
Schalltechn. Ingenieurbüro für Gewerbe-, Freizeitund Verkehrslärm

Paul Pies

Dipl. Ing.

Von der Industrie- und Handelskammer zu Koblenz
ötfentlich bestellter und vereidigter Sachverständiger
für Gewerbe-, Freizett- und Verkehrslärm
Benannte Medstelle nach §§26, 28 BImSchG.

Ihr Zeichen

Thre Nachricht vom

Unser Zeichen

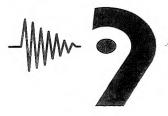
Datum 22.07.2008

Schalltechnische Immissionsprognose zu geplanten Windenergieanlagen im Bereich der Ortslagen Peterswald-Löffelscheid, Panzweiler und Haserich

-Errichtung von 3 Windenergieanlagen in der Gemarkung Peterswald-Löffelscheid-

Sehr geehrte

für die Windenergieanlagen im Bereich der o. g. Ortschaften wurden im Rahmen der Genehmigungsverfahren durch unser Büro schalltechnische Immissionsprognosen erstellt. Die aktuellste Untersuchung bezieht sich auf die geplante Errichtung von 3 Windenergieanlagen in der Gemarkung Peterswald-Löffelscheid. Die Ergebnisse dieser Untersuchung sind in einem Nachtragsschreiben vom 11.06.2008 (Auftrag Nr.: 12995 / 0608) aufgeführt. Die Ergebnisse zeigen, dass das Planungsvorhaben im Sinne der TA Lärm umsetzbar ist.


Aktuelle Planungen sehen vor, die gemäß o. g. Nachtragsuntersuchung geplante Anlage mit der Kennzeichnung WEA L07 um ca. 20 m nach Norden zu verschieben. Diese Verschiebung ist aus schalltechnischer Sicht zu bewerten.

Hierzu ist anzumerken, dass auf Grundlage der vorliegenden schalltechnischen Untersuchung der ungünstigste Immissionspunkt ein Wohngebiet in der Ortslage Haserich ist. Zu diesem Wohngebiet weisen die 3 geplanten Anlagen Abstände von 1 800 bis 2 000 m auf. Aufgrund dieser großen Abstände wird der dort gültige Immissionsrichtwert zur Nachtzeit von 40 dB(A) durch die 3 geplanten Anlagen um > 10 dB(A) unterschritten. Von daher hat die Verschiebung der Anlage um ca. 20 m nach Norden auf die Berechnungsergebnisse keinen wesentlichen Einfluss und die Aussagen aus dem o. g. Nachtrag haben weiterhin Gültigkeit.

Sollten sich noch Rückfragen ergeben, stehe ich Ihnen für Auskünfte jederzeit gerne zur Verfügung.

für Gewerbe-, Freizeitund Verkehrdärm

Dipl. Ing.

Von der Industrie- und Handelskammer zu Koblenz öffentlich bestellter und vereidigter Sachverständiger für Gewerbe-, Freizeit- und Verkehrslärm Benannte Meßstelle nach §§26, 28 BImSchG.

Dipl. Ing. Paul Pies Birkenstr. 34 56154 Boppard

Ihr Zeichen

12995 / 0608

Ihre Nachricht vom

Datum

11.06.2008

Schalltechnische Immissionsprognose zu geplanten Windenergieanlagen im Bereich der Ortslagen Peterswald-Löffelscheid, Panzweiler und Haserich

-Errichtung von 3 Windenergieanlagen in der Gemarkung Peterswald-Löffelscheid-

Sehr geehrte

im Bereich der Ortslagen Haserich, Panzweiler und Löffelscheid werden bisher insgesamt 7 Windenergieanlagen betrieben. Hierzu wurden für die einzelnen Standorte durch unser Büro im Rahmen der Genehmigung schalltechnische Immissionsprognosen erstellt. Die Ergebnisse sind im Gutachten vom 17.01.2005 (Auftrag Nr.: 11568) und im Gutachten vom 12.09.2005 (Auftrag Nr.: 11873) sowie in einem Nachtragsgutachten vom 21.12.2005 (Auftrag Nr.: 11965) wiedergegeben. Im Rahmen dieser Untersuchung wurden auch weitere 7 Windenergieanlagen im Bereich der Gemarkung Mastershausen mit berücksichtigt.

Aktuelle Planungen sehen vor 3 zusätzliche Windenergieanlagen (WEA L6-L8) der Firma Enercon vom Typ E53 in der Gemarkung Peterswald-Löffelscheid zu errichten und zu betreiben. Aufgrund der Neuplanung ist die Unbedenklichkeit im Rahmen einer schalltechnischen Untersuchung zu überprüfen. Neben den bereits bestehenden und den zusätzlich geplanten 3 Windenergieanlagen sind auch weitere 3 geplante Anlagen eines Fremdplaners (WEA M8 – M10) als Vorbelastung mit zu berücksichtigen.

Die Standorte aller geplanten als auch bestehenden Anlagen können dem Lageplan im Anhang 1 des Nachtrages entnommen werden.

In der nachstehenden Tabelle sind alle Windenergieanlagen mit ihren technischen Daten etc. aufgeführt:

Tabelle 1

Kennzeichnung entsprechend Lageplan	Hersteller	Anlagentyp	Nabenhöhe in m	Rotordurch- messer in m	Nennleistung in Kw
WEA H1 - Bestand	Fuhrländer	FL-MD 77	85	77	1 500
WEA H2 - Bestand	Fuhrländer	FL-MD 77	85	77	1 500
WEA L1 - Bestand	Enercon	E 48	75,6	48	800
WEA L2 - Bestand	Enercon	E 48	75,6	48	800
WEA L3 - Bestand	Enercon	E 48	75,6	48	800
WEA L4 - Bestand	Enercon	E 48	75,6	48	800
WEA L5 - Bestand	Enercon	E 48	75,6	48	800
WEA L6 - geplant	Enercon	E 53	73,25	53	800
WEA L7 - geplant	Enercon	E 53	73,25	53	800
WEA L8 - geplant	Enercon	E 53	73,25	53	800
WEA M1 - Bestand	Enercon	E 70-E 4	98	71	2 000
WEA M2 - Bestand	Enercon	E 70-E 4	98	71	2 000
WEA M3 - Bestand	Enercon	E 70-E 4	98	71	2 000
WEA M4 - Bestand	Enercon	E 70-E 4	86	71	2 000
WEA M5 - Bestand	Enercon	E 70 E 4	98	71	2 000
WEA M6 - Bestand	Enercon	E 70-E 4	86	71	2 000
WEA M7 - Bestand	Enercon	E 70-E 4	113,5	71	2 000 `
WEA M8 - neu geplant	Enercon	E82	108,38	82	2 000
WEA M9 - neu geplant	Enercon	E 82	108,38	82	2 000
WEA M10 - neu geplant	Enercon	E 82	108,38	82	2 000

Zu den o. b. Anlagen ist anzumerken, dass es sich bei den Anlagen mit der Kennzeichnung WEA L6 bis WEA L8 um die geplanten Anlagen handelt und alle sonstigen Anlagen als Vorbelastung mit zu berücksichtigen sind. Die Anlagen mit der Kennzeichnung WEA M8 bis M10 sind geplante Anlagen eines Fremdplaners.

Hinsichtlich der Emissionsdaten ergeben sich gegenüber den vorangegangenen Untersuchungen Änderungen, da zwischenzeitlich teils Anlagen 3-fach vermessen sind, bzw. auch Anlagentypen geändert wurden. In der nachstehenden Tabelle sind die jeweiligen Emissionsdaten der Anlagen aufgeführt:

Tabelle 2

Hersteller	Anlagentyp	Nabenhöhe in m	Immissionsrelevanter Schallleistungspegel L _W in dB(A)	Bemerkung	
ENERCON	E 82	108,38	103,8	3-fach vermessen	
ENERCON	E 70-E 4	86;98;113,5	101,8	3-fach vermessen	
ENERCON	E 53	73,25	100,9	1-fach vermessen	
ENERCON	E 48	75,6	101,7	3-fach vermessen	
FUHRLÄNDER	FL-MD 77	85	103,0	3-fach vermessen	

Auszüge aus den Vermessungsberichten können dem Anhang 2 zum Nachtrag entnommen werden.

Zur Ermittlung des Zuschlages K zur Erstellung einer Immissionsprognose auf der sicheren Seite wurden folgende Standardabweichungen für die einzelnen Anlagentypen berücksichtigt:

Tabelle 3

Hersteller	Anlagentyp	Messunsicherheit	Prognosestandardab-	Produktionsstandard-
	0 7,	σ_R in dB(A)	weichung σ _{Prog} in dB(A)	abweichung σ _P in dB(A)
Enercon	E 82	0,5	1,5	0,4
Enercon	E 70-E 4	0,5	1,5	0,2
Enercon	E 53	0,5	1,5	1,2
Enercon	E 48	0,5	1,5	0,6
Fuhrländer	FL-MD 77	0,5	1,5	0,5

Zu der Messunsicherheit ist anzumerken, dass die Standardabweichungen im Rahmen von Ringversuchen ermittelt wurden. Die Standardabweichung für die Prognoseunsicherheit leitet sich aus der DIN 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien" für höher liegende Quellen ab. Sind Anlagen 3-fach gemäß den gültigen Richtlinien vermessen, so errechnet sich die Produktionsstandardabweichung (Serienstreuung) aus den Ergebnissen der 3 Vermessungen. Ist eine Anlage nur 1-fach oder 2-fach vermessen, so leitet sich die Serienstreuung aus einem Sicherheitszuschlag von 2 dB ab.

Aus den o. a. Standardabweichungen ergeben sich bei einer Vertrauenswahrscheinlichkeit von 90 % folgende Zuschläge:

Enercon E82	K = 2,1 dB(A)
Enercon E 70-E 4	K = 2,0 dB(A)
Enercon E53	K = 2.5 dB(A)
Enercon E48	K = 2,2 dB(A)
Fuhrländer FL-MD 77	K = 2,2 dB(A)

Die o. a. Zuschläge wurden unmittelbar emissionsseitig in die Berechnung eingestellt, sodass die Berechnungsergebnisse diese bereits enthalten.

Gemäß der TA Lärm wurde die Untersuchung gegliedert in die Betrachtung der

- Zusatzbelastung (geplante Windenergieanlagen)
- Vorbelastung (bestehende und durch Fremdplaner geplante Anlagen)
- Gesamtbelastung (Betrachtung aller Windenergieanlagen)

Hinsichtlich der Wahl der Immissionspunkte ist anzumerken, dass die Untersuchung aufgrund der Lage der neuen 3 geplanten Anlagen um einen Immissionspunkt gegenüber den vorangegangenen Untersuchungen ergänzt wurde. Hierbei handelt es sich um den östlich gelegenen Fichtenhof der sich im Außenbereich befindet. Somit gelten entsprechend den geltenden Rechtsprechungen für diesen Hof die Richtwerte vergleichbar einem Mischbzw. einem Dorfgebiet.

Davon ausgehend, dass die 3 geplanten Windenergieanlagen und der Nennleistungsbetrieb kontinuierlich im Einsatz sind, ergeben sich an den Immissionspunkten folgende Beurteilungspegel:

Tabelle 4 Zusatzbelastung Beurteilungspegel Immissionsricht-Bezeichnung IP wert in dB(A) L_r in dB(A)Nacht Nacht Tag Tag 60 45 30 30 Brühlhof 40 Mögliches Wohnhaus in Löffelscheid, Parzelle 1/1 55 31 28 2 45 24 60 24 Birkenhof 3 23 55 40 27 Wohnhaus in Panzweiler, Hauptstraße 12 4 45 24 24 60 Wohnhaus in Panzweiler "Am Wachtenhübel" 31 5 27 55 40 31 Wohnhaus in Haserich, Bornwiese 20 45 27 60 Wohnhaus in Haserich, Flaumbachstr. 32 27 45 33 33 60 8 Fichtenhof

Die detaillierte Ausbreitungsberechnung kann dem Plotausdruck im Anhang 3 des Nachtrages entnommen werden. Das Berechnungsergebnis für einen größeren Untersuchungsbereich ist flächenhaft in Form einer Rasterlärmkarte für die aus schalltechnischer Sicht ungünstigste Nachtzeit im Anhang 4 dargestellt.

Wie die Berechnungsergebnisse verdeutlichen, wird an allen ungünstigst gelegenen Immissionspunkten der jeweils geltende Immissionsrichtwert deutlich unterschritten. Ebenfalls wird sowohl zur Tages- als auch zur Nachtzeit das Irrelevanzkriterium der TA Lärm (Unterschreitung der Richtwerte um ≥6 dB(A) erfüllt. Grundsätzlich könnte somit auf eine Betrachtung einer gewerblichen Geräuschvorbelastung (bestehende Windenergieanlagen) verzichtet werden.

Aufgrund der Problematik mit einer Schrittweisen Vergrößerung eines Windparkes erfolgte dennoch eine Betrachtung der Vor- und Gesamtbelastung.

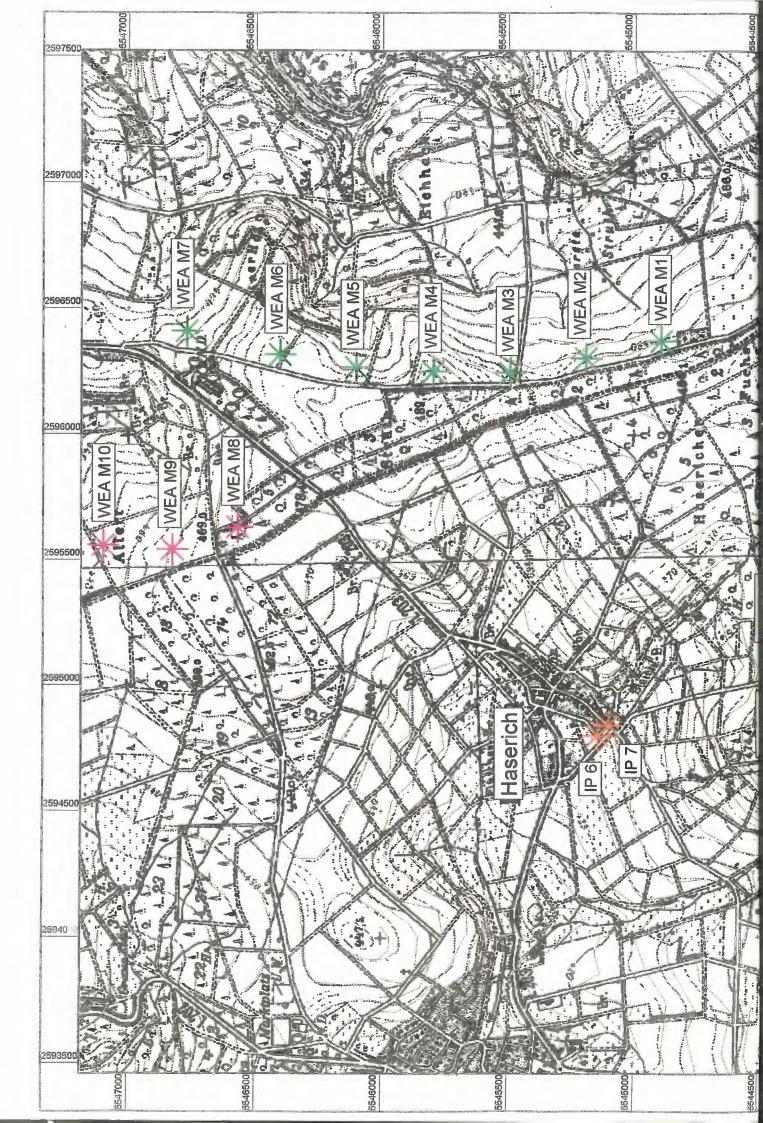
Die Vorbelastung führt bei Nennleistungsbetrieb zu folgenden Ergebnissen:

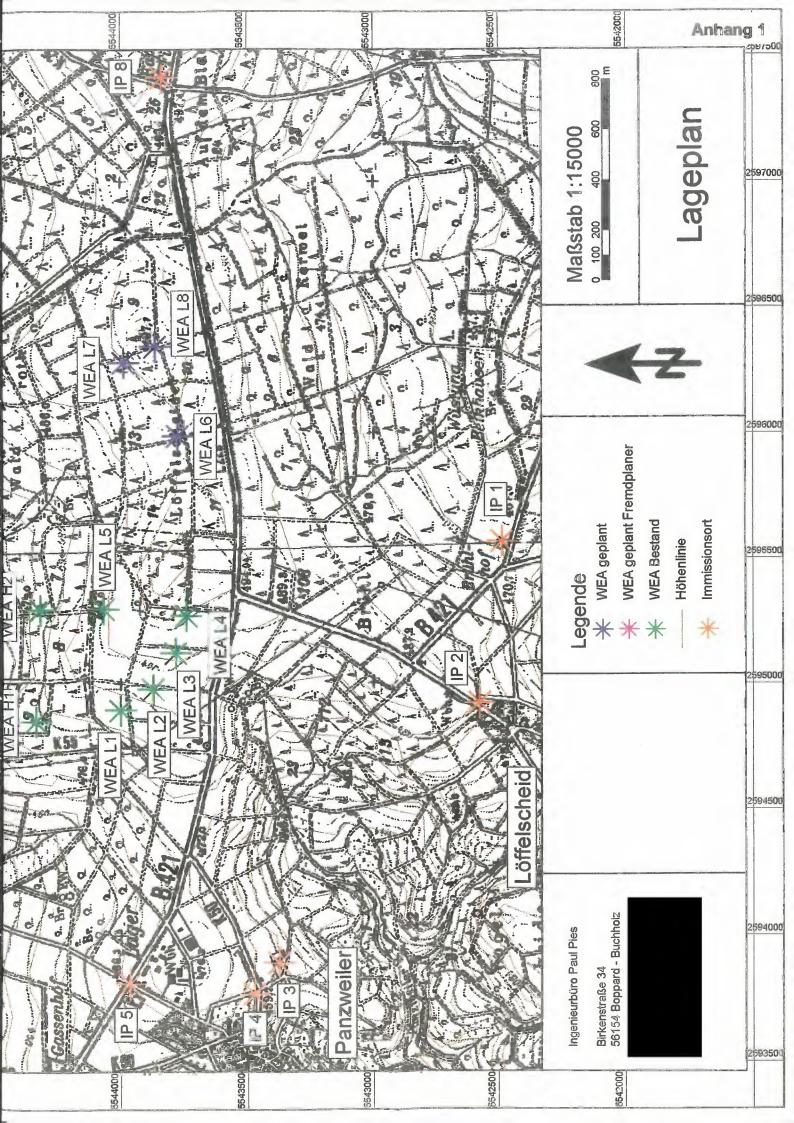
Vork	pelastung Tabelle 5				
IP	Bezeichnung IP		ngspegel dB(A)	Immissionsricht- wert in Db(A)	
		Tag	Nacht	Tag	Nacht
1	Brühlhof	34	34	60	45
2	Mögliches Wohnhaus in Löffelscheid, Parzelle 1/1	39	35	55	40
3	Birkenhof	36	36	60	45
4	Wohnhaus in Panzweiler, Hauptstraße 12	39	36	55	40
5	Wohnhaus in Panzweiler "Am Wachtenhübel" 31	37	37	60	45
6	Wohnhaus in Haserich, Bornwiese 20	44	40	55	40
7	Wohnhaus in Haserich, Flaumbachstr. 32	41	41	60	45
8	Fichtenhof	33	33	60	45

Die Ausbreitungsberechnung zur Vorbelastung ist im Anhang 5 und 6 des Nachtrages wiedergegeben.

In der Überlagerung der Zusatz- und Vorbelastung ergibt sich folgende Gesamtbelastung:

Ges	amtbelastung Tabelle 6				
IP	Bezeichnung IP		ngspegel dB(A)	Immissio wert in	
		Tag	Nacht	Tag	Nacht
1	Brühlhof	36	36	60	45
2	Mögliches Wohnhaus in Löffelscheid, Parzelle 1/1	40	36	55	40
3	Birkenhof	36	36	60	45
4	Wohnhaus in Panzweiler, Hauptstraße 12	39	36	55	40
5	Wohnhaus in Panzweiler "Am Wachtenhübel" 31	37	37	60	45
6	Wohnhaus in Haserich, Bornwiese 20	44	40	55	40
7	Wohnhaus in Haserich, Flaumbachstr. 32	41	41	60	45
8	Fichtenhof	36	36	60	45


Die detaillierte Ausbreitungsberechnung zeigt der Plotausdruck im Anhang 7 und die flächenhafte Berechnung der Anhang 8 zum Nachtrag.


Die Berechnungsergebnisse verdeutlichen, dass auch in der Gesamtbetrachtung die jeweils geltenden Immissionsrichtwerte sowohl zur Tages- als auch zur Nachtzeit eingehalten werden.

Somit ist im Sinne der TA Lärm die Umsetzung des Planungsvorhabens (Errichtung von 3 Windenergieanlagen der Firma Enercon vom Typ E53) aus schalltechnischer Sicht möglich.

Sollten sich noch Rückfragen ergeben, stehe ich Ihnen für Auskünfte jederzeit gerne zur Verfügung.

MÜLLER-BBM

Niederlassung Gelsenkirchen Am Bugapark 1 45899 Gelsenkirchen Tel. +49(209)98308 - 0 Fax +49(209)98302 - 11 www.MuellerBBM.de

21. April 2006

Enercon GmbH

Schallemissionsmessung

ENERCON E-82 am Standort 26632 Ihlow / Simonswolde im Betrieb I

Prüfbericht Nr. M65 333/1

Auftraggeber:

Enercon GmbH Dreekamp 5

26605 Aurich

Bearbeitet von:

Berichtsdatum:

21. April 2006

Prüfdatum:

24. März 2006

Berichtsumfang:

Insgesamt 53 Seiten davon

19 Seiten Textteil, 15 Seiten Anhang A,

12 Seiten Anhang B,

5 Seiten Anhang C und

2 Seiten Anhang D

MÜLLER-BBM

Staittinnatt 2	Gerauscii	e , wast	rechand (1611 2 1 50	1114201100	2 3 6163 cmm rs	441 (6) 990			•			
Teil 1: Bestin	nmung del	Schalle	missionsi	vene	annin a M	Cinneanan	mistr 4 FL-74	1103 (Gol)					
Rev. 16 vam 01.	(Mar 2005 (Mar	ausgeber:	-ardergeseas	CHAR VVINCE	dom Dri	ifbericht	165 333/	1					
			AUS	Zug zus	Ceni Fii	om Tyre	Enercon 1	82					
		lemissio	n der Win	genergie	aniage	Technische	Deten (Ha	retellerano:	(ned				
Ulgemaine Ang			- C				ng (Genera			2.000 kW			
Intagenherstell	BF.	Dreeka	on GmbH			Rotordurch		,.		82 m			
		26605	•		- 1		e über Gru	nd:		98 m			
		82001	Attricas			Tumbaua		-		Rohrum			
Seriennummer:	>-	RW:	25.92.266			Material:	-			Fertigteill	eton		
NEA-Standort (ca.).	HW:	59.14.847			Leistungsr	eqeiung:			pitch			
rgänzende Dat	oo zum Rate					Erg. Daten	zu Getrieb	und Gene	nator (Hen	stelleranga	ben)		
Rotorblattherste		Enerce	on GmbH			Getriebeh							
ypenbezeichnu		82 - 1				Typenbezeichnung Getriebe:				-			
Blattemstellwink		variab	&)			Generator	hersteller:			Enercon	GmbH		
Rotorbiattanzal		3				Typenbezeichnung Generator:				E-82	(7)	- N	
Rotordrehzahlb		6 - 19	U/min (Bet	ieb I)		Generatorennenndrehzahl:				6 - 19 U/m.n (Betrieb I)			
Prüfbericht zur		rve:	Enercon GmbH: Berechnete Lei:			istungskurve vom Januar 2005							
			Referenzpunkt				Schallemissions- Parameter			Semerkungen			
-			Standard		Elekt	rische							
			Windgeschw 10 m b	ičhe		ristung							
			1	n/s	1029,7		100,6						
				n/s	1617.4		103,1						
Schallleistungs-Pi	age: Lwa >		1 -	n/s	1939,6		103,4	dB(A)		[1	11		
			1	n/s		kW		dB(A)			1		
			7.7		kW 1900.0 kW 1029,7 kW		103.4 dB (A)		[2]				
				n/s									
			1	n/s	1617.4			dB					
	Nabbara/s		E .	nús	1939.6			dB					
Tonzuschlag für d K _{in}	igu izanobien		1	m/s		- kW	_	dB		ſ	1]		
. TP.			10			- kW	-	dB		ľ	1)		
			7.7		1900.0	kW.	_	dB			2]		
				m:/s	1029,7	' KW	-	dB					
			7	m/s	1617,4	KW	-	dB					
Impulszuschiag f	ūr den Nahbe	reich	8	m/s	1939,6	kW	_	dB					
Kin			9	m/s	-	- kW	E.	dB		-	1]		
			10	mis	i	- kW	1	dB			1 <u>]</u>		
			7.7	m/s	1900.0	kW		dB			2)		
			Terz-Schallle	istungspeç	el Referen	zpunkt 🗸 16 T	8 m/s						
Frequenz	50	63	80	100	125	160	205	250	315	400	500 93.7	630 93,5	
LWAPIEC	75.9	79.1	81,5	82,9	87.7	88,2	87,5	90.4	90,5	91,2	8000	1000	
Frequenz	800	1000	1250	1600	2000	2500	3350	4000	5000	73.4	71,2	73,5	
LMAPINZ	94.9	95,0	93.9	91,6	89,3	85.2	E0.9	75.8	72.4	13,4	7.1,4	132	
			ktav-Schallte					8000	1				
Frequenz	63	125	250	500	1000	2000	4000						
Lwaerwa Dieser Auszug	84.2	91.6	94,4	97,7	99,4	94,2	82.5	77,6					

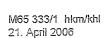
[1] In dieser Windklasse wurden keine Daten ermittelt

[2] Der Schaitleistungspegel bei 95%iger Nennleistung wurde bei Berücksichtung der Umgebungsbedingungen am Messtag, der verwendelen Leistungskurve und der vermessenen Nabenhöhe bei einer stand.Windgeschwindigkeit von 7,7 m/s festgestellt.

Gemessen durch:

Müller-BBM GmbH Niederlassung Gelsenkirchen

Am Bugapark 1 45 899 Gelsenkirchen


MÜLLER-BBM GMBH NIEDERLASSUNG GELSENKIRCHEN A M B U G A P A R K 1 45899 GELSENKIRCHE TELEFON (0209) 9 83 5 - 0

Datum:

21.04.2006

Akkreditiertes Prufiaboratorium nach ISO/IEC 17025

2007

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen,

Teil 1: Bestimmung der Schallemissionswerte" Rev. 17 vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht 207542-01.01 zur Schallemission der Windenergieanlage vom Typ Enercon E-82 Technische Daten (Herstellerangaben) Allgemeine Angaben 2.000 kW Nennleistung (Generator): Enercon GmbH Anlagenhersteller: 82 m Rotordurchmesser: 82258 Seriennummer: 108 m Nabenhöhe über Grund: 27232 Sulingen WEA-Standort (ca.): Rohrturm, Fertigteilbeton RW: 34.89.628 Turmbauart Standortkoordinaten: Pitch Leistungsregelung: HW: 58.40.371 Ergänzende Daten zu Getriebe und Generator Ergänzende Daten zum Rotor (Herstellerangaben) (Herstellerangaben) entfällt Getriebehersteller: Rotorblatthersteller: Enercon Typenbezeichnung Getriebe: entfällt Typenbezeichnung Blatt: 82-1 Enercon Generatorhersteller: variabel Blatteinstellwinkel: E-82 Drei Typenbezeichnung Generator: Rotorblattanzahl: 6 - 19 U/min (Betrieb I) 6 - 19 U/min (Betrieb I) Generatornenndrehzahl: Rotordrehzahlbereich:

	Referenzpu	ınkt	Schallemissions-	D
	Normierte Windgeschwin- digkeit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen
	6 ms ⁻¹	1.055 kW	100,9 dB(A)	
	7 ms ⁻¹	1.687 kW	103,6 dB(A)	
Schallleistungs-Pegel	8 ms ⁻¹	1.961 kW	104.1 dB(A)	(2)
L _{WAP}	9 ms ⁻¹	2.000 kW	103,7 dB(A)	
-WA.P	10 ms ⁻¹		-	(2)
	7,7 ms ⁻¹	1.900 kW	104.1 dB(A)	(1)
	6 ms ⁻¹	1.055 kW	0 dB	
	7 ms ⁻¹	1.687 kW	0 dB	
Tonzuschlag für den	8 ms ⁻¹	1.961 kW	0 dB	(2)
Nahbereich K _{TN}	9 ms ⁻¹	2.000 kW	0 dB	
Transcrott Trans	10 ms ⁻¹	, –	-	(2)
	7,7 ms ⁻¹	1.900 kW	0 dB	(1)
	6 ms ⁻¹	1.055 kW	0 dB	
	7 ms ⁻¹	1.687 kW	0 dB	
Impulszuschlag für den	8 ms ⁻¹	1.961 kW	0 dB	(2)
Nahbereich K _{IN}	9 ms ⁻¹	2.000 kW	0 dB	
TAGEBOI CION FAIN	10 ms ⁻¹	_	_	(2)
	7,7 ms ⁻¹	1.900 kW	0 dB	(1)

	63	80	100	125	160	200	250	315	400	500	630
			84.9	89.4	87.2	88.0	91.1	93,1	95,1	96,2	95,2
-				-		3.150	4.000	5.000	6.300	8.000	10.000
						81.0	77.8	- (3)	- (3)	- (3)	- (3)
	0 1	0 1.000	0 1.000 1.250	0 1.000 1.250 1.600	0 1.000 1.250 1.600 2.000	0 1.000 1.250 1.600 2.000 2.500	0 1.000 1.250 1.600 2.000 2.500 3.150	0 1.000 1.250 1.600 2.000 2.500 3.150 4.000	0 1.000 1.250 1.600 2.000 2.500 3.150 4.000 5.000	0 1.000 1.250 1.600 2.000 2.500 3.150 4.000 5.000 6.300	0 1.000 1.250 1.600 2.000 2.500 3.150 4.000 5.00 6.300 8.000

8.000 4.000 500 1.000 2 000 125 Frequenz 63 82,7 (4) 100,3 92,9 -(3)92.3 96.0 85,4 Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 29.01.2008.

Die normierte Windgeschwindigkeit von v_s = 7.7 ms⁻¹ entspricht 95 % der Nennleistung. Bemerkungen: (1) Witterungsbedingt ist das Bin nicht vollständig.

(2)Aufgrund von elektrischen Einflüssen durch die WEA werden die Terzen bzw. Oktaven oberhalb 4kHz nicht (3) aufgeführt.

berechnet aus den Terzen f = 3.150 Hz und f = 4.000 Hz

Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB

Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch:

KÖTTER Consulting Engineers KG

Auszug aus dem Prüfbericht Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" Rev. 17 vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel) Auszug aus dem Prüfbericht 207041-01.01 zur Schallemission der Windenergieanlage vom Typ Enercon E-82 im Betrieb I Technische Daten (Herstellerangaben) Allgemeine Angaben Nennleistung (Generator): 2.000 kW Anlagenhersteller: Enercon GmbH 82004 Rotordurchmesser: 82 m Seriennummer: 108,4 m Nabenhöhe über Grund: 48529 Bimolten WEA-Standort (ca.): Fertigteilbeton Standortkoordinaten RW: 25.71.442 Turmbauart: Pitch HW: 58.18.445 Leistungsregelung: Erg. Daten zu Getriebe und Generator Ergänzende Daten zum Rotor (Herstellerangaben) (Herstellerangaben) Entfällt Rotorblatthersteller: Enercon GmbH Getriebehersteller: Typenbezeichnung Getriebe: Entfällt Typenbezeichnung Blatt: 82-1 Generatorhersteller: Enercon GmbH Variabel Blatteinstellwinkel: Typenbezeichnung Generator: E-82 Drei Rotorblattanzahl: Generatornenndrehzahl: 6 - 19 U/min 6 - 19 U/min Rotordrehzahlbereich: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82

	Referenzpur	kt	Schallemissions-	_
	Normierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen
	5 ms ⁻¹	607 kW	96,0 dB(A)*	
	6 ms ⁻¹	1.040 kW	100,7 dB(A)	
0.1.111	7 ms ⁻¹	1.710 kW	103,4 dB(A)	
Schallleistungs-Pegel	8 ms ⁻¹	1.953 kW	103,7 dB(A)	
LWAP	9 ms ⁻¹	2.058 kW	103,8 dB(A)	(2)
	10 ms ⁻¹	-	-	(3)
	7,7 ms ⁻¹	1.900 kW	103,8 dB(A)	(1)
	5 ms ⁻¹	607 kW	0 dB	
	6 ms ⁻¹	1.040 kW	0 dB	
	7 ms ⁻¹	1.710 kW	0 dB	
Tonzuschlag für den	8 ms ⁻¹	1.953 kW	0 dB	
Nahbereich K _{TN}	9 ms ⁻¹	2.058 kW	0 dB	
	10 ms ⁻¹	-	-	(3)
	7.7 ms ⁻¹	1.900 kW	0 dB	(1)
	5 ms ⁻¹	607 kW	0 dB	
	6 ms ⁻¹	1.040 kW	0 dB	
1 1 - 11 - 6 - 1 -	7 ms ⁻¹	1.710 kW	0 dB	
Impulszuschlag für den	8 ms ⁻¹	1.953 kW	0 dB	
Nahbereich K _{IN}	9 ms ⁻¹	2.058 kW	0 dB	
	10 ms ⁻¹	-	-	(3)
	7.7 ms ⁻¹	1.900 kW	0 dB	(1)

Terz-Schallleistungspegel			für v _s = 7,7 ms ⁻¹ in dB(A) entsprechend dem maximalen Schallleistungspegel									
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa.P.max	72.8*	75.6	79.2	79,6*	84,3	84.0	85.0	87,2	90,0	91.6	92,7	95,0
Frequenz	800	1,000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
L _{WA_P,max}	96,2	96,0	95,1	92,5	90,5	86,6	82,6	78,4	74,7	73,0	71,6	72,4

Oktav-Schall	leistungspegel	$f \ddot{u} r v_s = 7$	7 ms ⁻¹ in dB(A)	entsprechend	dem maximale	n Schallleistun	gspegel	
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000
Lwa.P.max	81.4	87,9	92,6	98,1	100,5	95,3	84.5	77,1

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 11.04.2007.

Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: (1) Die normierte Windgeschwindigkeit von v₅ = 7,7 ms⁻¹ entspricht 95 % der Nennleistung.

(2) Maximaler Wert v_s = 8,8 m/s, oberhalb witterungsbed, keine Werte für das Anlagengeräusch vorhanden.

(3) Witterungsbedingt keine Werte für das Anlagengeräusch vorhanden.

Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB

** Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch:

KÖTTER Consulting Engineers KG

- Rheine -

Datum: 19.04.2007

MÜLLER-BBM

							Seite 1/2
uf der Basis von mind challemissionswerte e	destens drei Messungen nach eines Anlagentyps gemäß [2] :	der "Technischen F anzugeben, um die	Richtlinie für Wind schalltechnische	energieanlagen" Planungssicherh	[1] besteht die Mö leit zu erhöhen.	glichkeit die	
Inlagendaten							
lersteller E	nercon GmbH		\nlagenbezeichr	ung	E-70 E4 2000 kW		
	Dreekamp 5		Vennleistung Vabenhöhe		2000 KW		
2	26605 Aurich		Rotordurchmess	er	71 m	an an interest of the same of	- Control - Cont
Angaben z	ur Einzelmessung		2	Messur 3	ng-Nr. 4	5	6
		701496	701858	701496			
Seriennummer		Ostermarsch	Ahaus-Wüllen	Schwaförden			
Standort rermess. Nabenhöhe	- (m)	65	113	98	1		
emicos. Mapelinone	- ()		Katter C.F	Moller DDM	and the state of t		
Nessinstitut		Wind-Consult	Kötter C.E. 28277-1.004	Müller-BBM M62 910/1	and the same of th		
rüfbericht		392SEA3/01 23.07.2004	14.03.2005	16.01.2006			
Datum		23.07.2004		. 5.5	1		
Setriebetyp		E-70	E-70	E-70			
Seneratortyp Rotorblatttyp		70-4	70-4	70-4			
			Windgesc	hwindigkeit in 1	0 m Hõhe		LW4 P.95% Pno
Messung Messung	Schallleistungspegel	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	
	Schallleistungspegel	99,4 dB(A)		8 m/s 101.7 dB(A)	9 m/s 102,0 dB(A)		102,0 dB(A
Messung 1 2	Schallleistungspegel LWAP LWAP [4]		7 m/s 100.6 dB(A)	8 m/s 101,7 dB(A) 101,6 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A)		102,0 dB(A) 101,9 dB(A)
1	Schallleistungspegel	99,4 dB(A)	7 m/s	8 m/s 101.7 dB(A)	9 m/s 102,0 dB(A)		102,0 dB(A) 101,9 dB(A)
Messung 1 2 3	Schallleistungspegel LWAP LWAP [4]	99,4 dB(A) 99,3 dB(A) 	7 m/s 100.6 dB(A) 100,7 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A)
Messung 1 2 3 Mittelwert L _W	Schallleistungspegel LWAP LWAP LWAP [5]	99.4 dB(A) 99.3 dB(A) 99,4 dB(A)	7 m/s 100.6 dB(A) — 100.7 dB(A) 100.7 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun	Schallleistungspegel LWAP LWAP LWAP [5] LWAP [5]	99,4 dB(A) 99,3 dB(A) 	7 m/s 100.6 dB(A) 100,7 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun	Schallleistungspegel LWAP LWAP LWAP [5]	99.4 dB(A) 99.3 dB(A) 99.4 dB(A) 0,1 dB(A)	7 m/s 100.6 dB(A) 	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0,2 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R =	Schallleistungspegel LWAP LWAP LWAP [5] LWAP [5]	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A) 	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0,2 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R =	Schallleistungspegel	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A) 	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0,2 dB(A) 1.0 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2]	Schallleistungspegel	99.4 dB(A) 99.3 dB(A) 99.4 dB(A) 9,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A) 	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0,2 dB(A) 1.0 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung	Schallleistungspegel LWAP LWAP LWAP 19 LWAP 19 LWAP 19 Seg S 0.5 dB(A) [6] sparameter: Zuschläge Tonzuschlag	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A) 	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.4 dB(A) 0,2 dB(A) 1.0 dB(A)	\$ m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A)		102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1	Schallleistungspegel LWAP LWAP LWAP [9] LWAP [6] LWAP [5] g s 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag K _{TW}	99.4 dB(A) 99.3 dB(A) 99.4 dB(A) 9,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A) 	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.4 dB(A) 0,2 dB(A) 1.0 dB(A)	\$ m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung	Schallleistungspegel LWAP LWAP [9] LWAP [4] LWAP [5] 19 9 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag KW KW	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.4 dB(A) 0,2 dB(A) 1.0 dB(A)	\$ m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2	Schallleistungspegel LWAP LWAP LWAP [9] LWAP [6] LWAP [5] g s 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag K _{TW}	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.4 dB(A) 0,2 dB(A) 1.0 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.9 dB(A)	e 10 m/s	102,0 dB(A 101,9 dB(A 101,6 dB(A 101,8 dB(A 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2	Schallleistungspegel LWAP LWAP [9] LWAP [4] LWAP [5] 19 9 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag KW KW	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 101.6 dB(A) 0.2 dB(A) 1.0 dB(A) 1.0 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0.2 dB(A) 1.0 dB(A) 1.0 dB(A)	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3	Schallleistungspegel LWAP LWAP [9] LWAP [4] LWAP [5] 19 9 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag KW KW	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.4 dB(A) 0,2 dB(A) 1.0 dB(A)	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.9 dB(A)	e 10 m/s	102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3	Schallleistungspegel LWAP LWAP [9] LWAP [4] LWAP [5] 19 9 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag KW KW	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0.2 dB(A) 1.0 dB(A) findgeschwindig 8 m/s	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A) 9 m/s	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3 Mittelwert K _{TR}	Schallleistungspegel LWAP LWAP [9] LWAP [4] LWAP [5] 19 9 0,5 dB(A) [6] sparameter: Zuschläge Tonzuschlag KW KW	99.4 dB(A) 99.3 dB(A) 99.4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0.2 dB(A) 1.0 dB(A) findgeschwindig 8 m/s	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A) 9 m/s	e 10 m/s	102,0 dB(A, 101,9 dB(A, 101,6 dB(A, 101,8 dB(A, 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3 Mittelwert K _{TR} Impulszuschlag Messung	Schallleistungspegel LWAP LWAP LWAP 19 LWAP 19 LWAP 19 Seg s 0.5 dB(A) [6] Sparameter: Zuschläge Tonzuschlag KW KW KW KW KW Tonzuschlag	99,4 dB(A) 99,3 dB(A) 99,4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0.2 dB(A) 1.0 dB(A) findgeschwindig 8 m/s	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A) 9 m/s	e 10 m/s	102,0 dB(A, 101,9 dB(A, 101,6 dB(A, 101,8 dB(A, 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3 Mittelwert K _{TM} Impulszuschlag Messung	Schallleistungspegel LWAP LWAP [9] LWAP [9] LWAP [9] Separameter: [9] Tonzuschlag KTM KTM KTM KTM KTM KTM KTM KT	99.4 dB(A) 99.3 dB(A) 99.4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.6 dB(A) 101.6 dB(A) 0.2 dB(A) 1.0 dB(A) findgeschwindig 8 m/s	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A) 1.0 dB(A) 9 m/s	e 10 m/s	102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3 Mittelwert K _{TM} Impulszuschlag Messung 1 Impulszuschlag Messung 1 2 3	Schallleistungspegel LWAP LWAP LWAP 19 LWAP 19 LWAP 19 ST ST ST ST ST ST ST ST ST S	99.4 dB(A) 99.3 dB(A) 99.3 dB(A) 99.4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A)	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 0.2 dB(A) 1.0 dB(A) findgeschwindig 8 m/s	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0.2 dB(A) 1.0 dB(A) 9 m/s	e 10 m/s	
Messung 1 2 3 Mittelwert L _W Standardabweichun K nach [2] o _R = Schallemissions Tonzuschlag Messung 1 2 3 Mittelwert K _{TM} Impulszuschlag Messung	Schallleistungspegel LWAP LWAP [9] LWAP [9] LWAP [9] Separameter: [9] Tonzuschlag KTM KTM KTM KTM KTM KTM KTM KT	99.4 dB(A) 99.3 dB(A) 99.3 dB(A) 99.4 dB(A) 0,1 dB(A) 1.2 dB(A)	7 m/s 100.6 dB(A) 100.7 dB(A) 100.7 dB(A) 0,1 dB(A) 1.0 dB(A) 7 m/s 7 m/s 7 m/s	8 m/s 101.7 dB(A) 101.6 dB(A) 101.4 dB(A) 101.6 dB(A) 101.6 dB(A) 101.6 dB(A) 101.6 dB(A) (indgeschwindigeschwi	9 m/s 102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0.2 dB(A) 1.0 dB(A) 9 m/s	e 10 m/s	102.0 dB(A) 101.9 dB(A) 101.6 dB(A) 101.8 dB(A) 0,2 dB(A)

Rev. 17 yom 61	Juli 2008 (He	erausgeber	lemission: Fördergreet	highelt Wind	lenergie e.	V., Streetma	englatz 4, D	24103 (Gel)				
			Aus	szug aus	dem Pr	urberiont	MIDE A 12	2				
	zur Schal	lemissio	n der Wir	denergie	anlage	vom Typ	Enercon	E-53	ah ini			
Allgemeine An			- 111				ung (Gener		apen	800 kW	(Betrieb II	
Anlagenherste	lier:		on GmbH			Poterdure		2001		53 m		
			amp 5				ne über Gru	22		76 m		
Semennummen		5300	5 Aurich			Tumbau				Retirion	n	
WEA-Slandon		8W	34.22.78	0		Material.				Stahl		
WEN-Signoun	ton i.	HW:	59.40.69	1		Leislungs	regelung:			prich		
rgánzende De	ten zum Ro	tor (Herst	ellerangabe	n)			zu Gelrieb	e und Gen	erator (He	rstullerang	aben)	
Reforblatthers			on GmtH			Getriebet				100		
Typonbozoichn		E53/1					teichnung C	Setriebe		Enercon	Centitie	
Blatteinstellwir		varial	iel				thersteller, reichnung G	acordor		E-53	Gillari	
Rotorblattanza		3		etunia II			rennenndrei				min-1 (Bet	rieb II
Reterdrehzent Prufbericht zu			29 min-1 (B	mhH Bere	chriefe Li		ve der E 53		Jar 2007			
e-Turdenchi 201	Carsianday	urve.	CVISICON C	Referen			Schaffern	lasions-		Bemer	kungen	
			Standar Windgesch	windigke t		misene e-stung						
			1	mis	220.1	NW.	93.3	dB(A)				
			1	mis	377.5		96.7	овіАі				
				ins	591	LKW	99.2	dB(A)				
Schallers	surgs-Pegel L	WA.	8	ms	746	5.1007	100,5	dB(A)				
			9	ms	793,1		100.9	7-1				
				ms .		VVA C	100.6				1)	
			8.3		760,0		100,7				-	
			1	ms ms	377.9		-					
			1 7	ma		1 AVV	1	cê l				
Tonaushta	g fur den Mahl	baraich		ms	746	5 RW	100	08				
	$K_{\tau_{14}}$		9	ras I	793,	t AW	100	dS				
			10	m s	~	NVY		dØ (
				ms	760.0			dB.			1	
				mis		1 KW	-					
				tn s	377.5	9 KW 1 KW						
Impulszajchi	ag für gen Nu	nbereich		ms ms		6 kW		e8				
	Ka,			ms ms		1 kW		dB				
				me		o kW		d0				
			8.3	ms	760.0	O KW	-	аВ			[1]	
			erz-Schaltie	Stungspeed	1 Referen	zpunkt v	9 m/s					
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwarms	76.6	78.0	80,4	63.0	84.7	87.8	86,5	87.8	68.0	87.4	89.4	891
Frequenz	800	1000	1250	1600	2000	2900	3150	4000	5000	6300	70.1	70000 54,6
Luketer	90,6	91.2	91,6	90,8	69,5	97.6	83.9	82.9	79.9	75,5	70.1	5,40
		-	dav-Schalle		el Referer	2000	9 m 5	8000	1			
Frequenz	63	125	250	93.5	95,9	94.3	67.3	77.1				
Lungan	53,4	90,4					Name and Address of the Owner, where the Owner, which is the Owner, where the Owner, which is the O	MARKS SETTINGS SHOWN	2007			The second
Dieser Auszug Die Angaben	aus dem P ersetzen nick	rüfbericht ht den e. j	gilt nur in V Pruibench	erbindung i R M69 915	2 vom 10	4 2007 (in	sbesondere	bei Schall	immigalon:	sprognose	111	

Gemessenen von:

Mülter-BBM GmbH
Niederlassung Gelsenkirchen
Am Bugapark I
D-45 899 Gelsenkirchen

4 5 8 9 9 Gelsen KIRCHEN
TELEFON (0209) 9 53 06 - 0

Datum:

10.04.2007

Apprented Test Laborators appointing to ISO/IEC 1703 o

MÜLLER-BBM

Angaben zur E deriennummer standort termess. Nabenhöhe (m) Messinstitut rrüfbericht Datum Setriebetyp Seneratortyp kotorblatttyp Schallemissionspara Schallleistungspegel Messung 1 2 3 3	Anlagentyps gemäß (2) a con GmbH comp 5 6 Aurich inzelmessung	1 48097 Holtriem 76 Wind-Consult 439SE004/09 20.01.2008 — E-48 E48/1	Anlagenbezeich Nennleistung Vabenhöhe Rotordurchmes: 2 48156 Drensteinfurt 76 Kötter C.E. 29349-1.003 16.03.2006 ———————————————————————————————————	nung ser Messun 3 48184 Landesbergen 76 Müller-BBM M34 550/7 12.12.2006 — E-48 E48/1	E-48 800 kW 50 m 48 m	5	5 L WAP 95% Price
Angaben zur E eriennummer tandort ermess. Nabenhöhe (m) lessinstitut rrütbericht tatum setriebetyp seneratortyp schorblattyp Schallemissionspan Schalleistungspegel Messung 1 2 3	amp 5 6 Aurich inzelmessung ameter: Messwerte	1 48937 Holtriem 76 Wind-Consult 439SEC04/06 20.01.2006 E-48 E48/1	Vennleistung Vabenhöhe Rotordurchmes: 2 48155 Drensteinfurt 76 Kötter C.E. 29348-1.003 16.03.2006 ———————————————————————————————————	Messun 3 48184 Landesbergen 76 Muller-BBM M34 55077 12.12.2006 — E-48 E48/1 berechnete Lei	800 kW 50 m 48 m g-Nr. 4		
Angaben zur E Seriennummer standort ermess. Nabenhöhe (m) Messinstitut Prüfbericht Datum Setriebetyp Seneratortyp Rotorblattyp Schallenissionspan Schalleistungspegel Messung 1 2 3 3	amp 5 6 Aurich inzelmessung ameter: Messwerte	1 48937 Holtriem 76 Wind-Consult 439SEC04/06 20.01.2006 E-48 E48/1	Vennleistung Vabenhöhe Rotordurchmes: 2 48155 Drensteinfurt 76 Kötter C.E. 29348-1.003 16.03.2006 ———————————————————————————————————	Messun 3 48184 Landesbergen 76 Muller-BBM M34 55077 12.12.2006 — E-48 E48/1 berechnete Lei	800 kW 50 m 48 m g-Nr. 4		
Angaben zur E Seriennummer Standort Fermess. Nabenhöhe (m) Messinstitut Früfbericht Datum Setriebetyp Setriebetyp Sochallemissionspara Schalleistungspegel Messung 1 2 3 3	amp 5 6 Aurich inzelmessung ameter: Messwerte	1 48937 Holtriem 76 Wind-Consult 439SEC04/06 20.01.2006 E-48 E48/1	Vennleistung Vabenhöhe Rotordurchmes: 2 48155 Drensteinfurt 76 Kötter C.E. 29348-1.003 16.03.2006 ———————————————————————————————————	Messun 3 48184 Landesbergen 76 Muller-BBM M34 55077 12.12.2006 — E-48 E48/1 berechnete Lei	50 m 48 m g-Nr. 4 stungskurve)		
Angaben zur E Seriennummer Standort sermess. Nabenhöhe (m) Messinstitut Prüfbericht Datum Setriebetyp Seneratortyp Rotorblattyp Schallemissionspara Schallleistungspegel Messung 1 2 3 3	inzelmessung ameter: Messwerte	1 48937 Holtriem 76 Wind-Consult 4398EC04/08 20.01.2003 — E-48 E48/1 (Prüfbericht Lei	2 48155 Drensteinfurt 76 Kötter C.E 29349-1.003 16.03.2003 — E-48 E48/1 stungskurve:	Messun 3 48184 Landesbergen 76 Müller-BBM M84 550/7 12.12.2006 — E-48 E48/1 berechnete Lei	48 m ig-Nr. 4 stungskurve)		
teriennummer standort termess. Nabenhöhe (m) tersinstitut truthericht tatum setriebetyp seneratortyp totorblatttyp Schallemissionspara Schallleistungspegel Messung 1 2 3	ameter: Messwerte (Schallleistungspegel LWAP [2]	1 48037 Holtriem 76 Wind-Consult 439SEC04/05 20.01.2003 — E-48 E48/1 (Prüfbericht Lei	2 48155 Drensteinfurt 76 Kötter C.E. 29349-1.003 16.03.2006 — E-48 E48/1 stungskurve:	Messun 3 48184 Landesbergen 76 Müller-BBM M84 550/7 12.12.2006 — E-48 E48/1 berechnete Lei	g-Nr. 4 stungskurve) Om Höhe		
Seriennummer Standort	ameter: Messwerte (Schallleistungspegel LWAP [2]	48097 Holtriem 76 Wind-Consult 439SEC04/05 20.01.2003 — E-48 E48/1	48155 Drensteinfurt 76 Kötter C.E. 29349-1.003 16.03.2006 — E-48 E48/1 stungskurve:	3 48184 Landesbergen 76 Müller-BBM M84 550/7 12.12.2006 — E-48 E48/1 berechnete Lei	4 stungskurve)) m Köhe		
standort ermess. Nabenhöhe (m) Messinstitut rrüfbericht Datum Setriebetyp Seneratortyp Rotorblatttyp Schallemissionspar Schalleistungspegel Messung 1 2 3 3	ameter: Messwerte (Schallleistungspegel LWAP [2]	Holtriem 76 Wind-Consult 4395EC04/06 20.01.2006 — E-48 E48/1 (Prüfbericht Lei	Drensteinfurt 76 Kötter C.E. 29349-1.003 16.03.2006 — E-48 E48/1 stungskurve:	Landesbergen 76 Müller-BBM M34 550/7 12.12.2006 — E-48 E48/1 berechnete Lei) m Höhe	-	L WAP 95% PAGE
ermess. Nabenhöhe (m) Messinstitut Prüfbericht Datum Setniebetyp Seneratortyp Schallemissionspara Schallleistungspegel Messung 1 2 3	ameter: Messwerte (Schallleistungspegel LWAP [2]	76 Wind-Consult 439SE:C04/05 20.01.2005	76 Kötter C.E. 29348-1.003 16.03.2006 — E-48 E48/1 stungskurve:	76 Maller-BBM Ma4 55077 12.12.2006 ———————————————————————————————————) m Höhe	-	L WAP 95% PAGE
rermess. Nabenhöhe (m) Messinstitut Prüfbericht Datum Setriebetyp Seneratortyp Schallemissionspara Schallleistungspegel Messung 1 2 3	ameter: Messwerte (Schallleistungspegel LWAP [2]	Wind-Consult 439SEC04/08 20.01.2003 — E-48 E48/1 (Prüfbericht Lei	Kötter C.E. 29349-1.003 16.03.2006 E-48 E48/1 stungskurve:	Moller-BBM M64 550/7 12.12.2006 — E-48 E48/1 berechnete Lei) m Höhe	-	L WAP 95% PAGE
Profibericht Datum Setriebetyp Seneratortyp Rotorblatttyp Schallemissionspara Schallleistungspegel Messung 1 2 3 3	Schallleistungspegel LWAP [2]	439SEC04/05 20.01.2005 — E-48 E48/1 (Prüfbericht Lei	29349-1.003 16.03.2006 — E-48 E48/1 stungskurve:	M84 550/7 12.12.2006) m Höhe	-	L WAP 95% Price
Profession Space Schallenission Space Schalleistungspegel Messung 1 2 3	Schallleistungspegel LWAP [2]	439SEC04/05 20.01.2005 — E-48 E48/1 (Prüfbericht Lei	29349-1.003 16.03.2006 — E-48 E48/1 stungskurve:	M84 550/7 12.12.2006) m Höhe	-	L WAP 95% Poer
Datum Setriebetyp Seneratortyp Rotorblatttyp Schallemissionspan Schallleistungspegel Messung 1 2 3	Schallleistungspegel LWAP [2]	E-48 E48/1 (Prüfbericht Lei	E-48 E-48/1 Stungskurve: Windgesc	E-48 E48/1 berechnete Lei chwindigkeit in 1) m Höhe	-	L WAP 95% Poer
Setriebetyp Seneratortyp Rotorblatttyp Schallemissionspan Schallleistungspegel Messung 1 2 3	Schallleistungspegel LWAP [2]	E48/1 (Prüfbericht Lei	E48/1 stungskurve: Windgesd	E48/1 berechnete Lei chwindigkeit in 1) m Höhe	-	L WAP 95% Pres
Seneratortyp Rotorblatttyp Schallemissionspan Schallleistungspegel Messung 1 2 3	Schallleistungspegel LWAP [2]	E48/1 (Prüfbericht Lei	E48/1 stungskurve: Windgesd	E48/1 berechnete Lei chwindigkeit in 1) m Höhe	-	Lwap.95% Proc
1 2 3	Schallleistungspegel LWAP [2]	(Prüfbericht Lei	stungskurve: Windgeso	berechnete Lei hwindigkeit in 10) m Höhe	-	LWAP 95% Price
Schallleistungspegel Messung 1 2 3	Schallleistungspegel LWAP [2]	6 m/s	Windgeso	hwindigkeit in 10) m Höhe	-	LWAP 95% Price
3	L WAP		/ 111/5				
3	L WAP		99,5 dB(A)	101,0 dB(A)	101.7 dB(A)	102,1 dB(A)	101.9 dB(A)
3		96,2 dB(A)	99,4 dB(A)	100.8 dB(A)	101.2 dB(A)	100.6 dB(A)	101.1 dB(A)
	LWAP [5]	98,8 dB(A)	99,8 dB(A)	101,8 dB(A)	102,4 dB(A)	101.6 dB(A)	102.2 dB(A)
		97,2 dB(A)	99,6 dB(A)	101,2 dB(A)	101,8 dB(A)	101,4 dB(A)	101,7 dB(A)
Mittelwert L _W Standardabweichung s		1,4 dB(A)	0,2 dB(A)	0,5 dB(A)	0,6 dB(A)	0,8 dB(A)	0,6 dB(A)
-	dB(A) [6]	2,8 dB(A)	1,0 dB(A)	1.4 dB(A)	1.5 dB(A)	1,7 dB(A)	1,4 dB(A)
Schallemissionspat	ameter: Zuschläge						
Tonzuschlag			10	Vindgeschwindig	keit in 10 m Höl	he	
Messung	Tonzuschlag	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	
1	K TN		-	-		-	
2	K _{TN}		_				
3	KTN					_	
Mittelwert K _{TM}				-			
Impulszuschlag							
	T		V	Vindgeschwindig	keit in 10 m Hö		18
Messung	Tonzuschlag	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	
1	K _{IN}						-
2	KR						
3	Kn						

Auszug aus dem Prüfbericht 27055-1.00

Saite 5 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen
Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten										7			
Hersteller		REpower S	ystems	AG	- 1	agenbez		nung		1 .	er MD77		
					1	ınleistur	-			1500 kl			
					1	enhöhe				100,0 n			
					Rot	tordurch				77,0 m			
			I. Mess				Mess			1		ssung	
Seriennummer			70.07				70.0					227	
Standort		Linni		einsberg		Sch	enken	-	02			ritt/Blye	
vermessene Naben	hōhe		85 m				85 r			1487		5 m	
Meßinstitut		1		nbroich Gmb	H		D CO			KOI	TER Cons		meers
Prüfbericht			SE0201				0 039		02			-1.001 5.2 00 3	
Datum			07.08.20		_	_	2.10.2		DAU 17 407		06.05 off, G45260		LIZ 400
Getriebetyp				A CPNHZ-1	97 Eic	-			PNHZ-197	EICKITC		JAA CPN FRA-580	INZ.~197
Generatortyp		Lo	her, JFR			Lon	er, JF		80			37.3P	
Rotorblattyp			LM 37				LM 3			1		71.3F	
1. Messung:	Schal	lemissions	paramet	er (Prüfber	icht Lei	stungsk	nine:	WT	2126/02 v	om 06.03	5.2002)		
2. und 3. Messung:	Schall	lemissionsp	aramet	er (Prüfber	cht Lei	stungsk	urve:	WT2	186/02 vo	m 13.05	.2002)		
Wind-		54	allaict	macnoae!				6/1	ittelwert		ndard-	1 -	<·
geschwindigkeit	Schalleistungspegel L _w 1. Messung ¹⁾ 2. Messung ¹⁾						.			abwe	eichung	1	h /2/
in 10 m Höhe	1. Me					Nessung			Lwa		S	σ _R = (
6 m/s	101	,1 dB(A)		,6 dB(A)		0,1 dB(A)			0,3 dB(A)	4	8 dB	1,7	
7 m/s	102	,8 dB(A)	}	,2 dB(A)	1	1,8 dB(A)			2,0 dB(A)		8 dB	1 '	dB
8 m/s	103	,3 dB(A)		,2 dB(A)	1	2,5 dB(A	' !		3,0 dB(A)	1 .	4 dB	1	dB
8,1 m/s ⁴⁾		,3 dB(A)		,3 dB(A)		2,3 dB(A)	10	3,0 dB(A)	- 0,	,6 dB	1,3	dB
	Tan	nzuschlag			abenhö	he K _{TN} : Vlessung	21						
		Tonzuschlag bei verm		occupa 4		Raceima	31					ļ	
		Messung 2) 2. Mes		essung	*								
6 m/s		essung ²⁾ - Hz	2. M 0 dB	- Hz	0 dF	3 .	- Hz						
6 m/s 7 m/s	1. M				*	3 .	- Hz - Hz						
	1. Me 0 dB	- Hz	0 dB	- Hz	0 dF	3 -	1						
7 m/s	1. Me 0 dB 0 dB	- Hz - Hz	0 dB 0 dB	- Hz - Hz	0 dE	3 · 3 ·	- Hz						
7 m/s 8 m/s	1. Me 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz	0 dE 0 dE 1 dE 2 dE	3 - 3 - 3 163 3 164	- Hz 3 Hz 1 Hz						
7 m/s 8 m/s	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz 148 Hz	0 dE 0 dE 1 dE 2 dE	3 · 3 ·	- Hz 3 Hz 1 Hz						
7 m/s 8 m/s	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz 148 Hz wschlag Kr	0 dE 0 dE 1 dE 2 dE	3 - 3 - 3 163 3 164	- Hz 3 Hz 1 Hz						
7 m/s 8 m/s 8,1 m/s ⁴⁾	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz essung ²⁾	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz 148 Hz us chlag K r lessung ²⁾	0 dE 0 dE 1 dE 2 dE	3 - 3 3 - 163 3 - 164 Messung	- Hz 3 Hz 1 Hz					The control of the co	
7 m/s 8 m/s 8,1 m/s ⁴⁾ 6 m/s 7 m/s 8 m/s	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz essung ²⁾ 0 dB	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz 148 Hz uschlag Kr lessung ²⁾ 0 dB	0 dE 0 dE 1 dE 2 dE	3 - 3 3 - 163 3 - 164 Messung 0 dB	- Hz 3 Hz 1 Hz						
7 m/s 8 m/s 8,1 m/s ⁴⁾ 6 m/s 7 m/s	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz - Hz essung ²⁾ 0 dB 0 dB	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz 148 Hz 148 Hz uschlag Kr lessung ²⁾ 0 dB 0 dB	0 dE 0 dE 1 dE 2 dE	3	- Hz 3 Hz 1 Hz						
7 m/s 8 m/s 8,1 m/s ⁴⁾ 6 m/s 7 m/s 8 m/s	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz - Hz - Hz 0 dB 0 dB 0 dB 0 dB	0 dB 0 dB 1 dB 1 dB 2 mpuisz	- Hz - Hz 148 Hz 148 Hz 148 Hz cuschlag Kr lessung ²⁾ 0 dB 0 dB 0 dB 0 dB	0 di 0 di 1 di 2 di 3. i	3 163 3 164 Messung 0 dB 0 dB 0 dB	- Hz 3 Hz 1 Hz 3)	feren	zpunkt v	o in dB(A) ⁴⁾		
7 m/s 8 m/s 8,1 m/s ⁴⁾ 6 m/s 7 m/s 8 m/s 8,1 m/s ⁴⁾	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz - Hz - Hz essung ²⁾ 0 dB 0 dB 0 dB - dB	0 dB 0 dB 1 dB 1 dB 2 mpuisz	- Hz - Hz 148 Hz 148 Hz 148 Hz cuschlag Kr lessung ²⁾ 0 dB 0 dB 0 dB 0 dB	0 di 0 di 1 di 2 di 3. i	3 163 3 164 Messung 0 dB 0 dB 0 dB	- Hz 3 Hz 1 Hz 3)		zpunkt v 250	o in dB(,	A) ⁴⁾	500	630
7 m/s 8 m/s 8,1 m/s ⁴⁾ 6 m/s 7 m/s 8 m/s 8,1 m/s ⁴⁾	1. Md 0 dB 0 dB 0 dB 1. Md	- Hz - Hz - Hz - Hz - Hz - Hz essung ²⁾ 0 dB 0 dB 0 dB - dB	0 dB 0 dB 1 dB 1 dB Impuisz 2. M	- Hz - Hz 148 Hz 148 Hz 148 Hz uschlag Kr lessung ²⁾ 0 dB 0 dB 0 dB 0 dB	0 de 0 de 1 de 1 de 1 de 1 de 1 de 1 de	3 163 3 164 Vlessung 0 dB 0 dB 0 dB	Hz Hz Hz Hz 3)	00		o in dB(, 315 92,6	A) ⁴⁾ 400 92,6	500 91,3	630 92,0
7 m/s 8 m/s 8,1 m/s ⁴⁾ 6 m/s 7 m/s 8 m/s 8,1 m/s ⁴⁾	1. Me 0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz - Hz - Hz essung ²⁾ 0 dB 0 dB 0 dB - dB	0 dB 0 dB 1 dB 1 dB Impuisz 2. M	- Hz - Hz 148 Hz 148 Hz 148 Hz uschlag Kr lessung ²⁾ 0 dB 0 dB 0 dB	0 de 0 de 1 de 2 de 1 de 1 de 1 de 1 de 1 de 1	3	3) Ref	00	250	315	400		1

							-			0000	2000	40000
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa	91,7	91,2	90,5	89,5	88,3	87,3	86,2	64,9	82,1	80,4	78,3	72,8
		Okta	v-Schalle	istungsp	egel (Mit	tel aus 3	Messung	en) Refer	enzpunkl	t v ₁₀ in dE	B(A) 4)	
Eroguana	62		125	250		500	1000)	2000	4000)	8000

	(Oktav-Schalle	istungspegel	(Mittel aus 3 l	Wessungen) R	eterenzpunki	V ₁₀ In dB(A)	,
Frequenz	63	125	250	500	1000	2000	4000	8000
Lwa	87.1	95,2	96,2	96,8	95,9	93,2	89,5	82,9

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe 2) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N=85~m$ 3) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N=61.5~m$ 4) Entspricht 95 % der Nennleistung

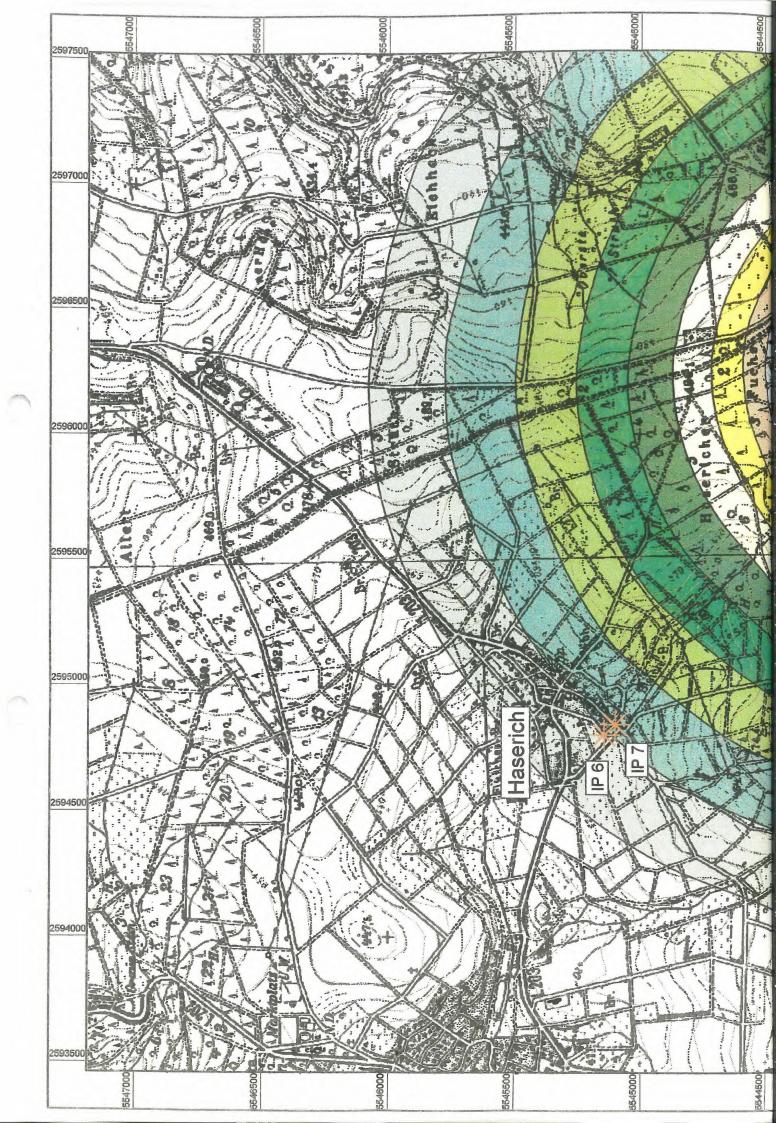
Ausgestellt durch:

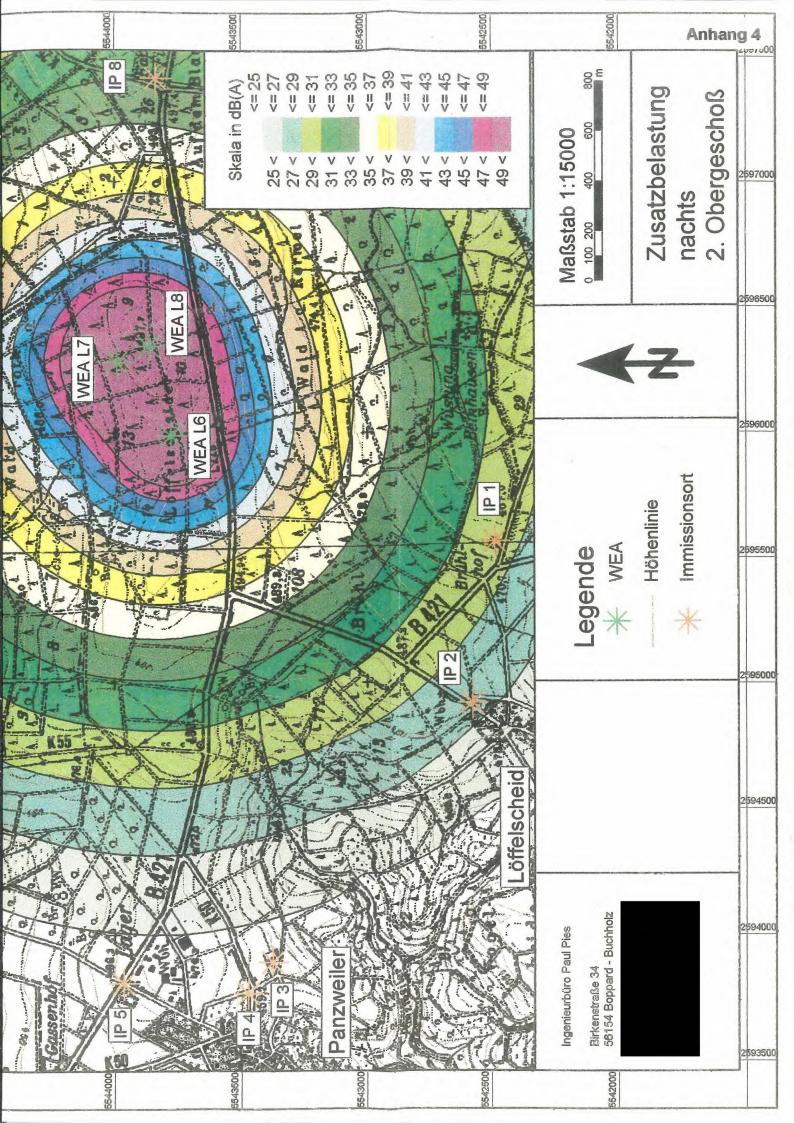
KÖTTER Consulting Engineers Bonfatiusstraße 400

48432 Rheine

Datum:

08.05.2003


Ausbreitungsberechnung Zusatzbelastung


Name	Quelltyp	Lw	Zuschla	Ko	S	Adiv	Agr	Abar	Aatm	Re	Ls	LrT	LrN	
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)	dB(A)	
Name IP1	Brühlhof	IRV	V Tag 6	60 dB(A) IRW	Nacht	45 dB	(A) LrT	29,7	dB(A)	LrN 29,7	dB(A)		***************************************
WEA L06	Punkt	100,9	2,5	3,0	1362,7	73,7	3,8	0,0	2,6		26,3	26,3	26,3	
WEA L07	Punkt	100,9	2,5	3,0	1669,1	75,4	4,0	0,0	3,2		23,8	23,8	23,8	
WEA L08	Punkt	100,9	2,5	3,0	1588,7	75,0	3,9	0,0	3,1		24,4	24,4	24,4	
Name IP2	Löffelscheid	IRV	V Tag 5	5 dB(A) IRW	Nacht	40 dB	(A) LrT	31,2	dB(A)	LrN 27,5	dB(A)		
WEA L06	Punkt	100,9	2,5	3,0	1609,0	75,1	4,0	0,0	3,1		24,2	27,8	24,2	
WEA L07	Punkt	100,9	2,5	3,0	1963,8	76,9	4,1	0,0	3,8		21,6	25,3	21,6	
WEA L08	Punkt	100,9	2,5	3,0	1923,3	76,7	4,1	0,0	3,7		22,0	25,6	22,0	
Name IP3	Birkenhof	IRV	V Tag 6	0 dB(A) IRW	Nacht	45 dB	(A) LrT	24,0	dB(A)	LrN 24,0	dB(A)		1.6
WEA L06	Punkt	100,9	2,5	3,0	2138,2	77,6	4,2	0,0	4,1		20,5	20,5	20,5	
WEA L07	Punkt	100,9	2,5	3,0	2470,5	78,8	4,3	0,0	4,8		18,5	18,5	18,5	
WEA L08	Punkt	100,9	2,5	3,0	2505,4	79,0	4,3	0,0	4,8		18,3	18,3	18,3	
Name IP4	Panzweiler	IRV	V Tag 5	5 dB(A) IRW	Nacht	40 dB	(A) LrT	27,0	dB(A)	LrN 23,4	dB(A)		
WEA L06	Punkt	100,9	2,5	3,0	2244,2	78,0	4,2	0,0	4,3		19,9	23,5	19,9	
WEA L07	Punkt	100,9	2,5	3,0	2568,9	79,2	4,3	0,0	4,9		18,0	21,6	18,0	
WEA L08	Punkt	100,9	2,5	3,0	2610,1	79,3	4,3	, 0,0	5,0		17,7	21,4	17,7	
Name IP5	Panzweiler	IRV	V Tag 6	0 dB(A) IRW	Nacht	45 dB((A) LrT	23,8	dB(A)	LrN 23,8	dB(A)		
WEA L06	Punkt	100,9	2,5	3,0	2190,1	77,8	4,2	0,0	4,2		20,2	20,2	20,2	;
WEA L07	Punkt	100,9	2,5	3,0	2475,0	78,9	4,2	0,0	4,8		18,5	18,5	18,5	
WEA L08	Punkt	100,9	2,5	3,0	2540,8	79,1	4,3	0,0	4,9	:	18,2	18,2	18,2	
Name IP6	Haserich	IRV	V Tag 5	5 dB(A) IRW	Nacht	40 dB((A) LrT	30,5	dB(A)	LrN 26,9	dB(A)		
WEA L06	Punkt	100,9	2,5	3,0	1814,2	76,2	4,1	0,0	3,5		22,6	26,3	22,6	
WEA L07	Punkt	100,9	2,5	3,0	1881,1	76,5	4,1	0,0	3,6		22,2	25,8	22,2	
WEA L08	Punkt	100,9	2,5	3,0	2008,4	77,0	4,2	0,0	3,9		21,3	24,9	21,3	
Name IP7	Haserich	IRV	V Tag 6	0 dB(A) IRW	Nacht	45 dB(A) LrT	27,3	dB(A)	LrN 27,3	dB(A)		
WEA L06	Punkt	100,9	2,5	3,0	1754,0	75,9	4,1	0,0	3,4		23,1	23,1	23,1	
WEA L07	Punkt	100,9	2,5	3,0	1821,5	76,2	4,1	0,0	3,5		22,6	22,6	22,6	
WEA L08	Punkt	100,9	2,5	3,0	1948,6	76,8	4,1	0,0	3,7		21,7	21,7	21,7	
Name IP8	Fichtenhof	IRV	V Tag 6	0 dB(A) IRW	Nacht	45 dB((A) LrT	32,9	dB(A)	LrN 32,9	dB(A)		
WEA L06	Punkt	100,9	2,5	3,0	1426,9	74,1	3,8	0,0	2,7		25,8	25,8	25,8	
WEA L07	Punkt	100,9	2,5	3,0	1143,7	72,2	3,6	0,0	2,2		28,5	28,5	28,5	
WEA L08	Punkt	100,9	2,5	3,0	1069,8	71,6	3,4	0,0	2,1		29,3	29,3	29,3,	

Ausbreitungsberechnung Zusatzbelastung

Legende

Name		Name der Quelle
Quelltyp		Typ der Quelle (Punkt, Linie, Fläche)
Lw	dB(A)	Anlagenleistung
Zuschlag	dB	Zuschlag für Unsicherheit der Prognose
Ko	dB	Zuschlag für gerichtete Abstrahlung
S	m	Entfernung Emissionsort-IO
Adiv	dB	Mittlere Entfernungsminderung
Agr	dB	Mittlerer Bodeneffekt
Abar	dB	Mittlere Einfügedämpfung
Aatm	dB	Mittlere Dämpfung durch Luftabsorption
Re	dB(A)	Reflexanteil
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LrT	dB(A)	Teilbeurteilungspegel Tag
LrN	dB(A)	Teilbeurteilungspegel Nacht

Name	Quelltyp	Lw	Zuschl		s	Adiv	Agr	Abar	Aatm		Ls	LrT	LrN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)	dB(A)
Name IP1	Brühlhof	IR)	N Tag	60 dB(A	() IRWI	Vacht	45 dB	(A) LrT	34,3	dB(A)	LrN 34,3	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1987,8	77,0	4,2	0,0	3,8	<u>`</u>	23,2	23,2	23,2
WEA H02	Punkt	103,0	2,2	3,0	1856,6	76,4	4,2	0,0	3,6		24,1	24,1	24,1
WEA L01	Punkt	101,7	2,2	3,0	1662,5	75,4	4,1	0,0	3,2		24,2	24,2	24,2
WEA L02	Punkt	101,7	2,2	3,0	1511,9	74,6	4,0	0,0	2,9		25,4	25,4	25,4
WEA L03	Punkt	101,7	2,2	3,0	1377,1	73,8	3,9	0,0	2,6		26,6	26,6	26,6
WEA L04	Punkt	101,7	2,2	3,0	1296,3	73,2	3,8	0,0	2,5		27,4	27,4	27,4
WEA L05	Punkt	101,7	2,2	3,0	1609,5	75,1	4,1	0,0	3,1		24,6	24,6	24,6
WEA M01	Punkt	101,8	2,0	3,0	2541,8	79,1	4,2	0,0	4,9		18,6	18,6	18,6
WEA M02	Punkt	101,8	2,0	3,0	2805,2	80,0	4,4	0,0	5,4		17,1	17,1	17,1
WEA M03	Punkt	101,8	2,0	3,0	3083,1	80,8	4,3	0,0	5,9		15,8	15,8	15,8
WEA M04	Punkt	101,8	2,0	3,0	3382,9	81,6	4,3	0,0	6,5		14,4	14,4	14,4
WEA M05	Punkt	101,8	2,0	3,0	3686,0	82,3	4,4	0,0	7,1		13,0	13,0	13,0
WEA M06	Punkt	101,8	2,0	3,0	3991,6	83,0	4,5	0,0	7,7		11,6	11,6	11,6
WEA M07	Punkt	101,8	2,0	3,0	4370,0	83,8	4,5	0,0	8,4		10,1	10,1	10,1
WEA M08	Punkt	103,8	2,1	3,0	4087,4	83,2	4,4	0,0	7,9		13,4	13,4	13,4
WEA M09	Punkt	103,8	2,1	3,0	4343,7	83,7	4,4	0,0	8,4		12,4	12,4	12,4
WEA M10	Punkt	103,8	2,1	3,0	4614,4	84,3	4,5	0,0	8,9		11,3	11,3	11,3
	Löffelscheid			55 dB(A			40 dB	(A) LrT	39,0	dB(A)	LrN 35,4	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1766,4	75,9	3,9	0,0	3,4		24,9	28,6	24,9
WEA H02	Punkt	103,0	2,2	3,0	1786,1	76,0	4,1	0,0	3,4		24,7	28,3	24,7
WEA L01	Punkt	101,7	2,2	3,0	1431,4	74,1	3,8	0,0	2,8		26,2	29,9	26,2
WEA L02	Punkt	101,7	2,2	3,0	1303,7	73,3	3,7	0,0	2,5		27,4	31,0	27,4
WEA L03	Punkt	101,7	2,2	3,0	1230,4	72,8	3,6	0,0	2,4		28,1	31,7	28,1
WEA L04	Punkt	101,7	2,2	3,0	1222,9	72,7	3,7	0,0	2,4		28,2	31,8	28,2
WEA L05	Punkt	101,7	2,2	3,0	1543,8	74,8	4,0	0,0	3,0		25,2	28,8	25,2
WEA M01	Punkt	101,8	2,0	3,0	2736,2	79,7	4,3	0,0	5,3		17,5	21,2	17,5
WEA M02	Punkt	101,8	2,0	3,0	2958,4	80,4	4,4	0,0	5,7		16,3	20,0	16,3
WEA M03	Punkt	101,8	2,0	3,0	3203,6	81,1	4,3	0,0	6,2		15,2	18,8	15,2
WEA M04	Punkt	101,8	2,0	3,0	3485,8	81,8	4,3	0,0	6,7		13,9	17,6	13,9
WEA M05	Punkt	101,8	2,0	3,0	3776,3	82,5	4,4	0,0	7,3		12,6	16,3	12,6
WEA M06	Punkt	101,8	2,0	3,0	4076,5	83,2	4,4	0,0	7,8		11,3	14,9	11,3
WEA M07	Punkt	101,8	2,0	3,0	4453,8	84,0	4,4	0,0	8,6		9,8	13,5	9,8
WEA M08	Punkt	103,8	2,1	3,0	4059,2	83,2	4,3	0,0	7,8		13,6	17,2	13,6
WEA M09	Punkt	103,8	2,1	3,0	4299,0	83,7	4,3	0,0	8,3		12,6	16,3	12,6
WEA M10	Punkt	103,8	2,1	3,0	4569,1	84,2	4,4	0,0	8,8		11,5	15,2	11,5
Name IP3) IRW1			(A) LrT		dB(A)	LrN 36,1	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1363,3	73,7	3,7	0,0	2,6		28,2	28,2	28,2
WEA H02	Punkt	103,0	2,2	3,0	1695,4	75,6	4,0	0,0	3,3		25,4	25,4	25,4
WEA L01	Punkt	101,7	2,2	3,0	1188,6	72,5	3,6	0,0	2,3		28,6	28,6	28,6
WEA L02	Punkt	101,7		3,0	1199,7	72,6	3,5	0,0	2,3		28,5	28,5	28,5
WEA L03	Punkt	101,7	2,2	3,0	1303,0	73,3	3,6	0,0	2,5		27,5	27,5	27,5
WEA L04	Punkt	101,7	2,2	3,0	1432,6	74,1	3,7	0,0	2,8		26,4	26,4	26,4
WEA L05	Punkt	101,7	2,2	3,0	1573,6	74,9	3,9	0,0	3,0		25,0	25,0	25,0
WEA M01	Punkt	101,8	2,0	3,0	2911,5	80,3	4,3	0,0	5,6		16,7	16,7	16,7
WEA M02	Punkt	101,8	2,0	3,0	3020,2	80,6	4,3	0,0	5,8		16,1	16,1	16,1
												······································	and the second of the second

Name	Quelltyp	Lw	Zuschla	Ko	S	Adiv	Agr	Abar	Aatm	Re	Ls	LrT	LrN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)	dB(A)
		(-,-)											
WEA M03	Punkt	101,8	2,0	3,0	3168,1	81,0	4,3	0,0	6,1		15,4	15,4	15,4
WEA M04	Punkt	101,8	2,0	3,0	3382,4	81,6	4,3	0,0	6,5		14,5	14,5	14,5
WEA M05	Punkt	101,8	2,0	3,0	3618,8	82,2	4,3	0,0	7,0		13,4	13,4	13,4
WEA M06	Punkt	101,8	2,0	3,0	3882,3	82,8	4,4	0,0	7,5		12,2	12,2	12,2
WEA M07	Punkt	101,8	2,0	3,0	4230,6	83,5	4,4	0,0	8,1		10,8	10,8	10,8
WEA M08	Punkt	103,8	2,1	3,0	3639,8	82,2	4,2	0,0	7,0		15,5	15,5	15,5
WEA M09	Punkt	103,8	2,1	3,0	3828,9	82,7	4,2	0,0	7,4		14,7	14,7	14,7
WEA M10	Punkt	103,8	2,1	3,0	4080,9	83,2	4,3	0,0	7,9		. 13,6	13,6	13,6
Name IP4	Panzweiler	IR\	V Tag 55	dB(/	A) IRW	Nacht	40 dB(A) LrT	39,1	dB(A)	LrN 35,5	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1390,3	73,9	3,7	0,0	2,7		28,0	31,6	28,0
WEA H02	Punkt	103,0	2,2	3,0	1749,9	75,9	4,0	0,0	3,4		25,0	28,6	25,0
WEA L01	Punkt	101,7	2,2	3,0	1250,3	72,9	3,7	0,0	2,4		27,9	31,5	27,9
WEA L02	Punkt	101,7	2,2	3,0	1278,7	73,1	3,6	0,0	2,5		27,7	31,3	27,7
WEA L03	Punkt	101,7	2,2	3,0	1395,3	73,9	3,7	0,0	2,7		26,6	30,3	26,6
WEA L04	Punkt	101,7	2,2	3,0	1531,8	74,7	3,8	0,0	2,9		25,5	29,1	25,5
WEA L05	Punkt	101,7	2,2	3,0	1647,3	75,3	4,0	0,0	3,2		24,5	28,1	24,5
WEA M01	Punkt	101,8	2,0	3,0	2969,7	80,4	4,3	0,0	5,7		16,4	20,0	16,4
WEA M02	Punkt	101,8	2,0	3,0	3064,1	80,7	4,3	0,0	5,9		15,9	19,5	15,9
WEA M03	Punkt	101,8	2,0	3,0	3198,7	81,1	4,3	0,0	6,2		15,3	18,9	15,3
WEA M04	Punkt	101,8	2,0	3,0	3402,5	81,6	4,2	0,0	6,5		14,4	18,0	14,4
WEA M05	: Punkt	101,8	2,0	3,0	3629,9	82,2	4,3	0,0	7,0		13,3	17,0	13,3
WEA M06	Punkt	101,8	2,0	3,0	3886,7	82,8	4,4	0,0	7,5		12,2	15,8	12,2
WEA M07	Punkt	101,8	2,0	3,0	4228,9	83,5	4,3	0,4	8,1		10,4	14,0	10,4
WEA M08	Punkt	103,8	2,1	3,0	3616,7	82,2	4,1	0,0	7,0		15,7	19,3	15,7
WEA M09	Punkt	103,8	2,1	3,0	3797,5	82,6	4,2	0,6	7,3		14,2	17,9	14,2
WEA M10	Punkt	103,8	2,1	3,0	4045,3	83,1	4,2	0,5	7,8		13,2	16,8	13,2
Name IP5	Panzweiler	IRI	V Tag 60	dB(/	A) IRW	Nacht :	45 dB(A) LrT	37,2	fB(A)	LrN 37,2	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1111,3	71,9	3,1	0,0	2,1		31,0	31,0	31,0
WEA H02	Punkt	103,0	2,2	3,0	1531,4	74,7	3,7	0,0	2,9		26,9	26,9	26,9
WEA L01	Punkt	101,7	2,2	3,0	1091,0	71,7	3,3	0,0	2,1		29,8	29,8	29,8
WEA L02	Punkt	101,7	2,2	3,0	1175,8	72,4	3,4	0,0	2,3		28,8	28,8	28,8
WEA L03	Punkt	101,7	2,2	3,0	1330,4	73,5	3,6	0,0	2,6		27,3	27,3	27,3
WEA L04	Punkt	101,7	2,2	3,0	1482,7	74,4	3,7	0,0	2,9		25,9	25,9	25,9
WEA L05	Punkt	101,7	2,2	3,0	1497,5	74,5	3,7	0,0	2,9		25,8	25,8	25,8 `
WEA M01	Punkt	101,8	2,0	3,0	2729,2	79,7	4,1	0,0	5,3		17,7	17,7	17,7
WEA M02	Punkt	101,8	2,0	3,0	2780,7	79,9	4,2	0,0	5,4		17,4	17,4	17,4
WEA M03	Punkt	101,8	2,0	3,0	2878,2	80,2	4,1	0,0	5,5		17,0	17,0	17,0
WEA M04	Punkt	101,8	2,0	3,0	3054,2	80,7	4,1	0,0	5,9		16,2	16,2	16,2
WEA M05	Punkt	101,8	2,0	3,0	3259,6	81,3	4,1	0,0	6,3		15,2	15,2	15,2
WEA M06	Punkt	101,8	2,0	3,0	3500,6	81,9	4,2	0,0	6,7		14,0	14,0	14,0
WEA M07	Punkt	101,8	2,0	3,0	3829,1	82,7	4,2	0,0	7,4		12,6	12,6	12,6
WEA M08	Punkt	103,8	2,1	3,0	3181,2	81,0	3,9	0,0	6,1	1	17,8	17,8	17,8
WEA M09	Punkt	103,8	2,1	3,0	3348,9	81,5	4,0	0,0	6,4		17,0	17,0	17,0
WEA M10	Punkt	. 103,8	2,1	3,0	3590,4	82,1	4,1	0,0	6,9	<u> </u>	15,8	15,8	15,8
Name IP6	Haserich	IR\	N Tag 55	dB(A) IRW	Nacht	40 dB(A) LrT	43,8	dB(A)	LrN 40,1	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	814,8	69,2	2,9	0,0	1,6		34,6	38,2	34,6
									Waterway				- Minterna

Name	Quelltyp	Lw	Zuschla	Ko	S	Adiv	Agr	Abar	Aatm	Re dB(A)	Ls dB(A)	LrT dB(A)	LrN dB(A)
		dB(A)	dB	dB	m	dB	dB	dB	dB	ub(A)	UD(A)	UB(A)	UD(A)
WEA H02	Punkt	103,0	2,2	3,0	967,9	70,7	3,1	0,0	1,9		32,5	36,1	32,5
WEA L01	Punkt	101,7	2,2	3,0	1148,1	72,2	3,7	0,0	2,2		28,8	32,4	28,8
WEA L02	Punkt	101,7	2,2	3,0	1285,2	73,2	3,8	0,0	2,5		27,4	31,0	27,4
WEA L03	Punkt	101,7	2,2	3,0	1399,9	73,9	3,9	0,0	2,7		26,4	30,0	26,4
WEA L04	Punkt	101,7	2,2	3,0	1481,3	74,4	4,0	0,0	2,9		25,7	29,3	25,7
WEA L05	Punkt	101,7	2,2	3,0	1189,5	72,5	3,6	0,0	2,3		28,5	32,2	28,5
WEA M01	Punkt	101,8	2,0	3,0	1598,8	75,1	4,0	0,0	3,1		24,7	28,3	24,7
WEA M02	Punkt	101,8	2,0	3,0	1509,3	74,6	4,0	0,0	2,9		25,3	28,9	25,3
WEA M03	Punkt	101,8	2,0	3,0	1495,2	74,5	3,8	0,0	2,9		25,6	29,3	25,6
WEA M04	Punkt	101,8	2,0	3,0	1598,0	75,1	3,8	0,0	3,1		24,9	28,5	24,9
WEA M05	Punkt	101,8	2,0	3,0	1759,6	75,9	3,9	0,0	3,4		23,6	27,2	23,6
WEA M06	Punkt	101,8	2,0	3,0	1978,5	76,9	4,1	0,0	3,8		21,9	25,6	21,9
WEA M07	Punkt	101,8	2,0	3,0	2296,3	78,2	4,1	0,0	4,4		20,0	23,7	20,0
WEA M08	Punkt	103,8	2,1	3,0	1658,9	75,4	3,6	0,0	3,2		26,8	30,4	26,8
WEA M09	Punkt	103,8	2,1	3,0	1847,6	76,3	3,8	0,0	3,6		25,3	28,9	25,3
WEA M10	Punkt	103,8	2,1	3,0	2102,7	77,4	4,0	0,0	4,0		23,4	27,1	23,4
Name IP7 Ha	serich	IR'	W Tag 60) dB(/	4) IRW 1	Nacht	45 dB(A) LrT	40,6 c	IB(A)	LrN 40,6	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	769,6	68,7	2,7	0,0	1,5		35,3	35,3	35,3
WEA H02	Punkt	103,0	2,2	3,0	909,3	70,2	3,0	0,0	1,7		33,3	33,3	33,3
WEA L01	Punkt	101,7	2,2	3,0	1101,7	71,8	3,6	0,0	2,1		29,3	29,3	29,3
WEA L02	Punkt	101,7	2,2	3,0	1236,6	72,8	3,8	0,0	2,4		27,9	27,9	27,9
WEA L03	Punkt	101,7	2,2	3,0	1348,1	73,6	3,9	0,0	2,6		26,9	26,9	26,9
WEA L04	Punkt	101,7	2,2	3,0	1426,8	74,1	3,9	0,0	2,7		26,2	26,2	26,2
WEA L05	Punkt	101,7	2,2	3,0	1132,6	72,1	3,5	0,0	2,2		29,1	29,1	29,1
WEA M01	Punkt	101,8	2,0	3,0	1551,3	74,8	3,9	0,0	3,0		25,1	25,1	25,1
WEA M02	Punkt	101,8	2,0	3,0	1469,8	74,3	4,0	0,0	2,8		25,6	25,6	25,6
WEA M03	Punkt	101,8	2,0	3,0	1465,8	74,3	3,8	0,0	2,8		25,9	25,9	25,9
WEA M04	Punkt	101,8	2,0	3,0	1578,9	75,0	3,7	0,0	3,0		25,1	25,1	25,1
WEA M05	Punkt	101,8	2,0	3,0	1749,5	75,9	3,9	0,0	3,4		23,7	23,7	23,7
WEA M06	Punkt	101,8	2,0	3,0	1975,1	76,9	4,1	0,0	3,8		22,0	22,0	22,0
WEA M07	Punkt	101,8	2,0	3,0	2298,7	78,2	4,1	0,0	4,4		20,0	20,0	20,0
WEA M08	Punkt	103,8	2,1	3,0	1676,4	75,5	3,6	0,0	3,2		26,6	26,6	26,6
WEA M09	Punkt	103,8	2,1	3,0	1871,2	76,4	3,8	0,0	3,6		25,1	25,1	25,1
WEA M10	Punkt	103,8	2,1	3,0	2128,8	77,6	4,0	. 0,0	4,1		23,3	23,3	23,3
Name IP8 Fig	chtenhof	IR	W Tag 60) dB(A) IRWI	Nacht	45 dB(A) Lrī	33,0 (dB(A)	LrN 33,0		
WEA H01	Punkt	103,0	2,2	3,0	2610,8	79,3	4,2	0,0	5,0	1	19,6	19,6	19,6
WEA H02	Punkt	103,0	2,2	3,0	2172,8	77,7	4,1	0,0	4,2		22,2	22,2	22,2
WEA L01	Punkt	101,7	2,2	3,0	2523,5	79,0	4,3	0,0	4,9		18,7	18,7	18,7
WEA L02	Punkt	101,7	2,2	3,0	2436,3	78,7	4,3	0,0	4,7	;	19,2	19,2	19,2
WEA L03	Punkt	101,7	2,2	3,0	2290,7	78,2	4,2	0,0	4,4		20,1	20,1	20,1
WEA L04	Punkt	101,7	2,2	3,0	2144,3	77,6	4,1	0,0	4,1		21,0	21,0	21,0
WEA L05	Punkt	101,7	2,2	3,0	2127,1	. 77,5	4,1	0,0	4,1		21,1	21,1	21,1
WEA M01	Punkt	101,8	2,0	3,0	1485,8	74,4	3,5	0,0	2,9		26,0	26,0	26,0
WEA M02	Punkt	101,8	2,0	3,0	1753,0	75,9	3,7	0,0	3,4		23,8	23,8	23,8
WEA M03	Punkt	101,8	2,0	3,0	2026,1	77,1	3,7	0,0	3,9		22,1	22,1	22,1
WEA M04	Punkt	101,8	2,0	3,0	2281,6	78,2	3,7	0,0	4,4		20,5	20,5	20,5
			William Company of the Company					The Allies grande and the second		,			

Anhang 5.4

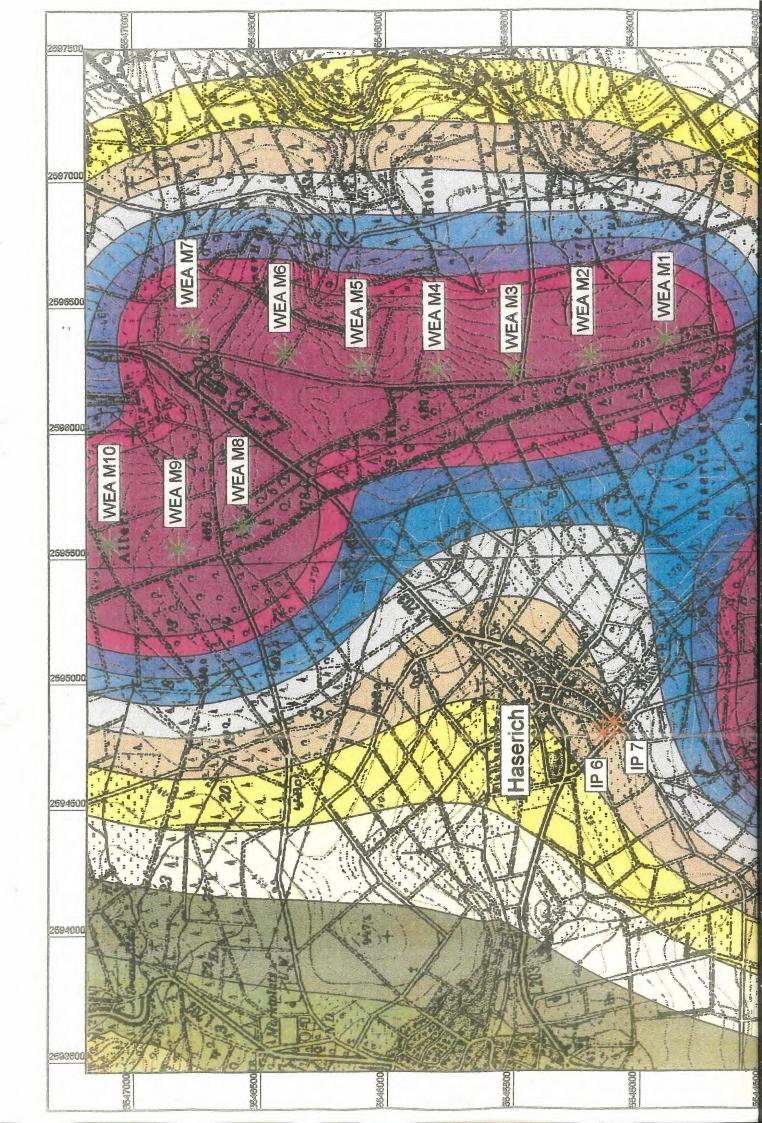
Ausbreitungsberechnung Vorbelastung

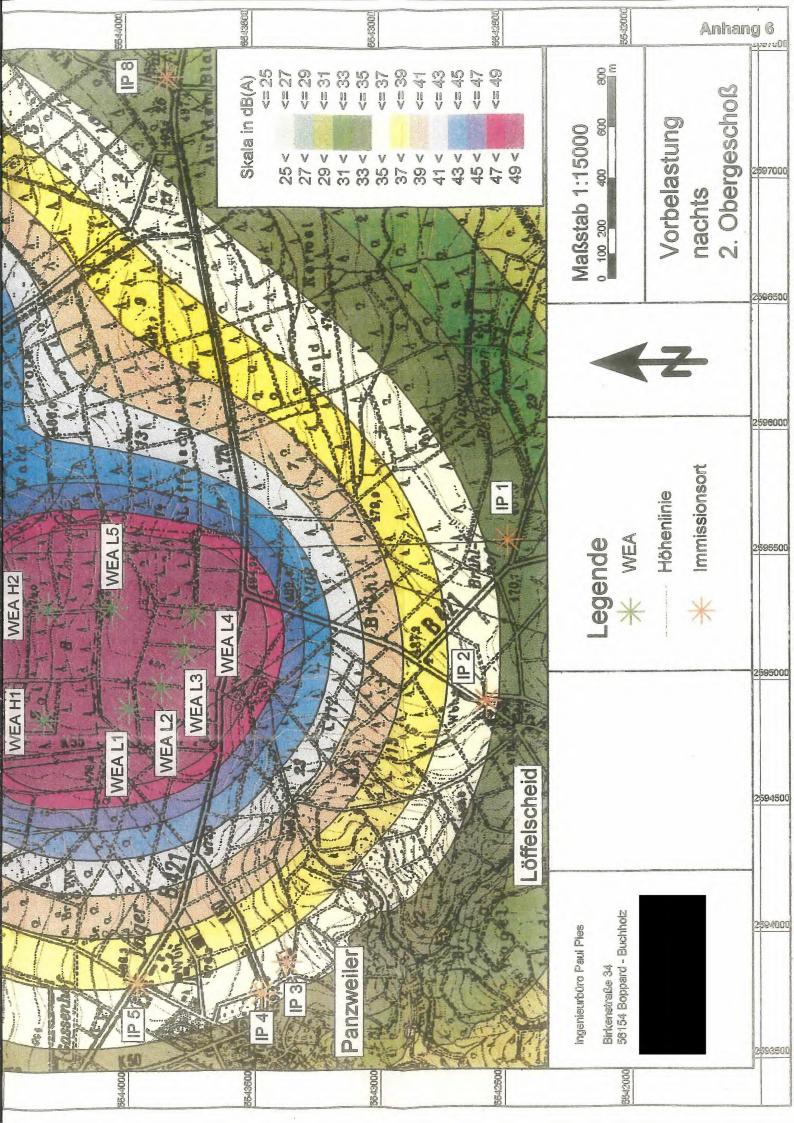
Name	Quelltyp	Lw dB(A)	Zuschla dB	Ko dB	s m	Adiv dB	Agr dB	Abar dB	Aatm dB	Re dB(A)	Ls dB(A)	LrT dB(A)	LrN dB(A)
WEA M05	Punkt	101,8	2,0	3,0	2541,6	79,1	3,9	0,0	4,9		19,0	19,0	19,0
WEA M06	Punkt	101,8	2,0	3,0	2794,1	79,9	4,0	0,0	5,4		17,5	17,5	17,5
WEA M07	Punkt	101,8	2,0	3,0	3103,4	80,8	3,9	0,0	6,0		16,1	16,1	16,1
WEA M08	Punkt	103,8	2,1	3,0	3266,1	81,3	4,1	0,0	6,3		17,2	17,2	17,2
WEA M09	Punkt	103,8	2,1	3,0	3529,4	81,9	4,2	0,0	6,8		16,0	16,0	16,0
WEA M10	Punkt	103,8	2,1	3,0	3754,3	82,5	4,2	0,0	7,2		15,0	15,0	15,0

Legende

Name		Name der Quelle
Quelityp		Typ der Quelle (Punkt, Linie, Fläche)
Lw	dB(A)	Anlagenleistung
Zuschlag	dB	Zuschlag für Unsicherheit der Prognose
Ko	dB	Zuschlag für gerichtete Abstrahlung
s	m	Entfernung Emissionsort-IO
Adiv	dB	Mittlere Entfernungsminderung
Agr	dB	Mittlerer Bodeneffekt
Abar	dB	Mittlere Einfügedämpfung
Aatm	dB	Mittlere Dämpfung durch Luftabsorption
Re	dB(A)	Reflexanteil
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LrT	dB(A)	Teilbeurteilungspegel Tag
LrN	dB(A)	Teilbeurteilungspegel Nacht

Ausbreitungsberechnung Gesamtbelastung


Name	Quelltyp	Lw dB(A)	Zusch dB	la Ko dB	s m	Adiv dB	Agr dB	Abar dB	Aatm dB	Re dB(A)	Ls) dB(A)	LrT dB(A)	LrN dB(A)
Name IP1	Datiblh of												4B(A)
	Brühlhof		N Tag	60 dB(A)		Nacht	45 dB(A	<u> </u>		dB(A)	LrN 35,6	dB(A)	22.2
WEA HO1	Punkt	103,0	2,2		1987,8	77,0	4,2	0,0	3,8		23.2	23,2	23,2
WEA H02	Punkt	103,0	2,2		1856,6	76,4	4,2	0,0	3,6		24,1	24,1	24,1
WEA LO1	Punkt	101,7	2,2		1662,5	75,4	4,1	0,0	3,2		24,2	24,2	24,2
WEA LO2	Punkt	101,7	2,2		1511,9	74,6	4,0	0,0	2,9		25,4	25,4	25,4
WEA LO3	Punkt	101,7	2,2		1377,1	73,8	3,9	0,0	2,6		26,6	26,6	26,6
WEA LO4	Punkt	101,7	2,2	•	1296,3	73,2	3,8	0,0	2,5		27,4	27,4	27,4
WEA LOS	Punkt	101,7	2,2		1609,5	75,1	4,1	0,0	3,1		24,6	24,6	24,6
WEA LOG	Punkt	100,9	2,5	•	1362,7	73,7	3,8	0,0	2,6		26,3	26,3	26,3
WEA LOO	Punkt	100,9	2,5		1669,1	75,4	4,0	0,0	3,2		23,8	23,8	23,8
WEA L08	Punkt	100,9	2,5		1588,7	75,0	3,9	0,0	3,1		24,4	24,4	24,4
WEA M01	Punkt	101,8	2,0		2541,8	79,1	4,2	0,0	4,9		18,6	18,6	18,6
WEA M02	Punkt	101,8	2,0		2805,2	80,0	4,4	0,0	5,4		17,1	17,1	17,1
WEA M03	Punkt	101,8	2,0		3083,1	80,8	4,3	0,0	5,9		15,8	15,8	15,8
WEA M04	Punkt	101,8	2,0		3382,9	81,6	4,3	0,0	6,5		14,4	14,4	14,4
WEA M05	Punkt	101,8	2,0		3686,0	82,3	4,4	0,0	7,1		13,0	13,0	13,0
WEA M06	Punkt	101,8	2,0		3991,6	83,0	4,5	0,0	7,7		11,6	11,6	11,6
WEA MO7	Punkt	101,8	2,0		4370,0	83,8	4,5	0,0	8,4		10,1	10,1	10,1
WEA MOS	Punkt	103,8	2,1		1087,4	83,2	4,4	0,0	7,9		13,4	13,4	13,4
WEA M09	Punkt	103,8	2,1		1343,7	83,7	4,4	0,0	8,4		12,4	12,4	12,4
WEA M10	Punkt	103,8	2,1		1614,4	84,3	4,5	0,0	8,9	15245	11,3	11,3	11,3
	Löffelscheid			55 dB(A)		Nacht	40 dB(A			dB(A)	LrN 36,1	dB(A)	
WEA H01	Punkt	103,0	2,2		1766,4	75,9	3,9	0,0	3,4		24,9	28,6	24,9
WEA H02	Punkt	103,0	2,2		1786,1	76,0	4,1	0,0	3,4		24,7	28,3	24,7
WEA L01	Punkt	101,7	2,2		1431,4	74,1	3,8	0,0	2,8		26,2	29,9	26,2
WEA LO2	Punkt	101,7	2,2		1303,7	73,3	3,7	0,0	2,5		27,4	31,0	27,4
WEA L03	Punkt	101,7	2,2		1230,4	72,8	3,6	0,0	2,4		28,1	31,7	28,1
WEA LOS	Punkt	101,7	2,2		1222,9	72,7	3,7	0,0	2,4		28,2	31,8	28,2
WEA LOS	Punkt	101,7	2,2		1543,8	74,8	4,0	0,0	3,0	*	25,2	28,8	25,2
WEA LOG	Punkt	100,9	2,5		1609,0	75,1	4,0	0,0	3,1		24,2	27,8	24,2
WEA LO7	Punkt	100,9	2,5		1963,8	76,9	4,1	0,0	3,8		21,6	25,3	21,6
WEA LOS	Punkt	100,9	2,5		1923,3	76,7	4,1	0,0	3,7		22,0	25,6	22,0
WEA MO1	Punkt	101,8	2,0		2736,2	79,7	4,3	0,0	5,3		17,5	21,2	17,5
WEA M02	Punkt	101,8	2,0		2958,4	80,4	4,4	0,0	5,7	ì	16,3	20,0	16,3
WEA MO3	Punkt	101,8	2,0		3203,6	81,1	4,3	0,0	6,2		15,2	18,8	15,2
WEA M04	Punkt	101,8	2,0		3485,8	81,8	4,3	0,0	6,7		13,9	17,6	13,9
WEA MOS	Punkt	101,8	2,0		3776,3	82,5	4,4	0,0	7,3		12,6	16,3	12,6
WEA M06	Punkt	101,8	2,0		1076,5	83,2	4,4	0,0	7,8	1	11,3	14,9	11,3
WEA MO7	Punkt	101,8	2,0		1453,8	84,0	4,4	0,0	8,6		9,8	13,5	9,8
WEA MO8	Punkt	103,8	2,1		1059,2	83,2	4,3	0,0	7,8		13,6	17,2	13,6
WEA M09	Punkt	103,8	2,1		1299,0	83,7	4,3	0,0	8,3		12,6	16,3	12,6
WEA M10		103,8	2,1		1569,1	84,2	4,4	0,0	8,8	JD/A1	11,5	15,2	11,5
Name IP3				60 dB(A)						dB(A)	LrN 36,3	dB(A)	00.0
WEA H01	Punkt	103,0	2,2		1363,3	73,7	3,7	0,0	2,6		28,2	28,2	28,2
WEA H02	Punkt	103,0	2,2		1695,4	75,6	4,0	0,0	3,3		25,4	25,4	25,4
WEA L01	Punkt	101,7	2,2	3,0	1188,6	72,5	3,6	0,0	2,3		28,6	28,6	28,6
							-			Marketin and an application of		of Charles	


Ausbreitungsberechnung Gesamtbelastung

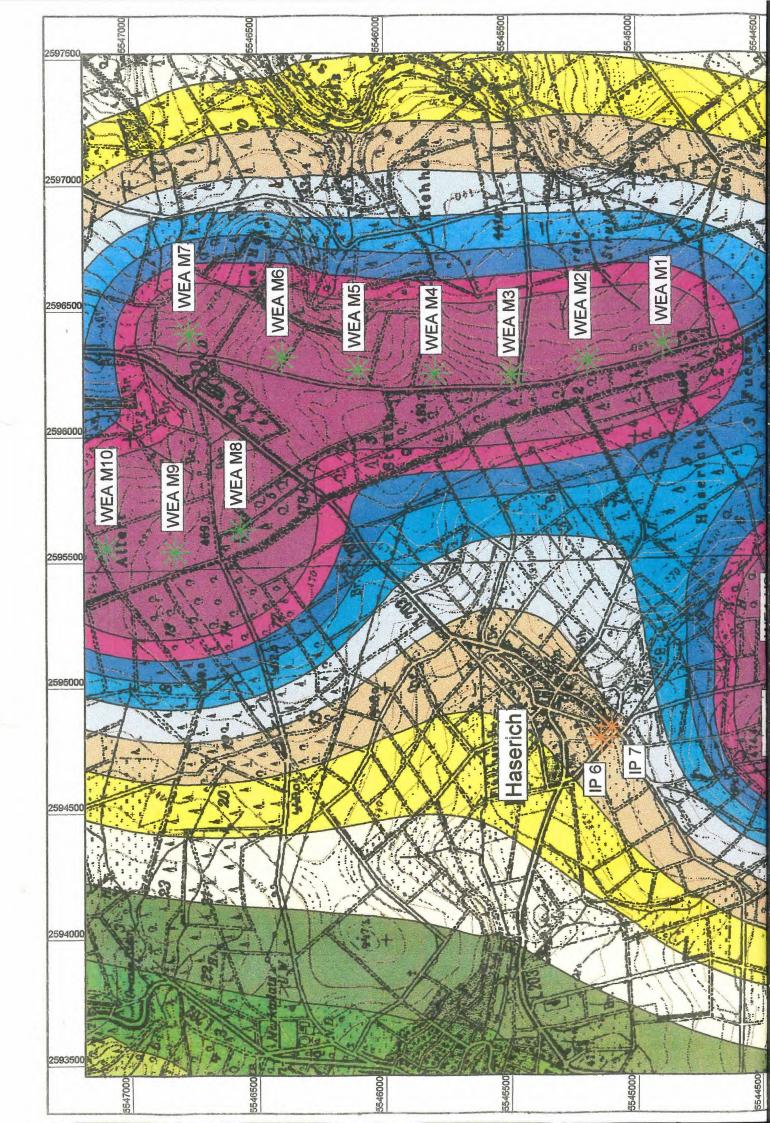
Name	Quelltyp	Lw dB(A)	Zuschla dB	Ko dB	s m	Adiv dB	Agr dB	Abar dB	Aatm dB	Re dB(A)	Ls) dB(A)	LrT dB(A)	LrN dB(A)
WEA L02	Punkt	101,7	2,2	3,0	1199,7	72,6	3,5	0,0	2,3		28,5	28,5	28,5
WEA LO3	Punkt	101,7	2,2	3,0	1303,0	73,3	3,6	0,0	2,5		27,5	27,5	27,5
WEA LO3	Punkt	101,7	2,2	3,0	1432,6	74,1	3,7	0,0	2,8		26,4	26,4	26,4
WEA LOS	Punkt	101,7	2,2	3,0	1573,6	74,9	3,9	0,0	3,0		25,0	25,0	25,0
WEA LOS	Punkt	100,9	2,5	3,0	2138,2	77,6	4,2	0,0	4,1		20,5	20,5	20,5
WEA LOO	Punkt	100,9	2,5 2,5	3,0	2470,5	78,8	4,3	0,0	4,8		18,5	18,5	18,5
WEA LO7	Punkt	100,9	2,5 2,5	3,0	2505,4	79,0	4,3	0,0	4,8		18,3	18,3	18,3
E .	Punkt	100,9	2,0	3,0	2911,5	80,3	4,3	0,0	5,6		16,7	16,7	16,7
WEA MO1					3020,2	80,6	4,3	0,0	5,8		16,1	16,1	16,1
WEA M02	Punkt	101,8	2,0	3,0	3020,2	81,0	4,3 4,3	0,0	6,1		15,4	15,4	15,4
WEA M03	Punkt	101,8	2,0	3,0	3382,4	81,6	4,3	0,0	6,5		14,5	14,5	14,5
WEA M04	Punkt	101,8	2,0	3,0							13,4	13,4	13,4
WEA M05	Punkt	101,8	2,0	3,0	3618,8	82,2	4,3	0,0	7,0 7,5		12,2	12,2	12,2
WEA M06	Punkt	101,8	2,0	3,0	3882,3	82,8	4,4	0,0			10,8	10,8	10,8
WEA M07	Punkt	101,8	2,0	3,0	4230,6	83,5	4,4	0,0	8,1		15,5	15,5	15,5
WEA M08	Punkt	103,8	2,1	3,0	3639,8	82,2	4,2	0,0	7,0		15,5		14,7
WEA M09	Punkt	103,8	2,1	3,0	3828,9	82,7	4,2	0,0	7,4			14,7	
WEA M10	Punkt	103,8	2,1	3,0	4080,9	83,2	4,3	0,0	7,9	ID(A)	13,6	13,6	13,6
Name IP4 Pa				dB(/			40 dB(gR(A)	LrN 35,7	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1390,3	73,9	3,7	0,0	2,7		28,0	31,6	28,0
WEA H02	Punkt	103,0	2,2	0,8	1749,9	75,9	4,0	0,0	3,4		25,0	28,6	25,0
WEA L01	Punkt	101,7	2,2	3,0	1250,3	72,9	3,7	0,0	2,4		27,9	31,5	27,9
WEA L02	Punkt	101,7	2,2	3,0	1278,7	73,1	3,6	0,0	2,5		27,7	31,3	27,7
WEA L03	Punkt	101,7	2,2	3,0	1395,3	73,9	3,7	0,0	2,7		26,6	30,3	26,6
WEA L04	Punkt	101,7	2,2	3,0	1531,8	74,7	3,8	0,0	2,9		25,5	29,1	25,5
WEA L05	Punkt	101,7	2,2	3,0	1647,3	75,3	4,0	0,0	3,2		24,5	28,1	24,5
WEA L06	Punkt	100,9	2,5	3,0	2244,2	78,0	4,2	0,0	4,3		19,9	23,5	19,9
WEA L07	Punkt	100,9	2,5	3,0	2568,9	79,2	4,3	0,0	4,9		18,0	21,6	18,0
WEA L08	Punkt	100,9	2,5	3,0	2610,1	79,3	4,3	0,0	5,0		17,7	21,4	17,7
WEA M01	Punkt	101,8	2,0	3,0	2969,7	80,4	4,3	0,0	5,7		16,4	20,0	16,4
WEA M02	Punkt	101,8	2,0	3,0	3064,1	80,7	4,3	0,0	5,9		15,9	19,5	15,9
WEA M03	Punkt	101,8	2,0	3,0	3198,7	81,1	4,3	0,0	6,2		15,3	18,9	15,3
WEA M04	Punkt	101,8	2,0	3,0	3402,5	81,6	4,2	0,0	6,5		14,4	18,0	14,4
WEA M05	Punkt	101,8	2,0	3,0	3629,9	82,2	4,3	0,0	7,0		13,3	17,0	13,3
WEA M06	Punkt	101,8	2,0	3,0	3886,7	82,8	4,4	0,0	7,5		12,2	15,8	12,2 5
WEA M07	Punkt	101,8	2,0	3,0	4228,9	83,5	4,3	0,4	8,1		10,4	14,0	10,4
WEA M08	Punkt	103,8	2,1	3,0	3616,7	82,2	4,1	0,0	7,0		15,7	19,3	15,7
WEA M09	Punkt	103,8	2,1	3,0	3797,5	82,6	4,2	0,6	7,3		14,2	17,9	14,2
WEA M10	Punkt	103,8	2,1	3,0	4045,3	83,1	4,2	0,5	7,8		13,2	16,8	13,2
Name IP5 Pa	anzweiler	IR'	W Tag 60	dB(A) IRW I	Nacht	45 dB(A) LrT	37,4	dB(A)	LrN 37,4	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	1111,3		3,1	0,0	2,1	:	31,0	31,0	31,0
WEA H02	Punkt	103,0	2,2	3,0	•	74,7	3,7	0,0	2,9		26,9	26,9	26,9
WEA L01	Punkt	101,7	2,2	3,0	1091,0	71,7	3,3	0,0	2,1		29,8	29,8	29,8
WEA L02	Punkt	101,7	2,2	3,0	1175,8	72,4	3,4	0,0	2,3		28,8	28,8	28,8
WEA L03	Punkt	101,7	2,2	3,0	1330,4	73,5	3,6	0,0	2,6		27,3	27,3	27,3
WEA L03	Punkt	101,7	2,2	3,0	1482,7	74,4	3,7	0,0	2,9		25,9	25,9	25,9
WEA L04 WEA L05	Punkt	101,7	2,2	3,0	1402,7	74,4	3,7	0,0	2,9		25,8 25,8	25,8	25,8
VVLA EUJ	LUIIN	101,7	۷,۷	5,0	1491,0	, 1 ,0	5,1	0,0	۷,۰		20,0	,0	,-

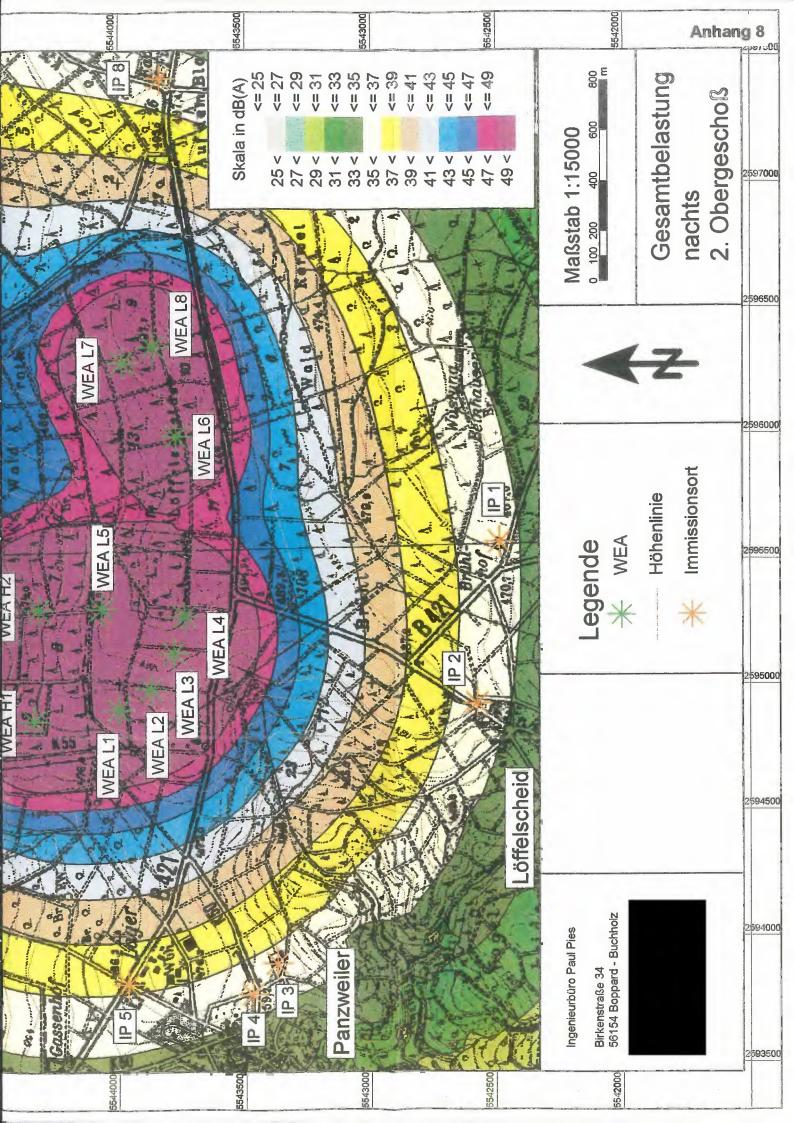
Ausbreitungsberechnung Gesamtbelastung

Name	Quelltyp	Lw dB(A)	Zuschla dB	Ko dB	s m	Adiv dB	Agr dB	Abar dB	Aatm dB	Re dB(A)	Ls dB(A)	LrT dB(A)	LrN dB(A)
Luce	5 1:					77,8	4,2	0,0	4,2		20,2	20,2	20,2
WEA L06	Punkt	100,9	2,5	3,0	2190,1 2475,0	78,9	4,2	0,0	4,8		18,5	18,5	18,5
WEA LO?	Punkt	100,9	2,5	3,0	2540,8	76,9 79,1	4,2	0,0	4,0		18,2	18,2	18,2
WEA LOS	Punkt	100,9	2,5	3,0	2729,2	79,1	4,3 4,1	0,0	5,3		17,7	17,7	17,7
WEA M01	Punkt	101,8	2,0	3,0	2729,2	79,7 79,9	4,1	0,0	5,3 5,4		17,4	17,4	17,4
WEA M02	Punkt	101,8 101,8	2,0	3,0 3,0	2878,2	80,2	4,1	0,0	5, 5		17,0	17,0	17,0
WEA M03	Punkt		2,0		3054,2	80,7	4,1	0,0	5,9		16,2	16,2	16,2
WEA M04	Punkt	101,8	2,0	3,0 3,0	3259,6	81,3	4,1	0,0	6,3		15,2	15,2	15,2
WEA M05	Punkt	101,8	2,0		3500,6	81,9	4,1	0,0	6,7		14,0	14,0	14,0
WEA M06	Punkt	101,8	2,0	3,0 3,0	3829,1	82,7	4,2	0,0	7,4		12,6	12,6	12,6
WEA M07	Punkt	101,8	2,0 2,1	3,0	3181,2	81,0	3,9	0,0	6,1		17,8	17,8	17,8
WEA M08	Punkt	103,8 103,8	2,1	3,0	3348,9	81,5	4,0	0,0	6,4		17,0	17,0	17,0
WEA M09	Punkt		2,1	3,0	3590,4	82,1	4,1	0,0	6,9		15,8	15,8	15,8
WEA M10	Punkt	103,8					40 dB(dD/A)	LrN 40,3		10,0
Name IP6 I				5 dB(/						ub(A)	34,6	38,2	34,6
WEA H01	Punkt	103,0	2,2	3,0	814,8	69,2	2,9	0,0	1,6		34,6 32,5	36,2 36,1	32,5
WEA H02	Punkt	103,0	2,2	3,0	967,9	70,7	3,1	0,0	1,9 2,2		32,3 28,8	32,4	28,8
WEA L01	Punkt	101,7	2,2	3,0	1148,1	72,2	3,7	0,0 0,0	2,2 2,5		20,6 27,4	31,0	27,4
WEA L02	Punkt	101,7	2,2	3,0	1285,2	73,2 73,9	3,8 3,9	0,0	2,3		27,4 26,4	30,0	26,4
WEA LO3	Punkt	101,7	2,2	3,0	1399,9	73,9 74,4	3,9 4,0	0,0	2,7		25,7	29,3	25,7
WEA LO4	Punkt	101,7	2,2	3,0	1481,3 1189,5	72,5	3,6	0,0	2,3		28,5	32,2	28,5
WEA LOS	Punkt	101,7	2,2	3,0 3,0	1814,2	76,2	3,0 4,1	0,0	3,5		22,6	26,3	22,6
WEAL06	Punkt	100,9 100,9	2,5 2,5	3,0	1881,1	76,5	4,1	0,0	3,6		22,2	25,8	22,2
WEA L07 WEA L08	Punkt Punkt	100,9	2,5 2,5	3,0	2008,4	77,0	4,1	0,0	3,9		21,3	24,9	21,3
WEA LOG	Punkt	100,9	2,0	3,0	1598,8	75,1	4,0	0,0	3,1		24,7	28,3	24,7
WEA MO2	Punkt	101,8	2,0	3,0	1509,3	74,6	4,0	0,0	2,9		25,3	28,9	25,3
WEA MO3	Punkt	101,8	2,0	3,0	1495,2	74,5	3,8	0,0	2,9		25,6	29,3	25,6
WEA MO4	Punkt	101,8	2,0	3,0	1598,0	75,1	3,8	0,0	3,1		24,9	28,5	24,9
WEA MO5	Punkt	101,8	2,0	3,0	1759,6	75,9	3,9	0,0	3,4		23,6	27,2	23,6
WEA MOS	Punkt	101,8	2,0	3,0	1978,5	76,9	4,1	0,0	3,8		21,9	25,6	21,9
WEA MO7	Punkt	101,8	2,0	3,0	2296,3	78,2	4,1	0,0	4,4		20,0	23,7	20,0
WEA MO8	Punkt	103,8	2,0	3,0	1658,9	75,4	3,6	0,0	3,2		26,8	30,4	26,8
WEA M09	Punkt	103,8	2,1	3,0	1847,6	76,3	3,8	0,0	3,6		25,3	28,9	25,3
WEA M10	Punkt	103,8	2,1	3,0	2102,7	77,4	4,0	0,0	4,0		23,4	27,1	23,4 '
Name IP7			W Tag 6							dB(A)			
					769,6	68,7	2,7	0,0	1,5	<u> </u>	35,3	35,3	35,3
WEA HO1	Punkt	103,0	2,2	3,0	709,0 909,3	70,2	3,0	0,0	1,7		33,3	33,3	33,3
WEA H02	Punkt	103,0	2,2	3,0 3,0	909,3 1101,7	70,2	3,6	0,0	2,1		29,3	29,3	29,3
WEA LO1	Punkt	101,7	2,2	3,0	1236,6	71,8	3,8	0,0	2,1		27,9	27,9	27,9
WEA LO2	Punkt	101,7	2,2	3,0	1348,1	73,6	3,9	0,0	2,4		26,9	26,9	26,9
WEA LO3	Punkt	101,7	2,2		1426,8	74,1	3,9	0,0	2,7		26,2	26,2	26,2
WEA LO4	Punkt	101,7	2,2	3,0		74,1	3,9 3,5	0,0	2,7		29,1	29,1	29,1
WEA LOS	Punkt	101,7	2,2	3,0	1132,6 1754,0	75,9	3,5 4,1	0,0	3,4		23,1	23,1	23,1
WEA LOG	Punkt	100,9	2,5	3,0				0,0	3,5		22,6	22,6	22,6
WEA LO7	Punkt	100,9	2,5	3,0	1821,5	76,2	4,1				21,7	21,7	21,7
WEA LOS	Punkt	100,9	2,5	3,0	1948,6	76,8	4,1 3,9	0,0	3,7 3,0		25,1	25,1	25,1
WEA M01	Punkt	101,8	2,0	3,0	1551,3	74,8	3,9	0,0	5,0		۷, ۱	٠, ١	۷, ۱
								Managadana		in the same of the			Annual Constitution Constitutio

Anhang 7.4

Ausbreitungsberechnung Gesamtbelastung


Name	Quelltyp	Lw	Zuschla	Ko	S	Adiv	Agr	Abar	Aatm	Re	Ls	LrT	LrN
		dB(A)	dB	dB	m	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)	dB(A)
WEA M02	Punkt	101,8	2,0	3,0	1469,8	74,3	4,0	0,0	2,8		25,6	25,6	25,6
WEA M03	Punkt	101,8	2,0	3,0	1465,8	74,3	3,8	0,0	2,8		25,9	25,9	25,9
WEA M04	Punkt	101,8	2,0	3,0	1578,9	75,0	3,7	0,0	3,0		25,1	25,1	25,1
WEA M05	Punkt	101,8	2,0	3,0	1749,5	75,9	3,9	0,0	3,4		23,7	23,7	23,7
WEA M06	Punkt	101,8	2,0	3,0	1975,1	76,9	4,1	0,0	3,8		22,0	22,0	22,0
WEA M07	Punkt	101,8	2,0	3,0	2298,7	78,2	4,1	0,0	4,4		20,0	20,0	20,0
WEA M08	Punkt	103,8	2,1	3,0	1676,4	75,5	3,6	0,0	3,2		26,6	26,6	26,6
WEA M09	Punkt	103,8	2,1	3,0	1871,2	76,4	3,8	0,0	3,6		25,1	25,1	25,1
WEA M10	Punkt	103,8	2,1	3,0	2128,8	77,6	4,0	0,0	4,1		23,3	23,3	23,3
Name IP8 Fid	chtenhof	IR\	NTag 60	dB(#	A) IRW N	vacht	45 dB(/	A) LrT	35,9 c	iB(A) ∣	_rN 35,9	dB(A)	
WEA H01	Punkt	103,0	2,2	3,0	2610,8	79,3	4,2	0,0	5,0		19,6	19,6	19,6
WEA H02	Punkt	103,0	2,2	3,0	2172,8	77,7	4,1	0,0	4,2		22,2	22,2	22,2
WEA L01	Punkt	101,7	2,2	3,0	2523,5	79,0	4,3	0,0	4,9		18,7	18,7	18,7
WEA L02	Punkt	101,7	2,2	3,0	2436,3	78,7	4,3	0,0	4,7		19,2	19,2	19,2
WEA L03	Punkt	101,7	2,2	3,0	2290,7	78,2	4,2	0,0	4,4		20,1	20,1	20,1
WEA L04	Punkt	101,7	2,2	3,0	2144,3	77,6	4,1	0,0	4,1		21,0	21,0	21,0
WEA L05	Punkt	101,7	2,2	3,0	2127,1	77,5	4,1	0,0	4,1		21,1	21,1	21,1
WEA L06	Punkt	100,9	2,5	3,0	1426,9	74,1	3,8	0,0	2,7		25,8	25,8	25,8
WEA L07	Punkt	100,9	2,5	3,0	1143,7	72,2	3,6	0,0	2,2		28,5	28,5	28,5
WEA L08	Punkt	100,9	2,5	3,0	1069,8	71,6	3,4	0,0	2,1		29,3	29,3	29,3
WEA M01	Punkt	101,8	2,0	3,0	1485,8	74,4	3,5	0,0	2,9		26,0	26,0	26,0
WEA M02	Punkt	101,8	2,0	3,0	1753,0	75,9	3,7	0,0	3,4		23,8	23,8	23,8
WEA M03	Punkt	101,8	2,0	3,0	2026,1	77,1	3,7	0,0	3,9		22,1	22,1	22,1
WEA M04	Punkt	101,8	2,0	3,0	2281,6	78,2	3,7	0,0	4,4		20,5	20,5	20,5
WEA M05	Punkt	101,8	2,0	3,0	2541,6	79,1	3,9	0,0	4,9		19,0	19,0	19,0
WEA M06	Punkt	101,8	2,0	3,0	2794,1	79,9	4,0	0,0	5,4		17,5	17,5	17,5
WEA M07	Punkt	101,8	2,0	3,0	3103,4	80,8	3,9	0,0	6,0		16,1	16,1	16,1
WEA M08	Punkt	103,8	2,1	3,0	3266,1	81,3	4,1	0,0	6,3		17,2	17,2	17,2
WEA M09	Punkt	103,8	2,1	3,0	3529,4	81,9	4,2	0,0	6,8		16,0	16,0	16,0
WEA M10	Punkt	103,8	2,1	3,0	3754,3	82,5	4,2	0,0	7,2		15,0	15,0	15,0


Anhang 7.5

Ausbreitungsberechnung Gesamtbelastung

Legende

Name Quelityp		Name der Quelle Typ der Quelle (Punkt, Linie, Fläche)
Lw	dB(A)	Anlagenleistung
Zuschlag	dB	Zuschlag für Unsicherheit der Prognose
Ko	dB	Zuschlag für gerichtete Abstrahlung
S	m	Entfernung Emissionsort-IO
Adiv	dB	Mittlere Entfernungsminderung
Agr	dB	Mittlerer Bodeneffekt
Abar	dB	Mittlere Einfügedämpfung
Aatm	dB	Mittlere Dämpfung durch Luftabsorption
Re	dB(A)	Reflexanteil
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LrT	dB(A)	Teilbeurteilungspegel Tag
LrN	dB(A)	Teilbeurteilungspegel Nacht

Infraschall von Windenergieanlagen: Realität oder Mythos? Infrasound from wind turbines: A ,German' Problem?

Helmut Klug, DEWI

Abstract:

Wind turbines are radiating sound at extremely low levels in the infrasound range (below 20 Hz). This sound is far below the detection threshold und thus far below levels which can cause any diseases. Measurements on a turbine in the megawatt class at the DEWI Test Site showed levels of 58 dB at a distance of 100 m to the turbine in the one-third octave band level at 10 Hz [2], which means more than 30 dB below the hearing threshold at this frequency.

Eine unbestrittene Tatsache ist, dass dort wo Infraschall-Ängste vor der Errichtung eines Windparks systematisch geschürt werden, die Anwohner aus Angst vor den vielen in Aussicht gestellten Krankheiten nicht mehr ruhig schlafen können [1]. Unbestritten ist auch, dass Windenergieanlagen, ebenso wie eine Vielzahl anderer Schallquellen, Infraschall abstrahlen. Neuere Messungen an einer Megawattanlage [2] haben jetzt, wie schon aufgrund von Messungen an einer 500kW-Anlage [3] vermutet, bestätigt, dass die von Windenergieanlagen abgestrahlten Schallpegel im Infraschallbereich weit unter der Wahrnehmbarkeitsschwelle liegen und damit keine Gefahren von diesen Anlagen ausgehen. Unter Infraschall wird Schall im Frequenzbereich unterhalb von 20 Hz bezeichnet und dieser ist, entgegen früherer Annahmen, durchaus mit dem Ohr wahrnehmbar. Auch für Infraschall gelten die physikalischen Gesetze der Akustik und diese besagen, dass auch Infraschallpegel, wenn auch weniger stark als höherfrequenter Schall, mit der Entfernung zur Schallquelle abnehmen. Neben den natürlichen Infraschallquellen, wie Windströmungen, Erdbeben, Wasserfällen oder Meeresbrandung gibt es eine Vielzahl technischer Infraschallquellen, wie z.B. Heizungs- und Klimaanlagen, Gasturbinen, Kompressoren, Bauwerke (Hochhäuser, Tunnel, Brücken) und Verkehrsmittel. Bei der vom Betreiber Projekt GmbH beauftragten, auf dem Testfeld des DEWI vom itap durchgeführten Infraschallmessung [2] an einer 1,65 MW Anlage des Typs Vestas V66 ergab sich z.B. bei einem Terzpegel von 10 Hz ein Schalldruckpegel in Höhe von 58 dB in einer Entfernung von 100 m zur Anlage. Die Wahrnehmbarkeitsschwelle liegt bei dieser Terz nach DIN 45680 etwa bei 95 dB. Der Infraschallpegel liegt also schon im

Nahbereich der Anlage um mehr als 30 dB unterhalb der Wahrnehmbarkeitsschwelle. Langjährige Untersuchungen [4] haben gezeigt, dass unhörbarer Infraschall als völlig harmlos einzustufen ist.

Es lassen sich also folgende Schlußfolgerungen ziehen: Die Infraschallpegel in der Umgebung von Windenergieanlagen liegen weit unter der Wahrnehmbarkeitsschwelle. Es ergeben sich keine Hinweise auf eine mögliche Gefährdung oder Beeinträchtigung von Personen durch den von Windenergieanlagen ausgehenden Infraschall.

- [1] Klug; Infraschall bei Windenergieanlagen. Neue Energie, 1996,1, S. 22
- [2] Messbericht: Messung der Infraschall-Abstrahlung einer WEA des Typs Vestas – 1,65 MW; ITAP-Institut für technische und angewandte Physik GmbH, Oldenburg, 26. Juni 2000
- [3] Betke, Schultz-von-Glahn, Goos: Messung der Infraschallabstrahlung von Windenergieanlagen; Tagungsband der Deutschen Windenergiekonferenz 1996 DEWEK 96, S.207-210.
- [4] Ising, Makrert, Schenoda, Schwarze; Infraschallwirkungen auf den Menschen, Düsseldorf, VDI-Verlag 1982.