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00	
6	1.687	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00	
7	1.084	1.101	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,21	0,00	
8	998	1.018	45,9	Ja	32,58	105,9	3,01	71,16	1,93	3,24	0,00	0,00	76,33	0,00	
9	824	850	66,3	Ja	31,00	101,3	3,00	69,59	1,62	2,10	0,00	0,00	73,30	0,00	
10	1.124	1.143	71,6	Ja	32,24	106,2	3,01	72,16	2,17	2,64	0,00	0,00	76,97	0,00	
11	1.376	1.389	53,5	Ja	28,94	105,9	3,01	73,85	2,64	3,47	0,00	0,00	79,96	0,00	
12	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00	
13	1.294	1.304	23,8	Nein	28,12	105,7	3,01	73,31	2,48	4,80	0,00	0,00	80,59	0,00	

Summe 40,27

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.141	1.154	48,9	Ja	30,93	105,7	3,01	72,24	2,19	3,34	0,00	0,00	77,77	0,00
2	1.149	1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00
3	1.529	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00
4	1,772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00
5	1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0,00
6	1.723	1.731	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,86	0,00
7	997	1.017	41,3	Nein	26,43	101,3	3,01	71,14	1,93	4,80	0,00	0,00	77,87	0,00
8	928	952	34,3	Ja	32,97	105,9	3,00	70,57	1,81	3,55	0,00	0,00	75,93	0,00
9	770	800	52,0	Ja	31,18	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,12	0,00
10	1.099	1.119	63,2	Ja	32,25	106,2	3,01	71,98	2,13	2,85	0,00	0,00	76,96	0,00
11	1.355	1.369	49,2	Ja	29,01	105,9	3,01	73,73	2,60	3,56	0,00	0,00	79,90	0,00
12	1.400	1.420	56,7	Nein	27,66	106,2	3,01	74,05	2,70	4,80	0,00	0,00	81,55	0,00
13	1.213	1.225	16,5	Nein	28,81	105,7	3,01	72,76	2,33	4,80	0,00	0,00	79,89	0,00

Summe 40,49

^{Projekt} Weibern Ausdruck/Seite
12.02.2010 12:20 / 9
Uzerazierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 ~ 0

Berechnot 12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Sch	nall-Imn	nissions	ort: R Whs.	Löhstr.	6, Weibe	rn								
WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.151	1.162	52,7	Ja	30,96	105,7	3,01	72,30	2,21	3,24	0,00	0,00	77,75	0,00
2	1.145	1.155	39,1	Nein	29,06	105,3	3,01	72,25	2,19	4,80	0,00	0,00	79,24	0,00
3	1.543	1.553	44,0	Ja	26,71	105,3	3,01	74,82	2,95	3,82	0,00	0,00	81,60	0,00
4	1.794	1.802	20,2	Nein	23,97	105,3	3,01	76,12	3,42	4,80	0,00	0,00	84,34	0,00
5	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92	2,98	4,80	0,00	0,00	82,70	0,00
6	1.738	1.746	32,3	Nein	24,35	105,3	3,01	75,84	3,32	4,80	0,00	0,00	83,96	0,00
7	946	965	42,8	Nein	26,98	101,3	3,01	70,69	1,83	4,80	0,00	0,00	77,33	0,00
8	886	910	34,4	Nein	32,20	105,9	3,00	70,18	1,73	4,80	0,00	0,00	76,71	0,00
9	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72,71	0,00
10	1.081	1.101	59,0	Nein	30,48	106,2	3,01	71,84	2,09	4,80	0,00	0,00	78,73	0,00
11	1.339	1.353	45,9	Nein	27,91	105,9	3,01	73,63	2,57	4,80	0,00	0,00	81,00	0,00
12	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,15	0,00
13	1.166	1.177	18,1	Nein	29,25	105,7	3,01	72,42	2,24	4,80	0,00	0,00	79,45	0,00

Summe 40,17

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE	A				95% der No	ennleistur	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.210	1.222	50,7	Nein	28,85	105,7	3,01	72,74	2,32	4,80	0,00	0,00	79,86	0,00	
2	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,71	0,00	
3	1.605	1.615	43,0	Nein	25,28	105,3	3,01	75,16	3,07	4,80	0,00	0,00	83,03	0,00	
4	1.860	1,869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00	
5	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	0,00	83,11	0,00	
6	1.801	1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00	
7	923	945	45,0	Ja	28,85	101,3	3,00	70,50	1,79	3,15	0,00	0,00	75,45	0,00	
8	887	912	33,6	Nein	32,18	105,9	3,00	70,20	1,73	4,80	0,00	0,00	76,73	0,00	
9	755	785	44,7	Nein	29,11	101,3	3,00	68,90	1,49	4,80	0,00	0,00	75,19	0,00	
10	1.117	1.137	51,9	Nein	30,13	106,2	3,01	72,12	2,16	4,80	0,00	0,00	79,08	0,00	
11	1.376	1.391	39,3	Nein	27,60	105,9	3,01	73,86	2,64	4,80	0,00	0,00	81,31	0,00	
12	1.488	1.507	66,6	Nein	26,99	106,2	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00	
13	1.151	1.164	19,6	Nein	29,38	105,7	3,01	72,32	2,21	4,80	0,00	0,00	79,33	0,00	

Summe 39,46

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	Ą				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.193	1.203	54,0	Nein	29,01	105,7	3,01	72,61	2,29	4,80	0,00	0,00	79,69	0,00
2	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0,00
3	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0,00
4	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
5	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00
6	1.793	1.800	37,7	Nein	23,98	105,3	3,01	76,11	3,42	4,80	0,00		84,33	0,00
7	817	838	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,06	0,00
8	789	814	33,6	Ja	34,77	105,9	3,00	69,22	1,55	3,37	0,00	0,00	74,13	0,00
9	672	703	41,6	Ja	32,28	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
10	1.054	1.074	46,9	Nein	30,75	106,2	3,01	71,62	2,04	4,80	0,00	0,00	78,46	0,00
11	1.315	1.328	34,5	Nein	28,12	105,9	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
12	1.492	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00
13	1.046	1.058	19,6	Nein	30,40	105,7	3,01	71,49	2,01	4,80	0,00	0,00	78,30	0,00

Summe 40,77

Projekt Weibern

Ausdruck/Seite
12.02.2010 12:20 / 10
Uzerszierter Anwender:
Ingenieur/būro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet

12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Scl	all-Imn	nissions	ort: U Whs.	Konnst	r. 25, We	ibern								
WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.329	1.340	53,0	Nein	27,82	105,7	3,01	73,54	2,55	4,80	0,00	0,00	80,89	0,00
2	1,287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
3	1.731	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
4	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
5	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
6	1.930	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00
7	847	870	43,7	Ja	29,80	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
8	867	892	37,4	Ja	33,86	105,9	3,00	70,00	1,69	3,34	0,00	0,00	75,04	0,00
9	778	807	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
10	1.176	1.195	44,6	Nein	29,59	106,2	3,01	72,55	2,27	4,80	0,00	0,00	79,62	0,00
11	1.436	1.450	31,2	Nein	27,13	105,9	3,01	74,23	2,75	4,80	0,00	0,00	81,78	0,00
12	1,627	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00
13	1.091	1.104	20,0	Nein	29,95	105,7	3,01	71,86	2,10	4,80	0,00	0,00	78,76	0,00

Summe 39,88

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WE	A.				95% der Ne	ennieistui	1g							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.464	1.474	49,1	Ja	27,88	105,7	3,01	74,37	2,80	3,65	0,00	0,00	80,83	0,00
2	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00
3	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,00	0,00
4	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00
5	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00
6	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00
7	828	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,90	0,00	0,00	74,14	0,00
8	902	928	38,6	Ja	33,44	105,9	3,00	70,35	1,76	3,36	0,00	0,00	75,47	0,00
9	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
10	1.270	1.289	37,8	Nein	28,75	106,2	3,01	73,21	2,45	4,80	0,00	0,00	80,45	0,00
11	1.529	1.543	23,7	Nein	26,41	105,9	3,01	74,76	2,93	4,80	0,00	0,00	82,50	0,00
12	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00
13	1.082	1.096	23,8	Nein	30,02	105,7	3,01	71,80	2,08	4,80	0,00	0,00	78,68	0,00

Summe 39,40

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.194	2.199	44,7	Nein	21,89	105,7	3,01	77,85	4,18	4,80	0,00	0,00	86,82	0,00
2	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00
3	2.493	2.498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00
4	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00
5	2.297	2.302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00
6	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00
7	1.061	1.076	43,1	Nein	25,82	101,3	3,01	71,64	2,05	4,80	0,00	0,00	78,48	0,00
8	1.254	1.269	56,8	Nein	28,63	105,9	3,01	73,07	2,41	4,80	0,00	0,00	80,28	0,00
9	1.495	1.508	52,7	Nein	22,08	101,3	3,01	74,57	2,87	4,80	0,00	0,00	82,23	0,00
10	1.655	1.667	81,7	Nein	25,80	106,2	3,01	75,44	3,17	4,80	0,00	0,00	83,40	0,00
11	1.711	1.721	80,8	Ja	26,74	105,9	3,01	75,71	3,27	3,19	0,00	0,00	82,17	0,00
12	2.581	2.591	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00
13	908	920	47,4	Nein	31,88	105,7	3,01	70,28	1,75	4,80	0,00	0,00	76,83	0,00

Summe 36,52

WindPRO version 2.6.0.235 Aug 2008

_{Projekt} Weibern

Ausdruck/Seiter
12.02.2010 12:20 / 11
Lizenziertor Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet 12.02.2010 12:20/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be

Scl	nall-lmn	nissions	ort: X Uferte	errasse	3, Rieder	1								
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.074	2.085	37,7	Ja	23,19	105,7	3,01	77,38	3,96	4,18	0,00	0,00	85,52	0,00
2	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0,00	0,00	83,71	0,00
3	2.294	2.305	35,6	Ja	21,41	105,3	3,01	78,25	4,38	4,27	0,00	0,00	86,90	0,00
4	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45	5,03	4,80	0,00	0,00	89,28	0,00
5	2.067	2.078	39,6	Ja	22,86	105,3	3,01	77,35	3,95	4,15	0,00	0,00	85,45	0,00
6	2.423	2.433	30,4	Nein	20,16	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
7	1.268	1.293	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0,00	0,00	78,91	0,00
8	1.332	1.357	72,9	Ja	29,73	105,9	3,01	73,65	2,58	2,95	0,00	0,00	79,18	0,00
9	1.548	1.571	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0,00	0,00	81,22	0,00
10	1.547	1.569	85,1	Ja	28,38	106,2	3,01	74,91	2,98	2,93	0,00	0,00	80,83	0,00
11	1.511	1.531	83,9	Ja	28,38	105,9	3,01	74,70	2,91	2,92	0,00	0,00	80,52	0,00
12	2.431	2.448	66,8	Ja	21,92	106,2	3,01	78,78	4,65	3,87	0,00	0,00	87,29	0,00
13	1.030	1.053	62,4	Ja	32,50	105,7	3,01	71,45	2,00	2,75	0,00	0,00	76,21	0,00

Summe 37,64

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.451	1.463	17,5	Nein	26,82	105,7	3,01	74,30	2,78	4,80	0,00	0,00	81,88	0,00
2	1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0,00
3	1.607	1.618	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
4	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
5	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
6	1.717	1.728	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0,00
7	1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
8	1.033	1.058	82,8	Ja	33,31	105,9	3,00	71,49	2,01	2,09	0,00	0,00	75,59	0,00
9	1.166	1.190	71,1	Ja	26,79	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0,00
10	982	1.010	64,4	Nein	31,40	106,2	3,00	71,08	1,92	4,80	0,00	0,00	77,80	0,00
11	861	888	50,2	Nein	32,44	105,9	3,00	69,97	1,69	4,80	0,00	0,00	76,46	0,00
12	1.771	1.790	42,5	Nein	24,95	106,2	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,00
13	903	923	76,7	Ja	34,73	105,7	3,00	70,30	1,75	1,92	0,00	0,00	73,98	0,00

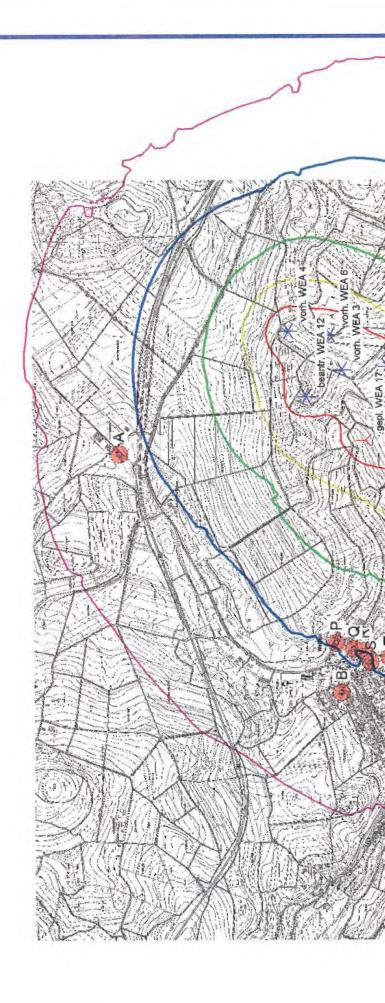
Summe 40,82

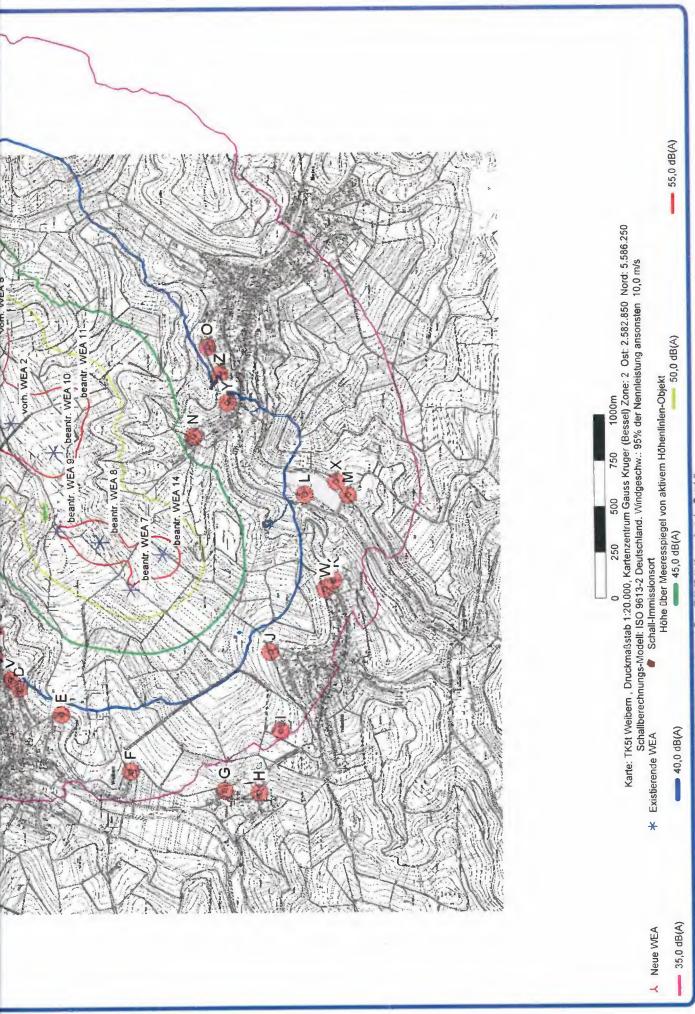
Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.426	1.437	14,0	Nein	27,03	105,7	3,01	74,15	2,73	4,80	0,00	0,00	81,68	0,00
2	1.176	1.187	11,3	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
3	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
4	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
5	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
6	1.638	1.648	9,4	Nein	25,04	105,3	3,01	75,34	3,13	4,80	0,00	0,00	83,27	0,00
7	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
8	1,128	1.149	80,6	Nein	29,72	105,9	3,00	72,21	2,18	4,80	0,00	0,00	79,19	0,00
9	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,18	0,00
10	999	1.023	59,2	Nein	31,26	106,2	3,00	71,20	1,94	4,80	0,00	0,00	77,94	0,00
11	839	864	42,9	Nein	32,73	105,9	3,00	69,73	1,64	4,80	0,00	0,00	76,17	0,00
12	1.723	1.740	42,5	Nein	25,29	106,2	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
13	1.035	1.050	76,6	Ja	33,01	105,7	3,00	71,42	2,00	2,28	0,00	0,00	75,70	0,00

Summe 39,89

Projekt: Weibern


25.02.2010 10:54 / 1


Lizenzierlez Anvender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

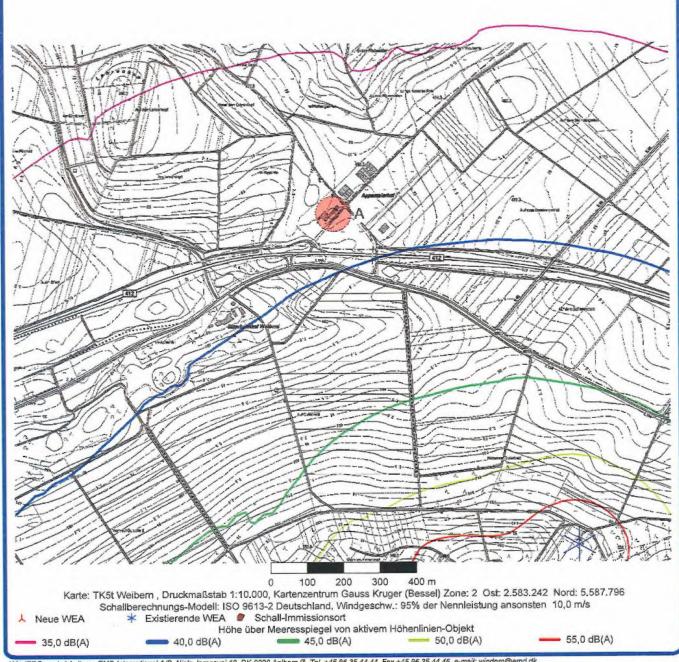
12.02.2010 12:20/2.6.0.235

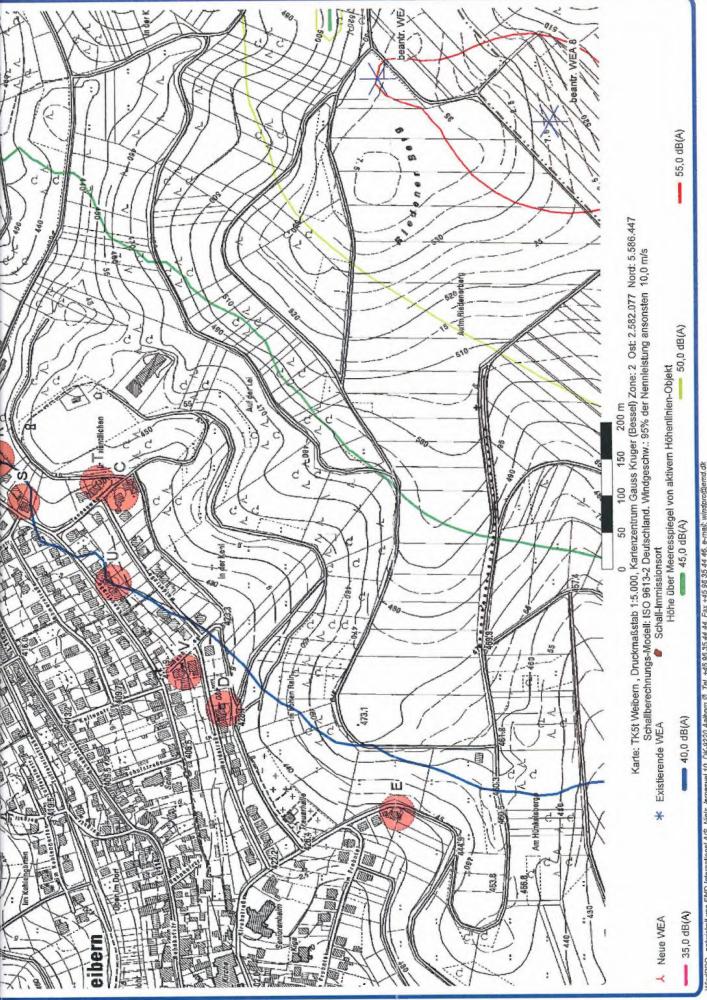
DECIBEL - TK5t Weibern

Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, beantr. N90 Datei: TK5t Weibern.bmi

WindPRO entwickeit von EMD International A.S., Mets Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

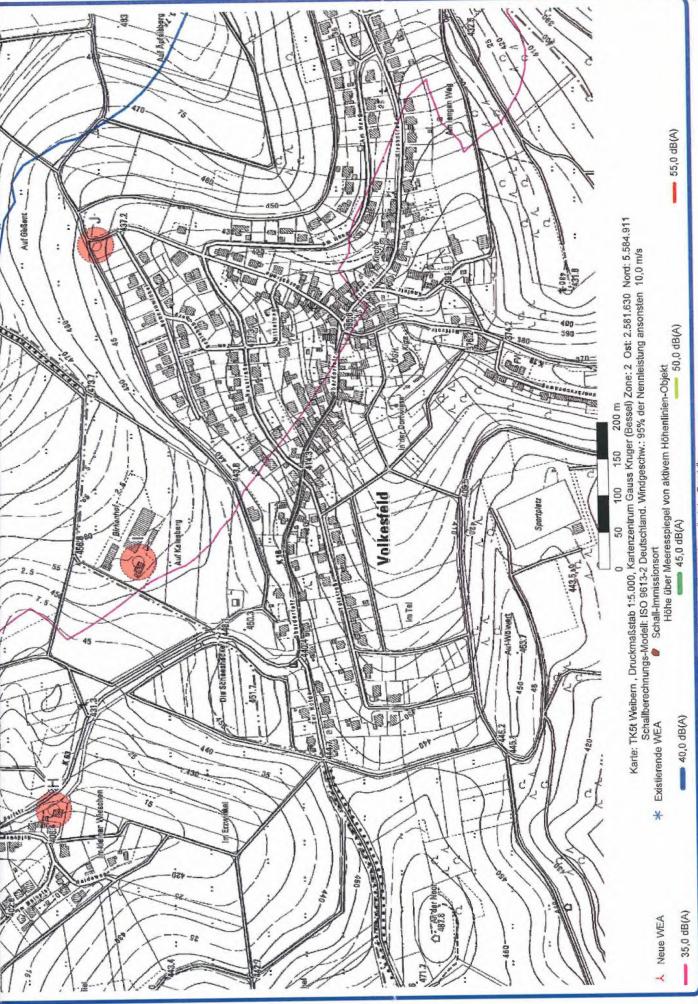
Projekt: Weibern

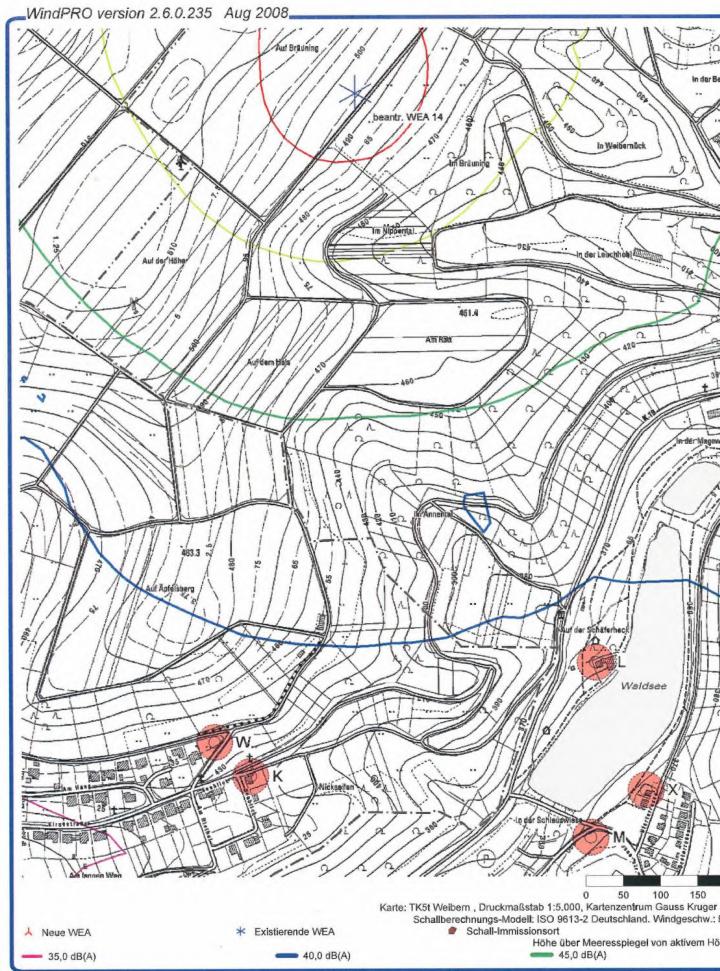

25.02.2010 11:13 / 1

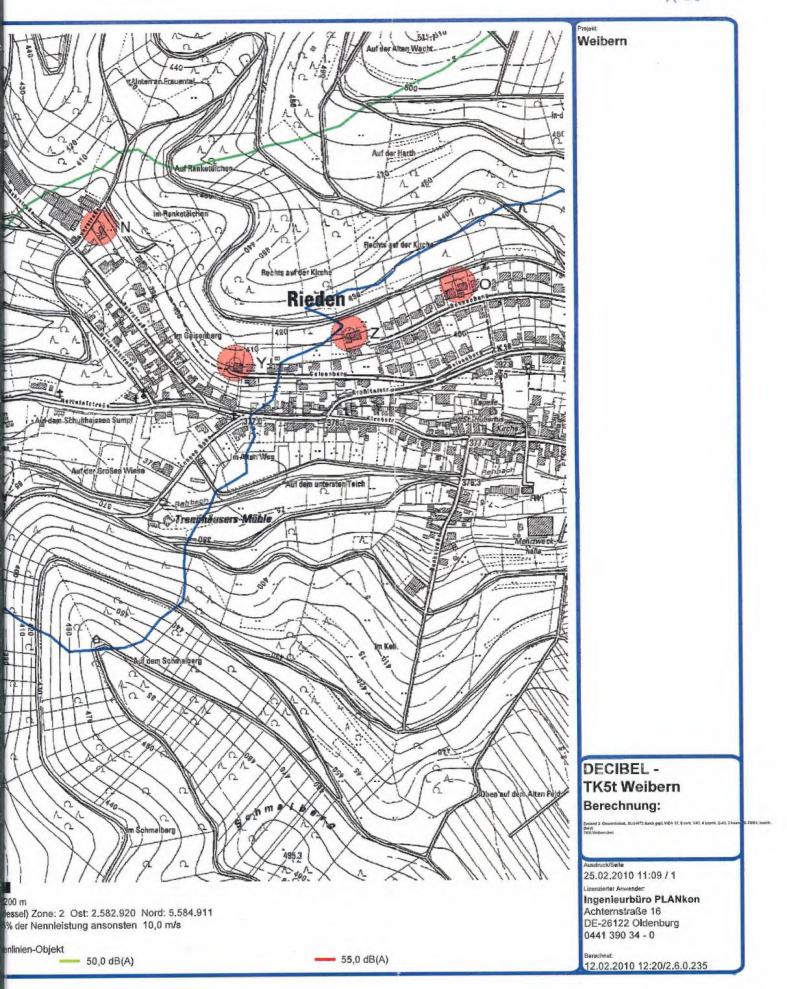

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

12.02,2010 12:20/2.6.0.235

DECIBEL - TK5t Weibern


Berechnung: Zustand 2: Gesamtbelast. SLG-NT2 durch gepl. WEA 17, 5 vorh. V47, 4 beantr. E-82, 2 beantr. E-70/E4, be




WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tal. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Weibern

WindPRO entwickelt von EMD international A/S, Niets Jamesvej 10, DK-9220 Aaltong 0, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-meit: windpro@emd.dk

Windpark Weibern

Gesamtbelastung: 13 WEA + Gewerbe

Immissionspunkt: IP P (Whs. Bahnhofstr. 111, Weibern)

t. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		40,27	10641,43	
2	Wolfcraft		31,00	1258,93	

	Summe aus
	Teilpegeln
	Lr
1	40,76

Windpark Weibern

Gesamtbelastung: 13 WEA + Gewerbe

Immissionspunkt: IP Q (Whs. Löhstr. 5, Weibern)
t. Dämpfungskoeffizient Co:

0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		40,49	11194,38	
2	Wolfcraft		34,00	2511,89	

Ī	Summe aus
l	Teilpegeln
	Lr
ſ	41,37

Windpark Weibern

Gesamtbelastung: 13 WEA + Gewerbe

Immissionspunkt: IP R (Whs. Löhstr. 6, Weibern)

t. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,j	Hilfswerte	Pegeländeru ng mit Vorzeichen
1	WEAs		40,17	10399,20	
2	Wolfcraft		31,00	1258,93	

Summe aus Teilpegeln Lr 40,67

Windpark Weibern

Gesamtbelastung: 13 WEA + Gewerbe

Immissionspunkt: IP S (Whs. Konnstr. 41, Weibern)

let. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel egel WEA Lp,j		Pegeländer ung mit Vorzeichen	
1	WEAs		39,46	8830,80		
2	Wolfcraft		31,00	1258,93		

Summe aus
Teilpegeln
Lr
40,04

Extract of test report

Master Information "Noise", according to "Wind turbine generator systems - Part 11: Acoustic noise measurement techniques."

IEC 61400-11 ED. 2 from 2002 (published by: Central Office of the IEC, Geneva, Switzerland)

Extract of test report 246SEB06/04 regarding noise emission of wind turbine (WT) type Nordex N90/2500 LS

General			Technical specifications (manufacturer)		
Manufacturer:	Nordex Energy	GmbH	Rated power (generator):	2500 kW	
	Bornbarch 2		Rotor diameter:	90.0 m	
	D-22848 NORDE	ERSTEDT	Hub height above ground:	80.0 m	
Serial number: 8297			Tower design:	Tubular steel tower pitch/stall/active-stall	
WT-location:	cation: WP Uelitz		Power control:		
Complementations of rotor (manufacturer)			Complementations of gear and generator (manufacturer		
Manufacturer of rotor blades LM Glasfiber A/S		Manufacturer of gear:	Rexroth		
Type of blades:	43.8P		Type of gear:	GPV510D	
Pitch angle:	variabel		Manufacturer of generator:	VEM	
Number of blades	3		Type of generator:	DAKA6328-6U	
Rated speed(s)/speed range: 14.9/9.6 - 16		- 16.9 min ⁻¹	Speed range:	744 - 1310 min ⁻¹	

	Reference		Noise emission parameter	Remarks
	Standardized wind speed at 10 m above ground	Electric power		
	4 ms ⁻¹	267 kW	97.2 dB(A)	(1)
	5 ms ⁻¹	561 kW	99.5 dB(A)	
	6 ms ⁻¹	976 kW	101.4 dB(A)	
	7 ms ⁻¹	1502 kW	102.8 dB(A)	
	8 ms ⁻¹	2065 kW	103.6 dB(A)	
Sound power level	8.8 ms ⁻¹	2375 kW	103.9 dB(A)	
Lwa	9 ms ⁻¹	2422 kW	104.0 dB(A)	(2)
	10 ms ⁻¹	2497 kW	104.0 dB(A)	(3)
	4 ms ⁻¹	267 kW	0.0 480 Hz	
	5 ms ⁻¹	561 kW	-3.4 482 Hz	
	6 ms ⁻¹	976 kW	-6.2 446 Hz	
	7 ms ⁻¹	1502 kW	-6.8 482 Hz	
	8 ms ⁻¹	2065 kW	-1.6 1248 Hz	
Tonal components ΔL _a	8.8 ms ⁻¹	2375 kW	0.6 1254 Hz	
(near proximity)	9 ms ⁻¹	2422 kW	0.6 1254 Hz	
	10 ms ⁻¹	2497 kW	0.5 1268 Hz	(4)

To be continued page 2

		One th	nird octav	e sound	power lev	el at refe	rence poi	nt v10 = 4	m/s in dE	3(A)			
Frequency	50	63	80	100	125	160	200	250	315	400	500	630	
LWA, P	73.0	77.2	78.8	79.9	81.1	83.5	87.1	85.5	86.3	88.9	88.5	86.0	
LWA P		81.7			86.5		91.1			92.8			
Frequency	800	1000	1250	1600				3150 4000 5000			6300 8000 10000		
LWA P	85.4	84.1	83.9	83.5	82.2	80.3	78.1	75.2	71.9	65.8	66.3	62.5	
L _{WA. P}		89.3			87.0			80.5			69.9		

		One th	nird octav	e sound	power lev	el at refe	rence poi	nt v10 = 5	m/s in di	3(A)		
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA, P}	75,5	81,5	81,5	83,6	84,7	86,8	89,5	89,4	89,2	90,4	89,9	87,6
LWA, P	85,0			90.0				94,1		94,2		
Frequency	800	1000	1250	1600	2000	2500	3150 4000 5000			6300	8000	10000
Lwa, p	86,0	85,5	85,5	86,4	85,8	83,7	81,5	78,6	74,6	67,9	67,3	63,4
LWA, P		90,5			90,2			83,9			71,4	

		One ti	nird octav	e sound	power lev	el at refe	rence poi	nt v10 = 6	m/s in di	3(A)		
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
LWAP	79.5	81.3	83.6	85.6	86.9	88.6	90.2	91.7	91.2	92.0	90.9	89.3
LWA P	86.6				91.9			95.8		95.6		
Frequency	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAP	87.7	87.0	87.4	88.4	88.5	87.0	85.7	83.9	80.4	76.5	74.9	71.1
LWA P		92.1			92.8			88.6			79.5	

Fraguenov T			nird octav								600	
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
LWA, P	81,4	81,2	85,0	86,4	87,9	89,0	90,9	92,9	92,4	92,9	92,2	91,0
LWA, P		87,7			92,7			96,9		96.9		
Frequency	800	1000	1250	1600	2000	2500	3150 4000 5000			6300 8000 1000		
Lwa, p	89,6	88,7	89,2	89,7	89,9	88,7	87,5	87,4	87,2	80,0	75,7	72,0
L _{WA} p		94,0			94,2			92,1			81,9	

		One ti	nird octav	e sound	power lev	el at refe	rence poi	nt v10 = 8	m/s in di	3(A)			
Frequency	50	63	80	100	125	160	200	250	315	400	500	630	
LWAP	81.3	82.0	85.6	87.7	88.7	90.0	91.6	93.9	92.9	93.5	92.9	91.5	
L _{WA} , P	88.2			93.7				97.7		97.5			
Frequency	800	1000	1250	1600				3150 4000 5000			6300 8000 10000		
LWA P	90.4	89.7	91.4	91.3	92.0	90.5	87.6	84.4	82.2	80.8	79.0	75.2	
LWAP		95.3			96.1			90.1			83.6		

		One th	ird octave	sound p	ower leve	at refere	ence poin	t v10 = 9	m/s in dB	(A) ⁵⁾		
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
LWA P	82.6	82.9	86.8	89.2	89.7	90.3	92.2	93.7	93.0	94.2	94.2	91.8
LWAP	89.3				94.6			97.8		98.3		
Frequency	800	1000	1250	1600	2000	2500	3150 4000 5000			6300	8000	10000
L _{WA.P}	90.2	89.7	91.3	91.7	92.5	90.8	87.5	83.2	80.2	78.1	76.2	72.3
LWA P		95.2			96.5			89.4			80.9	

To be continued page 3

		One thi	rd octave	sound po	ower leve	l at refere	nce point	t v10 = 10	m/s in dE	3(A) 6)		
Frequency	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA.P}	82.8	83.4	86.6	89.3	90.0	90.5	92.0	93.6	93.1	94.0	93.9	92.0
LWAP		89.4			94.7			97.7			98.2	
Frequency	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAP	90.4	89.9	91.5	91.6	92.1	90.1	86.7	83.6	81.3	79.9	78.6	74.9
LWA P		95.4			96.1			89.2			83.1	

(1) Background noise correction based on extrapolation of the linear regression at higher wind speeds.
 (2) At standardised wind speed 9 ms⁻¹ exists two 1-minute values.
 (3) At standardised wind speed 10 ms⁻¹ exists one 1-minute value.
 (4) The tonal analysis at standardised wind speed 10 ms⁻¹ was done with 6 narrow band spectra.
 (5) The one-third octave analysis at standardised wind speed 9 ms⁻¹ was done with two 1-minute averages.
 (6) The one-third octave analysis at standardised wind speed 10 ms⁻¹ was done with one 1-minute average.

This extract of test report is valid only in connection with the enclosed "Manufacturer's certificate" from 2007-04-27.

This declaration does not replace above-mentioned report.

measured by: WIND-consult GmbH

Reuterstraße 9

D-18211 Bargeshagen

date: 2009-04-29

Dipl.-Ing. J. Schwabe

- This extract was signed electronically-

Auszug WT 4226/05 aus dem Prüfbericht WT 4212/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90/2500 LS

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerang	gaben)
Anlagenhersteller:	Nordex Energy GmbH	Nennleistung (Generator):	2500 kW
	Bornbarch 2	Rotordurchmesser:	90 m
	22848 Norderstedt	Nabenhöhe über Grund:	80 m
Seriennummer	8047	Turmbauart:	konisches Rohr
WEA-Standort	Høvsøre, Stand 4	Leistungsregelung:	pitch
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Gene	erator (Herstellerangaben)
Rotorblatthersteller:	LM Glasfiber A/S	Getriebehersteller:	Rexroth
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichnung Getriebe:	GPV510D
Blatteinstellwinkel:	variabel	Generatorhersteller:	Loher
Rotorblattanzahl	3	Typenbezeichnung Generator:	AFWA-630MD-06A
Rotordrehzahlbereich:	14,9 / 9,6 - 16,9 U/min	Generatornenndrehzahl:	1150/ 744 - 1310 U/min

Prüfbericht zur Leistungskurve: Week Report 050401 - 050419

			Refe	renzpunk	ct		Schallemis	ssions-Par	rameter	E	Bemerkun	gen
		Wind	ndardisierte geschwindion n 10 m Höh	- 10	Elektrische /irkleistung							
Schallleisti Pegel Lwa,p	ungs-		6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,6ms ⁻¹ 10 ms ⁻¹		949 kW 1445 kW 2020 kW 2375 kW - kW		10 10 10	0,9 dB(A) 1,7 dB(A) 2,8 dB(A) 3,3 dB(A) - dB(A)				
Tonzuschl den Nahbe K _{TN}			6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,6ms ⁻¹ 10 ms ⁻¹		949 kW 1445 kW 2020 kW 2375 kW - kW		0 dB 0 dB 0 dB 0 dB - dB		pei - Hz pei - Hz pei - Hz pei - Hz pei - Hz			
Impulszus für den Na K _{IN}			6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,6ms ⁻¹ 10 ms ⁻¹		949 kW 1445 kW 2020 kW 2375 kW - kW			0 dB 0 dB 0 dB 0 dB - dB				
							punkt v ₁₀ =		n dB(A)			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWA, P	82,0	82,7	84,5	87,2	88,1	89,9	91,1	94,4	93,3	93,1	91,9	91,5
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA, P	89,7	88,9	89,9	91,4	91,0	89,6	88,4	84,2	81,0	76,0	70,3	63,7
			Oktav-	Schallleis	tungspege	Referenz	zpunkt v ₁₀ :	= 8,6 ms ⁻¹	in dB(A)			
Frequenz	63		125	250		500	1000		2000	4000		8000

97,0

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-05-10. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

97,9

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,6 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

93,3

25709 Kaiser-Wilhelm-Koog

Diplaing, A. Jensen

94,3

95,5

FGW Fördergesellschaft Windenergie Konformitätsstempel

77,2

Dipl.-Ing. J. Neubert

90,3

Datum:

2005-05-13

88,0

Devision DE Deuters Amerikaan een om Britse en noch TO En Schille (1906 al Indiana) Printeressen in Telektronis en geborden en monde outprinten Printeresse.

4 Zusammenfassung und Bewertung

Im Auftrag der Nordex Energy GmbH, 22848 Norderstedt, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA Nordex N90/2500 LS mit einer Nabenhöhe von H = 80 m nach [FGW17] untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die [FGW17]. Grundlage für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA ist die [IEC 61400-11 ED.2] bzw. für die Bewertung von Impulshaltigkeiten die [DIN 45645 T1]. Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die Nordex N90/2500 LS die in Tabelle 4 dargestellten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich.

Tabelle 4: Zusammenfassung der Messergebnisse

WG in 10 m Höhe [m/s]	6	7	8	9	10	95 % Nenn- leistung ¹⁾
theoretische elektrische Wirkleistung aus der Leistungskurve [kW]	1026	1536	2031	2428	2493	2375
gemessene Rotordrehzahl [min ⁻¹]	14,2	14,5	14,7	14,9	15,0	14,9
Schallleistungspegel L _{WA,k} [dB]	99,7	101,6	102,8	103,4	103,5	103,3
kombinierte Gesamtmessunsicherheit Uc [dB]	1,0	0,7	0,8	0,7	0,8	
Impulshaltigkeitszuschlag [dB]	0	0	0	0	0	-
Tonhaltigkeitszuschlag [dB]	0	0	0	0	0	

Hinweis: Die der 95 %-igen Auslegungsnennleistung entsprechende Windgeschwindigkeit beträgt 8,74 m/s.

Einzelereignisse, die den momentanen Wert des Schallleistungspegels um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtcharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor. Richtlinienkonform wurde der Windgeschwindigkeitsbereich von 6 bis 10 m/s in 10 m Höhe vollständig und belastbar vermessen. Subjektiv entspricht das abgestrahlte Geräusch der Anlage in diesem Bereich dem typischen Geräusch einer Anlage dieses Leistungssteuerungstyps und weist keine weiteren Auffälligkeiten auf.

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

-000
cu
-
C31
408
eu.
1500
5.7.
400
0.873
2000
(3)
-
-
=
4
600
ALC: UP
(Charles
613
-
_
=
8
8
3
hal
chal
chal
Schall
Schalleistungspegel
-
-
-
-
-
-
-
-
-
-
-
-
mittlerer Schall

						0,36 Sigma p = 1,2 bei nur einem vorliegenden			
	Lwa, 90		104,51		0,5 Standard	0,36 Sigma p = 1,2 bei	Messwert	1,62	ereich
	Sigma Lwa	ь	0,71						chkeit als Vertrauensbe
	Standardnorm Standardabweichung	S	1,28 0,36		SigmaR	ca = S SigmaP		inkl Prognoseunsicherheit 1,5 dB	inkl. Faktor 1,28 für 90 % Wahrscheinlichkeit als Vertrauensbereich
N90/2,5MW - LS	_	Lwa	103,3	103,5	104,0		103,60		105,7
WEA-Typ:			WT 4226/05	WT 5966/07	WC 246SEB06/04		Lwa(Mittel)	Zuschlag:	Rechenwert:

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 17 vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz. 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 141SE707/02 zur Schallemission der Windenergieanlage vom Typ ENERCON E-70 E4 2,3 MW

Allgemeine Angaben		Technische Daten (Herstellerangaben)					
Anlagenhersteller: E	NERCON GmbH	Nennleistung (Generator):	2300 kW				
	reekamp 5	Rotordurchmesser:	71 m				
	-26605 AURICH	Nabenhöhe über Grund:	64,00 m				
Seriennummer: 7	8793	Turmbauart:	kon. Stahlrohrturm				
WEA-Standort (ca.):	W: 4442701 HW: 6040496	Leistungsregelung:	Pitch/Stall/Aktiv-Stall				
Ergänzende Daten zum Ro	or (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben					
Rotorblatthersteller:	ENERCON GmbH	Getriebehersteller:	entfällt				
Typenbezeichnung Blatt:	70-4	Typenbezeichnung Getriebe:	entfällt				
Blatteinstellwinkel:	Variabel	Generatorhersteller:	ENERCON GmbH				
Rotorblattanzahl	3	Typenbezeichnung Generator:	E-70				
Rotornenndrehzahl/-bereic	n: 6 - 21 U/min (Betrieb II)	Generatornenndrehzahl: 6 - 21 U/min (Betri					

Leistungskurve: "Leistungskennlinie E-70 E4" (berechnete Kurve, Herstellerangabe)

				Refer	enzpunk	t			emissions- ameter		Bemerku	ngen
			Standar Windgesch in 10 m	windigkeit	1	Elektrische Virkleistun						
Schalleistungs- Pegel L _{ww.P}			6 m 7 m 8 m 9 m	s ⁻¹ s ⁻¹	1	663 kW 1056 kW 1536 kW 1938 kW			dB(A) dB(A) dB(A) dB(A)			
			10 n	IS ⁻¹	2	165 kW		104,0 0 dB	dB(A) bei - Hz		-	
den Nahbereich K _{TN}			7 m 8 m 9 m 10 n	15 ⁻¹	1	1056 kW 1536 kW 1938 kW 2165 kW		0 dB 0 dB 0 dB 0 dB	bei - Hz bei - Hz bei - Hz bei - Hz			
Impulszuschlag für den Nahbereich K _{IN}			6 m 7 m 8 m 9 m 10 r	15 ⁻¹ 15 ⁻¹ 15 ⁻¹ 15 ⁻¹	1 1	663 kW 1056 kW 1536 kW 1938 kW 2165 kW			0 dB 0 dB 0 dB 0 dB 0 dB			
			Terz-Scha	lleistungs	pegel Re	eferenzpu	nkt v ₁₀ =	10,0 ms ⁻¹	in dB(A)			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWA, P	81,3	82,5	83,6	84,7	87,0	89,5	89,9	92,5	94,6	94,3	93,6	94,4
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA, P} 93,0 92,8 90,4 8				88,3	89,7	85,7	88,2	87,1	85,0	84,5	83,2	83,5
			Oktav-Sch	alleistung	spegel R	eferenzp	unkt v ₁₀ =	10,0 ms	in dB(A)			
Frequenz	63		125		500 10			00 2000		4000		
LWA, P	87,3		92,3	97,5		98,9	97,0)	93,0	91,7		88,5

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 17.10.2007. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Datum: 24.01.2008

Dautscher Akkreditierungs Rat

Unterschrift Unterschrift
Dipl.-Ing. (FH) H.Reichelt Dipl.-Ing. W.Wilke

Das PDF-Dokument wurde elektronisch unterschrieben.

DAP-PL-2756.00

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber, Fördergesellschaft Windenergie e. V. Stresemannplatz, 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 314SEA05/01

zur Schallemission der Windenergieanlage vom Typ ENERCON E-70 E4 2.3 MW (Betrieb II)

Allgemeine Angaben			Technische Daten (Herstellerangaben)				
Anlagenhersteller:	ENERCON Gm	ьн	Nennleistung (Generator):	2300 kW			
	Dreekamp 5		Rotordurchmesser:	71,0 m			
	D-26605 AURIO	СН	Nabenhöhe über Grund:	99,0 m			
Seriennummer:	702320	RW 25.94.632	Turmbauart:	Kon. Stahlrohr			
WEA-Standort (ca.):	WP Holtriem	HW 59.43.726	Leistungsregelung:	Pitch			
Ergänzende Daten zum Ro	tor (Hersteller	angaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben				
Rotorblatthersteller:	ENERC	ON GmbH	Getriebehersteller: entfällt				
Typenbezeichnung Blatt:	70-4		Typenbezeichnung Getriebe:	entfällt			
Blatteinstellwinkel: variabel			Generatorhersteller:	ENERCON GmbH			
Rotorblattanzahl	3		Typenbezeichnung Generator:	E-70			
Rotomenndrehzahl/-bereich: 6 – 21 min ⁻¹ (Betrieb II)			Generatornenndrehzahl: 6 – 21 min ⁻¹ (Betrieb				

Prüfbericht zur Leistungskurve: berechnete Kurve v. 23.05.2005

			Referenzpunkt						emissions- rameter	'	Bemerku	ngen	
			Standar Windgesch in 10 m	windigkeit		Elektrische Virkleistun							
Schallleistungs- Pegel L _{WAP}			6 m 7 m 8 m 9 m 10 r 9,6 i	s-1 s-1 s-1 ns-1	772 kW 1215 kW 1714 kW 2048 kW 2247 kW 2185 kW			98,5 dB(A) 100,9 dB(A) 102,9 dB(A) 104,1 dB(A) 104,4 dB(A) 104,4 dB(A)			(1)		
Tonzuschla den Nahber K _{TN}			6 m 7 m 8 m 9 m 10 r 9,6	ns ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹	2 2	772 kW 1215 kW 1714 kW 2048 kW 2247 kW 2185 kW		0 dB 0 dB 0 dB 0 dB 0 dB	bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz		(1)		
Impulszuschlag für den Nahbereich K _{IN}			6 m 7 m 8 m 9 m 10 r 9,6	2	772 kW 1215 kW 1714 kW 2048 kW 2247 kW 2185 kW			0 dB 0 dB 0 dB 0 dB 0 dB 0 dB		(1)			
			Terz-Sch	allleistung	spegel F	Referenzp	unkt v ₁₀ =	= 10 ms ⁻¹	in dB(A)				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
L _{WA P} Frequenz	78,4 800	82,7 1000	86,3 1250	89,7 1600	92,0	93,7 2500	92,2 3150	95,4 4000	95,6 5000	93,4 6300	92,6 8000	93,5	
			89,9	88,3	86,2	83,2	81,4	78,8	75,6	73,4	72,2		
			Oktav-Sc	hallleistun	gspegel	Referenz	ounkt v ₁₈	= 10 ms*	in dB(A)				
Frequenz	63		125 250			500		0	2000	4000		8000	
LWAP	88.3		96,9	99,4		98,0		5,5 93,2		86,3		78,7	

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 07.11.2005. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

Schallteistungspegel bei 95% der Nennleistung der WEA.

- PDF-Dokument wurde elektronisch unterschrieben -

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Datum: 21.11.2005

Unterschrift

Dipl.-Ing. A. Petersen

Unterschrift Dipl.-Ing. J.Schwabe

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht 135208gs01 vom 22.06.2009 zur Schallemission der Windenergieanlage vom Typ ENERCON E-70/E4

Allgemeine Angaben				Technische Daten (Herstellerangaben)					
Anlagenhersteller:	ENERCON	GmbH	1	Nennleistung (Generator):	2.300 kW (Betrieb II)				
	Dreekamp 5	;		Rotordurchmesser:	71 m				
	26605 Aurich			Nabenhöhe über Grund:	64 m				
Seriennummer:	781960	1960		Turmbauart:	konischer Rohrturm				
WEA-Standort (ca.):	RW: 34.92.249 HW: 60.57.490			Leistungsregelung:	Pitch				
Ergänzende Daten z	um Rotor (Her	stelle	rangaben)	Erg. Daten zu Getriebe und Gen	erator (Herstellerang.)				
Rotorblatthersteller:		ENERCON GmbH		Getriebehersteller:					
Typenbezeichnung Bl	att:	E-70/E4		Typenbezeichnung Getriebe:					
Blatteinstellwinkel:		variabel °		Generatorhersteller:	ENERCON GmbH				
Rotorblattanzahl:		3		Typenbezeichnung Generator:	E-70				
Rotordrehzahlbereich: 6 – 21 U/min			1 U/min	Generatornenndrehzahl: 6 – 21 U/min					

Prüfbericht zur Leistungskurve: von der Enercon GmbH berechnete Leistungskurve

			R	eferenz	ounkt		5	Schallemi param		Beme	erkungen	
		Winds	andardisie geschwind 10 m Höl	figkeit		rische eistung						1600
			8 m/s		1.64	0 kW		103,4	dB(A)		D1000-1	
			9 m/s		1.96	0 kW		103,8	dB(A)			
Schallleistun	gspegel		10 m/s		2.17	5 kW		104,1	dB(A)			
LWAP			11 m/s		2.33	0 kW		104,2	dB(A)			
			12 m/s		2.33	0 kW		104,1				
			13 m/s			0 kW		104,0	dB(A)			
			8 m/s		1.64	0 kW		0 df	3			
			9 m/s		1.96	0 kW		0 df				
Tonzuschlag	für den	10 m/s			2.17	5 kW		0 dB				
Nahbereich I	KTN	11 m/s			2.330 kW			0 dB				
		12 m/s			2.330 kW			0 dB				
TO THE		13 m/s			2.330 kW			0 dB				
		8 m/s			1.640 kW			0 dB				Alta Williams
		9 m/s			1.960 kW			0 dB				
Impulszusch		10 m/s			2.175 kW			0 dB			104-11169	
Nahbereich I	KIN	11 m/s			2.330 kW			0 di			(a) tracket	
		12 m/s			2.330 kW			0 dB				
		13 m/s			2.330 kW			0 dB				
			Terz-S	challleis	tungspeg	gel für v _s	= 10,3 m	n/s in dB(A)			
Frequenz	8	10	12,5	16	20	25	31,5	40	50	63	80	100
LWAP	35,3	43,8	50,6	56,2	62,7	68,1	71,0	75,2	79,4	81,7	84,4	85,8
Frequenz	125	160	200	250	315	400	500	630	800	1 k	1,25 k	1,6 k
LWAP	87,9	91,9	87,3	89,5	91,8	92,4	94,1	94,1	95,0	94,2	93,4	92,0
Frequenz	2 k	2,5 k	3,15 k	4 k	5 k	6,3 k	8 k	10 k	12,5 k	16 k	20 k	
LWAP	90,6	89,6 88,1 84,5			82,5 -							
			Oktav-	Schalllei	stungspe	gel für v	= 10,3	m/s in dB	(A)			
Frequenz	31,5	(53	125	250	50	00	1000 2000		40	000	8000
LWAP	77,2	8	7,1	94,1	94,7	98	3,4	99,0	95,6	91	0,4	-

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 19.11.2008. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

keine

Gemessen durch:

INGENIEURBÜRO FÜR AKUSTIK

BUSCH GMBH

Datum:

22.06.2009

Stempel und Unterschrift

mittlerer Schalleistungspegel für E-70/E4, 2,3MW

Op ew l ews	ליימ ביימ		0,61 104,98		0,5 Standard	0,16 Sigma p = 1,2 bei Einzelmessung	1,589 Jensbereich
	tanual uabweloning	0	0,16		SigmaR	igmaP	B scheinlichkeit als Vertrau
Volllast Ctandardardardardardardardardardardardardard	Stalldardilorillarvallable 30 %	<u> </u>	1,28		Sign	ca = S SigmaP	inkl Prognoseunsicherheit 1,5 dB inkl. Faktor 1,28 für 90 % Wahrscheinlichkeit als Vertrauensbereich
E-70/E4, 2,3MW, Volllast		Lwa	104,2	104,0	104,4		1,59
WEA-Typ:			Busch 135208gs01	WICO 141SE707/02	WICO 314SEA05/01		Lwa(Mittel) Zuschlag: Rechenwert:

Messbericht zur Geräuschvorbelastung in Weibern durch Betriebe die zur Nachtzeit arbeiten

AUFTRAGGEBER:

AUFTRAG VOM: 27.11.2009

AUFTRAG - Nr.: 13771 / 1209

BEARBEITER: S. Heusler

SEITENZAHL: 21

ANHÄNGE:

3.5 Messpunkte

Die Auswahl der Messpunkte erfolgte gemäß den Anforderungen aus schalltechnischer Sicht (möglichst Sichtverbindung zu Firma Wolfcraft), ggfs. auch Sichtverbindung auf Dachbereiche der Firma Wolfcraft. Unter diesen Randbedingungen sowie in Anlehnung an die Empfehlungen der Genehmigungsbehörde wurden die nachfolgenden 4 Aufpunkte gewählt:

Messpunkt 1 (AA): südőstlich des Wohnhauses Löhstraße 5 auf

dem Privatweg zu einem südlich angrenzen-

den möglichen Wohnhaus

Messpunkt 2 (Z): südöstlich des Wohnhauses Löhstraße 9 auf

der Parzelle 281/2 unterhalb des Sportplat-

zes des TUS Weibern

Messpunkt 3 (C): südöstlich neben dem Wohnhaus Tannen-

weg 6. Von diesem unterhalb des Sportplatzes gelegenen Messpunkt besteht keine freie Sichtverbindung mehr zur Firma Wolfcraft aufgrund des höher gelegenen Sportplatzes

Messpunkt 4 (AC): seitlich neben dem Wohnhaus Bahnhofstra-

ße 111 mit freier Sichtverbindung auf das Betriebsgebäude der Firma Wolfcraft aus

nördlicher Richtung

An den Messpunkten wurde oberhalb der Erdgeschosse ca. 4 m über Boden gemessen.

Von den Messpunkten 1 und 4 bestand freie Sichtverbindung zu dem Betriebsgebäude der Firma Wolfcraft.

Schalltechnisches Ingenieurbüro Paul Pies

Am Messpunkt 2 wurde die freie Sichtverbindung durch Bewuchs auf die sehr viel tiefer gelegene Halle der Firma Wolfcraft unterbrochen.

Von Messpunkt 3 (neben dem Wohnhaus Tannenweg 6) aus besteht keine Sichtverbindung zur Firma Wolfcraft, da diese durch den Bergrücken unterbrochen wird.

Die Messpunkte sind im Plotausdruck im Anhang 2 des Gutachtens gekennzeichnet.

Messergebnisse

4.1 Betriebssituation während der Geräuschmessung

Für die Geräuschmessung wurde in Absprache mit der Firma Wolfcraft sichergestellt, dass in dem Betrieb kontinuierlich gearbeitet wurde. Des Weiteren wurden auch die Abluftventilatoren im Dach der Halle eingesetzt, damit eine vergleichbare Geräuschsituation vorherrscht, wie sie auch in den Sommermonaten bei höheren Temperaturen vorliegt. Die Rolltore, Fenster und Türen der Produktionshalle der Firma Wolfcraft waren zu den Zeitpunkten der Geräuschmessungen geschlossen. Dies stellt auch einen üblichen Betriebszustand in den Sommermonaten dar.

4.2 Ergebnisse der Geräuschmessung

Wie die Geräuschmessung zeigte, traten aus der Produktionshalle auch in Überlagerung mit den Geräuschimmissionen der Abluftventilatoren auf dem Dach der Halle keine impulshaltigen Geräuschimmissionen auf. Jedoch wurden am Messpunkt 1 zwischen 22.00 und 23.00 Uhr 4 PKW-Bewegungen von Mitarbeitern registriert, wobei impulshaltige Geräuschimmissionen durch Türenschlagen und Starten der Motoren abgestrahlt wurden. Aus diesem Grunde wird im folgenden der mittlere Taktmaximalpegel mit einer Taktzeit von 5 sek. von Laften ausgewertet.

Messpunkt 1 (AA):

Am Messpunkt 1 wurde die Geräuschsituation in der Anfangsphase kurz nach 22.00 Uhr durch die 4 Mitarbeiter-PKW-Bewegungen geprägt. Diese Park- und Abfahrvorgänge etwa mittig südwestlich vor der Firma Wolfcraft verursachten Spitzenpegel bis zu 53 dB(A) während den Parkvorgängen. Im Laufe der Messzeit für die "lauteste Nachtstunde" von 22.00 bis 23.00 Uhr sank der mittlere Taktmaximalpegel bis zum Messende hin auf 34 dB(A) ab. Dieser Immissionspegel repräsentiert die Geräuschimmissionen zur "lautesten Nachtstunde" am ungünstigsten Immissionsort. Während der Geräuschmessung wurde weiter festgestellt, dass die Betriebsgeräuschimmissionen aus der Halle bei geschlossenen Rolltoren und Fenstern und niedrigen Hintergrundgeräuschpegeln zwischen 28 bis 30 dB(A) in Abhängigkeit von Windrichtung und Geschwindigkeit betrugen.

Messpunkt 2 (Z):

An Messpunkt 2 südlich oberhalb des Messpunktes 1 und unterhalb des Sportplatzniveaus des TUS Weibern bestand aufgrund des Bewuchses keine freie Sichtverbindung zum Betriebsgelände der Firma Wolfcraft.

Lediglich die Beleuchtungen auf dem Betriebsgelände konnten erkannt werden. An diesem Messpunkt konnten nur bei absolut geringen Hintergrundgeräuschpegeln Betriebs- und Lüftergeräusche aus dem Betriebsgebäude der Firma Wolfcraft gemessen werden. Der mittlere Taktmaximalpegel durch die Betriebsgeräusche betrug an diesem Messpunkt 31 dB(A), wobei Hintergrundgeräusche durch Blättrauschen selbst bei geringen Windgeschwindigkeiten nicht voll ausgeblendet werden konnten. Einzelne Geräuschspitzen betrugen an diesem Messpunkt max. 36 dB(A) und rührten hier aus gelegentlichen Anschlaggeräuschen innerhalb der Halle. Auch an diesem Messpunkt konnten keine tonhaltigen Anlagengeräusche aus dem Betriebsbereich der Firma Wolfcraft wahrgenommen oder messtechnisch erfasst werden.

Messpunkt 3 (C):

An Messpunkt 3 seitlich neben dem Wohnhaus Tannenweg 6 konnten selbst bei geringen Hintergrundgeräuschpegeln keine Betriebsgeräuschimmissionen aus dem Bereich der Firma Wolfcraft wahrgenommen oder messtechnisch erfasst werden. Hier wurde die Geräuschsituation ausschließlich durch Femlärm und Blattrauschen bei auffrischenden Winden bestimmt. Diese Hintergrundgeräuschpegel betrugen über den Messzeitraum zwischen 23 und 33 dB(A). Da die Betriebsgeräuschimmissionen selbst bei den niedrigeren Hintergrundgeräuschpegeln weder wahrgenommen, noch messtechnisch erfasst werden konnten, liegen hier die Betriebsgeräuschimmissionen der Firma Wolfcraft auch zur Nachtzeit deutlich unterhalb 30 dB(A). Auch hier konnten keine tonhaltigen Geräuschimmissionen aus Richtung der Firma Wolfcraft wahrgenommen oder gemessen werden.

Messpunkt 4 (AC):

An dem Messpunkt 4 nordwestlich der Firma Wolfcraft bestand freie Sichtverbindung auf das Betriebsgebäude der Firma Wolfcraft. An diesem Messpunkt konnten bei niedrigen Hintergrundgeräuschpegeln Produktionsgeräusche und Anschlaggeräusche wahrgenommen und messtechnisch erfasst werden. Der mittlere Taktmaximalpegel über die Messzeit betrug hier 31 dB(A). Maximale Spitzen durch Anschlaggeräusche erreichten Werte bis 35 dB(A). Auch an diesem Messpunkt konnten keine tonalen Anlagenkomponenten auf dem Betriebsgelände der Firma Wolfcraft wahrgenommen oder messtechnisch erfasst werden.

Die Messergebnisse können dem Anhang 3, 4, 5 und 6 des Messberichtes entnommen werden.

Beurteilung der Messergebnisse

Wie die Geräuschmessungen im Umfeld der Firma Wolfcraft ergaben, wurden keine tonhaltigen Geräuschimmissionen im Zusammenhang mit dem Betriebsablauf wahrgenommen oder messtechnisch erfasst. Dies gilt auch für die Abluftanlagen auf dem Dach der Produktionshalle der Firma. Daher wird in der nachfolgenden Beurteilung kein Tonzuschlag berücksichtigt.

Da die Betriebsgeräuschimmissionen der Firma Wolfcraft kontinuierlich über den gesamten Nachtzeitraum vorliegen, stellen die Messwerte an den Immissionsorten gleichzeitig den Beurteilungspegel für die "lauteste Nachtstunde" gemäß TA Lärm dar. Hiemach ergeben sich an den Messpunkten nachfolgende Beurteilungspegel für die "lauteste Nachtstunde":

Messpunkt 1 (AA):

Südwestlich unmittelbar im Nahbereich der Firma Wolfcraft.

 $L_{r,nacht} = 34 dB(A)$

Messpunkt2 (Z):

Weiter südlich des Betriebes im ansteigenden Gelände unterhalb des südlich gelegenen Sportplatzes des TUS Weibern.

L_{r,nacht} = 31 dB(A)

Messpunkt 3 (C):

Seitlich neben dem Wohnhaus Tannenweg 6. Aufgrund der Geländetopographie und des höher gelegenen Sportplatzes des TUS Weibern besteht keine direkte Sichtverbindung zur Firma Wolfcraft.

 $L_{r,nacht} = < 30 dB(A)$

(Betriebsgeräusche weder mess- noch wahrnehmbar)

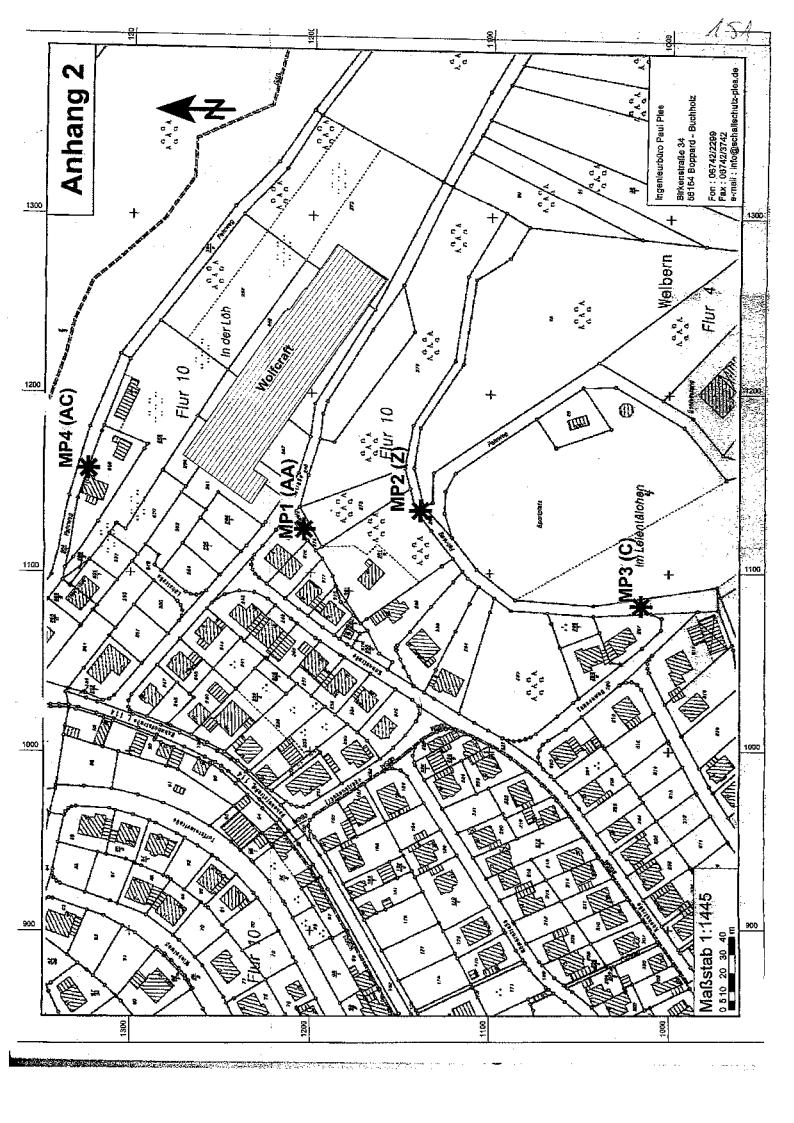
Messpunkt 4 (AC):

Seitlich neben dem Wohnhaus Bahnhofstraße 111 im ansteigenden Gelände mit freier Sichtverbindung auf die Betriebshalle der Firma Wolfcraft.

L_{r,nacht} = 31 dB(A)

Wie die Beurteilungspegel zeigen, wird an den Messpunkten MP 1, MP 2 und MP 4 der zulässige Nachtimmissionsrichtwert eines Mischgebietes von 45 dB(A) sicher eingehalten, bzw. um mehr als 10 dB(A) unterschritten.

Schalltechnisches Ingenieurbüro Paul Pies Www.


An dem weiter südlich gelegenen Messpunkt 3 am Tannenweg wird der zulässige Nachtimmissionsrichtwert eines allgemeinen Wohngebietes von 40 dB(A) ebenfalls sicher eingehalten, bzw. um mehr als 10 dB(A) unterschritten.

Neben der Überprüfung auf Einhaltung der Immissionsrichtwerte ist gemäß TA Lärm weiter zu prüfen, ob unzulässig hohe Spitzenpegel im Zusammenhang mit dem Betriebsablauf zur Nachtzeit auftreten (nachts sollte der zulässige Nachtimmissionsrichtwert auch durch kurzzeitige Anschlaggeräusche, etc. um nicht mehr als 20 dB(A) überschritten werden). Hier ist festzustellen, dass Spitzenwertüberschreitungen im Zusammenhang mit dem Nachtschichtbetrieb der Firma Wolfcraft aufgrund ausreichender Schutzabstände nicht auftraten.

Fahr- und Verladetätigkeiten von LKW finden zur Nachtzeit nicht statt. Auch treten nachts keine geräuschintensiven Produktionsarbeiten außerhalb der geschlossenen Halle auf.

Qualität der Messung

Zur Beurteilung der Betriebsgeräuschimmissionen auf der sicheren Seite wurde der mittlere Taktmaximalpegel mit einer Taktzeit von 5 sek. für die Beurteilung herangezogen (die Pegeldifferenz zwischen dem mittleren Taktmaximalpegel Laften und dem energieäquivalenten Dauerschallpegel Laften betrug weniger als 2 dB(A), sodass eine Beurteilung der Geräuschimmissionen mit dem energieäquivalenten Dauerschallpegel Laften ausreichend wäre. Für die Beurteilung wurde auf die meteorologische Korrektur Cmet verzichtet. Eine Hintergrundgeräuschkorrektur für Blattrauschen und Fernlärm (teilweise nur geringfügig unterhalb der Betriebsgeräuschimmissionen) wurde nicht vorgenommen.

