Gamlen GA3

Titel

Schallimmissionsprognose V90

Allgemeines und Aufgabenstellung	2
Ausgangsdaten der Berechnung	3
Ermittlung der Vorbelastung	
Ermittlung der Zusatzbelastung - Tagbetrieb	
Ermittlung der Gesamtbelastung - Tagbetrieb	
Vergleich mit den Richtwerten - Tagbetrieb	
Ermittlung der Vorbelastung – Nachtbetrieb	
Ermittlung der Zusatzbelastung - Nachtbetrieb	
Ermittlung der Gesamtbelastung - Nachtbetrieb	
Vergleich mit den Richtwerten im Nachtbetrieb	
Anhang	10

Projekt: Gamlen GA3

Titel Schallimmissionsprognose V90

Allgemeines und Aufgabenstellung

Die vorliegende Schallberechnung ermittelt die zu erwartende Schallbelastung an drei ausgewählten Immissionsaufpunkten (IP) durch den Bau von 3 Windenergieanlagen (WEA) nördlich der Gemeinde Gamlen. Es wird Bezug auf die immissionsschutzrechtliche Genehmigung vom 04.11.2008 AZ BIM-K 0638/2003 genommen.

Die ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien", Teil 2. beschreibt die Ausbreitungsberechnung des Schalls im Freien. Für die Schallausbreitung der Geräusche von Windkraftanlagen wird die alternative Methode verwendet, da die folgenden Vorrausetzungen erfüllt sind:

- Nur der A-bewertete Pegel ist von Interesse
- Der Schall sich überwiegend über porösem Boden ausbreitet
- Der Schall kein reiner Ton ist.

Die von den einzelnen Windenergieanlagen erzeugten Geräusche (Emissionen) werden in Bezug auf ihre Wirkung in schallkritischen Gebieten untersucht (Immission = Einwirkung an einem bestimmten Ort).

Dabei wird angenommen, dass eine Windgeschwindigkeit von 10m/s (= 36km/h) auf einer Höhe von 10m über Grund herrscht und die WEA jedoch nicht mehr als 95% ihrer Nennleistung erreicht.

Bei der Beurteilung der nach TA-Lärm zulässigen Richtwerte sind die für die Nachtstunden angegebenen Richtwerte maßgeblich, da die Windenergieanlagen im 24-Stunden-Betrieb arbeiten.

Tabelle 1: Immissionsrichtwerte nach TA Lärm

Gebiete nach BauNVO	tags	nachts
	dB(A)	dB(A)
Industriegebiet	70	70
Gewerbegebiet	65	50
Kerngebiet, Mischgebiet, Dorfgebiet	60	45
Allgemeines Wohngebiet,	55	40
Kleinsiedlungsgebiet		
Reines Wohngebiet	50	35
Kurgebiet, Klinikgebiet	45	35

Gamlen GA3

Titel

Schallimmissionsprognose V90

Ausgangsdaten der Berechnung

Im betrachteten Untersuchungsraum sind inzwischen insgesamt 15 WEA mit 6 verschiedenen Typenvarianten zu berücksichtigen

Für alle Windenergieanlagen liegen Schallvermessungen für den Volleistungs- als auch für den schallreduzierten Betrieb vor [s. Anhang 7].

Tabelle 2: Schallleistungspegel und Standardabweichungen der WEA

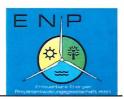
Hersteller	Тур	Vermessener Schallleistungspegel (Vermessungen nach FGW- Richtlinie)	Standardabweichung
Vestas (Mode2)	V90	100,20dB(A)	D 464B(A)
(leistungsreduziert)	2000kW	100,200b(A)	0,46dB(A)
Vestas [ModeO]	V90	100 E34D(A)	0.0040(V)
(leistungsoptimiert)	2000kW	103,53dB(A)	0,32dB(A)
Enercon	E 82	103,77dB(A)	0,35dB(A)
Enercon	E 40/6.44	100,53dB(A)	0,38dB(A)
General Electric	GE 1,5 sL	104,03dB(A)	0,42dB(A)
Nordex	N90	103,30dB(A)	0,36dB(A)
Enercon	E 53	100,90dB(A)	1,22dB(A)

Zur Berücksichtigung von Unsicherheiten bei der Prognoserechnung wird der Emissionswert jeder WEA mit einem Sicherheitsaufschlag $\sigma_{\it ges}$ versehen. Dieser setzt sich zusammen aus:

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{PROG}^2}$$

mit:

Erstellt: Geprüft Dipl. Geogr. Patten Dipl. Ing. (FH) Höhler


© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.1 Seite 3 von 10

Gamlen GA3

Titel

Schallimmissionsprognose V90

$$\sigma_{\it R} = {\rm Standardabweichung~des~Messverfahrens} = 0,5 {\rm dB(A)~f\"{u}r~alle~Anlagen,~die~nach~FGW-Richtlinie~(beinhaltet~Anforderungen~der~DIN~61400-11)~vermessen~wurden,~sonst~1,5 {\rm dB(A)}}$$

$$\sigma_{\it P} = {\rm Produktstandardabweichung} = {\rm Standardabweichung~der~Messwerte~s~(bei~mindestens~3~Vermessungen)~oder~pauschal~1,22~dB(A)}}$$

$$\sigma_{\it PROG} = {\rm Prinzipielle~Unsicherheit~des~Prognosemodells} = 1,5~{\rm dB(A)}}$$

Die der Schallimmissionsprognose zugrunde gelegten Emissionswerte sind im Sinne der Statistik Schätzwerte. Um eine Irrtumswahrscheinlichkeit von max. 10% der berechneten Immissionswerte zu gewährleisten wird der Sicherheitsaufschlag σ_{ges} mit der Standardnormalvariable 1,28 multipliziert.

Damit ergeben sich die immissionsrelevanten Schallleistungspegel der einzelnen WEA zu:

$$L_{WEA,\sigma} = L_m + 1,28 * \sigma_{WEAges}$$

im einzelnen also:

$$\begin{split} \mathsf{L}_{\mathsf{V90\,voll.}} &= 103,53 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 0,32^2 + 1,5^2} = 105,60 \mathsf{dB}[\mathsf{A}] \\ \mathsf{L}_{\mathsf{V90\,red.}} &= 100,20 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 0,46^2 + 1,5^2} = 102,31 \mathsf{dB}[\mathsf{A}] \\ \mathsf{L}_{\mathsf{E-B2.}} &= 103,77 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 0,35^2 + 1,5^2} = 105,84 \mathsf{dB}[\mathsf{A}] \\ \mathsf{L}_{\mathsf{E-40.}} &= 100,53 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 0,38^2 + 1,5^2} = 102,61 \mathsf{dB}[\mathsf{A}] \\ \mathsf{L}_{\mathsf{N-90.}} &= 103,30 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 0,36^2 + 1,5^2} = 105,38 \mathsf{dB}[\mathsf{A}] \\ \mathsf{L}_{\mathsf{GE\,1,5sl.}} &= 104,03 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 0,42^2 + 1,5^2} = 106,13 \mathsf{dB}[\mathsf{A}] \\ \mathsf{L}_{\mathsf{E-53.}} &= 100,90 \mathsf{dB}[\mathsf{A}] + 1,28^* \sqrt{0,5^2 + 1,22^2 + 1,5^2} = 103,46 \mathsf{dB}[\mathsf{A}] \end{split}$$

Gamlen GA3

Titel

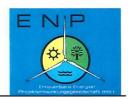
Schallimmissionsprognose V90

Mit den so ermittelten Emissionspegel wird im Folgenden die Prognoserechnung durchgeführt.

Der Tonzuschlag für den Nahbereich und der Impulszuschlag für den Nahbereich liegen gemäß Vermessungsprotokollen bei allen WEA bei O dB (Emissionswert). Gemäß Empfehlungen des Arbeitskreises Windenergie vom Oktober 1999 ist bei Entfernungen über 300m am Immissionsort ein Tonzuschlag zu berücksichtigen, wenn der Emissionswert des Ton- oder Impulszuschlags > 2dB liegt. Dies ist hier <u>nicht</u> der Fall.

Ermittlung der Vorbelastung - Tagbetrieb

Zur Ermittlung der Vorbelastung wurde eine detaillierte Immissionsprognose mit allen 15 von der Bauaufsichtsbehörde genannten WEA durchgeführt. Damit erhält man als Ergebnis:


Tabelle 3: Vorbelastung durch beantragte bzw. genehmigte WEA [s. Anhang 1]

Immissionsaufpunkt	Immissionsrichtwert	Obere	Überschreitung		
	nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags	
IP A Auf dem Käulchen 10, Gamlen	55	41,6	-	-	
IP B Töpferstr. 27, Düngenheim	60	42,0	-	-	
IP C Düngenheimer Str. 6, Eulgem	60	40,7	-	-	

Gamlen GA3

Titel

Schallimmissionsprognose V90

Ermittlung der Zusatzbelastung - Tagbetrieb

Tabelle 4: Zusatzbelastung durch neu beantragte WEA Vestas V90 [s. Anhang 2]

Immissionsaufpunkt	Immissionsrichtwert tags in dB(A)	Obere Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	Überschreitung		
IP A Auf dem Käulchen 10, Gamlen	55	33,0	-		
IP B Düngenheim Töpferstraße 27	60	31,3	-		
IP C Düngenheimer Str. 6, Eulgem	60	27,3	-		

Ermittlung der Gesamtbelastung - Tagbetrieb

Tabelle 5: Gesamtbelastung durch alle WEA [s. Anhang 3]

Immissionsaufpunkt	Immissionsricht- wert tags in dB(A)	Obere Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	Überschreitung
IP A Auf dem Käulchen 10, Gamlen	55	42,1	1
IP B Töpferstr. 27, Düngenheim	60	42,3	-
IP C Düngenheimer Str. 6, Eulgem	60	40,9	-

Erstellt: Geprüft Dipl. Geogr. Patten

Dipl. Ing. (FH) Höhler

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft mbH

Rev.1 Seite 6 von 10

Gamlen GA3

Titel

Schallimmissionsprognose V90

Vergleich mit den Richtwerten im Tagbetrieb

Tabelle 6: Vor-, Zusatz- und Gesamtbelastung, Vergleich mit den Richtwerten

lmmissionsaufpunkt	Immissions -richtwert nachts in dB(A)	Vorbel	astung	Zusatzb	elastung	Gesamtb	elastung	
		Beurteil. pegel		Beurteil. pegel	Differenz	Beurteil. pegel	Differenz	
IP A Auf dem Käulchen 10, Gamlen	55	42	-13	33	-22	42	-13	
IP B Töpferstr. 27, Düngenheim	60	42	-18	31	-29	42	-18	
IP C Düngenheimer Str. 6, Eulgem	60	41	-19	27	-33	41	-19	

Ermittlung der Vorbelastung - Nachtbetrieb

Tabelle 7: Vorbelastung durch beantragte bzw. genehmigte WEA [WEA 80 und 81 sind nur im Tagbetrieb genehmigt][s. Anhang 4]

Immissionsaufpunkt	Immissionsrichtwert	Obere	Überschreitung		
	nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags	
IP A Auf dem Käulchen 10, Gamlen	40	39,8	-	-	
IP B Töpferstr. 27, Düngenheim	45	41,9	-	-	
IP C Düngenheimer Str. 6, Eulgem	45	40,6	-	-	

Erstellt: Geprüft Dipl. Geogr. Patten

Dipl. Ing. (FH) Höhler

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.1 Seite 7 von 10

Gamlen GA3

Titel

Schallimmissionsprognose V90

Ermittlung der Zusatzbelastung - Nachtbetrieb

Tabelle 8: Zusatzbelastung durch 3 neu beantragte WEA Vestas V90 [s. Anhang 5]

lmmissionsaufpunkt	Immissionsricht-wert nachts in dB(A)	Obere Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	Überschreitung		
IP A Auf dem Käulchen 10, Gamlen	40	30,1	-		
IP B Düngenheim Töpferstraße 27	45	29,8	-		
IP C Düngenheimer Str. 6, Eulgem	45	24,9	-		

Ermittlung der Gesamtbelastung - Nachtbetrieb

Tabelle 9: Gesamtbelastung durch alle 18 WEA [s. Anhang 6]

Immissionsaufpunkt	Immissionsricht- wert nachts in dB(A)	Obere Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	Überschreitung
IP A Auf dem Käulchen 10, Gamlen	40	40,2	-
IP B Töpferstr. 27, Düngenheim	45	42,1	-
IP C Düngenheimer Str. 6, Eulgem	45	40,7	-

Erstellt: Geprüft

Dipl. Geogr. Patten

Dipl. Ing. (FH) Höhler

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.1 Seite 8 von 10

Gamlen GA3

Titel

Schallimmissionsprognose V90

Vergleich mit den Richtwerten im Nachtbetrieb

Tabelle 10: Vor-, Zusatz- und Gesamtbelastung, Vergleich mit den Richtwerten

lmmissionsaufpunkt	Immissions -richtwert nachts in dB(A)	Vorbel	astung	Zusatzb	elastung	Gesamtbelastung		
		Beurteil. pegel	Differenz	Beurteil. pegel	Differenz	Beurteil. pegel	Differenz	
IP A Auf dem Käulchen 10, Gamlen	40	40	0	30	-10	40	0	
IP B Töpferstr. 27, Düngenheim	45	42	-3	30	-15	42	-3	
IP C Düngenheimer Str. 6, Eulgem	45	41	-4	25	-20	41	-4	

Es wurden die zu erwartenden Lärmbelastungen durch den Neubau von 3 WEA in der Gemeinde Gamlen mit Hilfe einer Immissionsprognose nach DIN ISO 9613-2 Teil 2 berechnet. Als Vorbelastung für die relevanten Immissionsorte wurden 15 Windenergieanlagen berücksichtigt, die zeitlich vor den beiden zu untersuchenden WEA beantragt oder errichtet wurden und die sich im Umkreis von etwa 2km um die zu prüfenden Anlagenstandorte befinden. Die Berechnung wurde getrennt in Tagbetrieb [06:00-22:00 Uhr] und Nachbetrieb [22:00-06:00 Uhr].

Im Tagbetrieb werden alle beantragten WEA im Vollleistungsbetrieb betrachtet und können die Richtwerte einhalten. Bei den WEA 80 und 81 wurde nur der Tagbetrieb genehmigt.

Bezogen auf die einzuhaltenden Richtwerte in der Nachtzeit können die Richtwerte ebenfalls eingehalten werden. Die Zusatzbelastung der hier beantragten V90 liegt zusätzlich an allen IP nach 2.2.a TA-Lärm nicht im Einwirkungsbereich, da sie an sowohl im Tag- als auch im Nachtbetrieb mindestens 10dB(A) unter dem Richtwert bleibt. Die genehmigten Immissionswerte aus der BIM-K 0867/2003 können unterschritten werden. Für die Berechnung wurden keine dämpfenden Einflüsse durch Bewuchs (Bäume und Sträucher) berücksichtigt. Weiterhin konnten im Rahmen der Ortsbesichtigung keine Gebäude oder natürlichen Gegebenheiten festgestellt werden, die eine Verstärkung der Schallimmissionen durch Reflexionen erwarten lassen.

Alle berechneten WEA weisen keine Einzeltonhaltigkeit und keine Impulstonhaltigkeit auf. Ein entsprechender Zuschlag ist daher nicht vorzusehen.

Osnabrück, den 26. Januar 2010

Erstellt:

Dipl. Geogr. Patten

Geprüft

Dipl. Ing. (FH) Höhler

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

mbl-

Rev.1 Seite 9 von 10 Titel

Schallimmissionsprognose V90

Anhang

- 1. Immissionsberechnung Vorbelastung Tagbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 2. Immissionsberechnung Zusatzbelastung Tagbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 3. Immissionsberechnung Gesamtbelastung Tagbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 4. Immissionsberechnung Vorbelastung Nachtbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 5. Immissionsberechnung Zusatzbelastung Nachtbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 6. Immissionsberechnung Gesamtbelastung Nachtbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 7. Herstellerangaben und Vermessungsberichte
- 8. Abstände der WEA zu den IP
- 9. Zu berücksichtigende Vorbelastung lt. Genehmigungsbehörde
- 10. Bestätigung der Immissionsaufpunkte It. Bauamt

Berechnung der Vorbelastung durch 15 WEA. Alle im

Vollleistungsbetrieb. Berechnete Immissionswrte als obere

Wahrscheinlichkeit von 90%.

Vertrauensbereichsgrenze mit einer

26.01.2010 11:59 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

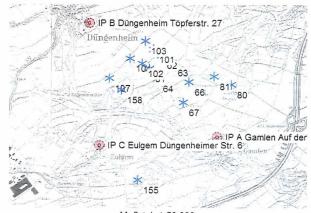
Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:38/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A1 Vorbelastung Tagbetrieb

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:50.000 * Existierende WEA Schall-Immissionsort

WEA

ı	GK (Bessel	Zone: 2			WEA-T	vp					Schall	werte			
1	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
															tōne
			[m]	The state of the s				[kW]	[m]	[m]			[m/s]	[dB(A)]	
				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44,0	65,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
ı				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44,0	65,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
ı				GE Wind Energy G				1.500	77,0	85,0		leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
1				GE Wind Energy G				1.500	77,0	85,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
				NORDEX N90 ENP		NORDEX	N90 ENP	2.300	90,0	80,0		leistungsoptimiert inkl. Zuschläge	10,0	105,4	0 dB
ı				NORDEX N90 ENP		NORDEX	N90 ENP	2.300	90,0			leistungsoptimiert inkl. Zuschläge	10,0	105,4	0 dB
ı				ENERCON E-82 E		ENERCON	E-82 ENP	2.000	82,0	84,5	USER	leistungsoptimiert inkl. Zuschläge	(95%)	105,8	0 dB
				ENERCON E-82 E		ENERCON	E-82 ENP	2.000	82,0	84,5	USER	leistungsoptimiert inkl. Zuschläge	(95%)	105,8	0 dB
ı				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44,0	65,0	USER	leistungsoptimiert inkl. Zuschläge	10.0	102,6	0 dB
				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44,0	65,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
				GE Wind Energy G				1.500	77.0	85,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
ı				GE Wind Energy G		GE Wind Energy	GE 1.5sl ENP	1.500	77,0	85,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	106.1	0 dB
				VESTAS V90-2.0M		VESTAS	V90-2.0MW ENP	2.000	90,0	95,0	USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10,0	105,6	0 dB
				ENERCON E-53 E		ENERCON	E-53 ENP	800	53,0	73,3	USER	leistungsoptimiert inkl. Zuschläge	(95%)	103,5	0 dB
i,	158 2.584.235	5.568.716	406,6	VESTAS V90-2.0M	Ja	VESTAS	V90-2.0MW ENP	2.000	90,0	95,0	USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10.0	105.6	0 dB

Berechnungsergebnisse

Beurteilungspegel

(Bessel) Zone: 2			Anforder	ungen	Beurteilungspegel	Anforder	ungen er	füllt?
Ost Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
	[m]	[m]	[dB(A)]	[m]	[dB(A)]			
			40,4	300	41,6	Nein	Ja	Nein
83.742 5.569.697	460,0	5,0	45,4	300	42.0	Ja	Ja	Ja
83.925 5.567.884	412,4	5,0	45,4	300	40,7	Ja	Ja	Ja
8:8:	st Nord 5.658 5.568.033 3.742 5.569.697	st Nord Z [m] 5.658 5.568.033 369,0 3.742 5.569.697 460,0	st Nord Z Aufpunkthöhe [m] [m] 5.658 5.568.033 369,0 5,0 3.742 5.569.697 460,0 5,0	st Nord Z Aufpunkthöhe Schall [m] [m] [dB(A)] 5.658 5.568.033 369,0 5,0 40,4 3.742 5.569.697 460,0 5,0 45,4	st Nord Z Aufpunkthöhe Schall Abstand [m] [m] [dB(A)] [m] 5.558 5.568.033 369,0 5,0 40,4 300 3.742 5.569.697 460,0 5,0 45,4 300	st Nord Z Aufpunkthöhe Schall Abstand Von WEA [m] [m] [dB(A)] [m] (dB(A)] . (dB(A)] . (41,6 a)	st Nord Z Aufpunkthöhe Schall Abstand Von WEA Schall [m] [m] [dB(A)] [m] [dB(A)] [m] [dB(A)] [m] (dB(A)] [m] (ab(A)] [m] (ab(A)] [m] (ab(A)] [m] (ab(A)] [m] (ab(A)] (ab(A)) (st Nord Z Aufpunkthöhe Schall Abstand Von WEA Schall Abstand [m] [m] [dB(A)] [m] [dB(A)] [m] [dB(A)] [m] 5.558 5.568.033 369,0 5,0 40,4 300 41,6 Nein Ja 3.742 5.569,697 460,0 5,0 45,4 300 42,0 Ja Ja

Abstände (m)

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6	
61	1428	1116	1356	
62	1473	1162	1618	
63	1295	1354	1629	
64	1240	1301	1309	
66	920	1712	1620	
67	726	1814	1390	
80	814	2283	2144	
81	907	2002	1975	
101	1611	1022	1632	
102	1559	984	1372	
103	1784	866	1693	
104	1742	796	1370	
107	1817	871	1008	
155	1325	2428	758	

WindPRO version 2.5.7.84 Sep 2007

Ga3_2010.01_Schall_Schatten

Beschröbung:
Berechnung der Vorbelastung durch
15 WEA. Alle im
Vollleistungsbetrieb. Berechnete
Immissionswrte als obere
Vertrauensbereichsgrenze mit einer
Wahrscheinlichkeit von 90%.

26.01.2010 11:59 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:38/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A1 Vorbelastung Tagbetrieb

...Fortsetzung von der vorigen Seite
WEA IP A Gamlen Auf dem Käulchen 10 IP B Düngenheim Töpferstr. 27 IP C Eulgem Düngenheimer Str. 6
158 1098 888 1578 1098

Berechnung der Vorbelastung durch 15 WEA. Alle im

Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

26.01.2010 11:59 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Rehmstraße 98 e

DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:38/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A1 Vorbelastung Tagbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

Schalldruckpegel an WEA LWA,ref:

K: Einzeltöne

Dc: Richtwirkungskorrektur

Dämpfung aufgrund geometrischer Ausbreitung Adiv:

Aatm: Dämpfung aufgrund von Luftabsorption Agr: Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung Abar:

Amisc: Dämpfung aufgrund verschiedener anderer Effekte

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10) WEA 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.428	1.432	27,3	Nein	22,95	102,6	3,01	74,12	2,72	4,80	0,00	0,00	81,64	1,02
62	1.473	1.477	25,7	Nein	22,56	102,6	3,01	74,39	2,81	4,80	0,00	0,00	82,00	1,05
63	1.295	1.301	32,8	Ja	28,81	106,1	3,01	73,29	2,47	3,93	0,00	0,00	79,69	0,61
64	1.240	1.245	35,6	Ja	29,48	106,1	3,01	72,90	2,37	3,81	0,00	0,00	79,08	0,55
66	920	926	29,9	Ja	32,48	105,4	3,01	70,34	1,76	3,68	0,00	0,00	75,78	0,15
67	726	737	40,8	Ja	35,78	105,4	3,00	68,35	1,40	2,87	0,00	0,00	72,62	0,00
80	814	821	33,4	Ja	34,58	105,8	3,00	69,28	1,56	3,39	0,00	0,00	74,23	0,00
81	907	913	29,5	Ja	33,15	105,8	3,01	70,21	1,74	3,68	0,00	0,00	75,63	0,03
101	1.611	1.615	26,9	Nein	21,45	102,6	3,01	75,16	3,07	4,80	0,00	0,00	83,03	1,13
102	1.559	1.563	29,9	Nein	21,86	102,6	3,01	74,88	2,97	4,80	0,00	0,00	82,65	1,10
103	1.784	1.790	37,1	Nein	23,86	106,1	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0.99
104	1.742	1.747	40,2	Nein	24,18	106,1	3,01	75,85	3,32	4,80	0,00	0,00	83,97	0.97
107	1.817	1.822	46,7	Ja	24,12	105,6	3,01	76,21	3,46	3,92	0,00	0,00	83,59	0,90
155	1.325	1.332	55,2	Ja	26,30	103,5	3,01	73,49	2,53	3,37	0,00	0,00	79,39	0,82
158	1.578	1.583	46,2	Ja	26,08	105,6	3,01	74,99	3,01	3,80	0,00	0,00	81,80	0,73

41.58

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) WEA 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.116	1.116	36,5	Ja	27,12	102,6	3,01	71,95	2,12	3,67	0,00	0,00	77,74	0,75
62	1.162	1.163	38,4	Ja	26,63	102,6	3,01	72,31	2,21	3,66	0,00	0.00	78,18	0.80
63	1.354	1.354	47,8	Ja	28,65	106,1	3,01	73,63	2,57	3,58	0,00	0,00	79,79	0,67
64	1.301	1.301	46,6	Ja	29,17	106,1	3,01	73,28	2,47	3,57	0,00	0,00	79,32	0,62
66	1.712	1.713	50,0	Ja	24,68	105,4	3,01	75,67	3,25	3,80	0,00	0,00	82,73	1,01
67	1.814	1.815	61,0	Ja	24,30	105,4	3,01	76,18	3,45	3,65	0.00	0.00	83.27	0.84
80	2.283	2.284	51,7	Ja	21,06	105,8	3,01	78,17	4,34	4,02	0.00	0.00	86.53	1.22
81	2.002	2.002	49,9	Ja	22,92	105,8	3,01	77,03	3,80	3,95	0,00	0.00	84,78	1,11
101	1.022	1.023	38,3	Ja	28,33	102,6	3,01	71,20	1,94	3,50	0,00	0,00	76,64	0,63
102	984	984	37,7	Ja	28,82	102,6	3,01	70,86	1,87	3,47	0,00	0,00	76,21	0,58
103	866	867	47,5	Ja	34,79	106,1	3,01	69,77	1,65	2,90	0,00	0,00	74,31	0,00
104	796	797	46,1	Ja	35,77	106,1	3,00	69,03	1,51	2,79	0,00	0,00	73,33	0,00
107	871	872	47,2	Ja	34,22	105,6	3,00	69,81	1,66	2,92	0,00	0,00	74,38	0,00
155	2.428	2.429	70,0	Ja	18,02	103,5	3,01	78,71	4,61	3,81	0,00	0,00	87,14	1,36
158	1.098	1.099	50,5	Ja	31,31	105,6	3,01	71,82	2,09	3,21	0,00	0,00	77,11	0,18

Summe 41.96

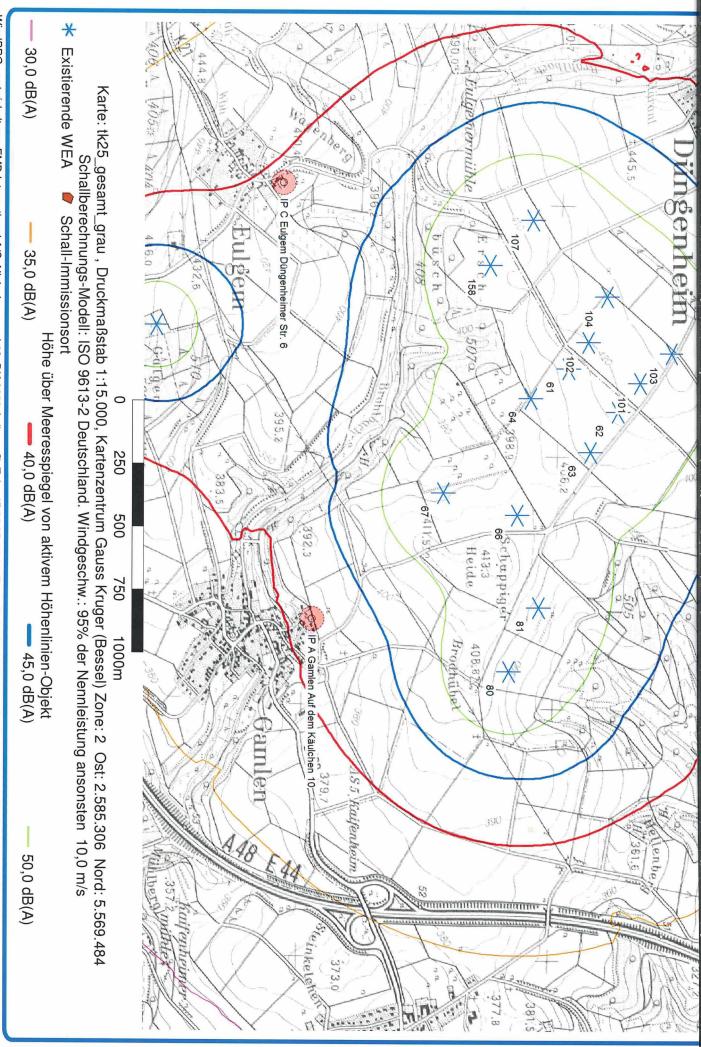
Berechnung der Vorbelastung durch 15 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

26.01.2010 11:59 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:38/2.5.7.84


DECIBEL - Detaillierte Ergebnisse

Berechnung: A1 Vorbelastung Tagbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12) 95% der Nennleistung

				33 % uel IN	minessiui	ıg							
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1.358	50,5	Ja	24,89	102,6	3,01	73,66	2,58	3,52	0,00	0.00	79.75	
	1.619	50,9	Ja	22,49	102,6	3,01	75,18	3,08	3,72	0,00	0,00	81,98	1,13
	1.631	59,9	Ja	26,33	106,1	3,01	75,25	3,10	3,54	0,00	0,00	81,88	
	1.311	60,3	Ja	29,43	106,1	3,01	73,35	2,49	3,22	0,00	0,00	79.06	0.62
		58,1	Ja	25,61	105,4	3,01	75,20	3,08	3,57	0,00	0,00	81,84	0.95
med to the second	1.392	67,7	Ja	28,27	105,4	3,01	73,87	2,65	3,13	0,00	0,00	79,65	0.49
	2.145	49,4	Ja	21,93	105,8	3,01	77,63	4,08	4,01	0,00	0,00	85,71	1.17
	1.976	53,1	Ja	23,17	105,8	3,01	76,91	3,75	3,88	0,00	0,00	84.55	1.09
A CONTRACTOR OF THE PARTY OF TH	1.634	49,8	Ja	22,35	102,6	3,01	75,26	3,10	3,75	0,00	0.00	82.12	1.14
	1.373	51,0	Ja	24,74	102,6	3,01	73,75	2,61	3,52	0.00	0.00	79.89	0.98
	1.696	58,3	Ja	25,74	106,1	3,01	75,59	3,22	3,62	0,00	0.00	82,43	0.94
	1.373	60,9	Ja	28,79	106,1	3,01	73,75	2,61	3,27	0.00	0.00	79.64	0.69
1.008	1.012	66,6	Ja	33,04	105,6	3,01	71,11	1,92	2,52	0.00	0.00	75.55	0.02
758	764	39,0	Ja	33,37	103,5	3,00	68,66	1,45	3,02	0,00	0,00	73.14	0.00
888	892	64,4	Ja	34,61	105,6	3,01	70,01	1,69	2,30	0,00			0,00
	[m] 1.356 1.618 1.629 1.309 1.620 1.390 2.144 1.975 1.632 1.372 1.632 1.372	[m] [m] 1.356 1.358 1.618 1.619 1.629 1.631 1.309 1.311 1.620 1.621 1.390 2.144 2.145 1.975 1.976 1.632 1.634 1.372 1.373 1.693 1.696 1.370 1.373 1.008 1.012 758 764	[m] [m] [m] [m] 1.356 1.358 50,5 1.618 1.619 50,9 1.629 1.631 59,9 1.309 1.311 60,3 1.620 1.621 58,1 1.390 1.392 67,7 2.144 2.145 49,4 1.975 1.976 53,1 1.632 1.634 49,8 1.372 1.373 51,0 1.693 1.696 58,3 1.370 1.373 60,9 1.008 1.012 66,6 758 764 39,0	[m] [m] [m] [m] 1.356	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] 1.356 1.358 50,5 Ja 24,89 1.618 1.619 50,9 Ja 26,33 1.629 1.631 59,9 Ja 26,33 1.309 1.311 60,3 Ja 29,43 1.620 1.621 58,1 Ja 25,61 1.390 1.392 67,7 Ja 28,27 2.144 2.145 49,4 Ja 21,93 1.975 1.976 53,1 Ja 23,17 1.632 1.634 49,8 Ja 22,35 1.372 1.373 51,0 Ja 24,74 1.693 1.696 58,3 Ja 25,74 1.370 1.373 60,9 Ja 28,79 1.008 1.012 66,6 Ja 33,04 758 764 39,0 Ja 33,37	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] 1.356 1.358 50,5 Ja 24,89 102,6 1.618 1.619 50,9 Ja 22,49 102,6 1.629 1.631 59,9 Ja 26,33 106,1 1.309 1.311 60,3 Ja 29,43 106,1 1.390 1.521 58,1 Ja 25,61 105,4 2.144 2.145 49,4 Ja 21,93 105,4 1.975 1.976 53,1 Ja 23,17 105,8 1.632 1.634 49,8 Ja 22,35 102,6 1.372 1.373 51,0 Ja 24,74 102,6 1.370 1.373 60,9 Ja 28,79 106,1 1.008 1.012	[m] [m] [m] [dB(A)] [dB(A)] [dB] 1.356 1.358 50.5 Ja 24,89 102.6 3,01 1.618 1.619 50.9 Ja 22,49 102.6 3,01 1.629 1.631 59.9 Ja 26,33 106,1 3,01 1.309 1.311 60.3 Ja 29,43 106,1 3,01 1.309 1.392 67,7 Ja 28,27 105,4 3,01 1.390 1.392 67,7 Ja 28,27 105,4 3,01 2.144 2.145 49,4 Ja 21,93 105,8 3,01 1.975 1.976 53,1 Ja 23,17 105,8 3,01 1.632 1.634 49,8 Ja 22,35 102,6 3,01 1.372 1.373 51,0 Ja 24,74 102,6 3,01 1.370 1.373 60,9 Ja 28,79 106,1 3,01 1.008 1.012 66,6 Ja 33,04 105,6 3,01 758 764 39,0 Ja 33,37 103,5 3,00	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] Adiv [dB(B)] 1.356 1.358 50,5 Ja 24,89 102,6 3,01 73,66 1.618 1.619 50,9 Ja 22,49 102,6 3,01 75,18 1.629 1.631 59,9 Ja 26,33 106,1 3,01 75,25 1.309 1.311 60,3 Ja 29,43 106,1 3,01 73,35 1.400 1.621 58,1 Ja 25,61 105,4 3,01 75,20 1.390 1.392 67,7 Ja 28,27 105,4 3,01 75,20 1.975 1.976 53,1 Ja 23,17 105,8 3,01 76,91 1.632 1.634 49,8 Ja 23,17 105,8 3,01 75,26 1.372 1.373 51,0 Ja 24,74 102,6 3,01 75,59 1.370 1.373 60,9 Ja 25,74 106,1 3,0	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] Adiv [dB] Atam [dB] 1.356 1.358 50,5 Ja 24,89 102,6 3,01 73,66 2,58 1.618 1.619 50,9 Ja 22,49 102,6 3,01 75,18 3,08 1.309 1.311 60,3 Ja 29,43 106,1 3,01 75,25 3,10 1.390 1.311 60,3 Ja 25,61 105,4 3,01 75,25 3,08 1.390 1.392 67,7 Ja 28,27 105,4 3,01 75,87 2,69 2.144 2.145 49,4 Ja 21,93 105,8 3,01 77,63 4,08 1.975 1.976 53,1 Ja 23,17 105,8 3,01 77,63 4,08 1.975 1.634 49,8 Ja 22,35 102,6 3,01 75,26 3,10 1.632 1.634 49,8 Ja 22,74 100,6 </td <td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] Agg [dB] [</td> <td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB/A] Berechnet [dB/A] LwA,ref [dB/A] Dc [dB] Adiv [dB] Aatm [dB] Abar [dB] [dB]<td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adw [dB] Adm [dB] Agg [dB] Adm [dB] Amisc [dB]</td><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] Adiw [dB] Adam [dB] Agg [dB] Amisc [dB] Amisc [dB] A [dB] 1.356 1.358 50,5 Ja 24,89 102,6 3,01 73,66 2,58 3,52 0,00 0,00 79,75 1.629 1.631 59,9 Ja 22,49 102,6 3,01 75,18 3,08 3,72 0,00 0,00 0,00 81,88 1.309 1.311 60,3 Ja 29,43 106,1 3,01 75,25 3,10 3,54 0,00 0,00 79,06 1.620 1.621 58,1 Ja 25,61 105,4 3,01 75,25 3,13 0,00 0,00 81,88 1.390 1.392 67,7 Ja 28,27 105,4 3,01 75,62 3,03 3,00 0,00 0,00 85,71 1.975 1.976 53,1 Ja 23,17 <t< td=""></t<></td></td>	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] Agg [dB] [Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB/A] Berechnet [dB/A] LwA,ref [dB/A] Dc [dB] Adiv [dB] Aatm [dB] Abar [dB] [dB] <td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adw [dB] Adm [dB] Agg [dB] Adm [dB] Amisc [dB]</td> <td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] Adiw [dB] Adam [dB] Agg [dB] Amisc [dB] Amisc [dB] A [dB] 1.356 1.358 50,5 Ja 24,89 102,6 3,01 73,66 2,58 3,52 0,00 0,00 79,75 1.629 1.631 59,9 Ja 22,49 102,6 3,01 75,18 3,08 3,72 0,00 0,00 0,00 81,88 1.309 1.311 60,3 Ja 29,43 106,1 3,01 75,25 3,10 3,54 0,00 0,00 79,06 1.620 1.621 58,1 Ja 25,61 105,4 3,01 75,25 3,13 0,00 0,00 81,88 1.390 1.392 67,7 Ja 28,27 105,4 3,01 75,62 3,03 3,00 0,00 0,00 85,71 1.975 1.976 53,1 Ja 23,17 <t< td=""></t<></td>	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adw [dB] Adm [dB] Agg [dB] Adm [dB] Amisc [dB]	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] Adiw [dB] Adam [dB] Agg [dB] Amisc [dB] Amisc [dB] A [dB] 1.356 1.358 50,5 Ja 24,89 102,6 3,01 73,66 2,58 3,52 0,00 0,00 79,75 1.629 1.631 59,9 Ja 22,49 102,6 3,01 75,18 3,08 3,72 0,00 0,00 0,00 81,88 1.309 1.311 60,3 Ja 29,43 106,1 3,01 75,25 3,10 3,54 0,00 0,00 79,06 1.620 1.621 58,1 Ja 25,61 105,4 3,01 75,25 3,13 0,00 0,00 81,88 1.390 1.392 67,7 Ja 28,27 105,4 3,01 75,62 3,03 3,00 0,00 0,00 85,71 1.975 1.976 53,1 Ja 23,17 <t< td=""></t<>

Summe 40,74

Beschreibung:
Berechnung der Vorbelastung durch 15
WEA. Alle im

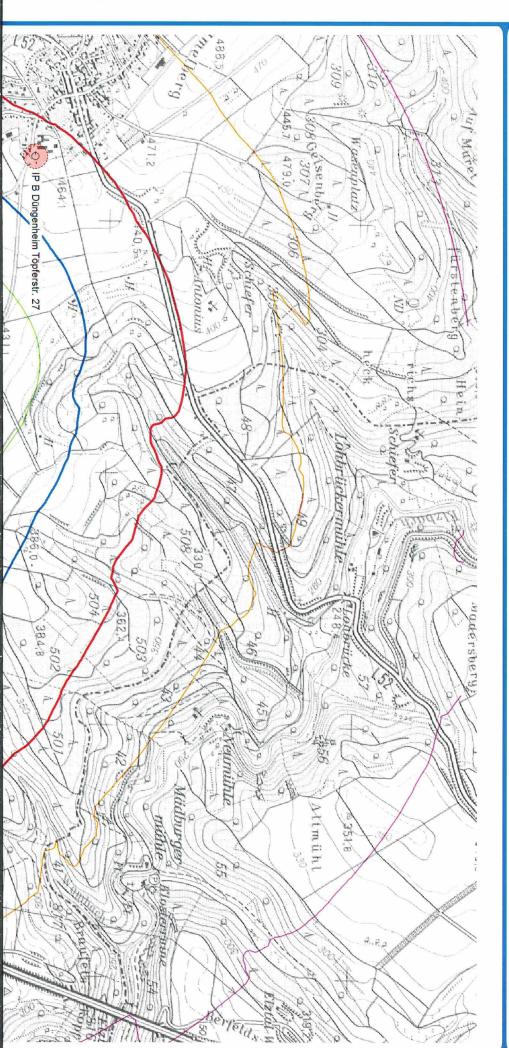
Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer

Wahrscheinlichkeit von 90%.

Ausdruck/Seite 26.01.2010 12:02 / 1

Lizenzierter Anwender:
ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Rehmstraße 98 e


DE-49080 Osnabrück +49 541 6687 259

Berechnet:

26.01.2010 11:38/2.5.7.84

DECIBEL - Karte: tk25_gesamt_grau.bmi

Berechnung: A1 Vorbelastung Tagbetrieb Datei: tk25_gesamt_grau.bmi

Bectroibung:
Berechnung der Zusatzbelastung
durch 3 WEA. Alle im
Vollleistungsbetrieb. Berechnete
Immissionswerte als obere
Vertrauensbereichsgrenze mit einer

Wahrscheinlichkeit von 90%. Betrieb von 06:00 - 22:00 Uhr -Tagbetrieb. Ausdruck/Seite 26.01.2010 11:59 / 1

Lizenzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Rehmstraße 98 e

DE-49080 Osnabrück +49 541 6687 259

Berechnet:

25.01.2010 15:57/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A2 Zusatzbelastung Tagbetrieb

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1:40.000 ☑ Schall-Immissionsort

WEA

	GK (Besse Ost	l) Zone: 2 Nord	z	Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.	Hōhe		Kreis- Que	hallwerte elle Name	Windgeschw.	LwA,ref	
WEA 05 (82	2 585 452	5 569 132	[m]	5 VESTAS V90-2.0MW .	.la	VESTAS	V90-2.0MW ENP	[kW]	[m] 90.0	[m] 105.0	radius [m] 77.0	[m]	ER leistungsoptimiert inkl. Zuschläge (Mode 0)	[m/s] 10,0	[dB(A)]	
WEA 08 (83	2.585.274	5.569.344	391,	VESTAS V90-2.0MW	Ja		V90-2.0MW ENP V90-2.0MW ENP		90,0	105,0	77,0 77,0		ER leistungsoptimiert inkl. Zuschläge (Mode 0) ER leistungsoptimiert inkl. Zuschläge (Mode 0)			

Berechnungsergebnisse

Beurteilungspegel

ľ	Schall-Immissionsort	GK (Besse	I) Zone: 2			Anforder	rungen	Beurteilungspegel	Anforde	rungen er	füllt?
ı	Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
ı	0000 CD 100000 CD CD 100000 CD			[m]	[m]	[dB(A)]	[m]	[dB(A)]			
ı	IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10) 2.585.658	5.568.033	369,0	5,0	40,4	300	33,0	Ja	Ja	Ja
ı	IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) 2.583.742	5.569.697	460,0	5,0	45,4	300	31,3	Ja	Ja	Ja
ı	IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12	2.583.925	5.567.884	412,4	5,0	45,4	300	27,3	Ja	Ja	Ja

Abstände (m)

	WEA		
Schall-Immissionsort	WEA 08 (83)	WEA 09 (84)	WEA 05 (82)
IP A Gamlen Auf dem Käulchen 10	1366	1916	1118
IP B Düngenheim Töpferstr. 27	1572	1431	1801
IP C Eulgem Düngenheimer Str. 6	1988	2350	1972

Berechnung der Zusatzbelastung durch 3 WEA. Alle im Vollleistungsbetrieb. Berechnete

Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 06:00 - 22:00 Uhr -Tagbetrieb.

26.01.2010 12:00 / 1

+49 541 6687 259

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Rehmstraße 98 e DE-49080 Osnabrück

25.01.2010 15:57/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A2 Zusatzbelastung Tagbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10) WEA 95% der Nennleistung

١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]			[dB(A)]									
ı	WEA 05 (82)	1.118	1.124	34,9	Ja								0.00			
ı	WEA 08 (83)	1.366	1.372	36,4	Ja	27,98	105,6	3,01	73,74	2,61	3,89	0,00	0,00	80,24	0.39	
ı	WEA 09 (84)	1.916	1.918	30.8	Nein	22.66	105.6	3.01	76.66	3 64	4.80	0.00	0.00	85 10	0.85	

Summe 32.98

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11)

WEA					95% der Ne	ennieistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]								[dB]
WEA 05 (82)	1.801	1.801	55,1	Ja	24,55	105,6	3,01	76,11	3,42	3,75	0,00	0,00	83,28	0,78
WEA 08 (83)	1.572	1.572	52,9	Ja	26,45	105,6	3,01	74,93	2,99	3,64	0,00	0,00	81.56	0.60
WEA 09 (84)	1.431	1.431	57,7	Ja	27,90							0,00		

Summe 31,28

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12)

П						33 /8 UCI 146	e i i i i i i i i i i i i i i i i i i i	ıy								
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]							[dB]	[dB]	
	WEA 05 (82)	1.972	1.973	59,6	Ja	23,31	105,6	3,01	76,90	3,75	3,76	0,00	0,00	84,42	0,88	
l	WEA 08 (83)	1.988	1.989	60,6	Ja	23,21	105,6	3,01	76,97	3,78	3,76	0,00	0,00	84,51	0.89	
	WEA 09 (84)	2.350	2.351	45,1	Ja	20,51	105,6	3,01	78,42	4,47	4,14	0.00	0.00	87.03	1.06	

Summe 27.29

Berechnung der Zusatzbelastung durch 3 WEA. Alle im Beschreibung:

Vollleistungsbetrieb. Berechnete mmissionswerte als obere

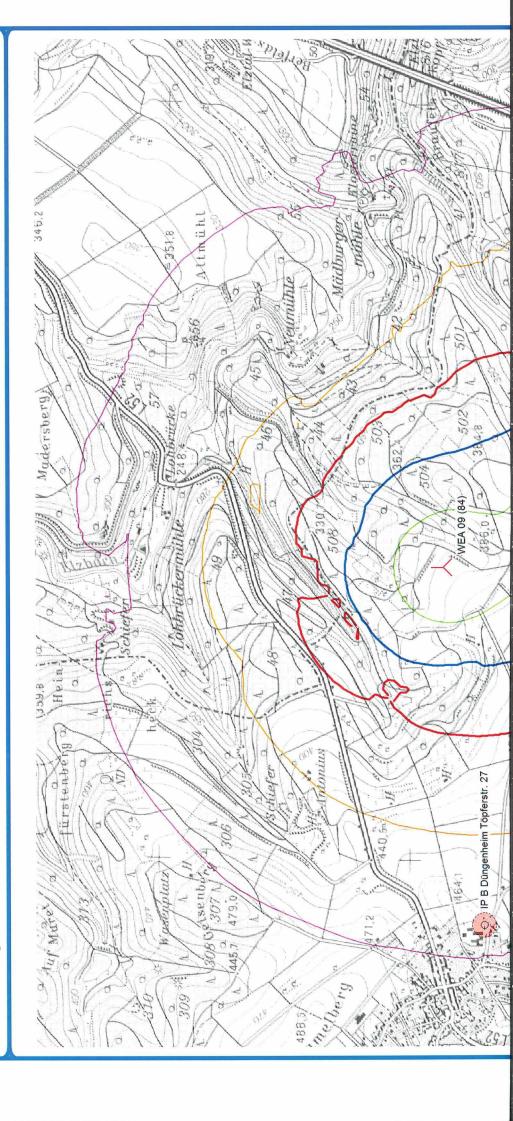
Betrieb von 06:00 - 22:00 Uhr - Tagbetrieb. Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

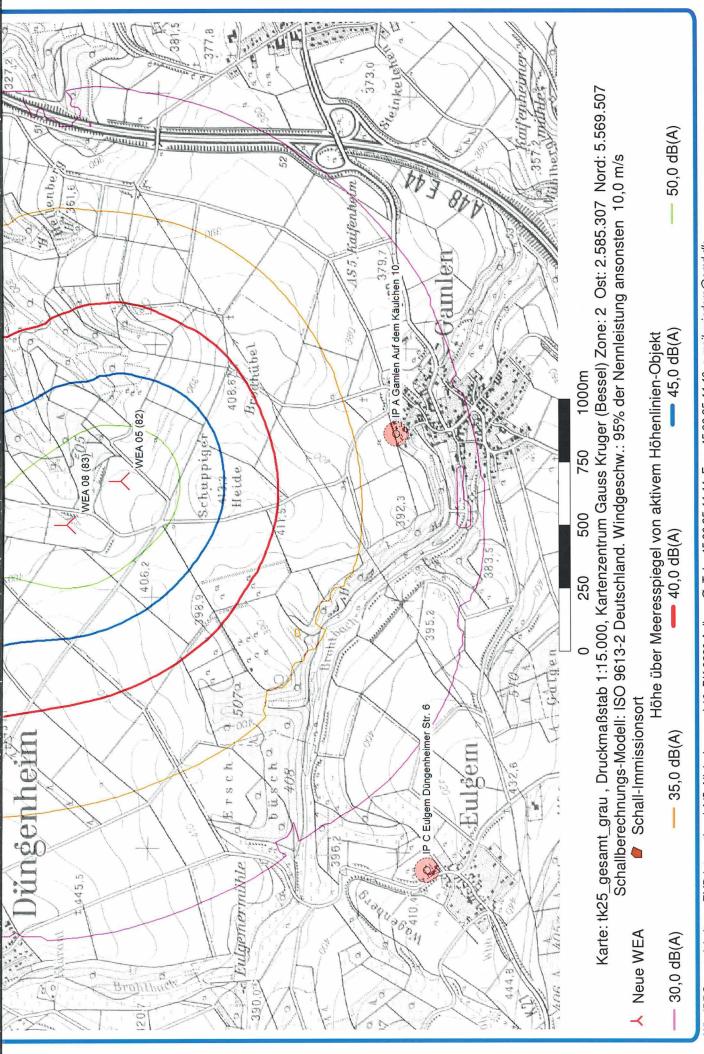
25.01.2010 16:14 / 1

Lizenzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Rehmstraße 98 e


DE-49080 Osnabrück +49 541 6687 259


Berechnet:

25.01.2010 15:57/2.5.7.84

DECIBEL - Karte: tk25_gesamt_grau.bmi

Datei: tk25_gesamt_grau.bmi Berechnung: A2 Zusatzbelastung Tagbetrieb

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Berechnung der Gesamtbelastung durch 18 WEA.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 06:00 - 22:00 Tagbetrieb.

Ausdruck/Sc 26.01.2010 12:00 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

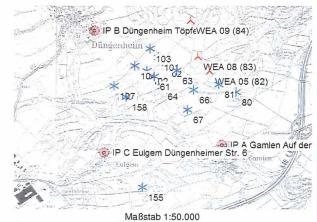
Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:40/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A3 Gesamtbelastung Tagbetrieb

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

* Existierende WEA Schall-Immissionsort

WEA

l l	GK (Besse	l) Zone: 2			WEA-T	ур							Schall	werte			
i	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	Kreis-	Kreis-	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
ı											radius	radius			-		töne
			[m]					[kW]	[m]	[m]	[m]	[m]			[m/s]	[dB(A)]	
				3 ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44,0	65,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44,0	65,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
				GE Wind Energy GE 1		GE Wind Energy		1.500	77,0	85,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
				GE Wind Energy GE 1		GE Wind Energy		1.500	77,0	85,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
				NORDEX N90 ENP 23.		NORDEX	N90 ENP	2.300	90.0	80,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	105,4	0 dB
				NORDEX N90 ENP 23.		NORDEX	N90 ENP	2.300	90,0	100,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	105,4	0 dB
				ENERCON E-82 ENP		ENERCON	E-82 ENP	2.000	82.0	84.5			USER	leistungsoptimiert inkl. Zuschläge	(95%)	105,8	0 dB
				B ENERCON E-82 ENP		ENERCON	E-82 ENP	2.000	82.0	84.5			USER	leistungsoptimiert inkl. Zuschläge	(95%)	105,8	0 dB
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44.0	65,0			USER	leistungsoptimiert inkl. Zuschläge	10.0	102,6	0 dB
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44.0	65.0			USER	leistungsoptimiert inkl. Zuschläge	10.0	102,6	0 dB
				GE Wind Energy GE 1		GE Wind Energy	GE 1.5sl ENP	1.500	77,0	85,0			USER	leistungsoptimiert inkl. Zuschläge	10.0	106,1	0 dB
				7 GE Wind Energy GE 1		GE Wind Energy		1.500	77,0	85,0			USER	leistungsoptimiert inkl. Zuschläge	10.0	106,1	0 dB
				7 VESTAS V90-2.0MW		VESTAS		2.000	90,0	95,0			USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10.0	105,6	0 dB
				ENERCON E-53 ENP		ENERCON	E-53 ENP	800	53,0	73,3			USER	leistungsoptimiert inkl. Zuschläge	(95%)	103.5	0 dB
				S VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP	2.000	90,0	95,0			USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10,0	105,6	0 dB
				VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP	2.000	90,0	105,0	77,0	45,0	USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10,0	105,6	0 dB
				3 VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP		90,0	105,0	77,0	45.0	USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10,0	105,6	0 dB
WEA 09 (84)	2.585.161	5.569.883	370,	VESTAS V90-2.0MW	. Ja	VESTAS	V90-2.0MW ENP	2.000	90,0	105,0	77.0	45.0	USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10,0	105.6	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort		GK (Besse	l) Zone: 2			Anforder	rungen	Beurteilungspegel	Anforder	rungen er	füllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
				[m]	[m]	[dB(A)]	[m]	[dB(A)]			
	Schall-Immissionsort: 40 dB Abst.: 300 m (10)					40,4	300	42,1	Nein	Ja	Nein
	Schall-Immissionsort: 45 dB Abst.: 300 m (11)					45,4	300	42,3	Ja	Ja	Ja
IP C Eulgem Düngenheimer Str. 6	Schall-Immissionsort: 45 dB Abst.: 300 m (12)	2.583.925	5.567.884	412,4	5,0	45,4	300	40,9	Ja	Ja	Ja

Abstände (m)

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
61	1428	1116	1356
62	1473	1162	1618
63	1295	1354	1629
64	1240	1301	1309
66	920	1712	1620
67	726	1814	1390
80	814	2283	2144
81	907	2002	1975
101	1611	1022	1632
102	1559	984	1372
103	1784	866	1693
104	1742	796	1370
107	1817	871	1008

Projekt: Ga3_2010.01_Schall_Schatten

Becrechrubung:
Berechnung der Gesamtbelastung
durch 18 WEA.
Berechnete Immissionswerte als obere
Vertrauensbereichsgrenze mit einer
Wahrscheinlichkeit von 90%.
Betrieb von 06:00 - 22:00 Tagbetrieb.

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:40/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A3 Gesamtbelastung Tagbetrieb

Fortsetzung von	der vorigen Seite
-----------------	-------------------

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
155	1325	2428	758
158	1578	1098	888
WEA 05 (82)	1118	1801	1972
WEA 08 (83)	1366	1572	1988
WEA 09 (84)	1916	1431	2350

Berechnung der Gesamtbelastung durch 18 WEA.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 06:00 - 22:00 Tagbetrieb. 26.01.2010 12:00 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

Berechnet: 26.01.2010 11:40/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Tagbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

 $\label{eq:Berechneter} Berechneter\,L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet \\ (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)$

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc: Cmet: Dämpfung aufgrund verschiedener anderer Effekte Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10) WEA 95% der Nennleistung

WEA						95% der Ne	ennieistur	ng							
Nr.		Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	61	1.428	1.432	27,1	Nein	22,95	102,6	3,01	74,12	2,72	4,80	0,00	0,00	81,64	
	62	1.473	1.477	25,5	Nein	22,56	102,6	3,01	74,39	2,81	4,80	0,00	0,00	82,00	1,05
	63	1.295	1.301	32,7	Ja	28,80	106,1	3,01	73,29	2,47	3,94	0,00	0,00	79,69	0,61
	64	1.240	1.245	35,5	Ja	29,47	106,1	3,01	72,91	2,37	3,82	0,00	0,00	79,09	0,55
	66	920	927	29,8	Ja	32,47	105,4	3,01	70,34	1,76	3,69	0,00	0,00	75,78	0,15
	67	726	737	40,8	Ja	35,78	105,4	3,00	68,35	1,40	2,87	0,00	0,00	72,62	0,00
	80	814	821	33,5	Ja	34,58	105,8	3,00	69,29	1,56	3,38	0,00	0,00	74,23	0,00
	81	907	913	29,6		33,15	105,8	3,01	70,21	1,74	3,68	0,00	0,00	75,63	0,03
	101	1.611	1.615	26,8	Nein	21,45	102,6	3,01	75,16	3,07	4,80	0,00	0,00	83,03	1,13
	102	1.559	1.563	29,8	Nein	21,86	102,6	3,01	74,88	2,97	4,80	0,00	0,00	82,65	1,10
	103	1.784	1.790	36,9	Nein	23,86	106,1	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,99
	104	1.742	1.747	40,0	Nein	24,18	106,1	3,01	75,85	3,32	4,80	0,00	0,00	83,97	0,97
	107	1.817	1.822	46,5	Ja	24,12	105,6	3,01	76,21	3,46	3,92	0,00	0,00	83,59	0,90
	155	1.325	1.332	55,0	Ja	26,29	103,5	3,01	73,49	2,53	3,38	0,00	0,00	79,40	0,82
ENTERN W. NO.	158	1.578	1.584	46,2	Ja	26,08	105,6	3,01	74,99	3,01	3,80	0,00	0,00	81,80	0,73
WEA 05		1.118	1.124	34,9	Ja	30,69	105,6	3,01	72,02	2,14	3,73	0,00	0,00	77,88	0,03
WEA 08		1.366	1.372	36,4	Ja	27,98	105,6	3,01	73,74	2,61	3,89	0,00	0,00	80,24	0,39
WEA 09	(84)	1.916	1.918	30,8	Nein	22,66	105,6	3,01	76,66	3,64	4,80	0.00	0.00	85,10	0.85

Summe 42,14

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) WEA 95% der Nennleistung

ı						33 /6 UEI 146	illieistui	ıy								
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	61	1.116	1.116	36,5	Ja	27,12	102,6	3,01	71,95	2,12	3,67	0,00	0,00	77,74		
ı	62	1.162	1.163	38,4	Ja	26,63	102,6	3,01	72,31	2,21	3,66	0,00	0,00	78,18	0,80	
ı	63	1.354	1.354	47,9	Ja	28,65	106,1	3,01	73,63	2,57	3,58	0,00	0,00	79,79	0,67	
ı	64	1.301	1.301	46,7	Ja	29,17	106,1	3,01	73,28	2,47	3,56	0,00	0,00	79,32	0,62	
ı	66	2001.00	1.713	50,1	Ja	24,68	105,4	3,01	75,67	3,25	3,80	0,00	0,00	82,72	1,01	
	67	(5) 5(-0.5)	1.815	61,1	Ja	24,30	105,4	3,01	76,18	3,45	3,64	0,00	0,00	83,27	0,84	
I	80		2.284	51,9	Ja	21,06	105,8	3,01	78,17	4,34	4,02	0,00	0,00	86,53	1,22	
i	81	2.002		50,2	Ja	22,93	105,8	3,01	77,03	3,80	3,94	0,00	0,00	84,78	1,11	
	101	1.022	1.023	38,4	Ja	28,34	102,6	3,01	71,20	1,94	3,50	0,00	0,00	76,64	0,63	
	102		984	37,8	Ja	28,83	102,6	3,01	70,86	1,87	3,47	0,00	0,00	76,20	0,58	
	103		868	47,6	Ja		106,1	3,01	69,77	1,65	2,90	0,00	0,00	74,31	0,00	
	104		797	46,1	Ja	,	106,1	3,00	69,03	1,51	2,79	0,00	0,00	73,33	0,00	
	107		872	47,3	Ja	34,23	105,6	3,00	69,81	1,66	2,92	0,00	0,00	74,38	0,00	
	155	No. of the Control of	2.429	69,8	Ja	18,02	103,5	3,01	78,71	4,61	3,82	0,00	0,00	87,14	1,36	
	158	1.098	1.099	50,7	Ja	31,32	105,6	3,01	71,82	2,09	3,21	0,00	0,00	77,11	0,18	
	The second secon		COMPANY CONTRACTOR													

Berechnung der Gesamtbelastung durch 18 WEA.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 06:00 - 22:00 Tagbetrieb. 26.01.2010 12:00 / 2

onzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

Berechnet:

26.01.2010 11:40/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Tagbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

ı	Fortsetzung	von der vo	origen Seite												
١	WEA					95% der Ne	ennleistur	ng							
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ľ		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Ì	WEA 05 (82)	1.801	1.801	54,9	Ja	24,54	105,6	3,01	76,11	3,42	3.75	0.00	0.00	83.29	0.78
l	WEA 08 (83)	1.572	1.572	52,7	Ja	26,44	105,6	3,01	74,93	2,99	3,65	0,00	0.00	81.57	0.60
l	WEA 09 (84)	1.431	1.431	57,8	Ja	27,90	105,6	3,01	74,11	2,72	3,41	0,00	0,00	80,24	0,46
ı	l														

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12) WEA 95% der Nennleistung

					00 /0 001 110	Jiiii Ciotai	.9							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
6	1.356	1.358	50,6	Ja	24,89	102,6	3,01	73,66	2,58	3,52	0,00	0,00	79,75	0,97
6	1.618	1.619	51,0	Ja	22,50	102,6	3,01	75,18	3,08	3,72	0,00	0,00	81,98	1,13
6	1.629	1.631	60,1	Ja	26,33	106,1	3,01	75,25	3,10	3,53	0,00	0,00	81,88	0,90
6-	1.309	1.311	60,4	Ja	29,43	106,1	3,01	73,35	2,49	3,21	0,00	0,00	79,05	0,62
6	1.620	1.621	58,2	Ja	25,62	105,4	3,01	75,20	3,08	3,57	0,00	0,00	81,84	0,95
6	1.390	1.392	67,7	Ja	28,27	105,4	3,01	73,87	2,65	3,13	0,00	0,00	79,65	0,49
8			49,7	Ja	21,94	105,8	3,01	77,63	4,08	4,01	0,00	0,00	85,71	1,17
8	1.975	1.976	53,5	Ja	23,18	105,8	3,01	76,91	3,75	3,87	0,00	0,00	84,54	1,09
10	1.632	1.634	50,1	Ja	22,35	102,6	3,01	75,26	3,10	3,75	0,00	0,00	82,11	1,14
10:	1.372	1.373	51,3	Ja	24,75	102,6	3,01	73,75	2,61	3,51	0,00	0,00	79,88	0,98
10	1.693	1.696	58,6	Ja	25,75	106,1	3,01	75,59	3,22	3,61	0,00	0,00	82,42	0,94
104	1.370	1.373	61,1	Ja	28,79	106,1	3,01	73,75	2,61	3,27	0,00	0,00	79,63	0,69
10	1.008	1.012	66,7	Ja	33,04	105,6	3,01	71,11	1,92	2,52	0,00	0,00	75,55	0,02
15	758	764	39,0	Ja	33,36	103,5	3,00	68,66	1,45	3,03	0,00	0,00	73,14	0,00
158		892	64,6	Ja	34,62	105,6	3,01	70,00	1,69	2,29	0,00	0,00	73,99	0,00
WEA 05 (82		1.973	59,4	Ja	23,30	105,6	3,01	76,90	3,75	3,77	0,00	0,00	84,42	0,88
WEA 08 (83		1.989	60,6	Ja	23,21	105,6	3,01	76,97	3,78	3,76	0,00	0,00	84,51	0,89
WEA 09 (84	2.350	2.351	45,4	Ja	20,52	105,6	3,01	78,42	4,47	4,14	0,00	0,00	87,03	1,06

Summe 40,94

Summe

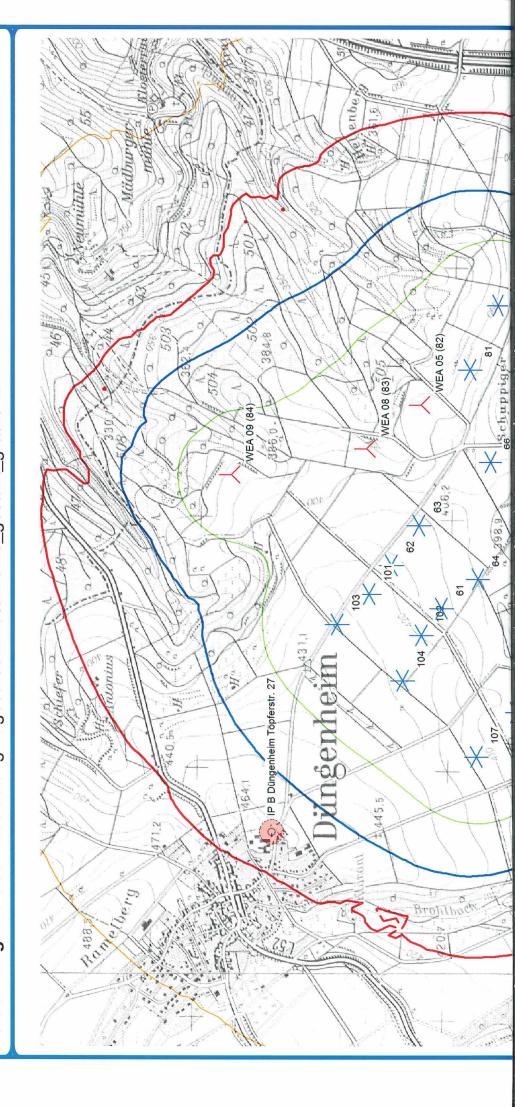
42,32

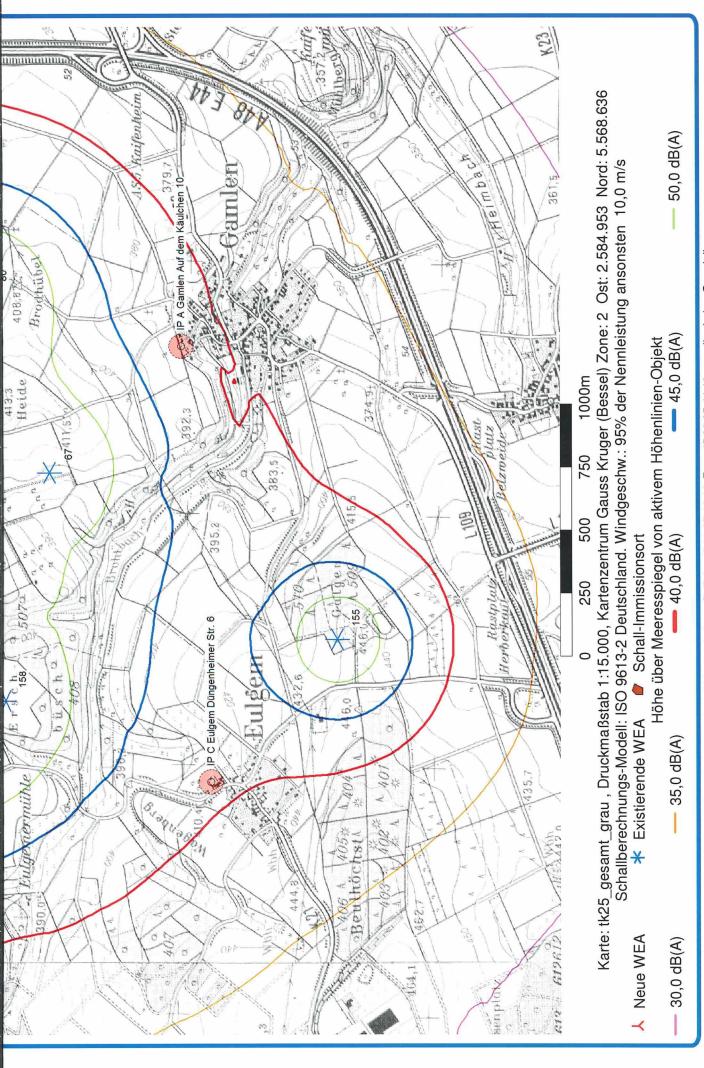
Berechnung der Gesamtbelastung durch 18 Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer WEA. Ga3_2010.01_Schall_Schatten

Betrieb von 06:00 - 22:00 Tagbetrieb. Wahrscheinlichkeit von 90%.

26.01.2010 12:04 / 1

-izenzierter Anwender:


ENP Erneuerbare Energien Projektentwicklungsgesell. mb Rehmstraße 98 e


DE-49080 Osnabrück

Berechnet: 26.01.2010 11:40/2.5.7.84

DECIBEL - Karte: tk25_gesamt_grau.bmi

Berechnung: A3 Gesamtbelastung Tagbetrieb Datei: tk25_gesamt_grau.bmi

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Berechnung der Vorbelastung durch 13 WEA. 2 WEA haben keine Nachtbetriebserlaubnis und werden nicht berechnet.

Alle im Vollleistungsbetrieb

Alle im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Ausdruck/Seite 26.01.2010 12:00 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Rehmstraße 98 e

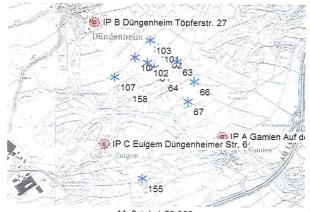
DE-49080 Osnabrück +49 541 6687 259

Berechnet: 26.01.2010 11:42/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A4 Vorbelastung Nachtbetrieb

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

* Existierende WEA

Maßstab 1:50.000

■ Schall-Immissionsort

WEA

	GK (Bessel	,			WEA-T						Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
			[m]							1.72					tõne
61	0 504 641	E ECO 000	[m]	FNEDOCN E 1010	V-2			[kW]	[m]	[m]			[m/s]	[dB(A)]	
				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44,0	65,0		leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44,0	65,0	USER	leistungsoptimiert inkl. Zuschläge	10.0	102.6	0 dB
				GE Wind Energy G		GE Wind Energy		1.500	77,0	85,0	USER	leistungsoptimiert inkl. Zuschläge	10.0	106,1	0 dB
				GE Wind Energy G		GE Wind Energy	GE 1.5sl ENP	1.500	77,0	85,0	USER	leistungsoptimiert inkl. Zuschläge	10,0	106.1	0 dB
				NORDEX N90 ENP		NORDEX	N90 ENP	2.300	90.0	80.0	USER	leistungsoptimiert inkl. Zuschläge	10.0	105,4	0 dB
				NORDEX N90 ENP		NORDEX	N90 ENP	2.300	90,0	100.0		leistungsoptimiert inkl. Zuschläge	10.0	105.4	0 dB
				ENERCON E-40/6		ENERCON	E-40/6.44 ENP	600	44.0	65.0		leistungsoptimiert inkl. Zuschläge	10.0	102,6	0 dB
102	2.584.534	5.569.113	420,0	ENERCON E-40/6	Ja	ENERCON	E-40/6.44 ENP	600	44.0	65.0		leistungsoptimiert inkl. Zuschläge	10.0	102,6	0 dB
103	2.584.572	5.569.449	426,3	GE Wind Energy G	Ja	GE Wind Energy	GE 1.5sl ENP	1.500	77.0	85.0		leistungsoptimiert inkl. Zuschläge	10.0	106,1	0 dB
104	2.584.352	5.569.186	423.7	GE Wind Energy G	Ja	GE Wind Energy		1.500	77.0	85.0		leistungsoptimiert inkl. Zuschläge	10.0	106,1	0 dB
				VESTAS V90-2.0M		VESTAS			90.0	95.0		leistungsoptimiert inkl. Zuschläge (Mode 0)			
				ENERCON E-53 E		ENERCON	E-53 ENP	800	53.0				10,0	105,6	0 dB
				VESTAS V90-2.0M						73,3		leistungsoptimiert inkl. Zuschläge	(95%)	103,5	0 dB
130	2.004.200	3.300.710	400,0	VESTAS V90-2.0M	Ja	VESTAS	V90-2.0MW ENP	2.000	90,0	95,0	USER	leistungsoptimiert inkl. Zuschläge (Mode 0)	10,0	105,6	0 dB

Berechnungsergebnisse

Beurteilungspegel

п												
	Schall-Immissionsort		GK (Bessel	I) Zone: 2			Anforder	rungen	Beurteilungspegel	Anforde	rungen er	füllt?
ı	Nr. Name		Ost	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
ľ		Control de Control Con			[m]	[m]	[dB(A)]	[m]	[dB(A)]			
ı	IP A Gamlen Auf dem Käulchen 10 Schall-Imn	nissionsort: 40 dB Abst.: 300 m (10)	2.585.658	5.568.033	369,0	5,0	40,4	300	39,8	Ja	Ja	Ja
ľ	IP B Düngenheim Töpferstr. 27 Schall-Imn	nissionsort: 45 dB Abst.: 300 m (11)	2.583.742	5.569.697	460,0	5,0	45,4	300	41,9	Ja	Ja	Ja
ı	IP C Eulgem Düngenheimer Str. 6 Schall-Imn	nissionsort: 45 dB Abst.: 300 m (12)	2.583.925	5.567.884	412,4	5.0	45.4	300	40.6	Ja	.la	.la

Abstände (m)

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
61	1428	1116	1356
62	1473	1162	1618
63	1295	1354	1629
64	1240	1301	1309
66	920	1712	1620
67	726	1814	1390
101	1611	1022	1632
102	1559	984	1372
103	1784	866	1693
104	1742	796	1370
107	1817	871	1008
155	1325	2428	758
158	1578	1098	888

Berechnung der Vorbelastung durch 13 WEA. 2 WEA haben keine

Nachtbetriebserlaubnis und werden nicht berechnet.

Alle im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

26.01.2010 12:01 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:42/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A4 Vorbelastung Nachtbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung

Abar: Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10)

WEA 95% GET Nennieistung														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.428	1.432	27,3	Nein	22,95	102,6	3,01	74,12	2,72	4,80	0,00	0,00	81,64	1,02
62	1.473	1.477	25,7	Nein	22,56	102,6	3,01	74,39	2,81	4,80	0,00	0,00	82,00	1.05
63		1.301	32,8	Ja	28,81	106,1	3,01	73,29	2,47	3,93	0,00	0,00	79,69	0,61
64	1000000	1.245	35,6	Ja	29,48	106,1	3,01	72,90	2,37	3,81	0,00	0,00	79,08	0,55
66		926	29,9	Ja	32,48	105,4	3,01	70,34	1,76	3,68	0,00	0,00	75,78	0,15
67	10.000	737	40,8	Ja	35,78	105,4	3,00	68,35	1,40	2,87	0,00	0,00	72,62	0,00
101	1.611	1.615	26,9	Nein	21,45	102,6	3,01	75,16	3,07	4,80	0,00	0,00	83,03	1,13
102	2.00	1.563	29,9	Nein	21,86	102,6	3,01	74,88	2,97	4,80	0,00	0,00	82,65	1,10
103		1.790	37,1	Nein	23,86	106,1	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,99
104		1.747	40,2	Nein	24,18	106,1	3,01	75,85	3,32	4,80	0,00	0,00	83,97	0,97
107		1.822	46,7	Ja	24,12	105,6	3,01	76,21	3,46	3,92	0,00	0,00	83,59	0,90
155		1.332	55,2	Ja	26,30	103,5	3,01	73,49	2,53	3,37	0,00	0,00	79,39	0,82
158	1.578	1.583	46,2	Ja	26,08	105,6	3,01	74,99	3,01	3,80	0,00	0,00	81,80	0,73

Summe 39.76

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.116	1.116	36,5	Ja	27,12			71.95	2,12	3,67	0.00	0,00	77.74	0.75
62	1.162	1.163	38,4	Ja	26,63	102.6		72.31	2,21	3.66		0.00	78.18	0.80
63	1.354	1.354	47,8	Ja	28,65	106,1	3.01	73.63	Committee Commit	3.58	0.00		79.79	0.67
64	1.301	1.301	46,6	Ja	29,17	106.1	3.01	73.28	2.47	3.57	0.00		79.32	0.62
66	1.712	1.713	50,0	Ja	24,68	105,4	3,01	75,67	3,25	3.80	0.00		82.73	1.01
67	1.814	1.815	61,0	Ja	24,30	105,4	3,01	76,18	3.45	3.65	0.00	0.00	83,27	0.84
101	1.022	1.023	38,3	Ja	28,33	102,6	3,01	71,20	1,94	3,50	0.00		76.64	0.63
102	984	984	37,7	Ja	28,82	102.6	3.01	70.86	1.87	3.47	0.00	0.00	76.21	0.58
103	866	867	47,5	Ja	34,79	106,1	3,01	69,77	1,65	2,90	0.00	0.00	74.31	0.00
104	796	797	46,1	Ja	35,77	106,1	3,00	69,03	1,51	2,79	0.00	0.00	73,33	0.00
107	871	872	47,2	Ja	34,22	105,6	3,00	69,81	1,66	2,92	0,00	0,00	74,38	0.00
155	2.428	2.429	70,0	Ja	18,02	103,5	3,01	78,71	4,61	3,81	0.00	0.00	87,14	1.36
158	1.098	1.099	50,5	Ja	31,31	105,6	3,01	71,82	2,09	3,21	0,00	0,00	77,11	0,18

Summe 41,87

Ga3_2010.01_Schall_Schatten

Beschreibung:

Berechnung der Vorbelastung durch 13 WEA. 2 WEA haben keine Nachtbetriebserlaubnis und werden

nicht berechnet.

Alle im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Ausdruck/Seite 26.01.2010 12:01 / 2

Lizenzierter Anwender:
ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück

+49 541 6687 259

Berechnet:

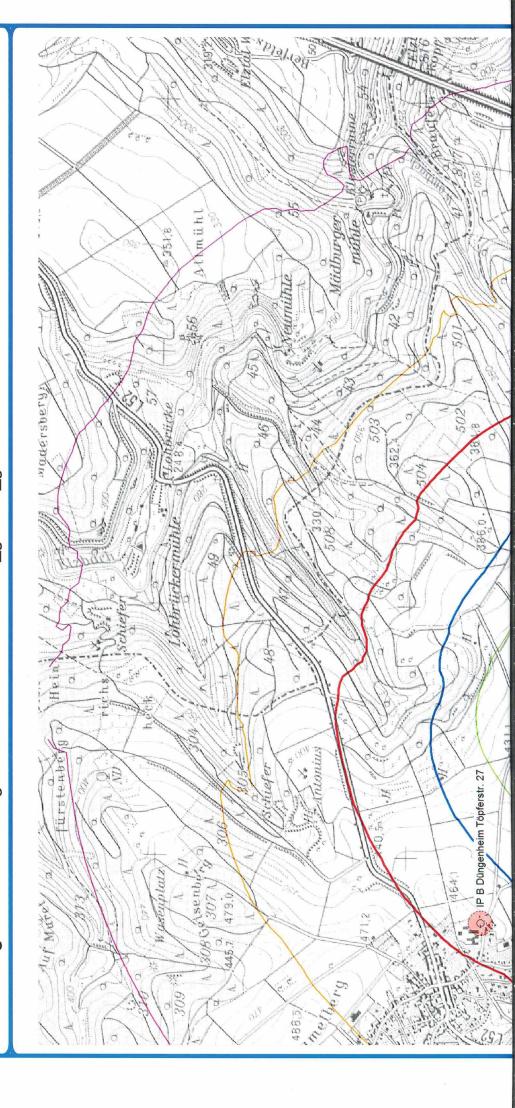
26.01.2010 11:42/2.5.7.84

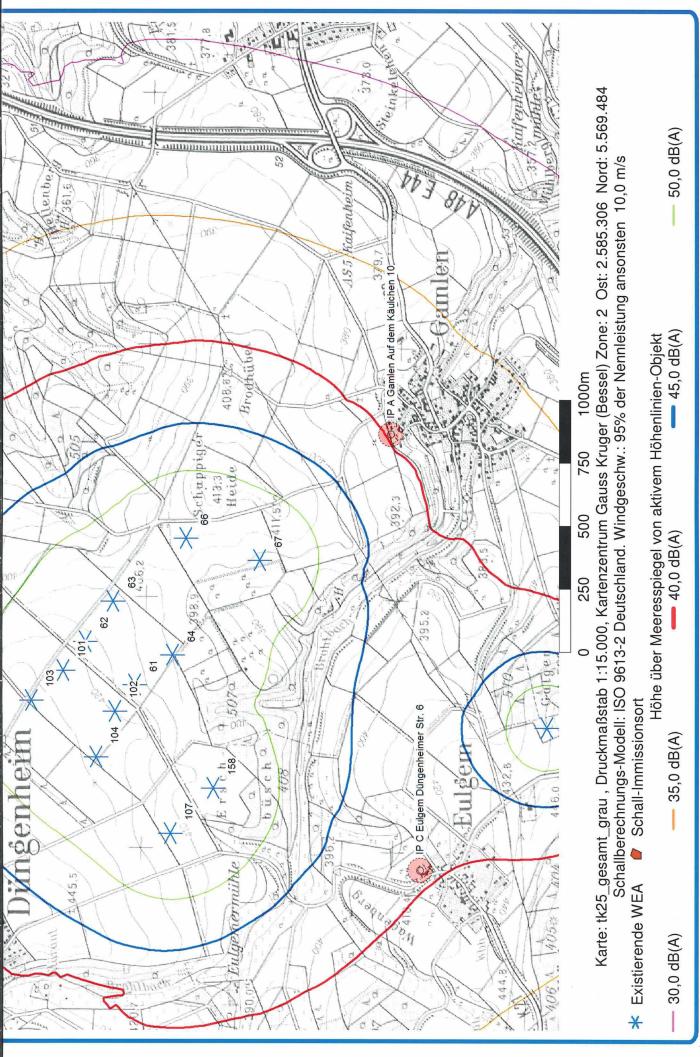
DECIBEL - Detaillierte Ergebnisse

Berechnung: A4 Vorbelastung Nachtbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12) 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichthan	Rerechnet	LwA.ref	Dc	Adiv	Aatm	Agr	Abor	Amisc	۸	Cmat
1	[m]			Cicinbai						-			A	Cmet
		[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.356	1.358	50,5	Ja	24,89	102,6	3,01	73,66	2,58	3,52	0,00	0,00	79,75	0.97
62	1.618	1.619	50,9	Ja	22,49	102,6	3,01	75,18	3,08	3,72	0,00	0,00	81,98	1,13
63	1.629	1.631	59,9	Ja	26,33	106,1	3,01	75,25	3,10	3,54	0,00	0,00	81,88	0.90
64	1.309	1.311	60,3	Ja	29,43	106,1	3,01	73,35	2,49	3,22	0,00	0,00	79,06	0,62
66	1.620	1.621	58,1	Ja	25,61	105,4	3,01	75,20	3.08	3.57	0.00	0.00	81,84	0.95
67	1.390	1.392	67,7	Ja	28,27	105,4	3,01	73,87	2,65	3,13	0,00	0,00	79.65	0.49
101	1.632	1.634	49,8	Ja	22,35	102,6	3,01	75,26	3,10	3,75	0,00	0,00	82,12	1,14
102	1.372	1.373	51,0	Ja	24,74	102,6	3,01	73,75	2,61	3,52	0.00	0,00	79.89	0,98
103	1.693	1.696	58,3	Ja	25,74	106,1	3,01	75,59	3,22	3,62	0,00	0.00	82,43	0.94
104	1.370	1.373	60,9	Ja	28,79	106,1	3,01	73,75	2,61	3,27	0,00	0,00	79,64	0.69
107	1.008	1.012	66,6	Ja	33,04	105,6	3,01	71,11	1,92	2,52	0,00	0.00	75.55	0.02
155	758	764	39,0	Ja	33,37	103,5	3,00	68,66			0000		73.14	0.00
158	888	892	64,4	Ja	34,61	105,6	3,01	70,01		2,30	0,00		74,00	0,00


Summe 40,61


Berechnet: 26.01.2010 11:42/2.5.7.84 DE-49080 Osnabrück 26.01.2010 12:09 / 1 +49 541 6687 259 Rehmstraße 98 e Lizenzierter Anwender: Nachtbetriebserlaubnis und werden nicht Alle im Vollleistungsbetrieb. Berechnete Berechnung der Vorbelastung durch 13 Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Immissionswerte als obere WEA. 2 WEA haben keine berechnet. Beschreibung: Ga3 2010.01 Schall Schatten

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

DECIBEL - Karte: tk25_gesamt_grau.bmi

Berechnung: A4 Vorbelastung Nachtbetrieb Datei: tk25_gesamt_grau.bmi

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Berechnung der Zusatzbelastung durch

3 WEA. 1 WEA im

Vollleistungsbetrieb; 2 WEA schalloptimiert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 22:00 - 06:00 - Nachtbetrieb. 25.01.2010 16:33 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

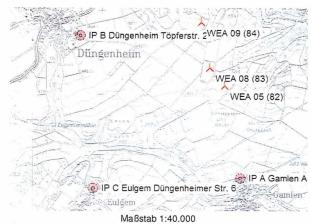
Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

25.01.2010 15:36/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A5 Zusatzbelastung Nachtbetrieb

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Schall-Immissionsort

WEA

	GK (Bessel) Ost	Zone: 2 Nord	z	Beschreibung	WEA-1 Aktuell	Гур I Hersteller	Тур	Leistung	Rotord.			Kreis- Quel	allwerte ile Name	Windgeschw.	LwA.ref	Einzel-
			[m]					ſkW1	[m]	[m]	radius [m]	radius [m]		[m/s]	[dB(A)]	tōne
				VESTAS V90-2.0MW .			V90-2.0MW ENP		90,0	105,0	77,0		R schallreduziert inkl. Zuschläge (Mode 2)	10,0		0 dB
				VESTAS V90-2.0MW			V90-2.0MW ENP		90,0	105,0	77,0		R schallreduziert inkl. Zuschläge (Mode 2)	10,0	102,3	0 dB
WEA 09 (84)	2.585.161	5.569.883	370,1	VESTAS V90-2.0MW .	Ja	VESTAS	V90-2.0MW ENP	2.000	90.0	105.0	77,0	45.0 USE	R leistungsoptimiert inkl. Zuschläge (Mode 0)	10.0	105,6	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort		GK (Besse	I) Zone: 2			Anforder	ungen	Beurteilungspegel	Anforde	rungen er	füllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
				[m]	[m]	[dB(A)]	[m]	[dB(A)]			
	Schall-Immissionsort: 40 dB Abst.: 300 m (10)					40,4	300	30,1	Ja	Ja	Ja
	Schall-Immissionsort: 45 dB Abst.: 300 m (11)					45,4	300	29.8	Ja	Ja	Ja
IP C Eulgem Düngenheimer Str. 6	Schall-Immissionsort: 45 dB Abst.: 300 m (12)	2.583.925	5.567.884	412,4	5,0	45,4	300	24,9	Ja	Ja	Ja

Abstände (m)

WEA Schall-Immissionsort WEA 08 (83) WEA 09 (84) WEA 05 (82) IP A Gamlen Auf dem Käulchen 10 1366 1916 1118 IP B Düngenheim Töpferstr. 27 1572 1431 1801 IP C Eulgem Düngenheimer Str. 6 1988 2350 1972

Ga3_2010.01_Schall_Schatten

eschreibung:

Berechnung der Zusatzbelastung durch 3 WEA. 1 WEA im

Vollleistungsbetrieb; 2 WEA schalloptimiert. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer

Wahrscheinlichkeit von 90%.
Betrieb von 22:00 - 06:00 - Nachtbetrieb.

25.01.2010 16:33 / 1

Lizenzierter Anwender-

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

Berechnet:

25.01.2010 15:36/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A5 Zusatzbelastung Nachtbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist <math>Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung

Abar: Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

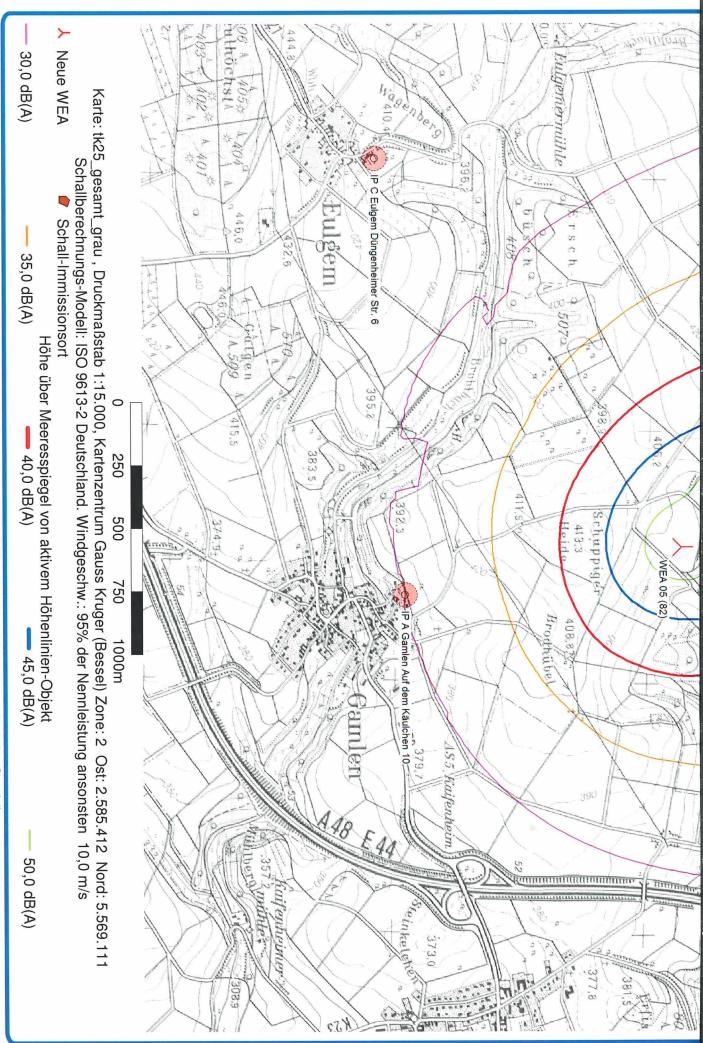
Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10) WEA 95% der Nennleistung

п						35 /6 aci 146	illineistui	ıy								
١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
I		[m]	[m]	[m]		[dB(A)]	[dB(A)]									
Ì	WEA 05 (82)	1.118	1.124	34,9	Ja	27,39	102,3	3,01	72,02	2,14	3,73	0,00	0,00	77,88	0,03	
ı	WEA 08 (83)	1.366	1.372	36,4	Ja	24,68	102,3	3,01	73,74	2,61	3,89	0,00	0,00	80,24	0,39	
١	WFA 09 (84)	1.916	1 918	30.8	Mein	22.66	105.6	3.01	76 66	364	1 80	0.00	0.00	95 10	0.85	

Summe 30,11

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) WEA 95% der Nennleistung


Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]								
WEA 05 (82)	1.801	1.801	55,1	Ja	21,25	102,3	3,01	76,11	3,42	3,75	0,00	0,00	83,28	0,78
WEA 08 (83)	1.572	1.572	52,9	Ja	23,15	102,3	3,01	74,93	2,99	3,64	0,00	0,00	81,56	0,60
WEA 09 (84)	1.431	1.431	57,7	Ja	27,90	105,6	3,01	74,11	2,72	3,41	0,00	0,00	80,24	0,46

Summe 29,81

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12)

ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
l		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
l	WEA 05 (82)	1.972	1.973	59,6	Ja	20,01	102,3	3,01	76,90	3,75	3,76	0,00	0,00	84,42	0,88	
ı	WEA 08 (83)	1.988	1.989	60,6	Ja	19,91	102,3	3,01	76,97	3,78	3,76	0,00	0,00	84,51	0,89	
ı	WEA 09 (84)	2.350	2.351	45,1	Ja	20,51	105,6	3,01	78,42	4,47	4,14	0.00	0.00	87.03	1.06	

Summe 24,92

Beschreibung:

Berechnung der Zusatzbelastung durch 3 WEA. 1 WEA im

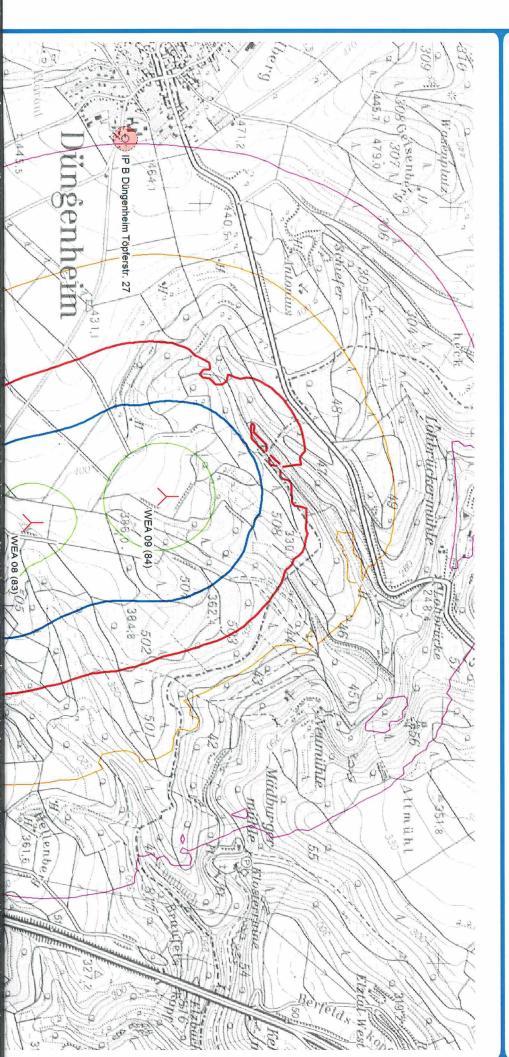
Berechnete Immissionswerte als obere Vollleistungsbetrieb; 2 WEA schalloptimiert.

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

Betrieb von 22:00 - 06:00 - Nachtbetrieb

25.01.2010 16:26 / 1

Lizenzierter Anwender


ENP Erneuerbare Energien Projektentwicklungsgesell. mb

DE-49080 Osnabrück Rehmstraße 98 e

25.01.2010 15:36/2.5.7.84

DECIBEL - Karte: tk25_gesamt_grau.bmi

Berechnung: A5 Zusatzbelastung Nachtbetrieb Datei: tk25_gesamt_grau.bmi

Ga3_2010.01_Schall_Schatten

Beschribung:
Berechnung der Gesamtbelastung durch
16 WEA, 2 WEA aus der Vorbelastung
haben keine Nachtbetriebserlaubnis, 2
WEA schalloptimiert. Berechnete

Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 22:00 - 06:00 Nachtbetrieb. 26.01.2010 12:01 / 1

.....

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Rehmstraße 98 e

DE-49080 Osnabrück +49 541 6687 259

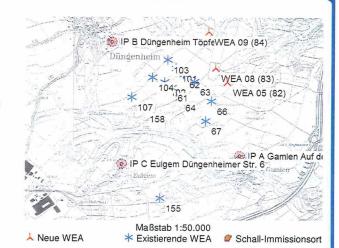
Berechnet:

26.01.2010 11:43/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A6 Gesamtbelastung Nachtbetrieb

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

WEA

	GK (Besse	el) Zone: 2			WEA-1	Гур							Schall	worte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	Kreis-	Kreis-	Quelle		Windgeschw.	LwA.ref	Einzel-
i i			2.00								radius	radius					töne
			[m]					[kW]	[m]	[m]	[m]	[m]			[m/s]	[dB(A)]	
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44,0	65,0			USER	leistungsoptimiert inkl. Zuschläge	10.0	102.6	0 dB
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44,0	65,0				leistungsoptimiert inkl. Zuschläge	10.0	102.6	0 dB
	3 2.584.972	5.569.132	410,1	GE Wind Energy GE 1	Ja	GE Wind Energy	GE 1.5sl ENP	1.500	77,0	85.0					10.0	106.1	0 dB
	4 2.584.762	5.568.890	405,1	GE Wind Energy GE 1	Ja	GE Wind Energy	GE 1.5sl ENP	1.500	77,0	85.0				leistungsoptimiert inkl. Zuschläge	10,0	106.1	0 dB
				NORDEX N90 ENP 23.		NORDEX	N90 ENP	2.300	90.0	80.0				leistungsoptimiert inkl. Zuschläge	10.0	105.4	0 dB
				NORDEX N90 ENP 23.		NORDEX	N90 ENP	2.300	90.0	100.0				leistungsoptimiert inkl. Zuschläge	10.0	105,4	0 dB
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44.0	65.0				leistungsoptimiert inkl. Zuschläge	10.0	102.6	0 dB
				ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600	44.0	65.0				leistungsoptimiert inkl. Zuschläge	10.0	102,6	0 dB
				GE Wind Energy GE 1		GE Wind Energy	GE 1.5sl ENP	1.500	77.0	85.0				leistungsoptimiert inkl. Zuschläge	10.0	106.1	0 dB
				GE Wind Energy GE 1		GE Wind Energy	GE 1.5sl ENP	1.500	77.0	85.0				leistungsoptimiert inkl. Zuschläge	10.0	106.1	0 dB
				VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP	2.000	90.0	95.0				leistungsoptimiert inkl. Zuschläge (Mode 0)	10.0	105.6	0 dB
				ENERCON E-53 ENP		ENERCON	E-53 ENP	800	53.0	73.3				leistungsoptimiert inkl. Zuschläge	(95%)	103.5	0 dB
				VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP	2.000	90.0	95.0				leistungsoptimiert inkl. Zuschläge (Mode 0)	10.0	105.6	0 dB
				VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP	2.000	90.0	105.0	77.0	45.0		schallreduziert inkl. Zuschläge (Mode 2)	10,0	102.3	0 dB
				VESTAS V90-2.0MW		VESTAS	V90-2.0MW ENP	2.000	90.0	105.0	77.0			schallreduziert inkl. Zuschläge (Mode 2)	10.0	102.3	0 dB
WEA 09 (8	4) 2.585.161	5.569.883	370,1	VESTAS V90-2.0MW	. Ja	VESTAS	V90-2.0MW ENP	2.000	90.0	105.0	77.0			leistungsontimiert inkl. Zuschläge (Mode 0)	10.0	105.6	0 48

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort		GK (Besse	I) Zone: 2			Anforder	ungen	Beurteilungspegel	Anforder	rungen erf	füllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
72.7.2	_			[m]	[m]	[dB(A)]	[m]	[dB(A)]			
IP A Gamlen Auf dem Käulchen 10	Schall-Immissionsort: 40 dB Abst.: 300 m (10)	2.585.658	5.568.033	369,0	5,0	40,4	300	40,2	Ja	Ja	Ja
IP B Düngenheim Töpferstr. 27	Schall-Immissionsort: 45 dB Abst.: 300 m (11)	2.583.742	5.569.697	460,0	5,0	45,4	300	42,1	Ja	Ja	Ja
IP C Eulgem Düngenheimer Str. 6	S Schall-Immissionsort: 45 dB Abst.: 300 m (12)	2.583.925	5.567.884	412,4	5,0	45,4	300	40.7	Ja	Ja	Ja

Abstände (m)

Fortsetzung auf nächster Seite.

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
61	1428	1116	1356
62	1473	1162	1618
63	1295	1354	1629
64	1240	1301	1309
66	920	1712	1620
67	726	1814	1390
101	1611	1022	1632
102		984	1372
103	1784	866	1693
104	1742	796	1370
107	1817	871	1008
155	1325	2428	758
158	1578	1098	888
WEA 05 (82)	1118	1801	1972

WindPRO version 2.5.7.84 Sep 2007

Ga3_2010.01_Schall_Schatten

Berechnung der Gesamtbelastung durch 16 WEA, 2 WEA aus der Vorbelastung haben keine Nachtbetriebserlaubnis, 2 WEA schalloptimiert. Berechnete

Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 22:00 - 06:00 Nachtbetrieb. 26.01.2010 12:01 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:43/2.5.7.84

DECIBEL - Hauptergebnis

Berechnung: A6 Gesamtbelastung Nachtbetrieb

...Fortsetzung von der vorigen Seite
WEA IP A Gamlen Auf dem Käulchen 10 IP B Düngenheim Töpferstr. 27 IP C Eulgem Düngenheimer Str. 6 WEA 08 (83) 1366 1572

WEA 09 (84) 1916 1431 Projekt:

Ga3_2010.01_Schall_Schatten

Berechnung der Gesamtbelastung durch 16 WEA, 2 WEA aus der Vorbelastung haben keine Nachtbetriebserlaubnis, 2

WEA schalloptimiert. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 22:00 - 06:00 Nachtbetrieb. 26.01.2010 12:01 / 1

izenzierter Anwender

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

Berechnet: 26.01.2010 11:43/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A6 Gesamtbelastung Nachtbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung Dämpfung aufgrund verschiedener anderer Effekte

Amisc: Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10)

WEA						95% der Ne	ennleistur	ng							
Nr.		Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	61	1.428	1.432	27,1	Nein	22,95	102,6	3,01	74,12	2,72	4,80	0,00	0,00	81,64	1,02
	62	1.473	1.477	25,5	Nein	22,56	102,6	3,01	74,39	2,81	4,80	0,00	0,00	82,00	1,05
	63	1.295	1.301	32,7	Ja	28,80	106,1	3,01	73,29	2,47	3,94	0,00	0,00	79,69	0,61
	64	1.240	1.245	35,5	Ja	29,47	106,1	3,01	72,91	2,37	3,82	0,00	0,00	79,09	0,55
	66	920	927	29,8	Ja	32,47	105,4	3,01	70,34	1,76	3,69	0,00	0,00	75,78	0,15
	67	726	737	40,8	Ja	35,78	105,4	3,00	68,35	1,40	2,87	0,00	0,00	72,62	0,00
	101	1.611	1.615	26,8	Nein	21,45	102,6	3,01	75,16	3,07	4,80	0,00	0,00	83,03	1,13
	102	1.559	1.563	29,8	Nein	21,86	102,6	3,01	74,88	2,97	4,80	0,00	0,00	82,65	1,10
	103	1.784	1.790	36,9	Nein	23,86	106,1	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,99
	104	1.742	1.747	40,0	Nein	24,18	106,1	3,01	75,85	3,32	4,80	0,00	0,00	83,97	0,97
	107	1.817	1.822	46,5	Ja	24,12	105,6	3,01	76,21	3,46	3,92	0,00	0,00	83,59	0,90
	155	1.325	1.332	55,0	Ja	26,29	103,5	3,01	73,49	2,53	3,38	0,00	0,00	79,40	0,82
	158	1.578	1.584	46,2	Ja	26,08	105,6	3,01	74,99	3,01	3,80	0,00	0,00	81,80	0,73
WEA 05		1.118	1.124	34,9	Ja	27,39	102,3	3,01	72,02	2,14	3,73	0,00	0,00	77,88	0,03
WEA 08		1.366	1.372	36,4	Ja	24,68	102,3	3,01	73,74	2,61	3,89	0,00	0,00	80,24	0,39
WEA 09	(84)	1.916	1.918	30,8	Nein	22,66	105,6	3,01	76,66	3,64	4,80	0,00	0,00	85,10	0,85

Summe 40,21

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) WEA 95% der Nennleistung

١	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	Cmet
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	61	1.116	1.116	36,5	Ja	27,12	102,6	3,01	71,95	2,12	3,67	0,00	0,00	77,74	0,75
l	62	1.162	1.163	38,4	Ja	26,63	102,6	3,01	72,31	2,21	3,66	0,00	0,00	78,18	0,80
١	63	1.354	1.354	47,9	Ja	28,65	106,1	3,01	73,63	2,57	3,58	0,00	0,00	79,79	0,67
l	64	1.301	1.301	46,7	Ja	29,17	106,1	3,01	73,28	2,47	3,56	0,00	0,00	79,32	0,62
l	66	1.712	1.713	50,1	Ja	24,68	105,4	3,01	75,67	3,25	3,80	0,00	0,00	82,72	1,01
Ì	67	1.814	1.815	61,1	Ja	24,30	105,4	3,01	76,18	3,45	3,64	0,00	0,00	83,27	0,84
l	101	1.022	1.023	38,4	Ja	28,34	102,6	3,01	71,20	1,94	3,50	0,00	0,00	76,64	0,63
ı	102	984	984	37,8	Ja	28,83	102,6	3,01	70,86	1,87	3,47	0,00	0,00	76,20	0,58
l	103	866	868	47,6	Ja	34,80	106,1	3,01	69,77	1,65	2,90	0,00	0,00	74,31	0,00
ŀ	104	796	797	46,1	Ja	35,77	106,1	3,00	69,03	1,51	2,79	0,00	0,00	73,33	0,00
l	107	871	872	47,3	Ja	34,23	105,6	3,00	69,81	1,66	2,92	0,00	0,00	74,38	0,00
ı	155	2.428	2.429	69,8	Ja	18,02	103,5	3,01	78,71	4,61	3,82	0,00	0,00	87,14	1,36
ı	158	1.098	1.099	50,7	Ja	31,32	105,6	3,01	71,82	2,09	3,21	0,00	0,00	77,11	0,18
ı	WEA 05 (82)	1.801	1.801	54,9	Ja	21,24	102,3	3,01	76,11	3,42	3,75	0,00	0,00	83,29	0,78
	WEA 08 (83)	1.572	1.572	52,7	Ja	23,14	102,3	3,01	74,93	2,99	3,65	0,00	0,00	81,57	0,60
ĺ	WEA 09 (84)	1.431	1.431	57,8	Ja	27,90	105,6	3,01	74,11	2,72	3,41	0,00	0,00	80,24	0,46
ı															

Summe 42,14

Ga3_2010.01_Schall_Schatten

Berechnung der Gesamtbelastung durch 16 WEA, 2 WEA aus der Vorbelastung haben keine Nachtbetriebserlaubnis, 2 WEA schalloptimiert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Betrieb von 22:00 - 06:00 Nachtbetrieb.

26.01.2010 12:01 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Rehmstraße 98 e DE-49080 Osnabrück +49 541 6687 259

26.01.2010 11:43/2.5.7.84

DECIBEL - Detaillierte Ergebnisse

Berechnung: A6 Gesamtbelastung Nachtbetrieb Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12) 95% der Nennleistung

Nr.	Abatand	Caballinas	Minters 1121	0:11	33 /6 UET 146		•							
INI.	Abstand	- 3	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.356	1.358	50,6	Ja	24,89	102,6	3,01	73,66	2,58	3,52		0.00	79.75	0.97
62		1.619	51,0	Ja	22,50	102,6	3,01	75,18	3,08	3.72	0.00	0.00	81.98	1.13
63	12.445.55	1.631	60,1	Ja	26,33	106,1	3,01	75,25	3.10	3.53	00.00	0.00		0.90
64		1.311	60,4	Ja	29,43	106,1	3,01	73,35	2,49	3,21			79.05	0.62
66		1.621	58,2	Ja	25,62	105,4	3,01	75,20		3,57			81.84	0.95
67		1.392	67,7	Ja	28,27	105,4	3,01	73,87	2,65	3,13	0,00	0,00	79,65	0.49
101		1.634	50,1	Ja	22,35	102,6	3,01	75,26	3,10	3,75	0,00	0.00	82,11	1.14
102	1.372	1.373	51,3	Ja	24,75	102,6	3,01	73,75	2,61	3.51	0.00	0.00		0.98
103	1.693	1.696	58,6	Ja	25,75	106,1	3,01	75,59	3.22	3,61	0.00		82,42	
104	1.370	1.373	61,1	Ja	28,79	106,1	3,01	73,75		3.27	2.000	0.00	79.63	0.69
107		1.012	66,7	Ja	33,04	105,6	3,01	71,11	1,92	2.52	0,00	0.00	75.55	
155	758	764	39,0	Ja	33,36	103,5	3.00	68,66			0.00		73.14	0.00
158	888	892	64,6	Ja	34,62	105,6		70.00		2.29	,	0.00	73.99	0.00
WEA 05 (82)	1.972	1.973	59,4	Ja	20,00	102,3	3.01	76.90	5.4555	3,77	- 1	0.000	84.42	0.88
WEA 08 (83)	1.988	1.989	60,6	Ja	19,91	102,3	0.000	76.97			0,00	-,	84.51	0,89
WEA 09 (84)	2.350	2.351	45,4	Ja	20,52	105,6		78,42			0.00		87.03	1.06
										100000000000000000000000000000000000000	- 1		- 100	.,

Summe 40,73

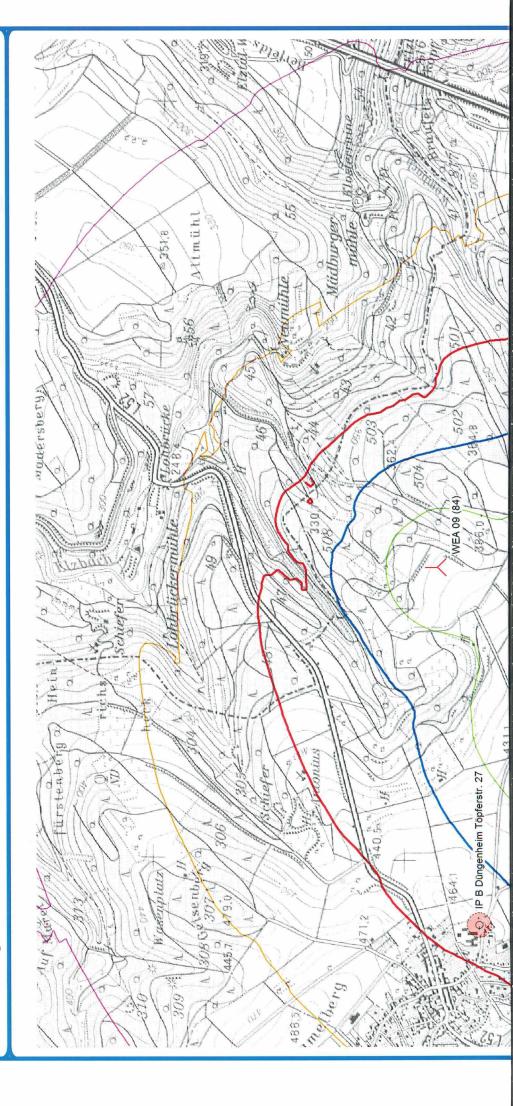
Berechnung der Gesamtbelastung durch 16 Beschreibung: Ga3_2010.01_Schall_Schatten

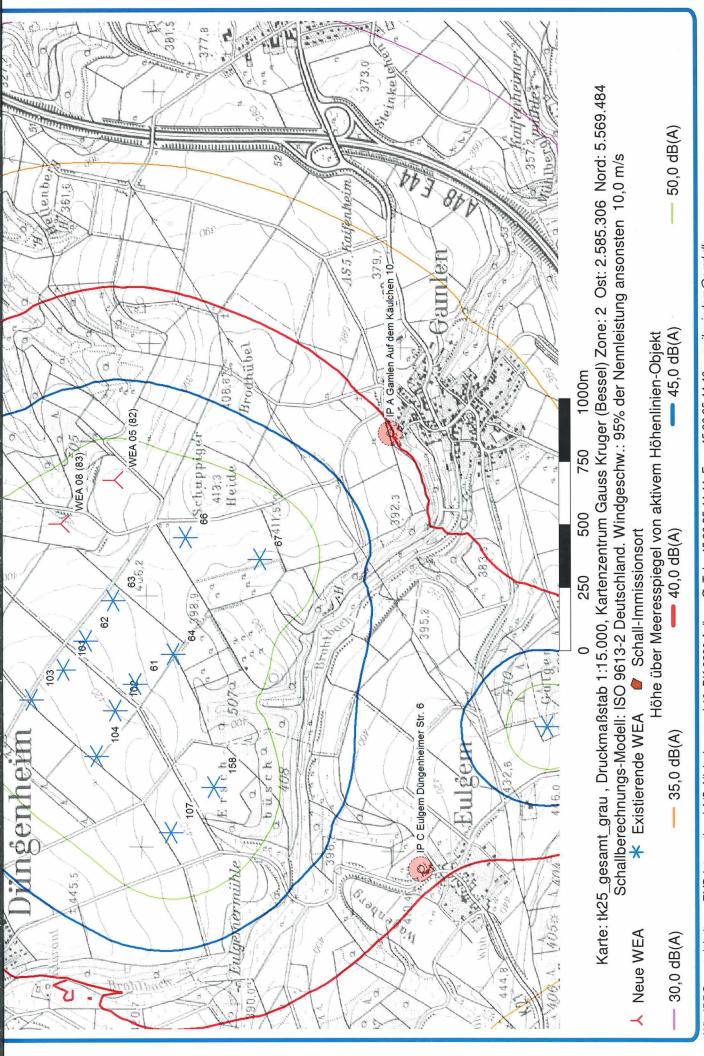
schalloptimiert. Berechnete Immissionswerte WEA, 2 WEA aus der Vorbelastung haben als obere Vertrauensbereichsgrenze mit Betrieb von 22:00 - 06:00 Nachtbetrieb. keine Nachtbetriebserlaubnis, 2 WEA einer Wahrscheinlichkeit von 90%.

26.01.2010 12:11 / 1

Lizenzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb Rehmstraße 98 e


DE-49080 Osnabrück


Berechnet:

26.01.2010 11:43/2.5.7.84

DECIBEL - Karte: tk25_gesamt_grau.bmi

Datei: tk25_gesamt_grau.bmi Berechnung: A6 Gesamtbelastung Nachtbetrieb

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Item no.: 961262.R0

Schalltechnisches Gutachten FGW 16 Windtest (Auszug) V90-2MW VCS (Mode 0)

Date: 2006-02-06

Class: 1

Type: Report

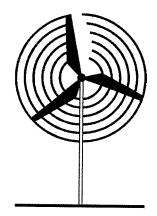
Issued by: Technology Dept.

Class 1 Item no. 961262.R0 2006-02-06

Schalltechnisches Gutachten

FGW 16

Windtest (Auszug) V90-2.0MW VCS (Mode 0)


Stelle: POREP

VMP 5000-02 / 50HZ

Item no.: 961262.RO

2 von 3

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 4847/06 aus dem Prüfbericht WT 4846/06 zur Schallemission der Windenergieanlage vom Typ V90-2MW VCS (Mode 0)

Messdatum: 2005-08-09/10

Standort bzw. Messort:	Porep, Kreis Prignitz, Deutschland									
Auftraggeber: Vestas Wind Systems A/S Smed Soerensvej 5 DK-6950 Ringkoebing										
Auftragnehmer:	Auftragnehmer: WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog Deutschland									
Datum der Auftragserteilung:	2005-05-04	Auftragsnummer:	4250 05 02968 64							

Kaiser-Wilhelm-Koog, 2006-02-06

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 4847/06 aus dem Prüfbericht WT 4846/06

zur Schallemission der Windenergieanlage vom Typ V90-2MW VCS (Mode 0)

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	gaben)
Anlagenhersteller: Seriennummer	Vestas Wind Systems A/S Smed Soerensvej 5 DK-6950 Ringkoebing	Nennleistung (Generator): Rotordurchmesser: Nabenhöhe über Grund:	2000 kW 90 m 105 m
WEA-Standort (ca.)	RW: - HW: -	Turmbauart: Leistungsregelung:	konisches Rohr Pitch and VCS
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Gen	erator (Herstellerangaben)
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl: Rotordrehzahlbereich:	Vestas Vestas 44m variabel (OptiTip) 3 8.8 - 14.9 U/min	Getriebehersteller: Typenbezeichnung Getriebe: Generatorhersteller: Typenbezeichnung Generator: Generatordrehzahlbereich:	Metso PLH1400V90 ABB AMK 500L4A BAYH 1000 - 1680 U/min

	Referer	zpunkt	Schallemissi	ions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel Lwap	5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	661 kW 1149 kW 1635 kW 1949 kW - kW - kW	102.4 103.6 103.5 - d	2 dB(A) 4 dB(A) 5 dB(A) 9 dB(A) B(A) B(A)	1) 1)
Tonzuschlag für den Nahbereich K _{TN}	5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	661 kW 1149 kW 1635 kW 1949 kW - kW - kW	0 dB 0 dB 0 dB 0 dB - dB - dB	bei Hz	1) 1)
lmpulszuschlag für den Nahbereich <i>K_{IN}</i>	5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	661 kW 1149 kW 1635 kW 1949 kW - kW - kW	0 0 0	dB dB dB dB dB	1) 1)

	Terz-Schallleistungspegel Referenzpunkt v ₁₀ = 8,0 ms ⁻¹ in dB(A)												
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
LWA, P	77,7	80,0	82,7	84,1	86,4	86,7	87,6	88,9	89,3	89,5	92,1	92.7	
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
LWA. P	93,6	93,9	94,1	93,3	92,5	92,1	91,4	90,5	89,0	83,6	76,2	66,7	
-170, 7	23,0	1 00,0					<u> </u>	8.0 ms ⁻¹ ir	<u> </u>	J 63,6	10,2	1 0	

	Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 8,0 ms ⁻¹ in dB(A)												
Frequenz	requenz 63 125 250 500 1000 2000 4000 8000												
L _{WA, P}	85,4	90,7	93,4	96,4	98,7	97,4	95,1	84,4					

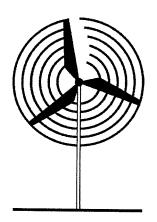
Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-06-13. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:1) Für diese Windklasse liegen keine Messdaten vor

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog


Datum: 2006-02-06

Dipl.-Ing. A. Jensen

Dipl.-rig. J. Neubert Leiter/Gruppe Akustik

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 5309/06 aus dem Prüfbericht WT 5308/06 zur Schallemission der Windenergieanlage vom Typ V90-2MW VCS (Mode 0)

Messdatum: 2006-09-04/05

Standort bzw. Messort:	dort bzw. Messort: Porep, Kreis Prignitz, Deutschland										
Auftraggeber:	Auftraggeber: Vestas Deutschland GmbH Otto-Hahn-Straße 2-4 25813 Husum										
Auftragnehmer:	ftragnehmer: WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog Deutschland										
Datum der Auftragserteilung:	2005-01-05	Auftragsnummer:	6020 05 02830 06								

Kaiser-Wilhelm-Koog, 2006-10-12

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 5309/06 aus dem Prüfbericht WT 5308/06

zur Schallemission der Windenergieanlage vom Typ V90-2MW VCS (Mode 0)

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 17 vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	gaben)
Anlagenhersteller:	Vestas Deutschland GmbH Otto-Hahn-Straße 2-4 25813 Husum	Nennleistung (Generator): Rotordurchmesser: Nabenhöhe über Grund:	2000 kW 90 m 105 m
Seriennummer WEA-Standort (ca.)	V 19697 RW: k.A. HW: k.A.	Turmbauart: Leistungsregelung:	konisches Rohr opti-Speed, opti-Pitch
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Gen	erator (Herstellerangaben)
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl: Rotordrehzahlbereich:	Vestas Vestas 44 m k.A. 3 8,2 - 17,3 U/min	Getriebehersteller: Typenbezeichnung Getriebe: Generatorhersteller: Typenbezeichnung Generator: Generatornenndrehzahl:	Hansen EH 802 CN 21-BN-112.83 Weier DVSG 500/4MST 1680 U/min

	Referer	zpunkt	Schallemiss	ions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel L _{WA,P}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1132 kW 1665 kW 1950 kW 1999 kW 2000 kW	103, 102, 101,	7 dB(A) 4 dB(A) 8 dB(A) 7 dB(A) 9 dB(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1132 kW 1665 kW 1950 kW 1999 kW 2000 kW	0 dB 0 dB 0 dB 0 dB 0 dB	bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz	
Impulszuschlag für den Nahbereich K _{IN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1132 kW 1665 kW 1950 kW 1999 kW 2000 kW	0 0 0 0	dB dB dB dB dB	

	Terz-Schallleistungspegel Referenzpunkt $v_{10} = 7,0 \text{ ms}^{-1}$ in dB(A)													
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630		
L _{WA, P}	75,3	78,2	80,6	82,7	83,8	84,8	86,1	88,5	89.5	89.6	92.7	91.8		
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000		
LWA P	93,5	93,9	93,7	92,5	91,3	90,0	90,1	90,7	88,5	85,8	80.9	75,7		

		Oktav-S	challleistungs	egel Referenz	ounkt v ₁₀ = 7,0 i	ns ⁻¹ in dB(A)		
Frequenz	63	125	250	500	1000	2000	4000	8000
Lwa, p	83,3	88,7	93,1	96,3	98,5	96,2	94,6	87,3

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2006-10-10. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog

Datum:

2006-10-12

Dipl.-Ing. J. Dedert

Dipl.-Ing. A. Trautsch Stellv. Leiter Gruppe Akustik

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Item no.: 958474.R0

Schalltechnisches Gutachten FGW 15 Windtest (Auszug)

V90-2.0MW VCS / Mode 0

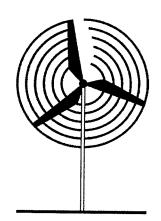
Date: 2005-04-29

Class: I

Type: Report

Issued by: Technology Dept.

Class 1 Item no. 958474.R0 2005-04-29


Schalltechnisches Gutachten FGW 15 Windtest (Auszug) V90-2.0MW VCS / Mode 0

VMP 5000-02 / 50HZ

(22B)

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 4127/05 aus dem Prüfbericht WT 4126/05 zur Schallemission der Windenergieanlage vom Typ Vestas V90-2MW VCS, Mode 0

Messdatum: 2005-03-11

Standort bzw. Messort:	Schönhagen, I	_andkreis Prignitz	
Auftraggeber:	Vestas Wind S Smed Soerens DK-6950 Ringl	svej 5	
Auftragnehmer:	WINDTEST Ka Sommerdeich 25709 Kaiser-V		рΗ
Datum der Auftragserteilung:	2005-03-29	Auftragsnummer:	6020 05 02918 06

Kaiser-Wilhelm-Koog, 2005-04-12

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 4127/05 aus dem Prüfbericht WT 4126/05

zur Schallemission der Windenergieanlage vom Typ Vestas V90-2MW VCS, Mode 0

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	gaben)
Anlagenhersteller:	Vestas Smed Soerensvej 5 DK-6950 Ringkoebing	Nennleistung (Generator): Rotordurchmesser:	2000 kW 90 m
Seriennummer WEA-Standort (ca.)	18864 Schönhagen, Landkreis Prignitz	Nabenhöhe über Grund: Turmbauart: Leistungsregelung:	105,0 m konisches Rohr OptiSpeed
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Gen	
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl Rotordrehzahlbereich:	Vestas Vestas 44m Optitip Grad 3 8,8 - 14,9 U/min	Getriebehersteller: Typenbezeichnung Getriebe: Generatorhersteller: Typenbezeichnung Generator: Generatornenndrehzahl;	Metso PLH1400V90 ABB AMK 500L4A BAYH 1000-1680 U/min

	One Edit Ce	JiStu	iigant	iive. Kisu	930240 N	U										
				Re	ferenzpur	ıkt			Schallemi	ssio	ns-Pa	rameter		Beme	rkun	gen
			Wind	andardisiert dgeschwind in 10 m Hö	lig-		rische eistung									
Schallleis Pegel Lwap	stungs-	6 ms ⁻¹ 1149 kW 102,5 dB(A) 7 ms ⁻¹ 1635 kW 103,3 dB(A) 7,8 ms ⁻¹ 1900 kW 103,1 dB(A) 9 ms ⁻¹ - kW - dB(A) 10 ms ⁻¹ - kW - dB(A)														
Tonzusch den Nahl K _{TN}				6 ms ⁻¹ 7 ms ⁻¹ 7,8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹		1149 kW 0 dB bei- 1635 kW 0 dB bei- 1900 kW 0 dB bei- - kW - dB bei-				pei - Hz pei - Hz pei - Hz pei - Hz pei - Hz						
	mpulszuschlag 7 ms ⁻¹ 1149 kW 7 ms ⁻¹ 1635 kW 1 den Nahbereich 7,8 ms ⁻¹ 1900 kW 9 ms ⁻¹ - kW 10 ms ⁻¹ - kW						0 dE 0 dE 0 dE - dE	3 3 3 3								
				Terz-S	challleist	ungs	pegel F	Referenz	ounkt v ₁₀ =	7,0 r	ns ⁻¹ iı	n dB(A)				
Frequenz			63	80	100	1	25	160	200		50	315	400	50	00	630
L _{WA, P}	78,1		0,8	83,3	85,4		7,0	87,8	88,8	90),1	91,3	91,6	92	2,1	92,4
Frequenz L _{WA, P}	800 92,7		3.0	1250 93,2	1600 92,1	_	000	2500 89.7	3150		000	5000	6300	80		10000
LWA, P 92,7 93,0 93,2 92,1 91,2 Oktav-Schallleistungspegel Re						88,8		7,8	84,4	77,6	69	,1	60,3			
Frequenz	63		T	125	cnailleisi 250	ungs		Referenz 500								
L _{WA,P}	86,0		 	91,6	95,0			96.8	1000 97,7			2000 95.9	4000 92,2			8000
								- , -	<u> </u>		L	50,5	32,2	1		78,2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-03-31. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 7,8 ms.1.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Konformitätsstempel

Datum:

2005-04-12

Dipl.-Ing. J. Neub

Seite 6 zum Schalltechnischen Bericht Nr. 29093-2.001

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev.:16.yom 01.Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel) Auszug aus dem Prüfbericht 29093-1.006 zur Schallemission der Windenergieanlage vom Typ ∨90-2.0 MW im "Mode 2 Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: Vestas Deutschland GmbH Nennleistung (Generator): 2.000 kW Seriennummer: 20600 Rotordurchmesser: 90 m WEA-Standort (ca.): 49134 Wallenhorst Nabenhöhe über Grund: 105 m Standortkoordinaten: GK RW: 34.30.465 Turmbauart: Konischer Rohrturm GK HW: <u>58.03.685</u> Leistungsregelung: Pitch Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator (Herstellerang.) Rotorblatthersteller: Vestas Getriebehersteller: Hansen Typenbezeichnung Blatt: Vestas 44 m Typenbezeichnung Getriebe: EH 802 CN21-BN-112,83 Blatteinstellwinkel: Variabel Generatorhersteller: Weier Rotorblattanzahl: Typenbezeichnung Generator: DVSG 500/4MSP Rotordrehzahlbereich: 8,2 - 17,3 U/min Generatornenndrehzahl: 1.680 U/min Prüfbericht zur Leistungskurve: Berechnete Leistungskennlinie Vestas V90-2.0MW "Mode 2" zur Verfügung gestellt von Vestas Deutschland GmbH

	Referenzp	ounkt	Schallemissions-	
	Normierte Windgeschwin- digkeit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen
į.	6 ms ⁻¹	1.019 kW	99,0 dB(A)	
	7 ms ⁻¹	1.439 kW	99,6 dB(A)	
Schallleistungs-Pegel	8 ms ⁻¹	1.822 kW	99,8 dB(A)	
L _{WA,P}	9 ms ⁻¹	1.939 kW	99,6 dB(A)	
	10 ms ⁻¹	2.000 kW	99,2 dB(A)	(2)
	8,6 ms ⁻¹	1.900 kW	99,8 dB(A)	(1)
	6 ms ⁻¹	1.019 kW	0 dB	1,7
-	7 ms ⁻¹	1.439 kW	0 dB	
Tonzuschlag für den	8 ms ⁻¹	1.822 kW	0 dB	
Nahbereich K _{TN}	9 ms ⁻¹	1.939 kW	0 dB	
	10 ms ⁻¹	2.000 kW	0 dB	(2)
	8,6 ms ⁻¹	1.900 kW	0 dB	(1)
	6 ms ⁻¹	1.019 kW	0 dB	_/_/
	7 ms ⁻¹	1.439 kW	0 dB	
Impulszuschlag für den	8 ms ⁻¹	1.822 kW	0 dB	
Nahbereich K _{IN}	9 ms ⁻¹	1.939 kW	0 dB	
	10 ms ⁻¹	2.000 kW	0 dB	(2)
	8,6 ms ⁻¹	1.900 kW	0 dB	(1)
Terz-Schallleistungspegel	für $v_s = 8 \text{ ms}^{-1}$ in dB(A) en	tsprechend dem maxim	alen Schallleistungspegel	

Terz-Schal	lleistungs	pegel	für v₅ ≃ 8	ms ⁻¹ in dE	B(A) entsp	rechend de	em maxim	alen Scha	llleistungs	pegel		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P,max}	78,9*	80,4*	83,6	85,1	84,6	84,1*	84,4*	85,2*	86.9*	86.5*	88.5	88.4*
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
L _{WA,P,max}	88,3	89,4	90,1	89,8	88,5	87,3	85,3	81,7	74,8	68.7**	66.5**	64.0**

Oktav-Scha	Illeistungspege	el fürv₅≂	für v _s = 8 ms ⁻¹ in dB(A) entsprechend dem maximalen Schallleistungspegel									
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000				
L _{WA,P,max}	86,2*	89,4	90,4*	92,7*	94,1	93,5	87.1	71.6**				

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 21.11.2006.

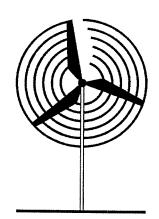
Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- (1) Die normierte Windgeschwindigkeit von v_s = 8,6 ms⁻¹ entspricht 95 % der Nennleistung
- (2) Höchster gemessener Minutenmittelwert $v_s = 9.8 \text{ ms}^{-1}$
- * Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB
- ** Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch: Datum:

KÖTTER Consulting Engineers KG, Rheine


CONSULTING ENGINEERS

i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

24.01.2007

Bonifariusstraße 400 + 48432 Rheine Te (0.59 71) 97 10/0 (Fbx 0.59 71) 97 10/4**3**

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 5313/06 aus dem Prüfbericht WT 5312/06 zur Schallemission der Windenergieanlage vom Typ V90-2MW VCS (Mode 2)

Messdatum: 2006-09-04/05

Standort bzw. Messort:	Porep, Kreis P	rignitz, Deutschland	
Auftraggeber:	Vestas Deutsc Otto-Hahn-Stra 25813 Husum		
Auftragnehmer:	WINDTEST Ka Sommerdeich 25709 Kaiser-V Deutschland		ЭН
Datum der Auftragserteilung:	2005-01-05	Auftragsnummer:	6020 05 02830 06

Kaiser-Wilhelm-Koog, 2006-10-12

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 5313/06 aus dem Prüfbericht WT 5312/06

zur Schallemission der Windenergieanlage vom Typ V90-2MW VCS (Mode 2)

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1:

Bestimmung der Schallemissionswerte"

Rev. 17 vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	gaben)
Anlagenhersteller:	Vestas Deutschland GmbH Otto-Hahn-Straße 2-4	Nennleistung (Generator):	2000 kW
	25813 Husum	Rotordurchmesser: Nabenhöhe über Grund:	90 m 105 m
Seriennummer	V 19697	Turmbauart:	konisches Rohr
WEA-Standort (ca.)	RW: k.A. HW: k.A.	Leistungsregelung:	opti-Speed, opti-Pitch
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Gen	erator (Herstellerangaben)
Rotorblatthersteller:	Vestas	Getriebehersteller:	Hansen
Typenbezeichnung Blatt:	Vestas 44 m	Typenbezeichnung Getriebe:	EH 802 CN 21-BN-112.83
Blatteinstellwinkel:	k.A.	Generatorhersteller:	Weier
Rotorblattanzahl:	3	Typenbezeichnung Generator:	DVSG 500/4MST
Rotordrehzahlbereich:	8,2 - 17,3 U/min	Generatornenndrehzahl:	1680 U/min

	Referen	zpunkt	Schallemiss	sions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel Lwa, _P	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1062 kW 1458 kW 1790 kW 1967 kW 1997 kW	99,4 99,8 100,	9 dB(A) 4 dB(A) 8 dB(A) 0 dB(A) 1 dB(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1062 kW 1458 kW 1790 kW 1967 kW 1997 kW	1 dB 0 dB 0 dB 0 dB 0 dB 0 dB	bei 2508 Hz bei - Hz bei - Hz bei - Hz bei - Hz	
Impulszuschlag für den Nahbereich K _{IN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	1062 kW 1458 kW 1790 kW 1967 kW 1997 kW	(((0 dB 0 dB 0 dB 0 dB 0 dB	

	Terz-Schallleistungspegel Referenzpunkt $v_{10} = 10,0 \text{ ms}^{-1}$ in dB(A)												
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
LWA, P	77,0	78,6	80,7	82,9	83,4	84,0	86,9	85,5	86,3	86,2	89,2	87,4	
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
L _{WA, P}	88,6	89,6	89,4	89,1	88,3	88,3	87,1	86,6	85,5	81.9	77.2	72.5	

	Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10,0 ms ⁻¹ in dB(A)												
Frequenz	63	125	250	500	1000	2000	4000	8000					
L _{WA, P}	83,8	88,2	91,1	92,5	94,0	93,3	91,2	83,5					

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2006-10-10. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog

FGW Forderpresent Windowspe 2007

Datum:

2006-10-12

Dipl.-Ing. J. Dedert

Dipl.-Ing. A. Trautsch Stellv. Leiter Gruppe Akustik

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratonium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfwerfahren.

Item no.: 958480.R0

Schalltechnisches Gutachten FGW 15 Windtest (Auszug) V90-2.0MW VCS / Mode 2

Issued by: Technology Dept.

Class. 1

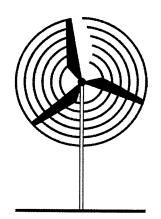
Class: I

Type: Report

Date: 2005-04-29

Class 1 Item no. 958480.R0 2005-04-29

Schalltechnisches Gutachten FGW 15 Windtest (Auszug) V90-2.0MW VCS / Mode 2


VMP 5000-02 / 50HZ

(22H)

Page: 1 of 3

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 4145/05 aus dem Prüfbericht WT 4144/05 zur Schallemission der Windenergieanlage vom Typ Vestas V90-2MW VCS, Mode 2

Messdatum: 2005-03-11

Standort bzw. Messort:	Schönhagen L	Schönhagen Landkreis Prignitz							
Auftraggeber:	Vestas Wind S Smed Soerens DK-6950 Ringk	vej 5							
Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog								
Datum der Auftragserteilung:	2005-03-29	Auftragsnummer:	6020 05 02918 06						

Kaiser-Wilhelm-Koog, 2005-04-12

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 4145/05 aus dem Prüfbericht WT 4144/05

zur Schallemission der Windenergieanlage vom Typ Vestas V90-2MW VCS, Mode 2

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	gaben)
Anlagenhersteller:	Vestas	Nennleistung (Generator):	2000 kW
	Smed Soerensvej 5	Rotordurchmesser:	90 m
	DK-6950 Ringkoebing	Nabenhöhe über Grund;	105 m
Seriennummer	18864	Turmbauart:	konisches Rohr
WEA-Standort (ca.)	Schönhagen Landkreis Prignitz	Leistungsregelung:	OptiSpeed 100 dB(A)
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Gen	erator (Herstellerangaben)
Rotorblatthersteller:	Vestas	Getriebehersteller:	Metso
Typenbezeichnung Blatt:	Vestas 44m	Typenbezeichnung Getriebe:	PLH1400V90
Blatteinstellwinkel:	Optitip 100 dB(A)	Generatorhersteller:	ABB
Rotorblattanzahl	3	Typenbezeichnung Generator:	AMK 500L4A BAYH
Rotordrehzahlbereich:	8,8 - 14,9 U/min	Generatornenndrehzahl:	1000-1680 U/min

		-3		1202 ((2.11)										
			Re	erenzp	ounkt			Schallemi	ssior	ıs-Par	ameter		3eme	erkun	gen
		Wind	indardisiert Igeschwind in 10 m Hö	ig-	Elektr Wirkle										
Schallleis Pegel Lwap	stungs-		6 ms ⁻¹ 1039 kW 7 ms ⁻¹ 1371 kW 8 ms ⁻¹ 1751 kW 8,5 ms ⁻¹ 1900 kW 10 ms ⁻¹ - kW			kW kW kW		98,5 dB(A) 100,0 dB(A) 100,7 dB(A) 100,7 dB(A) - dB(A)							
Tonzusch den Nahl K _{TN}			6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,5 ms ⁻¹ 10 ms ⁻¹		1039 kW 1371 kW 1751 kW 1900 kW - kW			0 dB 0 dB 0 dB 0 dB - dB		b b	ei Hz ei Hz ei Hz ei Hz ei Hz				
lmpulszu: für den N <i>K</i> _{IN}	schlag ahbereich		6 ms ⁻¹ 1039 kW 7 ms ⁻¹ 1371 kW 8 ms ⁻¹ 1751 kW 8,5 ms ⁻¹ 1900 kW 10 ms ⁻¹ - kW					0 dE 0 dE 0 dE	3						
		 	Terz-S	challlei	istungsp	egel Re	ferenz	punkt v ₁₀ =	8,0 r	ns ⁻¹ in	dB(A)				
Frequenz L _{WA, P}	50 76,5	 63 9,2	80 82,1	100 84,0) 1:	25 5,4	160 85,9	200 86,4	2:	50 3,3	315 88,5	400 88,2		00 3.7	630 89,5
Frequenz L _{WA, P}	800 89,1	 9,5	1250 90,3	1600 90,9		00	2500 88,3	3150 86,5		00	5000 82.0	6300 75,3	80	00	10000 61,2
			Oktav-S	challle				punkt v ₁₀ =				1 , 5,5		,,0	01,2
Frequenz	63		125	2:	250	50		1000			2000	4000	4000		8000
L _{WA, P}	84,6	 	89,9	92	2,6	93	,6	94,4			94,2	89,5			76,0

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-03-31. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,5 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

FGWI Fördergesellschoft Windenergie Konformitätsstempel

Datum:

2005-04-12

Dipl.-Ing. J. Dedert

Dipl.-Ing. J. Neubert

Schallvermessungen Enercon E82

Messung 1 Messung 2 Messung 3	103,4 dB(A) MBBM 65 333/1 103,8 dB(A) KC 207041-01.01 104,1 dB(A) KC 207542-01.01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	103,77 dB(A) 0,35 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,62 dB(A)
1,28*Sigma ges	2,07 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105,84 dB(A)
Messung 1 Messung 2 Messung 3	98,7 dB(A) schallred. 1000KW MBBM M68330/1
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	98,70 dB(A) 1,22 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	2,00 dB(A)
1,28*Sigma ges	2,56 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	101,26 dB(A)
Messung 1 Messung 2 Messung 3	101,8 dB(A) schallred. 1200KW KC 207267
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	101,80 dB(A) 1,22 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	2,00 dB(A)
1,28*Sigma ges	2,56 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	104,36 dB(A)

Erstellt: Gr 04.08.2006

Auszug aus dem Prüfbericht
Stammblatt Geräuschen entsprechend den "Technischen Richtlinien (Ur.Windenergiegnlagen,
Teil 1. Bestimmung der Schällemissionswerte)
Rev. 16. vom 01. Juli 2005 (Herausgebet-Eordergesellschaft Windenergie e.V., Stresemannplaz 4.0-24103 (kg))

Auszug aus dem Prüfbericht M65 333/1

Turmbauart:

Material:

zur Schallemission der Windenergieanlage vom Typ Enercon E-82

Aligemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: Enercon GmbH Nennleistung (Generator): Dreekamp 5 Rotordurchmesser: Nabenhöhe über Grund:

26605 Aurich 82001 Seriennummer:

RW: WEA-Standort (ca.): 25.92.266

HW: 59,14,847

Leistungsregelung: pitch Erg. Daten zu Getriebe und Generator (Herstellerangaben)

Ergänzende Daten zum Rotor (Herstellerangaben) Rotorblatthersteller: Enercon GmbH

Typenbezeichnung Blatt: Blatteinstellwinkel:

82 - 1 variabel Getriebehersteller: Typenbezeichnung Getriebe:

Generatorhersteller:

Enercon GmbH E-82

2,000 kW

Rohrturm

Fertigteilbeton

82 m

98 m

Rotorblattanzahl: Rotordrehzahlbereich: 3

Typenbezeichnung Generator: Generatornenndrehzahl:

6 - 19 U/min (Betrieb I)

Prüfbericht zur Leistungskurve:

6 - 19 U/min (Betrieb I) Enercon GmbH: Berechnete Leistungskurve vom Januar 2005

	Referer	nzpunkt	Schallemissions- Parameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		
	6 m/s	1029,7 kW	100,6 dB(A)	
	7 m/s	1617,4 kW	103,1 dB(A)	
Schallleistungs-Pegel L wa.p	8 m/s	1939,6 kW	103,4 dB(A)	
	9 m/s	kW	dB(A)	[1]
	10 m/s	kW	dB(A)	[1]
	7,7 m/s	1900,0 kW	103,4 dB (A)	[2]
	6 m/s	1029,7 kW	dB	
	7 m/s	1617,4 kW	dB	
Tonzuschlag für den Nahbereich	8 m/s	1939,6 kW	dB	
K _{TN}	9 m/s	kW	dB	[1]
	10 m/s	kW	dB	[1]
	7,7 m/s	1900.0 kW	dB	[2]
	6 m/s	1029,7 kW	dB	
	7 m/s	1617,4 kW	dB	
Impulszuschlag für den Nahbereich	8 m/s	1939,6 kW	dB	
Kn	9 m/s	kW	dB	[1]
	10 m/s	kW	dB	[1]
	7,7 m/s	1900,0 kW	dB	[2]

							·					************
		Te	rz-Schallle		el Referenz	punkt v 10 =	8 m/s	Appropriate 11 Character 1, 1989	1 (a) (a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	10050 11 July 107 C / 100	And the Coffee of	(page) to delicate process
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAPTOR	75,9	79,1	81,5	82,9	87,7	88,2	87,5	90,4	90,5	91,2	93,7	93,5
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAP, TOT	94,9	95,0	93,9	91,6	89,3	85,2	80,9	75,8	72,4	73,4	71,2	73,5
		Okt	av-Schallle	istungspeg	el Referenz	εpunkt ν ₁₀ =	8 m/s					
Frequenz	63	125	250	500	1000	2000	4000	8000				

99,4 82.5 77.6

. Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 17.1.2007.

Die Angaben ersetzen nicht den o. g. Prüfbericht M65 333/1 vom 23.1.2007 (insbesondere bei Schallimmissionsprognosen).

[1] In dieser Windklasse wurden keine Daten ermittelt

[2] Der Schallleistungspegel bei 95%iger Nennleistung wurde bei Berücksichtung der Umgebungsbedingungen am Messtag, der verwendeten Leistungskurve und der vermessenen Nabenhöhe bei einer stand. Windgeschwindigkeit von 7,7 m/s festgestellt.

Gemessen durch:

Müller-BBM GmbH

Niederlassung Gelsenkirchen

Am Bugapark 1 45 899 Gelsenkirchen

MÜLLER-BBM GMBH

NIEDERLASSUNG GELSENKIRCHEN AM BUGAPARK 1 45899 GELSENKIRCHEN TELEFON (0209) 9 83 08 - 0

Datum:

23.01.2007

Dipl.-Ing. (FH) D. Hinkelmann

Dipl.-Ing. (FH) M. Köhl

Akkreditiertes Prüflaboratorium nach ISO/IEC 17025

DAP-PL-2465.10

Auszug aus dem Prüfbericht

Rotorblattanzahl:

Rotordrehzahlbereich:

Stammblatt "Geräusche", entsprechend den *"Technischen Richtlinien für Windenergieanlagen,* Teil 1: Bestimmung der Schallemissionswerte" Rev. 17 vom 01 Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e. V. Stresemannplätz 4, D-24103 (Kiel)

Auszug aus dem Prüfbericht 207041-01.01

zur Schallemission der Windenergieanlage vom Typ Enercon E-82 im Betrieb I

Allgemeine Angaben Technische Daten (Herstellerangaben) Enercon GmbH Nennleistung (Generator): Anlagenhersteller: 2.000 kW

Seriennummer: 82004 Rotordurchmesser: 48529 Bimolten WEA-Standort (ca.):

82 m 108,4 m Nabenhöhe über Grund: RW: 25.71.442 Fertigteilbeton Standortkoordinaten Turmbauart: HW: 58.18.445

Leistungsregelung: Pitch Erg. Daten zu Getriebe und Generator Ergänzende Daten zum Rotor

(Herstellerangaben) (Herstellerangaben) Getriebehersteller: Entfällt

Rotorblatthersteller: Enercon GmbH Typenbezeichnung Blatt: 82-1 Blatteinstellwinkel:

Typenbezeichnung Getriebe: Variabel Generatorhersteller: Drei

Typenbezeichnung Generator: E-82

Entfällt Enercon GmbH

6 - 19 U/min Generatornenndrehzahl: 6 - 19 U/min

Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82

					Refe	renz	pur	kt		Sc	Schallemissions-					
			Nor		ndgeschwi	ndig	-		rische			ramete		Bei	nerki	ıngen
					0 m Höhe			ALVAN	istung		000000000000000000000000000000000000000					
					ms-1				607 kW) dB(A)				
			6 ms ⁻¹						040 kW		100,7 dB(A)					
Schallleistur	Schallleistungs-Pegel				7 ms ⁻¹				710 kW		103,4 dB(A)					
Lwa.P	.go . ogo			1 8	ns ⁻¹		ļ	1.5	953 kW		103	,7 dB(<i>l</i>	۹)			
CVVA,P					ns ⁻¹			2.0	058 kW		103	,8 dB(<i>l</i>	A)		(2)	
					ns ¹				-	1		-			(3)	
			7,7 ms ⁻¹					1.:	900 kW	/ 103,8 dB(A)			4)		(1)	
				5 r	ns ⁻¹			(607 kW			0 dB				
				6 r	ทร ⁻¹		1	1.0	040 kW			0 dB				
T	. 475			7 r	ns ⁻¹		-	1.	710 kW			0 dB				
Tonzuschlag			8 ms ⁻¹					1.9	953 kW		0 dB					
Nahbereich	NTN		9 ms ⁻¹					2.0	058 kW		- 1	0 dB				
				10 r	ns ⁻¹				-			-	ĺ		(3)	
				7,7	ms ⁻¹			1.9	900 kW			0 dB			(1)	
				5 r	ms ⁻¹			-	607 kW			0 dB				
				6 r	ทร ⁻¹			1.0	040 kW		0 dB					
				7 r	ns ⁻¹		- 1	1.3	710 kW			0 dB				
Impulszusch		en∣			ทร ⁻¹			1.9	953 kW		0 dB					
Nahbereich	KIN				ns ⁻¹			2.0	058 kW		0 dB		1			
					ns ⁻¹				-	İ		-			(3)	
					ms ⁻¹			1.9	900 kW			0 dB			(1)	
Terz-Schalile	istungspe	gel			7 ms ⁻¹ in d	B(A)	ents	prechend	dem maxi	nalen S	chal	lleistunç	gspegel			
Frequenz	50	(33	80	100	12	25	160	200	250	\Box	315	400		00	630
L _{WA,P,max}	72,8*	7:	5,6	79,2	79,6*	84	1,3	84,0	85,0	87,2		90,0	91,6	9	2,7	95,0
Frequenz	800	1.0	000	1.250	1.600		000	2.500	3.150	4.000		5.000	6.300		000	10.000
L _{WA,P,max}	96,2	9	6,0	95,1	92,5	90),5	86,6	82,6	78,4		74,7	73,0	7	1,6	72,4
Oktav-Schalll	eistungs	oege	el	für v _s = 7,	7 ms ^{.1} in d	B(A)	ents	prechend	dem maxii	nalen S	chal	lleistung	gspegel			
Frequenz	63			125	250			500	1.000			000				3.000
L _{WA,P,max}	81,4			87,9	92,6			98,1	100,5	i	95	5,3	84	1,5		77,1

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 11.04.2007. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- Die normierte Windgeschwindigkeit von $v_s = 7.7 \text{ ms}^{-1}$ entspricht 95 % der Nennleistung.
- Maximaler Wert $v_s = 8.8$ m/s, oberhalb witterungsbed, keine Werte für das Anlagengeräusch vorhanden.
- Witterungsbedingt keine Werte für das Anlagengeräusch vorhanden.
- Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB
- Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch:

KÖTTER Consulting Engineers KG

- Rheine -

Datum: 19.04.2007

i. V. Dipl.-Ing. Frank Henkemeier

Bon far ussmoße 400 - 4040 fine re Tex (59 n) - 97 100 (Pay 0 50 m 97 0 %

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den *"Technischen Richtlinien für Windenergieanlagen*; Teil 1: Bestimmung der Schallemissionswerte"

(Herstellerangaben)

ev. 17. vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht 207542-01.01

zur Schallemission der Windenergieanlage vom Typ Enercon E-82 Allgemeine Angaben

Anlagenhersteller: Seriennummer:

Enercon GmbH 82258

Technische Daten (Herstellerangaben) Nennleistung (Generator): Rotordurchmesser:

2.000 kW 82 m

Pitch

WEA-Standort (ca.): Standortkoordinaten: 27232 Sulingen RW: 34.89.628

Nabenhöhe über Grund: Turmbauart:

Leistungsregelung

Getriebehersteller:

108 m Rohrturm, Fertigteilbeton

Ergänzende Daten zum Rotor

HW: 58.40.371

Ergänzende Daten zu Getriebe und Generator (Herstellerangaben)

entfällt

Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel:

Enercon 82-1 variabel

Typenbezeichnung Getriebe: Generatorhersteller:

entfällt Enercon E-82

Rotorblattanzahl: Rotordrehzahlbereich:

Drei 6 - 19 U/min (Betrieb I) Generatornenndrehzahl:

Typenbezeichnung Generator:

6 - 19 U/min (Betrieb I)

	Referenzpu	nkt	Schallemissions-	
	Normierte Windgeschwin- digkeit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen
	6 ms ⁻¹	1.055 kW	100,9 dB(A)	
_	7 ms ⁻¹	1.687 kW	103,6 dB(A)	
Schallleistungs-Pegel	8 ms ⁻¹	1.961 kW	104,1 dB(A)	(2)
L _{WA,P}	9 ms ⁻¹	2.000 kW	103,7 dB(A)	\ /
	10 ms ⁻¹		'	(2)
	7,7 ms ⁻¹	1.900 kW	104,1 dB(A)	(1)
	6 ms ⁻]	1.055 kW	0 dB	
Tonzuschlag für den	7 ms ⁻¹	1.687 kW	0 dB	
	8 ms ⁻¹	1.961 kW	0 dB	(2)
Nahbereich K _{TN}	9 ms ⁻¹	2.000 kW	0 dB	` '
	10 ms ⁻¹			(2)
	7,7 ms ⁻¹	1.900 kW	0 dB	(1)
	6 ms ⁻¹	1.055 kW	0 dB	
1	7 ms ⁻¹	1.687 kW	0 dB	
mpulszuschlag für den	8 ms ⁻¹	1.961 kW	0 dB	(2)
Nahbereich K _{IN}	9 ms ⁻¹	2.000 kW	0 dB	• • •
	10 ms ⁻¹			(2)
	7,7 ms ⁻¹	1.900 kW	0 dB	(1)

Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P,max}	77,4	80,0	82,8	84,9	89,4	87,2	88,0	91,1	93,1	95.1	96.2	95.2
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
L _{WA,P,max}	94,0	94,2	91,4	90,3	87.8	84.7	81.0	77.8	(3)	(3)	(3)	(3)

Oktav-Schalll	eistungspegel	$f\ddot{u}r v_s = 7$.7 ms ⁻¹ in dB(A)	entsprechend	dem maximale	n Schallleistun	gspegel	
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000
$L_{WA,P,max}$	85,4	92,3	96,0	100,3	98,2	92,9	82,7 (4)	(3)

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 29.01.2008. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: (1) Die normierte Windgeschwindigkeit von $v_s = 7.7 \text{ ms}^{-1}$ entspricht 95 % der Nennleistung.

Witterungsbedingt ist das Bin nicht vollständig. (2)

(3) Aufgrund von elektrischen Einflüssen durch die WEA werden die Terzen bzw. Oktaven oberhalb 4kHz nicht aufgeführt.

berechnet aus den Terzen f = 3.150 Hz und f = 4.000 Hz

- Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1.3 dB
- Abstand zwischen Anlagengeräusch und Fremdgeräusch < 3 dB, keine Pegelkorrektur

Gemessen durch:

KÖTTER Consulting Engineers KG

The free of

Datum: 28.04.2008

i. V. Dipl.-Ing. Oliver Bunk i. V. Dipl.-Ing. Frank Henkemeier

Bornfahl, skripče 400 - 434 (1875 re Tal 1620 - 2010 J. Pay 1870 - 4000

Schallvermessungen Enercon E40/6.44

Messung 1 Messung 2 Messung 3	100,7 dB(A) WICO 207SE899 100,1 dB(A) WICO 287SEA01/01 100,8 dB(A) Windtest 1740/01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	100,53 dB(A) 0,38 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,63 dB(A)
1,28*Sigma ges	2,08 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	102,61 dB(A)

Schallreduktion 200kW

Messung 1 Messung 2 Messung 3	97,8 dB(A) WICO 207SE899 96,9 dB(A) WICO 287SEA01/01 96,4 dB(A) Windtest 1740/01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	97,03 dB(A) 0,71 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,73 dB(A)
1,28*Sigma ges	2,22 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	99,25 dB(A)

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergleanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 207SE899

zur Schallemission der Windenergieanlage vom Typ E-40/6.44

Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: ENERCON GMBH Nennleistung (Generator): 600 kW Rotordurchmesser: 44.00 m Nabenhöhe über Grund: 46 m Serlennummer: 44155 Turmbauart: Stahlrohrturm WEA-Standort (ca.): RW: 2588140 HW: 5947430 Leistungsregelung: Pitch/Stall/Aktiv-Stall Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator Rotorblatthersteller: Enercon GmbH Getriebehersteller: entfällt Typenbezeichnung Blatt: E-40/6.44 Typenbezeichung Getriebe: entfällt Blatteinstellwinkel: varlabel Generatorhersteller: Enercon GmbH Rotorblattanzahi Typenbezeichung Generator: E-40/6.44 Rotordrehzahlbereich: 18 - 34.5 U/min Generatornenndrehzahl: 18 - 34.5 U/min

Prüfbericht zur Leistungskurve: keine Angabe

	Referenz	punkt		lemissions- rameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung			
Schalleistungs- Pegel Lwap	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	7 ms ⁻¹ 266 kW 8 ms ⁻¹ 376 kW 9 ms ⁻¹ 481 kW		,8 dB(A) ,9 dB(A) ,8 dB(A) ,4 dB(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW	0 dB 2 dB 0 dB 0 dB 0 dB	bei 352 Hz bei 304 Hz bei 302 Hz bei 192 Hz bei 192 Hz	
Impulszuschlag für den Nahbereich K _{IN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW		0 dB 0 dB 0 dB 0 dB 0 dB	

Terz-Schalleistungspegel Referenzpunkt v₁₀ = 8 ms⁻¹ in dB(A) Frequenz 16 20 25 31,5 40 50 63 80 100 125 160 200 250

315 400 500 55,5 59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 84,8 85,0 86,7 87,6 88,2 LWAP Frequenz 630 800 1000 1250 | 1600 | 2000 | 2500 | 3150 | 4000 | 5000 | 6300 8000 10000 12500 16000 20000 90.4 89.9 88.8 87.1 84.5 81.7 78.9 76.1 71.8 89,5 90,3 67,3 61,5 55,8 53,0 48,2

Terz-Schalleistungspegel Referenzpunkt v₁₀ = 10 ms⁻¹ in dB(A)
 16
 20
 25
 31,5
 40
 50
 63
 80
 100
 125
 160
 200
 250
 315
 400
 500

 62,3
 65,6
 68,5
 71,1
 74,1
 76,0
 78,8
 80,3
 83,1
 84,7
 85,6
 86,5
 87,7
 88,3
 89,5
 90,2

 630
 800
 1000
 1250
 1600
 2000
 2500
 3150
 4000
 5000
 6300
 8000
 10000
 12500
 16000
 20000

 90,7
 91,1
 91,1
 99,5
 89,5
 87,3
 84,7
 81,9
 79,5
 76,6
 72,7
 68,9
 63,0
 59,2
 54,7
 48,5
 requenz Lwa.p 90,7 91,1 91,1 90,5 89,5 87,3 84,7 81,9 79,5 76,6 72,7 00,9 00,0 103,2 00,0 Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 01,03,2000. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: keine

WIND-consult GmbH

Datum:

27.03.2000

Unterschrift

DAP-P-02.756-00-94-28

Nach DIN EN 45001 durch die DAP Deutsche Akkreditierungsystem Prüfwesen GmbH akkreditiertes Prüflaborutorlum.

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergleanlagen, Tell 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht WICO 287SEA01/01 zur Schallemission der Windenergieanlage vom Typ ENERCON E-40/6.44

Aligemeine Angaben		Technische Daten (Herstellera	ngaben)			
Anlagenhersteller:	ENERCON GmbH Dreekamp 5 D-26605 Aurich	Nennielstung (Generator): Rotordurchmesser: Nabenhöhe über Grund:	600 kW 44 m 78 m			
Seriennummer: WEA-Standort (ca.):	44979 RW 3418170, HW 5883430	Turmbauart: Leistungsregelung:	Stahlrohrturm Pitch/Stall/Aktiv-Stall			
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben				
Rotorbiatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel:	ENERCON GmbH E-40/6.44 variabel	Getriebehersteller: Typenbezeichung Getriebe: Generatorhersteller:	entfällt entfällt ENERCON GmbH			
Rotorblattanzahl Rotordrehzahlbereich: Prüfbericht zur Leistungsk	3 18 – 34,5 U/min	Typenbezelchung Generator: Generatornenndrehzahl:	E-40/6.44 18 – 34,5 U/min			

						-6	1-4			_						
					K	eferenz	punkt			Se	challen Parar	issions neter	•	Bemerkungen		
				andardis schwind m H				ektrisch rkleistur								
Schalleistu	ıngs-			7 r	ns ⁻¹ ns ⁻¹			212 kW 343 kW			96,9 c 98,5 c					
Pegel				8 г	ns ⁻¹	- 1	4	184 kW		ŀ	99,6 c	IB(A)				
LWAP				8,9	ms ⁻¹			570 kW			100,1	dB(Á)	- 1		(1)	
					ns ⁻¹		- 2	12 kW	***************************************	0 0	IB b	el - Hz				
Tonzuschi	ag für		- 1	7 п	ns ⁻¹		3	43 kW		0 0	IB b	ei - Hz	. 1			
den Nahbe	ereich			8 n	ns ⁻¹	- 1	4	84 kW		0 d	IB b	ei - Hz	- 1			
K _{TN}			1	8,9	ms ⁻¹		5	70 kW		0 d		ei - Hz	- ((1)	
					15 ⁻¹		- 2	12 kW			0 d	В			(-/	
Impulszus	chlag		1	7 n	าร ⁻¹	į	3	43 kW			0 d	В	- 1			
für den Na	hbereic	h		8 n	าร ⁻¹		4	84 kW			0 d	В	1			
Kin			i	8,9	ms ⁻¹		570 kW			0 dB			(1)			
				Terz-S	challel	stunas	pegel R	eferen	zpunkt '	V-0 = 8 :	me ⁻¹ in	dR/A)				
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA, P}	55,5	59,5	62,9	65,7	67,3	70,6	72,8	74,5	77,3	78,7	80,9	83,7	84,6	87.3	88.9	90.8
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
L _{WA P}	89,5	90,5	91,2	89,1	87,7	85,4	83,4	82,2	81,4	79,1	76,6	73,4	70,3	62,6	53,1	45.9
				Terz-Sc	halleis	lunasn	egel Re	ferenzi	nunkt v	- = R Q	me-1 In	dB(A)		1		
Frequenz	16	20	25	31.5	40	50	63	80	100	125	160	200	250	315	400	500

89,7 | 90,8 | 91,7 | 89,7 | 88,5 | 86,4 | 84,4 | 83,4 | 82,6 | 80,2 | 77,7 74,1 70,3 62,2 52,1 42,9 Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 12.11.2001. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

76,4

3150

Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,9 ms⁻¹ in 10 m ü.G..

76,7

4000

Gemessen durch:

57,9

630 800

61,3 64,7

1000 1250

L_{WA, P}

Frequenz

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

66,7

1600 2000

Datum: 05.12.2001

69,6 72,7

2500

Unterschrift

75,8 81,8

6300

5000

85,0

8000

Dipl.-Ing. R.Haevernick Dipl.-Ing. W.Wilke

85,2 87,9 89,4

10000 12500 16000

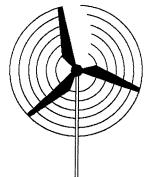
90,9

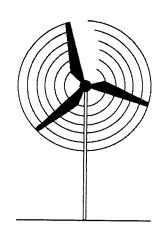
20000

WINDTEST

Kaiser-Wilhelm-Koog-GmbH

Schalltechnisches Gutachten zur Windenergieanlage Enercon E40/6.44 in Lähden/Haselünne


Messdatum: 2000-12-13


April 2001

WT 1740/01

Durch das DAP Deutsches Akkreditierungssystem
Prüfwesen akkreditiertes Prüflaboratorium
Die Akkreditierung gilt für die in der Urkunde aufgeführten
Prüfverfahren

(Technischer Leiter)

WINDTEST

Kaiser-Wilhelm-Koog, 2001-04-11

Kaiser-Wilhelm-Koog-GmbH

Schalltechnisches Gutachten zur Windenergieanlage Enercon E40/6.44 in Lähden/Haselünne

WT 1740/01

Standort bzw. Meßort:	Lähden/Haseli	ünne	
Auftraggeber:	Enercon Gmbl Dreekamp 5 26605 Aurich	-1	
Auftragnehmer:	WINDTEST KV Sommerdeich 25709 Kaiser-V	14 b	
Datum der Auftragserteilung:	2000-12-11	Auftragsnummer:	602000 01182 06
Bearbeiter:			Geprüft:
	-		O. Whene
DiplIng. J. Clausen			DiplIng. V. Köhne

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST KWK vervielfältigt werden. Er umfaßt insgesamt 31 Seiten incl. des Anhanges.

Inhaltsverzeichnis

1	Aufgabenstellung	3
2	Durchführung der Messungen	3
2.1	Messverfahren	
2.2	Messobjekt	3
2.3	Messablauf	
2.4	Verwendete Meßgeräte	
2.5		
	Anordnung der Meßpunkte	
3	Messergebnisse	4
3.1	Richtcharakteristik	4
3.2	Schalldruckpegel	
3.3	Immissionsrelevanter Schalleistungspegel	5
3.4	Impulshaltigkeit	6
3.5	Pegel von Einzelereignissen	6
3.6	Tonhaltigkeit und Frequenzanalysen	
3.7	Oktavanalyse	7
3.8	Messunsicherheit	······ /
4	Umrechnung der Schallleistung auf andere Nabenhöhen	
5	Zusammenfassung und Bewertung	
6	Verzeichnis der verwendeten Formelzeichen und Abkürzungen	9
7	Literaturverzeichnis	10
3	Anhang	10
	Anhang 1 Verwendete Messgeräte	11
	Annang Z: Kegression Schalldruckbegel über die berechnete Windgeschwindigkeit	40
	Anhang 3.1 Spektrum und Tonhaltigkeitsanalyse bei WG = 6 m/s. Anhang 3.2 Spektrum und Tonhaltigkeitsanalyse bei WG = 7 m/s	13
	Anhang 3.3 Spektrum und Tormaltigkeitsanalyse bei WG = 7 /s. Anhang 3.4 Spektrum und Tonhaltigkeitsanalyse bei WG = 8 m/s.	15
	Annang 3.4 Spektrum und Lonnaltigkeitsanalyse hei W/G = 9 ''/.	40
	Annang 3.5 Spektrum und Tonnaltigkeitsanalyse bei WG = 10 ""/。	21
	Annang 4.1 A-bewertetes Terz-Schalleistungsspektren bei 6 m/s in 10 m Höhe	24
	Annang 4.2 A-bewertetes Terz-Schalleistungsspektren bei 7 m/s in 10 m Höhe	25
	Annang 4.3 A-bewertetes Terz-Schalleistungsspektren bei 8 m/s in 10 m Höhe	26
	Annang 4.4 A-bewertetes Terz-Schalleistungsspektren bei 9 m/s in 10 m Höhe	27
	Annang 4.5 A-bewertetes Terz-Schalleistungsspektren bei 10 m/s in 10 m Höhe	28
	Anhang 5 Verwendete Leistungskurve	29
	Anhang 6.1 Herstellerbescheinigung Seite 1	30
		31

1 Aufgabenstellung

Die WINDTEST Kaiser-Wilhelm-Koog GmbH (WINDTEST) wurde am 2000-12-11 von der Firma Enercon GmbH beauftragt, Schallmessungen an der Windenergieanlage (WEA) Enercon E40/6.44 (Nabenhöhe $h_{\rm N}$ = 65 m) in Lähden/Haselünne durchzuführen.

Es soll der immissionsrelevante Schalleistungspegel sowie die Frequenzzusammensetzung des Geräusches bei unterschiedlichen Windgeschwindigkeiten ermittelt werden.

Die in diesem Bericht dargestellten Ergebnisse beziehen sich nur auf diese Anlage.

2 Durchführung der Messungen

2.1 Messverfahren

Als Meß- und Beurteilungsmethode wurde auftragsgemäß folgende Vorschrift gewählt: "Technische Richtlinien für Windenergieanlagen, Teil 1, Rev. 13 vom 2000-01-01" /1/. Diese basiert auf der "DIN EN 61400-11 Windenergieanlagen - Teil 11: Geräuschmeßverfahren, Februar 2000" /2/. Die Bestimmung der Impulshaltigkeit im Nahfeld wird anhand der "DIN 45645, T1, - Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen, 1996-06", /3/ durchgeführt. Zur Feststellung der Tonhaltigkeit im Nahfeld wird gemäß Technischer Richtlinie /1/ nach "EDIN 45681, Entwurf, Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen, 1992-01," /4/, ausgewertet. Angegeben werden der immissionsrelevante Schalleistungspegel sowie die Ton- und Impulshaltigkeit im Nahfeld im Bereich von 6 bis 10 ^m/_s in 10 m Höhe (bzw. bis zu 95 % der Nennleistung, sofern diese unterhalb einer Windgeschwindigkeit von 10 m/s in 10 m Höhe erreicht wird).

2.2 Messobjekt

Die vermessene WEA weist für die relevanten Parameter die in Tabelle 1 dargestellten Werte auf.

Tabelle 1: Eigenschaften der vermessenen WEA (s.Anhang 6).

Parameter	Wert
WEA-Hersteller [-]	Enercon GmbH
WEA-Typ [-]	Enercon E40/6.44
Nennleistung [kW]	600
Standort [-]	Lähden/Haselünne
Nabenhöhe [m]	65.0
Nabenhöhe inkl./exkl. Fundamenthöhe [-]	inclusive
Fundamenthöhe [m]	0
Rotordurchmesser [m]	44,0
Abstand Turmmittellinie-Blattflanschmittelpunkt [m]	2,5
Standort Gauss-Krüger	R3401600, H5844470

2.3 Messablauf

Die Messung wurde durchgeführt in der Zeit von ca. 2000-12-13 19:00h bis 22:45h bzw. 2000-12-14 9:00h bis 11:00h. Die während der Messung auftretenden Windgeschwindigkeiten in 10 m Höhe lagen in einem Bereich von ca. 5,8 m/s bis 13,1 m/s (1-min-Mittelwerte). Die abgegebene Wirkleistung lag zwischen ca. 182 kW und 630 kW. Während der Betriebsmessungen lief die WEA im Dauerbetrieb.

Bei dieser Messkampagne wird der Schalldruckpegel auf einer schallharten Platte, die abgegebene elektrische Leistung der Windenergieanlage und die Windgeschwindigkeit in 10 m Höhe (frei angeströmt vor der Windenergieanlage) aufgezeichnet. Weiterhin wurde die Drehzahl

durch den Auftraggeber erfaßt und für die Auswertung zur Verfügung gestellt. Die Drehzahlerfassung ist erforderlich, da dieser Anlagentyp drehzahlvariabel betrieben wird. Unbrauchbare Zeiten, wie beispielsweise beim Auftreten von Störgeräuschen (vorbeifahrendes Auto, Regen), werden während der Messung gekennzeichnet. Die in diesen Zeiträumen aufgenommenen Daten werden nicht mit zur Auswertung herangezogen. Bei sehr häufig und regellos auftretenden Störgeräuschen, die parallel zur Messung nicht entsprechend markiert werden können, erfolgt eine nachträgliche Statuskorrektur der Rohdaten anhand eines Vergleiches mit der DAT-Aufzeichnung. Die Rohdaten werden um die korrigierten Datensätze reduziert.

Die Windenergieanlage befindet sich in der Umgebung von landwirtschaftlich genutzten Flächen, primär Weideland. Bei der Positionierung der schallharten Platte wurde darauf geachtet, daß der Umgebungseinfluß (Häuser, hochwachsende Vegetation) möglichst gering gehalten wurde. Die Bedingungen entsprechen dem freien Schallfeld über reflektierender Ebene.

Am Messtag wurden die in Tabelle 2 dargestellten, meteorologischen Bedingungen ermittelt.

Tabelle 2: Meteorologische Bedingungen während der Messzeit.

Luftdruck	1001 hPa
Lufttemperatur	7 °C
Luftfeuchtigkeit	80 %rel
Hauptwindrichtung	SW
Wetterlage	bedeckt, trocken

2.4 Verwendete Messgeräte

Zur Ermittlung der verschiedenen Messgrößen wurden die im Anhang dargestellten Geräte verwendet. Alle Messgeräte werden in den in der Technischen Richtlinie /1/ vorgegebenen Zeitabständen geprüft, um jederzeit eine einwandfreie Daten- und Messsicherheit zu gewährleisten.

Die gesamte akustische Messkette wurden mit einer Prüfschallquelle (B&K 4231) vor und nach der Messung kalibriert.

2.5 Anordnung der Messpunkte

Die Anordnung des Messpunktes wurde entsprechend der Vorgabe durch die Technische Richtlinie /1/ gewählt. Die Messung wurde mit einem Messpunktabstand von R_0 = 80 m durchgeführt.

3 Messergebnisse

3.1 Richtcharakteristik

Der Referenzmeßpunkt für die Schallmessung und die Auswertung wurde in Mitwindrichtung positioniert, da keine ausgeprägte Richtcharakteristik in der Geräuschabstrahlung der WEA festgestellt werden konnte. Durch diese Messanordnung wird die Schallausbreitung durch den Wind begünstigt und somit der "worst-case" berücksichtigt.

3.2 Schalldruckpegel

Alle zu messenden Daten werden kontinuierlich über den gesamten Messzeitraum aufgezeichnet. Störungen, die im Meßzeitraum auftreten (z.B. durch Flug- oder Verkehrslärm), werden schon während der Messung markiert; die in diesen Zeitraum anfallenden Daten bleiben bei der Auswertung unberücksichtigt. Es wird unterschieden zwischen Zeiträumen, in denen die Anlage in Betrieb und in denen sie abgeschaltet ist.

Weiterhin wird eine Fremdgeräuschkorrektur vorgenommen, bei der der Schalldruckpegel des Betriebsgeräusches energetisch um den Fremdpegel reduziert wird. Diese Korrektur erfordert zunächst die Bildung und Darstellung von Regressionen der gemessenen Schalldruckpegel bei laufender sowie bei abgeschalteter Anlage in Abhängigkeit von der Windgeschwindigkeit in 10 m Höhe. Die betreffenden Schalldruckpegel der Regressionen sind dann bei den relevanten Windgeschwindigkeiten festzustellen (s. Anhang 2). Die arithmetische Differenz der Regressionen stellt den Störabstand zwischen Betriebs- und Hintergrundgeräusch dar. Ebenfalls bei den relevanten Windgeschwindigkeiten wird der Betriebsschalldruckpegel energetisch um den Fremdgeräuschpegel reduziert und daraus der fremgeräuschkorrigierte Schalldruckpegel Laeque der WEA bestimmt. Da die Darstellung des Betriebsgeräusches einen inlinearen Verlauf zeigt und eine BIN-Analyse in diesem besonderen Fall nur ein Ausweichverfahren darstellt, wurde eine Regression 4. Ordnung verwendet, um ein Maximum an Genauigkeit der Funktionsnachbildung zu erreichen.

Es liegt eine im Windgeschwindigkeitsbereich der Geräuschvermessung vollständige gültige, gemessene Leistungskurve vor (s. Anhang), die bei der Auswertung der Windgeschwindigkeit verwendet wurde.

Hinweise: Die Messung ist im Sinne der Technischen Richtlinie /1/ als insgesamt vollständig anzusehen, da die erfassten Messwerte über einen ausreichend großen Bereich gleichmässig gestreut sind und somit auf das Verhalten der WEA über den gesamten relevanten Windgeschwindigkeitsbereich geschlossen werden kann.

Der aus der berechneten zur gemessenen Windgeschwindigkeit ermittelte Quotient beträgt k = 1,01. Abweichungen zwischen gemessener und berechneter Windgeschwindigkeit werden auf Beeinträchtigungen der in 10 m Höhe gemessenen Windgeschwindigkeit durch Geländestruktur und Vegetation zurückgeführt. Eine Prüfung sämtlicher Erfassungsgeräte hat deren einwandfreien Betrieb festgestellt. Ein Einfluß der Vegetation auf die gemessene Wirkleistung ist, wenn überhaupt messbar, als unbedeutend einzustufen. Da der Zusammenhang Windgeschwindigkeit und Leistung mit Hilfe einer Leistungskurve hergestellt wurde, wurde auf die Darstellung des Schalldruckpegels als Funktion der Wirkleistung und der gemessenen Windgeschwindigkeit verzichtet.

3.3 Immissionsrelevanter Schallleistungspegel

Der Schalleistungspegel wird aus dem fremdgeräuschkorrigierten Schalldruckpegel $L_{\text{Aeq,c}}$ für die relevanten Windgeschwindigkeiten in 10 m Höhe berechnet und aufgrund der Reflexionen (Schalldruckverdoppelung durch kohärente Interferenz) auf der schallharten Platte richtlinienkonform um 6 dB korrigiert (vgl. /2/).

Der Schalleistungspegel L_{WA} ergibt sich aus folgendem Zusammenhang:

$$L_{WA} = L_{Aeq,c} - 6dB + 10 \cdot \log(4\pi \cdot \frac{R_i^2}{1m^2})dB$$

$$R_i = \sqrt{(R_o + d)^2 + (H - h_A + h_E)^2}$$

In Anhang 2 ist die Regressionsanalyse der 1-min-Mittelwerte des Schalldruckpegels in Abhängigkeit der berechneten Windgeschwindigkeit dargestellt.

Der Regressionsanalyse liegen 1-Minuten-Mittelwerte aus den gemessenen Schalldruckpegeln und der über die Leistungskurve bestimmten Windgeschwindigkeit zugrunde.

Für die E40/6.44 ergeben sich in der vorliegenden Konfiguration die in Tabelle 3 dargestellten, immissionsrelevanten Schalleistungspegel.

Tabelle 3: Immissionsrelevanter Schalleistungspegel als Funktion der berechneten WG

WG in 10 m Höhe [m/s]	6	7	8	9	10 ¹
Schalleistungspegel L _{WA,P} [dB]	96,4	98,3	99,6	100,7	100,8

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

3.4 Impulshaltigkeit

Die Impulshaltigkeit der Geräuschabstrahlung wird nach den Vorgaben der DIN 45645 T1 /3/bestimmt. Der Beurteilungszeitraum ist hierbei gleich dem Messzeitraum bei laufender WEA mit Windgeschwindigkeiten zwischen 5,5 und 10,5 $^{\rm m}/_{\rm s}$. Die Differenz aus dem über diesen Zeitraum gemittelten Taktmaximalmittelungspegel ($L_{\rm AFTm}$) und dem entsprechend gemittelten äquivalenten Dauerschallpegel ($L_{\rm eq}$ oder $L_{\rm AFm}$) ergibt den **unbewerteten** Impulszuschlag $K_{\rm IN,\,u}$.

Die DIN 45645, Teil 1 /3/ empfiehlt, den Impulszuschlag erst bei einem berechneten Wert von $K_{\text{IN},\,u}$ > 2 dB aufzuschlagen. Daraus resultiert der **bewertete** Impulszuschlag für diese WEA im Nahfeld (s. Tabelle 4).

Tabelle 4: Impulshaltigkeitszuschläge gemäß DIN 45645, Teil 1 /3/.

WG in 10 m Höhe [m/s]	6	7	8	9	10 ¹
bewerteter Impulshaltigkeitszuschlag [dB]	0	0	0	0	0

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

Hinweis: Die ermittelte Impulshaltigkeit ist nicht unmittelbar auf den Fernbereich übertragbar.

3.5 Pegel von Einzelereignissen

Einzelereignisse - z.B. das Anfahren oder Abschalten der Anlage - sollen den Mittelungspegel des Schalldruckes bei den relevanten Windgeschwindigkeiten nicht um mehr als 10 dB überschreiten.

Bei dieser Anlage wurde keine Überschreitung festgestellt.

3.6 Tonhaltigkeit und Frequenzanalysen

Das auf der schallharten Platte gemessene Geräusch wird mit dem FFT-Analysator B&K 2144 schmalbandig auf seine Frequenzzusammensetzung analysiert. Die Analyse wird nachträglich von den auf DAT-Recorder aufgezeichneten Geräuschen durchgeführt. Zur Beurteilung der Tonhaltigkeit von drehzahlvariablen Windenergieanlagen wurden richtlinienkonform für die Windgeschwindigkeitswerte 6, 7, 8, 9 und 10 m/s (bzw. 95% der Nennleistung) jeweils 12 Spektren zu jeweils 10 s herangezogen. Für jedes Spektrum wird eine Tonhaltigkeitsanalyse durchgeführt.

In dem breitbandigen Geräusch der E40/6.44 treten tonale Frequenzen in verschiedenen Bereichen auf. Für die Analyse nach Technischer Richtlinie /1/ ergeben sich die in Tabelle 5 dargestellten Tonhaltigkeitszuschläge als Funktion der Windgeschwindigkeit.

Repräsentative Spektren des Betriebsgeräusches, die für die Tonhaltigkeitsanalyse zugrunde gelegt wurden, sind in Anhang 3 festgehalten. Es liegen weitere tonale Linien im Frequenzspektrum der E40/6.44 vor, welche aber aufgrund ihrer geringeren Intensität als nicht relevant im Sinne der Norm gelten. Eine Tonhaltigkeitsanalyse dieser Linien ist daher nicht erforderlich.

Tabelle 5: Tonhaltigkeitszuschläge gemäß Technischer Richtlinie /1/ bzw. EDIN 45681 /3/ .

WG in 10 m Höhe [m/s]	6	7	8	9	10 ¹
Tonhaltigkeitszuschlag [dB]	0	0	0	0	0

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

Hinweis: Die ermittelte Tonhaltigkeit ist nicht unmittelbar auf den Fernbereich übertragbar.

3.7 Oktavanalyse

In Tabelle 6 sind die A-bewerteten Schalleistungsspektren für die immissionsrelevanten Windgeschwindigkeiten von ca. 8 und 10 m/s (bezogen auf 10 m Höhe) dargestellt. Abweichend von der gültigen Fassung der Technischen Richtlinie wurde mit Bezug auf die Anwendung in frequenzabhängigen Ausbreitungsrechnungen gemäß EDIN ISO 9613-2 eine Darstellung als Oktavspektrum gewählt.

Tabelle 6: A-bewertete Oktavspektren bei unterschiedlichen Windgeschwindigkeiten

f [Hz] L _{AF} [dB]	31,5	63	125	250	500	1000	2000	4000	8000	energet. Summe
bei 8 m/s	71,4	81,0	86,4	91,8	95,6	94,0	88,3	82.9	71.8	99.6
bei 10 m/s ¹	73,8	83,0	88,5	93,0	96,9	95,0	89,3	83,9	72,9	100,8

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

3.8 Messunsicherheit

Durch die Art der Umgebung und die meteorologischen Bedingungen sowie durch die Messkette unterliegt das Messergebnis für den Schalleistungspegel einer Messunsicherheit. Für diese Messung wurde eine Messunsicherheit bezüglich des Schalleistungspegels $L_{WA,P}$ inkl. aller Zuschläge festgestellt von

$$s_{tot} = 1.5 dB.$$

4 Umrechnung der Schallleistung auf andere Nabenhöhen

Gemäß den Bestimmungen der Technischen Richtlinie /1/ kann eine Umrechnung der Schallleistung auf andere Nabenhöhen erfolgen, sofern sie gleichen Typs und gleicher Turmart sind. Bei der Umrechnung der akustischen Parameter muß beachtet werden, daß bei größeren Änderungen insbesondere bei Stahlrohrtürmen bei vorliegender Tonhaltigkeit eine direkte Umrechnung nicht erfolgen kann, da durch veränderte geometrische Verhältnisse des Turms sich auch andere akustische Eigenschaften ergeben. D.h Tonhaltigkeiten können sich sowohl verstärken als auch abschwächen durch diese Veränderung, was sich positiv oder negativ auf das Immissionsverhalten der Anlage auswirken kann.

Tabelle 7: Umrechnung der Schallleistung auf andere Nabenhöhen

Nabenhöhe	L _{WA} 6 m/s	L _{WA} 7 m/s	L _{WA} 8 m/s	L _{WA} 9 m/s	L _{WA} 10 m/s ¹
[m]	[dB]	[dB]	[dB]	[dB]	[dB]
46	95,4	97,8	99,2	100,3	100,5
50	95,7	98,0	99,3	100,4	100,6
58	96,1	98,2	99,5	100,6	100,8
78	96,8	98,6	99,9	100,8 ²	

bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe
 2 95% der Nennleistung bereits bei 9 m/s in 10 m Höhe erreicht

Bemerkung:

Der Schalleistungspegel für die 10 m/s Windklasse ändert sich nicht, da die errechneten Windgeschwindigkeiten oberhalb der 95% - Grenze liegen, d.h. die Anlage It. gültiger Leistungskurve dann bereits im Nennleistungsbereich liegt. Die in der Tabelle 7 aufgeführten Werte gelten nur für die baugleiche Anlagen des vermessenen Typs.

5 Zusammenfassung und Bewertung

Im Auftrag der Enercon GmbH, 26605 Aurich, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA Enercon E40/6.44 mit einer Nabenhöhe von $h_N = 65$ m nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichlich des Schallleistungspegels ist die DIN 61400-11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 T1 /3/ Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die Enercon E40/6.44 die in Tabelle 7 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich..

Tabelle 7: Schalleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

WG in 10 m Höhe [m/s]	6	7	8	9	10 1
Schalleistungspegel L _{WA,P} [dB]	96,4	98,3	99,6	100,7	100,8
bewerteter Impulshaltigkeitszuschlag [dB]	0	0	0	0	0
Tonhaltigkeitszuschlag [dB]	0	0	0	0	0

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

Bezüglich des Schallleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge festgestellt worden von:

$$s_{tot} = 1,5 dB.$$

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, daß das Gutachten gemäß dem Stand der Technik unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

Schallvermessungen GE Wind 1,5sl

Messung 1 Messung 2 Messung 3	103,9 dB(A) KCE 32106-1.002 103,7 dB(A) KCE 25574-1.002 104,5 dB(A) WICO 286SEA01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	104,03 dB(A) 0,42 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,64 dB(A)
1,28*Sigma ges	2,09 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	106,13 dB(A)

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendate	n																
Hersteller	H	oisterf	i Energ eld 16 Salzbe	y Gmbl rgen	1			N	Anlagenbezeichnung Nennleistung Nabenhöhe Rotordurchmesser				GE Wind Energy 1.5s 1500 kW 85 m 77 m				
			•	.Messu	ng'	T	2.Me	ssung			Messu		/ m				
Seriennummer				150003	92		1500336				150032		_				
Standort vermessene Na			Neuenfeld			Coppe	nbrügg	e		Klocko		1					
Meßinstitut	apenn	опе		100 m		_		5 m	100								
Prüfbericht			VATT			.		TTER			ND-cor		7				
Meßdatum		KÖTTER 32108-1.002 13./22.04.2001			2 1	OTTER 2		1.002		0 2865		1					
Getriebe		G44900xCPNHZ-195si			. 6	29.0: 4900xC	5.2001			1.10.20							
Generator		DASAA5023-4UB			1	JFRA50					HZ195sl						
Rotorblatt		LM 37.3P				37.3P	'^		AA5023								
Schallemission	spara	meter		LIN 01.0	4		CIVE.	31.35			M 37.3	Ρ					
Wind-	-			C-L-II								_					
geschwindigke in 10m	it			Schalle I	Stungs	pegel				rgetisc littelwer		Standa Abweicl		na	K ch /2/		
Höhe		1. Mes	ระบาฐ	2. N	lessun	g	3. Mess	sung		ï.,,			s***		σ _R = 0,5 (0,5 dB
6 m/s			dB(A)	102	.0 dB	(A)	102,6	dB(A)	10	102,2 dB(A)		0.4 dB(A)		1,2 0	B/A)		
7 m/s 8 m/s		103,5			,3 dB		104.3	dB(A)	10	103,7 dB(A)			dB(A)		B(A)		
8.5 m/s	- 1		dB(A)		.7 dB(104,5	dB(A)		104,0 dB(A)			dB(A)	1,2 d			
रुपा ८,०	4	103,9	dB(A)		.7 dB(104,5	dB(A)	10	4,0 dB	(A)		dB(A)	1,2 d	B(A)		
					uschlag CTN :	3**				rgetisci ittelwer		Standard- Abwelchung		Κ,			
										ī		S***					
6 m/s		0 dB	Hz	0 0	-	tr	0 dB	Hz	1 -	1.4 d	в	0.9	dB	1.8	dB		
7 m/s 8 m/s	1	2 dB	164 Hz	0 0	-	- 1	0 dB	HE		0,1 d	в	3,1	dB	5,9	₫₿		
8.5 m/s		2 dB	166 Hz		B 164 11	- 1		150 Hr	į.	3,1 d	- 1	0,9	d8	1,7	dB		
0,011.03	+	k. A.	i	10	_		2 dB 1	66 MZ		1.9 d		1,1	dB	2,1	₫B		
		lmpulszuschiag KIN :				ag				Energetischer Mittelwert							
6 m/s	ı		18		0 dB		0 0	B	T	0 dB							
7 m/s 8 m/s			18		0 dB		0 6	IB	1	0 dB			ļ				
8.5 m/s			IB		0 dB			B	1	0 dB							
0,01105		8b 0 8b 0			0 0	18		0 dB									
Terz-S	challe	istung:	spegel	(energe	tisches	Mittel	aus 3 M	lessur	igen) R	eferenz	ounkt v	/ ₁₀ = 8 m	s" in c	B(A)			
requenz	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500	630		
WA, P	65,1	70,7	72,4	76,3	80,2	82,8	85,4	87,6	94,1	91,3	92.7	94.2	93.6	93.2	93.1		
VA.P		75,1			85,3		1	95,4	·	1	97.7	1 - 12	1	98.1	33,1		
requenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500		20000		
VAP	93,4	92,7	92,0	90,9	89,2	86,8	84.8	83,3	80,6	78.9	74,0	75,2	80,2	70,2	59,1		
VA P		97,5		L	94,0			88.0			81,3		†	80.6			
Terz-Sci	nalleis	tungs	oegel (e	nergeti	sches I	Vittel a	us 3 Mo	ទនបរាទ្	en) Re	erenzpi	ınkt v.	= 8,5 m	15 ⁻¹ in (IB(A)			
equenz	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500	630		
(A.P	64,3	70,3	72.3	76.5	80.6	83.4	85.8	88.0	04.2	01.6	00.7	1	00.5	1			

94,2 81.5

76.5 80.6 83.4

85 8

1600 2000 2500

91,0 89,2 87,1

Die Angaben ersetzen nicht den o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).
Bemerkungen: * Die Schalleistungspegel sind auf die Nabenhöhe von h_k= 85 m entsprechend den Prüfberichtsauszügen umgerechnet worden.

Es wird drauf hingewiesen, daß die Werte für die Tonhaltigkeit <u>nicht</u> ausschließlich bei der Nabenhöhe h_N=85 m bestimmt wurden und so nicht unmittelbar auf umgerechnete Nabenhöhen übertraobar sind.

85,8 88,0 94,2

95.6

85,2 83,9 81,0

Ausgestellt durch: WIND-consult GmbH

800

Reuterstraße 9 D-18211 Bargeshagen

64.3 70.3 72.3

97.3

1000 | 1250

92,3 91,9

Datum: 12.07.2002

LWAP

WA P

LWAP

requenz

97,7

3150 | 4000 | 5000 | 6300 | 8000 | 10000 | 12500 | 16000 | 20000

91,6 92,7

79.1

94,1

73,9 75,4 80,5

98.0

93,1 93,0

70,3 58,9

93.6

Unterschrift Dipl.-Ing. R. Haevemick Dipl.-Ing. J. Schwabe

DAP-PL-2756.00 Nach DIN EN ISO/IEC 17025 durch die DAP Deutsches Akkreditierungssystem Prüfwesen GmbH akkreditiertes Prüflaboratorium.

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Page

26 of 28

Document:

1.5sl_SCD_allComp_SLPxxxxx

Originator: Revision:

Andreas Petersen

© 2003 GE Wind Energy. All rights reserved.

Schallvermessungen Nordex N90

Vollleistungsbetrieb

Messung 1 Messung 2 Messung 3	103,0 dB(A) WICO 063SE204/01 103,7 dB(A) WICO 274SE604/01 103,2 dB(A) WT 4205/05
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	103,30 dB(A) 0,36 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,62 dB(A)
1,28*Sigma ges	2,08 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105 38 dB(A)

Erstellt: Gr 18.08.2004 Geändert: Gr 05.02.2007

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von **mindestens drei** Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Hersteller	NORDEX Energy GmbH Bornbarch 2 D-22848 Norderstedt		Anlagenbezeichnung Nennleistung Näberihölfe	NORDEX N90 2300 kW
	1	Messung Nr.	rotordarctimesser	 90 m
Seriennummer Standort Vermessene Nabenhöhe Meßinstitut Meßbericht Berichtsdatum Getriebetyp Seneratortyp Rotorblatt	8098 Gut Losten, WEA 4 80 m WIND-consult WICO 063SE204/01 10.05.2004 CPNHZ-244 JFWA-560MQ-06A LM 43.8 P	8107 Gut Losten, WEA 3 80 m WIND-consult WICO 274SE604/01 09.12.2004 PZAB 3450 JFWA-560MQ-06A LM 43.8 P	8127 Schliekum, WEA 5 100 m WINDTEST KWK WT 3989/05 14.02.2005 CPNHZ-244 JFWA-560MQ-06A LM 43.8 P	

	<u>~n</u>			The state of the s
Messung Nr.		Standardisierte Windg	eschwindigkeit in 10 m ü	.G.
1	6 ms ⁻¹ 101,0 dB(A)	7 ms ⁻¹	8 ms ⁻¹	8,11 ms ⁻¹
2 3_ littelwert L _w	101,7 dB(A) 102,0 dB(A)	102,2 dB(A) 102,9 dB(A) 102,9 dB(A)	103,0 dB(A) 103,7 dB(A) 103,2 dB(A)	103,0 dB(A) 103,7 dB(A)
tandardabweichung s	101,6 dB(A)	102,7 dB(A)	103,3 dB(A)	103,2 dB(A) 103,3 dB(A)
esamtstandardabweichung	0,51	0,40	0,36	0,36
J _R = 0.5 dB)	0,83 dB	0,74 dB	0,71 dB	0,71 dB
90%	1,1 dB	1,0 dB	0,9 dB	0.9 dB

Messung Nr.	Standardisierte Windgeschwindigkeit in 10 m ü.G.							
	6 ms ⁻¹	7 ms ⁻¹	8 ms ⁻¹					
1	0 dB bei - Hz	0 dB bei - Hz		V _{10,95%PNenn}				
2	0 dB bel - Hz	0 dB bei - Hz	0 dB bei - Hz	0 dB bei - Hz				
3	0 dB bei - Hz	0 dB bei - Hz	1 dB bei 106 Hz	0 dB bei - Hz				
		O OB Det - HZ	0 dB bei - Hz	0 dB bei - Hz				

Schallleistungspegel Enercon E53

Vollleistungsbetrieb

100,9 dB(A) M	69915/2
---------------	---------

Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	100,90 dB(A) 1,22 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	2,00 dB(A)
1,28*Sigma ges	2,56 dB(A)

Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges) 103,46 dB(A)

Auszug	aus de	em Prii	fheric	ht									
Stammbla	tt "Gerāu	sche", en	tspreche	nd den "T	echnisc	hen Rich	tlinien fil	r Windon	orgioani	lanan			
THE T. DUS	summung	aer Scna	ailemissk	onswerte'	•					agen,			
Rev. 17 vom (01. Juli 2006	(Herausgeb	er: Förderge	esellschaft W	indenergie	a.V Strese	nannniair 4	T-24103 K	7-11				
			1	Auszug au	is dem F	rüfberich	1 M69 9	15/2	101)				
	zur Sch	nallemissi	on der V	Vindenerg	ieanlag	vom Tv	n Enerce	10/2 10/2					
Aligemeine A	Ingaben			***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			(Hersteller	h\				
Anlagenhers		Enei	con Gmbi	4			stung (Ge		angabeni	000.1		······	
			kamp 5				rchmesse				W (Betneb	F)	
		2660	5 Aurich				öhe über (53 m			
Seriennumm		5300)1			Turmba		alting.		76 m Rohrti			
WEA-Stando	rt (ca.).	RW:	34.22.	.780		Material				Hohrti Stahi	บเบา		
		HW:	59.40.	.691			Isregelung	,					
rganzende D	Daten zum I	Rotor (Hers	tellerangal	ben)					enerator /	pitch erator (Herstellerangaben)			
Rotorblatther			con Gmbl-			Getriebe	hersteller	ieue uin. c	eueraror /	merstellera	ngaoen)		
Typenbezeich	nung Blatt:	E53/	1			1		Getriebe					
Blatteinstellw	inkel:	varia	bei				orherstelle						
Rotorblattanz		3						Generator	Enercon GmbH E-53				
Rotordrehzan		12 -	29 min-1 ((Betrieb I)			rennennd			12 29 min-1 (Betrieb I:			
Prüfbericht zu	ur Leistungs	skurve:		GmbH: Ber	echnete L	eistungsku	rve der F-	53 vom Fel	ouar 2007	16 .	sa mus. (c	semen i;	
			T					missions-	T Zuur				
	Referenzpunkt			nzpunkt			ameter		Bem	erkungen			
			lardisierte chwindigkeit	Elek	tusche								
		-		m Höhe	Wirk	eistung			1				
				5 m/s	220.	kW	93.	3 dB(A)	†			• • • • • • • • • • • • • • • • • • • •	
				6 m/s	377.9	kW	ł	7 dB(A)	1				
				7 m/s 591 i			1	2 dB(A)	1				
Schalleis	dungs-Pegel	Lwan	8 m/s 746 i				1	S oB(A)	1				
			,	9 m/s	793.1 kW		100,9 dB(A)						
			10	0 m/s	810	kW	100,6 dB(A)						
			8,3	3 m/s	760,0	kW	100,7 dB (A)				:1;		
			:	5 m/s	220,1	kW		- dB	 		11:		
			١ ،	5 m/s	377,9		dB						
Tonnischla	g lür den Nat		7	7 m/s	591	kW	- dB						
Ownschief	g iur den nar K _{rn}	nbereich	۱ ا	3 m/s		kW	}	· dB					
			4) m/s	793.1			- dB	1				
			ı	m/s	810		i	- dВ - dВ	l				
			i	m/s	760.0		l	q8					
				m/s	220,1		ļ ———	Qt5	 		10		
			!	m/s	377,9			dB					
			ľ	m/s	591			- αB					
Impulszuschia	ag für den Na K _{in}	shbereich		m/s	746			dB.					
^ <i>m</i>				mis	793.1			dB	ļ				
				m/s	810			dB					
			-	m/s	760.0			dB		140			
		Te		istungspege				uo .			11		
equenz	50	63	80	100	125	160	200	250	315	400	500	630	
NA.P. Ing	76,6	78.0	80,4	83,0	84,7	87,8	86,5	87,8	88,0	87.4	89.4		
equenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	89.1	
VA.P.Tesz	90,6	91,2	91,6	90,8	89.5	87,6	83,9	82,9	79,9	75,8	70.1	10000	
	·	Okt	av-Schallie	istungspege	i Referenz	punkt v ₁₀ ≖	9 m/s			1		1 04,6	
equenz	63	125	250	500	1000	2000	4000	8000					

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 14,3,2007. Die Angaben ersetzen nicht den o.g. Prüfbericht M69 915/2 vom 10,4,2007 (insbesondere bei Schallimmissionsprognosen)

Bemerkungen:

[1] Der Schallleistungspegel bei 95%iger Nennleistung wurde bei Berücksichtung der Umgebungsbedirigungen am Messtag, der verwendeten Leistungskurve und der vermessenen Nabenhöhe bei einer stand. Windgeschwindigkeit von 8.3 m.s. 'estgestellt

Gemessenen von:

Müller-BBM GmbH

Niederlassung Gelsenkirchen Am Bugapark 1

D-45 899 Gelsenkirchen

MÜLLER-BBM GMBH

NIEDERLASSUNG GELSENKIRCHEN A M B U G A P A R K 1 45899 GELSENKIRCHEN TELEFON (0209) 9 83 08 - 0

Datum:

10.04.2007

Dipl.-Ing. (FH) D. Hinkelmann

Dipl.-Ing. (FH) M. Könl

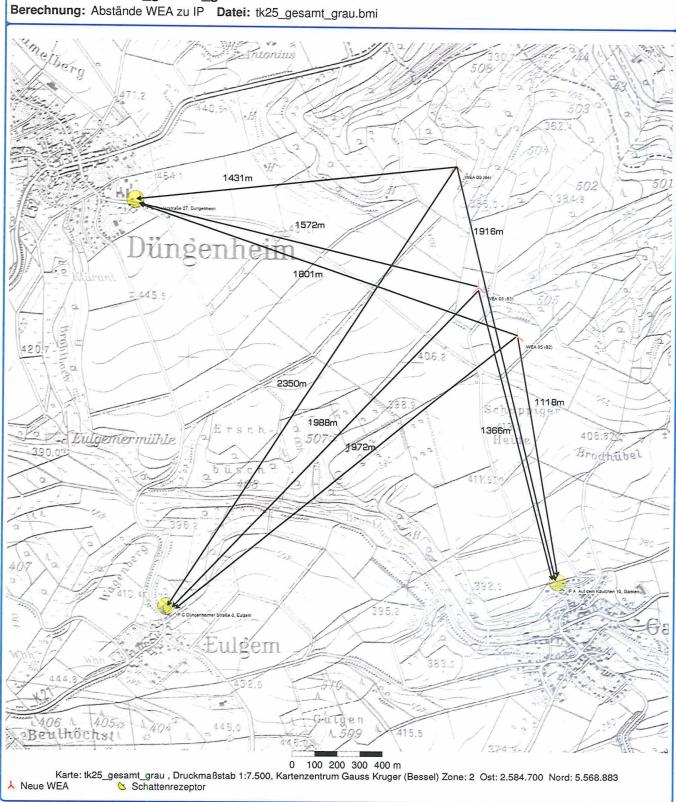
challemiss.

toniormitates

according to ISO/IEC 17025

Accredited Test Laboratory

Projekt:


Ga3_2010.01_Schall_Schatten

Beschreibung:
Abstände WEA zu IP

25.01.2010 17:18 / 1 ENP Erneuerbare Energien Projektentwicklungsgesell. m Rehmstraße 98 e DE-49080 Osnabrück

+49 541 6687 259 25.01.2010 17:14/2.5.7.84

BASIS - Karte: tk25_gesamt_grau.bmi

	The state of the s
7	The state of the s
1 von	
Seite '	
- Zell -	
reis Co	
in K	
Vorbelastung	
ücksichtigende \	

Wichtig: Die vorgegebehen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!

Beantragte Windkraftanlagen (Zusatzbelastung)

135 K	Gamlon	Co			17 017	0-1-0-0								
100	daillei	70	Garmen	Ç	150,15	2585452	5569132 387,5	387,5	Vestas	06/	105	0	2000	103
135 K	Gamlon	co		ı	00,					200	202	20	2000	3
2001	dalliell	gg	Gamlen	ç	163	2585274	5569344	391.3	Vestas	790	105	00	0000	400
105 1	Compo	70	-		1				0000	200	20	200		5
V 001	dalliell	84	Gamlen	S	193	2585161	5569883	370.1	Vestas	06/	105	O	0000	50
Althonaciohon		C200 // WIG	00007.						2000	200	20		2000	3
ANIENZEICH		BIV-R 086//2003	/2003											
Bauvorhaben	en:	Errichtung	irrichtung von 3 WEA											
Ort:		Gamlen												
										Vontacioison I	7-1-1			
Gemarkung:		Gamlen								Windkraffanlagen Anlage Nr. 6.0 Confinence	der Betrieb	Speschi	elbung ti	ב
Bauherr:		ENP								Petriahahasahaihing Aplaga 2 Blatt 1	sit Alliage IV	20.00.1	erauscne	SILLIS

issionen der pernepspeschreibung Anlage 3 Blatt 1

Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen)

Eintra	intragung Antragsteller								Eintragung in Abstimmur Bauleitplanungsbehörde	Eintragung in Abstimmung mit der zuständigen Bauleitplanungsbehörde
1	Ort	Straße/Hausnummer		Flurstück	Flur Flurstück Gemarkung	Rechtswert	Носһwед	Immissions- richtwert nachts	Ausweisung nach BauNVO	Bebauungsplan, wenn vorhanden, ansonsten Flächennutzungsplan
<	Gamlen	Auf dem Käulchen 10	9	89/2	Gamlen	2.585.658	5.568.033	40 dB(A)	MM	RECOUNT OF US OF IN
m	Düngenheim	Töpferstr. 27	80	105	Düngenheim	2.583.740	5.569.697	45 dB(A)		F 1.00 may work
00 1 1 0 1 - > ×	Eulgem	Düngenheimer Str. 6	4	43	Eulgem	2.583.925	5.567.8	45 dB(A)	:Σ.	5/1/5
Wichtig	r Die Immissionsaufpunk		- und Sc	haftenprogn	osen vorzusehen	und im Lageplar	ı zu vermerken		Bauleitp	Bauleitplanungsbehörde
Ort un	id Datum: 0	Ort and Datum: Becabinity, 23 Ad. 2009	80			X			Hat vorgelegen Kwszrzszl., 02 og us	808
Unters	Unterschrift Antragsteller:							18	Datum, Unterschriff u	ا الله الله الله الله الله الله الله ال

Anhang:

Lageplan Maßstab 1:5000 mit Darstellung der Abstände WKA zu den Immissionsaufpunkten

BIM-K 0867/2003 Neubau von 5 WEA Gamlen

Gamlen ENP GmbH

Gemarkung: Anfraasteller:

Aktenzeichen: Vorhaben: Ort: