Schallimmissionsprognose E82

Aligemeines und Aufgabenstellung	2
Grundlagen und Voraussetzungen	3
Immissionsorte und mögliche Vorbelastungen	3
Ausgangsdaten der Berechnung	4
Ermittlung der Vorbelastung	6
Ermittlung der Zusatzbelastung	7
Ermittlung der Gesamtbelastung	8
Beurteilung und Vergleich mit den Richtwerten	9
Qualität der Prognoserechnungen	10
Anhang	19

Schallimmissionsprognose E82

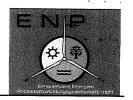
Allgemeines und Aufgabenstellung

Die vorliegende Schallimmissionsprognose ermittelt die zu erwartende Lärmbelastung durch den Neubau von 5 Windenergieanlagen [WEA] nordöstlich der Gemeinde Gamlen. Die Berechnung basiert auf der TA-Lärm vom 26. August 1998.

Die ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien", Teil 2. beschreibt die Ausbreitungsberechnung des Schalls im Freien. Für die Schallausbreitung der Geräusche von Windkraftanlagen wird die alternative Methode verwendet, da die folgenden Vorrausetzungen erfüllt sind:

- Nur der A-bewertete Pegel ist von Interesse
- Der Schall sich überwiegend über porösem Boden ausbreitet
- Der Schall kein reiner Ton ist.

Die von den einzelnen Windenergieanlagen erzeugten Geräusche (Emissionen) werden in Bezug auf ihre Wirkung in schallkritischen Gebieten untersucht (Immission = Einwirkung an einem bestimmten Ort).


Dabei wird angenommen, dass eine Windgeschwindigkeit von 10m/s [= 36km/h] auf einer Höhe von 10m über Grund herrscht und die WEA jedoch nicht mehr als 95% ihrer Nennleistung erreicht.

Bei der Beurteilung der nach TA-Lärm zulässigen Richtwerte sind die für die Nachtstunden angegebenen Richtwerte maßgeblich, da die Windenergieanlagen im 24-Stunden-Betrieb arbeiten.

Tabelle 1: Immissionsrichtwerte nach TA Lärm

Gebiete nach BauNVO	tags	nachts
	dB(A)	dB(A)
Industriegebiet	70	70
Gewerbegebiet	65	50
Kerngebiet, Mischgebiet, Dorfgebiet	60	45
Allgemeines Wohngebiet,	55	40
Kleinsiedlungsgebiet		-
Reines Wohngebiet	50	35
Kurgebiet, Klinikgebiet	45	35

Schallimmissionsprognose E82

Grundlagen und Voraussetzungen

Immissionsorte und mögliche Vorbelastungen

Zur Festlegung der potenziell schallkritischen Immissionsorte und zur Berücksichtigung möglicher Vorbelastungen wurden zunächst die topografischen Karten im Umkreis von etwa 3 km um die geplanten Anlagenstandorte gesichtet. Dem folgte die Sichtung aktueller Bebauungspläne umliegender Ortsgemeinden. Mit einer ersten Schallimmissionsprognose, die nur die fünf beantragten WEA als Schallquelle berücksichtigt, wurde dann der Einwirkungsbereich (mögliche I-Punkte mit einer Belastung ≤ 10 dB(A) Abstand zum Richtwert) nach **Anhang 2** (Karte mit Isophonlinien) ermittelt und im Ergebnis die Immissionsorte gemäß Tabelle 2 festgelegt.

Bei einer Vorortbegehung am 14.12.2006 wurden die relevanten Immissionsorte und ihre Umgebung besichtigt. Es konnten <u>keine</u> weiteren gewerblichen Anlagen oder sonstige relevante Lärmquellen identifiziert werden.

Tabelle 2: Immissionspunkte mit Richtwerten (s. Anhang 4)

Immissionsaufpunkt	Beschreibung
IP A Auf dem Käulchen 10, Gamlen	Wohnhaus in einem Wohngebiet
IP B Töpferstr. 27, Düngenheim	Wohnhaus in einem Mischgebiet
IP C Düngenheimer Str. 6, Eulgem	Wohnhaus in einem Mischgebiet

Zur Bestimmung der genauen Positionen von Immissionsorten und Windenergieanlagen wurden der Auszug 55.8264B aus der Liegenschaftskarte des Vermessungs- und Katasteramtes Daun sowie die Topographische Karten (TK25) Blattnummern 5708, 5709, 5808 und 5809 des Landesamtes für Vermessung und Geobasisinformationen Rheinland-Pfalz verwendet.

Das Höhenprofil des Untersuchungsraumes wurde mit Hilfe eines digitalen Geländemodells berücksichtigt:

Projekt:

Gamlen GA3

Titel

Schallimmissionsprognose E82

Ausgangsdaten der Berechnung

Im betrachteten Untersuchungsraum sind insgesamt 25 WEA mit 8 verschiedenen Typenvarianten zu berücksichtigen.

Für die WEA Enercon E82 liegt eine Schallvermessung vor. Für alle anderen Typen wurden die Ergebnisse aus 3 Schallvermessungen dieser Immissionsprognose zugrunde gelegt [s. Anhang 7].

Tabelle 3: Schallleistungspegel und Standardabweichungen der WEA

Hersteller	Тур	Vermessener Schallleistungspegel (Vermessungen nach FGW- Richtlinie)	Standardabweichung
Enercon	E 82	103,40dB(A)	1,22dB(A)
Enercon	E 40/6.44	100,53dB(A)	0,38dB(A)
Enercon	E 66/18.70	102,90dB(A)	0,17dB(A)
Enercon	E 70/E4	101,83dB(A)	0,21dB(A)
General Electric	GE 1,5 sL	104,03dB(A)	0,42dB(A)
NEG-Micon	NM82/1500	102,50dB(A)	1,67dB(A)
Nordex	N90	103,30dB(A)	0,36dB(A)
Vestas	V52	103,2dB(A)	0,46dB(A)

Zur Berücksichtigung von Unsicherheiten bei der Prognoserechnung wird der Emissionswert jeder WEA mit einem Sicherheitsaufschlag σ_{ges} versehen. Dieser setzt sich zusammen aus:

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{PROG}^2}$$

mit:

 $\sigma_{R} =$

Standardabweichung des Messverfahrens = 0,5dB(A) für alle

Anlagen, die nach FGW-Richtlinie (beinhaltet Anforderungen der DIN

61400-11) vermessen wurden, sonst 1,5dB(A)

 $\sigma_P =$

Produktstandardabweichung = Standardabweichung der Messwerte s

[bei mindestens 3 Vermessungen] oder pauschal 1,22 dB[A]

 $\sigma_{PROG} =$

Prinzipielle Unsicherheit des Prognosemodells = 1,5 dB[A]

Die der Schallimmissionsprognose zugrunde gelegten Emissionswerte sind im Sinne der Statistik Schätzwerte. Um eine Irrtumswahrscheinlichkeit von max. 10% der berechneten Immissionswerte zu gewährleisten wird der Sicherheitsaufschlag $\sigma_{\rm res}$ mit der

Erstellt:

Dipl.-Ing. Groß 23.02.07

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

mbH


Rev.:

Geprüft:

Dipl. Ing. (FH) Höhler 23.02.07

Seite 4 von 12

Schallimmissionsprognose E82

Standardnormalvariable 1,28 multipliziert. Damit ergeben sich die immissionsrelevanten Schallleistungspegel der einzelnen WEA zu:

$$L_{WEA,\sigma} = L_m + 1,28 * \sigma_{WEAges}$$

im einzelnen also:

$$L_{E82,\sigma} = 103,40dB(A) + 1,28*\sqrt{0,5^2 + 1,22^2 + 1,5^2} = 105,96dB(A)$$

$$L_{E-40/6,44,\sigma} = 100,53dB(A) + 1,28*\sqrt{0,5^2 + 0,38^2 + 1,5^2} = 102,61dB(A)$$

$$L_{E-66/18,70,\sigma} = 102,90dB(A) + 1,28*\sqrt{0,5^2 + 0,17^2 + 1,5^2} = 104,94dB(A)$$

$$L_{E70/E4,\sigma} = 101,83dB(A) + 1,28*\sqrt{0,5^2 + 0,21^2 + 1,5^2} = 103,87dB(A)$$

$$L_{GE1,5sl,\sigma} = 104,03dB(A) + 1,28*\sqrt{0,5^2 + 0,42^2 + 1,5^2} = 106,13dB(A)$$

$$L_{NM82,\sigma} = 102,50dB(A) + 1,28*\sqrt{0,5^2 + 0,42^2 + 1,5^2} = 105,44dB(A)$$

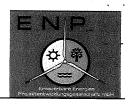

$$L_{N90,\sigma} = 103,30dB(A) + 1,28*\sqrt{0,5^2 + 0,36^2 + 1,5^2} = 105,38dB(A)$$

$$L_{V52,\sigma} = 103,20dB(A) + 1,28*\sqrt{0,5^2 + 0,46^2 + 1,5^2} = 105,31dB(A)$$

Mit den so ermittelten Emissionspegeln wird im Folgenden die Prognoserechnung durchgeführt.

Der Tonzuschlag für den Nahbereich und der Impulszuschlag für den Nahbereich liegen gemäß Vermessungsprotokollen bei allen WEA Typen unter 2dB (Emissionswert). Gemäß Empfehlungen des Arbeitskreises Windenergie vom Oktober 1999 ist bei Entfernungen über 300m am Immissionsort ein Tonzuschlag zu berücksichtigen, wenn der Emissionswert des Ton- oder Impulszuschlags > 2dB liegt. Dies ist hier nicht der Fall.

Schallimmissionsprognose E82


Ermittlung der Vorbelastung

Zur Ermittlung der Vorbelastung wurde eine detaillierte Immissionsprognose mit allen 20 von der Bauaufsichtsbehörde genannten WEA durchgeführt, die zeitlich vor den hier zu untersuchenden Anlagen beantragt wurden bzw. errichtet sind. Damit erhält man als Ergebnis:

Tabelle 4: Vorbelastung durch beantragte bzw. genehmigte WEA [s. Anhang 1]

Immissionsaufpunkt	Immissionsricht-	Obere	Überschreitung			
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags		
IP A Auf dem Käulchen 10, Gamlen	40	41,4	ja			
IP B Töpferstr. 27, Düngenheim	45	43,0	· _	_		
IP C Düngenheimer Str. 6, Eulgem	45	42,3	-			

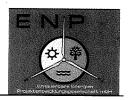
Schallimmissionsprognose E82

Ermittlung der Zusatzbelastung

Tabelle 5: Zusatzbelastung durch neu beantragte WEA Enercon E82 [s. Anhang 2]

Immissionsaufpunkt	Immissionsricht-	Obere	Überschreitung		
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags	
IP A Auf dem Käulchen 10, Gamlen	40	38,4	-	-	
IP B Töpferstr. 27, Düngenheim	45	32,0	-	<u></u>	
IP C Düngenheimer Str. 6, Eulgem	45	29,7	-		

Schallimmissionsprognose E82



Ermittlung der Gesamtbelastung

Tabelle 5: Gesamtbelastung durch alle WEA [s. Anhang 3]

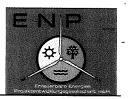
Immissionsaufpunkt	Immissionsricht-	Obere	Überschreitung		
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags	
IP A Auf dem Käulchen 10, Gamlen	40	43,1	ja	-	
IP B Töpferstr. 27, Düngenheim	45	43,3	_	-	
IP C Düngenheimer Str. 6, Eulgem	45	42,5	-	-	

Schallimmissionsprognose E82

Beurteilung und Vergleich mit den Richtwerten

Tabelle 6: Vor-, Zusatz- und Gesamtbelastung, Vergleich mit den Richtwerten

Immissionsaufpunkt	Immissions -richtwert nachts in dB(A)	itwert hts in		Zusatzb	elastung	Gesamtbelastung		
	USIAJ	Beurteil. pegel	Differenz	Beurteil. pegel	Differenz	Beurteil. pegel	Differenz	
IP A Auf dem Käulchen 10, Gamlen	40	41	+1	38	-2	43	+3	
IP B Töpferstr. 27, Düngenheim	45	43	-2	32	-13	43	-2	
IP C Düngenheimer Str. 6, Eulgem	45	42	-3	30	-15	43	-2	


Es wurden die zu erwartenden Lärmbelastungen durch den Neubau von 5 Windenergieanlagen in der Gemeinde Gamlen mit Hilfe einer Immissionsprognose nach DIN ISO 9613-2 Teil 2 berechnet. Als Vorbelastung für die relevanten Immissionsorte wurden 20 Windenergieanlagen berücksichtigt, die zeitlich vor den beiden zu untersuchenden WEA beantragt oder errichtet wurden und die sich im Umkreis von etwa 3km um die zu prüfenden Anlagenstandorte befinden.

Die Berechnung der Vorbelastung führt zu dem Ergebnis, dass der Richtwert an IP A nachts um 1dB(A) überschritten wird

Die von den beantragten WEA verursachte Zusatzbelastung führt theoretisch zu einer weiteren Erhöhung des Immissionswertes an IP A und damit zu einer Überschreitung von 3dB[A] nachts.

Der Antragsteller geht davon aus, dass ein Teil der als Vorbelastung zu berücksichtigenden Anlagen aus wirtschaftlichen Gründen und wegen unzureichender Abstände zu anderen WEA niemals tatsächlich gebaut bzw. genehmigt werden wird. Vor diesem Hintergrund und unter Berücksichtigung, dass die Überschreitungen der Richtwerte in der Größenordnung der gewählten Sicherheitszuschläge bei der Immissionsprognose liegen, wird vorerst nur der Tagbetrieb der Anlagen beantragt. Anschließend ist beabsichtigt mit einer Schallvermessung den Nachweis zu erbringen, dass auch ein Nachtbetrieb der WEA unter Einhaltung der Richtwerte möglich ist.

Schallimmissionsprognose E82

Qualität der Prognoserechnungen

Die Genauigkeit der Immissionsprognose hängt wesentlich von der Zuverlässigkeit der Eingabedaten ab. Die Eingabedaten wurden daher mit Sicherheitszuschlägen versehen, die die Unsicherheiten des Berechnungsmodells und die Unsicherheiten bei den Schalleistungspegeln berücksichtigen.

Für die Unsicherheit des Prognosemodells σ_{PROG} wurde ein pauschaler Zuschlag von 1,5 dB(A) vorgesehen.

Die Serienstreuung σ_P der WEA wurde bei den Anlagen bzw. Betriebsweisen, bei denen mindestens 3 Vermessungen nach FGW-Richtlinie vorlagen, in Form der Standardabweichungen der einzelnen Messwerte vom arithmetischen Mittelwert berücksichtigt.

$$\sigma_P = s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (L_i - L_W)^2}$$

mit:

$$L_W = \sum_{i=1}^n \frac{L_i}{n}$$

Für alle anderen Anlagen bzw. Betriebarten wurde $\sigma_{\scriptscriptstyle P}$ mit 1,22 dB(A) angesetzt.

Die Messunsicherheit σ_R findet ihre Berücksichtigung mit 0,5 dB(A) bei Anlagen, die nach FGW-Richtlinie vermessen wurden, sonst wird sie mit 1,5 dB(A) angesetzt. Die Gesamtunsicherheit berechnet sich zu:

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{PROG}^2}$$

Um zu gewährleisten, dass die berechneten Immissionspegel innerhalb eines Vertrauensbereiches von 90% liegen, wurde $\sigma_{\it ges}$ mit der Standardnormalvariable 1,28 multipliziert, so dass letztendlich die Immissionsprognose auf einem Schallleistungspegel von

$$L_{WEA,\sigma} = L_m + 1,28 * \sigma_{WEAges}$$

basiert.

Für die Berechnung wurden keine dämpfenden Einflüsse durch Bewuchs (Bäume und Sträucher) berücksichtigt. Weiterhin konnten im Rahmen der Ortsbesichtigung keine

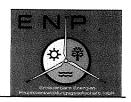
Erstellt:

Dipl.-Ing. Groß 23.02.07

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

mbH

Rev.:


Seite 10 von 12

Projekt:

Gamlen GA3

Titel

Schallimmissionsprognose E82

Gebäude oder natürlichen Gegebenheiten festgestellt werden, die eine Verstärkung der Schallimmissionen durch Reflexionen erwarten lassen.

Alle berechneten WEA weisen keine Einzeltonhaltigkeit und keine Impulstonhaltigkeit auf. Ein entsprechender Zuschlag ist daher nicht vorzusehen.

Osnabrück, den 23.02.2007

On. Groß

Erstellt:

Dipl.-Ing. Groß 23.02.07

Geprüft:

Dipl. Ing. (FH) Höhler 23.02.07

 $^{\circ}$ ENP Erneuerbare Energien Projektentwicklungsgesellschaft

mbH

Rev.:

Seite 11 von 12

Schallimmissionsprognose E82

Anhang

- 1. Immissionsberechnung Vorbelastung der Immissionsorte
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 2. Immissionsberechnung Zusatzbelastung der Immissionsorte
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 3. Immissionsberechnung Gesamtbelastung der Immissionsorte
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 4. Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen)
- 5. Zu berücksichtigende Vorbelastung It. Genehmigungsbehörde
- 6. Lageplan mit Darstellung von WEA und Immissionsaufpunkten
- 7. Herstellerangaben und Vermessungsprotokolle

Projekt: Beschreibung:

02.07_2.5 Bered

Berechnung der Vorbelastung durch 20 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

WindPRO 2 version 2.5.6.79 Jan 2007

Ausdruck/Seite 23.02.2007 12:44 / 1

Lizenzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

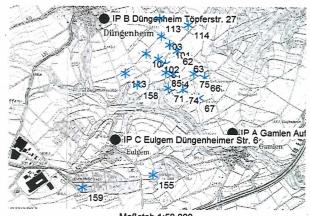
+49 541 6687 259

Berechnet: 23.02.2007 12:41/2.5.6.79

DECIBEL - Hauptergebnis

Berechnung: A1 Vorbelastung

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

WEA

ă																
l.			ol) Zone: 2	-		WEA-T						Schall	werte			
		Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	Quelle	Name	Windgeschw.	LwA,ref	
	62 63 64 66 67 71 74 75 85 101 102 103	2.584.810 2.584.972 2.585.228 2.585.146 2.585.85 2.584.695 2.584.694 2.584.694 2.584.534 2.584.534	5.569.238 5.569.132 5.568.890 5.568.548 5.568.548 5.568.654 5.568.910 5.568.910 5.569.324 5.569.113 5.569.449	417,8 410,1 405,0 407,5 400,0 394,1 404,1 407,0 422,3 419,9	Beschreibung E ENERCON E-40/6 E ENERCON E-40/6 GE Wind Energy I GE Wind Energy NORDEX N90 EN NORDEX N90 EN ENERCON E-66/1 ENERCON E-66/1 ENERCON E-40/6 ENERCON E-40/6 ENERCON E-40/6 GE Wind Energy GE Wind Energy	Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja Ja J	Hersteller ENERCON ENERCON GE Wind Energy NORDEX NORDEX ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON EWIND ENERCON	E-40/6.44 ENP E-40/6.44 ENP GE 1.5sl ENP GE 1.5sl ENP N90 ENP N90 ENP E-66/18.70 ENP E-66/18.70 ENP GE 1.5sl ENP E-40/6.44 ENP E-40/6.44 ENP	Leistung [kW] 600 600 1.500 1.500 2.300 2.300 1.800 1.800 1.500 600 600 1.500	Rotord. [m] 44,0 44,0 77,0 77,0 90,0 90,0 70,0 70,0 77,0 44,0 44,0 77,0	Höhe [m] 65,0 65,0 85,0 85,0 80,0 100,0 98,0 86,0 65,0 65,0 65,0 85,0 65,0 85,0	USER USER USER USER USER USER USER USER	Name leistungsoptimiert inkl. Zuschläge	Windgeschw. [m/s] 10,0 10,0 10,0 10,0 10,0 10,0 10,0 10,	LwA,ref [dB(A)] 102,6 102,6 106,1 105,4 105,4 104,9 104,9 106,1 102,6 102,6 106,1	töne 0 dB
	113 113 114 155 158	2.584.543 2.584.053 2.584.960 2.584.500 2.584.235	5.569.717 5.568.884 5.569.632 5.567.390 5.568.716	412,6 413,6 405,0 439,8 406,6	GE Wind Energy ENERCON E-66/1 NEG MICON NM8 ENERCON E-70 E ENERCON E-40/6 NEG MICON NM8 VESTAS V52 ENP	Ja Nein Ja Ja Nein	GE Wind Energy ENERCON NEG MICON ENERCON ENERCON NEG MICON VESTAS	GE 1.5sl ENP E-66/18.70 ENP NM82/1500 ENP E-70 E4 ENP E-40/6.44 ENP NM82/1500 ENP V52 ENP	1.500 1.800 1.500/400 2.000 600 1.500/400 850	77,0 70,0 82,0 71,0 44,0 82,0 52,0	85,0 98,0 100,0 85,0 78,0	USER USER USER USER USER USER	leistungsoptimiert inkl. Zuschiläge leistungsoptimiert inkl. Zuschiläge leistungsoptimiert inkl. Zuschiläge leistungsoptimiert inkl. Zuschiläge leistungsoptimiert inkl. Zuschiläge leistungsoptimiert inkl. Zuschiläge leistungsoptimiert inkl. Zuschiläge	10,0 10,0 (95%) 10,0 10,0 (95%)	106,1 104,9 105,4 103,9 102,6 105,4 105,3	0 dB 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort Nr. Name	GK (Bessel) Ost	Zone: 2 Nord Z	Aufpunkthöhe [m]		Abstand	Beurteilungspegel Von WEA			rfüllt? Gesamt
IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst. IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst. IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.	300 m (11) 2.583,716 5	5.569.697 460	5 5,0 0 5,0	45,4	[m] 300 300 300	[dB(A)] 41,4 43,0 42,3	Nein Ja Ja	Ja Ja Ja	Nein Ja Ja

Abstände (m)

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
61	1428	1137	1347
62	1473	1186	1608
63	1295	1377	1621
64	1240	1321	1300
66	920	1735	1613
67	726	1834	1385
71	1158	1414	1097
74	970	1588	1246
75	1051	1565	1518

Fortsetzung auf nächster Seite...

23.02.2007 12:44 / 2

Leberschiefer Anwender:
ENP Erneuerbare Energien Projektentwicklungsgesell. mbH
Katharinenstraße 51
DE-49078 Osnabrück

+49 541 6687 259

Berechnet: 23.02.2007 12:41/2.5.6.79

DECIBEL - Hauptergebnis

Projekt: 02.07_2.5

Berechnung: A1 Vorbelastung

Forts	setzung von der vorigen Seite	and the second s	
WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
85	1338	1220	1246
101	1611	1047	1623
102	1559	1005	1362
103	1784	891	1683
104	1742	816	1360
113	2020	827	1924
113	1817	880	997
114	1745	1246	2022
155	1325	2437	765
158	1578	1110	878
159	2363	2533	857

Volleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

02.07 2.5

Beschreibung

Berechnung der Vorbelastung durch 20 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. 23.02.2007 12:45 / 1

Lizenzierter Anwender

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Berechnet: 23.02.2007 12:41/2.5.6.79

DECIBEL - Detaillierte Ergebnisse

Berechnung: A1 Vorbelastung Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Agr:

Dämpfung aufgrund von Abschirmung

Abar: Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10)

WEA					95% der Ne	ennleistui	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
61	1.428	1.432	27,1	Nein	22,95	102,6	3,01	74,12	2,72	4,80	0,00	0,00	81,64	1,02	
62	1.473	1.477	25,7	Nein	22,56	102,6	3,01	74,39	2,81	4,80	0,00	0,00	82,00	1,05	
63	1.295	1.301	32,6		28,80	106,1	3,01	73,29	2,47	3,94	0,00	0,00	79,69	0,61	
64	1.240		,		•	106,1	3,01	72,90	2,37	3,82	0,00	0,00	79,09	0,55	
66	920	927	29,9		32,47	105,4	3,01	70,34	1,76	3,68	0,00	0,00	75,78	0,15	
67	726	737	40,8		35,78	105,4	3,00	68,35	1,40	2,87	0,00	0,00	72,62	0,00	
71	1.158	1.165	, .		29,66	104,9	3,01	72,33	2,21	3,49	0,00	0,00	78,03	0,22	
74	970	976	33,3		31,52	104,9		70,79	1,85	3,62	0,00	0,00	76,26	0,12	
75	1.051	1.058	32,0		30,38	104,9	3,01	71,49	2,01	3,76	0,00	0,00	77,25	0,27	
85	1.338	1.343	37,0		28,49	106,1				3,85	0,00	0,00	79,96	0,65	
101	1.611	1.615	26,8	Nein		102,6	. , .	75,16		4,80	0,00	0,00	83,03	1,13	
102	1.559	1.563	29,8					74,88		4,80	0,00	0,00	82,65	1,10	
103	1.784	1.790		Nein	•	106,1	-,-	76,06	-	4,80	0,00	0,00	84,26	0,99	
104	1.742	1.747	40,1	Nein		106,1	3,01	75,85	3,32	4,80	0,00	0,00	83,97	0,97	
113	2.020	2.024	34,3	Nein	•	104,9	3,01	77,13	3,85	4,80	0,00	0,00	85,77	0,98	
113	1.817	1.822	48,8	Ja	24,01	105,4	3,01	76,21	3,46		0,00	0,00	83,55	0,84	
114	1.745	1.748	29,2		•	103,9	3,01	75,85		4,80	0,00	0,00	83,98	0,97	
155	1.325	1.332	57,0		25,51	102,6	-,	73,49	2,53	3,33	0,00	0,00	79,35	0,75	
158	1.578	1.584	48,6	Ja	25,99	105,4	3,01	74,99	3,01	3,74	0,00	0,00	81,75	0,67	
159	2.363	2.368	34,9	Ja	19,58	105,3	3,01	78,49	4,50	4,30	0,00	0,00	87,28	1,45	

Summe 41,43

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11)

	WEA					95% der Ne	ennleistu:	ng								
9	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
98	61	1.137	1.137	36,0	Ja	26,86	102,6	3,01	72,12	2,16	3,71	0,00	0,00	77,98	0,77	
	62	1.186	1.187	38,2	Ja	26,36	102,6	3,01	72,49	2,25	3,69	0,00	0,00	78,43	0,82	
7	63	1.377	1.378	47,6	Ja	28,41	106,1	3,01	73,78	2,62	3,61	0,00	0,00	80,01	0,69	
Street	64	1.321	1.321	46,1	Ja	28,94	106,1	3,01	73,42	2,51	3,60	0,00	0,00	79,53	0,64	
100	66	1.735	1.735	49,8	Ja	24,49	105,4	3,01	75,79	3,30	3,81	0,00	0,00	82,90	1,02	
100	67	1.834	1.835	60,6	Ja	24,13	105,4	3,01	76,27	3,49	3,67	0,00	0,00	83,42	0,86	
	71	1.414	1.414	53,4	Ja	27,17	104,9	3,01	74,01	2,69	3,50	0,00	0.00	80,20	0,54	
	74	1.588	1.588	46,9	Ja	25,24	104,9	3,01	75,02	3,02	3,78	0,00	0,00	81,82	0,85	
	75	1.565	1.565	49,3	Ja	25,49	104,9	3,01	74,89	2,97	3,72	0,00	0,00	81,58	0,84	
	85	1.220	1.220	45,2	Ja	30,02	106,1	3,01	72,73	2,32	3,52	0,00	0,00	78,57	0,52	
2000	101	1.047	1.047	38,2	Ja	28,02	102,6	3,01	71,40	1,99	3,54	0,00	0,00	76,93	0,66	
	102	1.005	1.005	37,3	Ja	28,53	102,6	3,01	71,05	1,91	3,52	0,00	0,00	76,47	0,61	
	103	891	892	47,0	Ja	34,43	106,1	3,01	70,01	1,70	2,97	0,00	0,00	74,68	0,00	

Fortsetzung auf nächster Seite...

02.07_2.5

Berechnung der Vorbelastung durch 20 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. 23.02.2007 12:45 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

23.02.2007 12:41/2.5.6.79

DECIBEL - Detaillierte Ergebnisse

Berechnung: A1 Vorbelastung Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fo	rtsetzung v	on der vorig	gen Seite					•						
WE	A				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
104	816	817	45,6	Ja	35,45	106,1	3,00	69,24	1,55	2,86	0.00	0.00	73.66	
113	827	828	47,2	Ja	34,14	104,9	3,00	69,37	1.57	2.82	0.00	0.00	73,76	0.00
113	880	881	49,3	Ja	33,96	105,4	3.00	69,90	1,67	2,86	0.00		74.44	0.00
114	1.246	1.246	45,5	Ja	27,54	103.9	3.01	72.91	2.37	3.54	0.00	0.00	78.82	- ,
155	2.437	2.437	71,9	Ja	17,13	102,6	3,01	78.74		3,79		-,	87.16	
158	1.110	1.111	52,6	Ja	31,11	105.4	3.01	71.91		3,16		-,	77.19	0.11
159	2.533	2.533	63,3	Ja	18,99			79.07	-	3.95	,		87.83	1.49

Summe 42.98

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12)

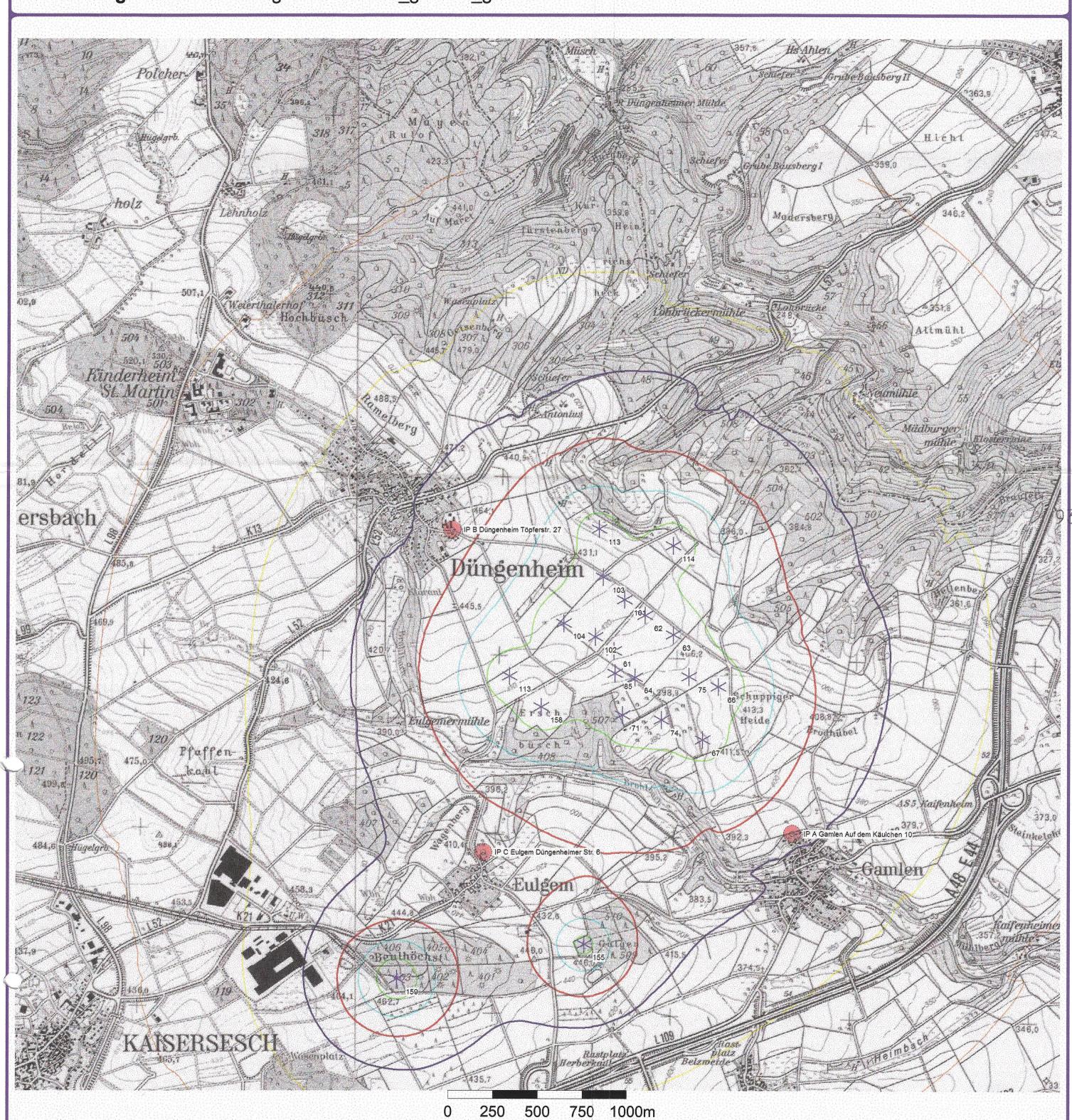
WEA					95% der Ne	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
61	1.347	1.348	49,8	Ja	24,96	102,6	3,01	73,60	2,56	3,53	0,00	0,00	79,68	0,96
62	1.608	1.610	50,4	Ja	22,56	102,6	3,01	75,13	3,06	3,72	0,00	0,00	81,92	1.13
63	1.621	1.622	59,7	Ja	26,40	106,1	3,01	75,20	3,08	3,54	0,00	0,00	81,82	0,89
64	1.300	1.302	60,0	Ja	29,51	106,1	3,01	73,29	2,47	3,21	0,00	0,00	78,98	0.62
66	1.613	1.615	58,3	Ja	25,68	105,4	3,01	75,16	3,07	3,56	0,00	0,00	81.79	0.95
67	1.385	1.387	67,7	Ja	28,33	105,4	3,01	73,84	2,64	3,12	0,00	0,00	79,60	0,48
71	1.097	1.100	66,3	Ja	31,14	104,9	3,01	71,83	2,09	2,72	0,00	0,00	76,64	0,12
74	1.246	1.247	56,3	Ja	28,83	104,9	3,01	72,92	2,37	3,24	0,00	0.00	78,53	0.54
75	1.518	1.520	59,7	Ja	26,13	104,9	3,01	74,64	2,89	3,45	0,00	0,00	80,97	0,80
85	1.246	1.248	60,1	Ja	30,11	106,1	3,01	72,93	2,37	3,14	0,00	0,00	78,44	0,56
101	1.623	1.624	49,3	Ja	22,42	102,6	3,01	75,21	3,09	3,76	0,00	0,00	82,06	1,14
102	1.362	1.363	50,6	Ja	24,83	102,6	3,01	73,69	2,59	3,52	0,00	0,00	79,81	0,97
103	1.683	1.686	57,8	Ja	25,82	106,1	3,01	75,54	3,20	3,62	0,00	0,00	82,36	0,93
104	1.360	1.363	60,7	Ja	28,89	106,1	3,01	73,69	2,59	3,27	0,00	0,00	79,54	0,68
113	1.924	1.926	54,8	Ja	22,80	104,9	3,01	76,69	3,66	3,82	0,00	0,00	84,18	0,93
113	997	. 1.002	68,8	Ja	33,06	105,4	3,01	71,02	1,90	2,42	0,00	0.00	75,34	0,00
114	2.022	2.023	49,1	Ja	20,87	103,9	3,01	77,12	3,84	3,97	0,00	0,00	84,93	1,11
155	765	772	41,2	Ja	32,44	102,6	3,00	68,75	1,47	2,94	0,00	0,00	73,16	0.00
158	878	882	67,0	Ja	34,65	105,4	3,00	69,91	1,68	2,17	0,00	0,00	73,75	0.00
159	857	864	27,4	Ja	32,76	105,3	3,01	69,73	1,64	3,70	0,00	0,00	75,07	0,48

Summe 42,28

Berechnung der Vorbelastung durch 20 WEA. Alle im 02.07 2.5 Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. Ausdruck/Seite

23.02.2007 09:39 / 1

Lizenzierter Anwender:


ENP Erneuerbare Energien Projektentwicklungsgesell. m Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Berechnet:

22.02.2007 22:02/2.5.6.79

DECIBEL - Bitmap map: tk25_gesamt_grau.bmi

Berechnung: A1 Vorbelastung Datei: tk25_gesamt_grau.bmi

Karte: tk25_gesamt_grau, Druckmaßstab 1:15.000, Kartenzentrum Gauss Kruger (Bessel) Zone: 2 Ost: 2.584.258 Nord: 5.569.599 Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: 95% der Nennleistung ansonsten 10,0 m/s

* Existierende WEA

35,0 dB(A)

30,0 dB(A)

Schall-Immissionsort

- 40,0 dB(A)

Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt - 45,0 dB(A)

50,0 dB(A)

55,0 dB(A)

02.07_2.5

Berechnung der Zusatzbelastung durch 5 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. WindPRO 2 version 2.5.6.79 Jan 2007

22.02.2007 22:07 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

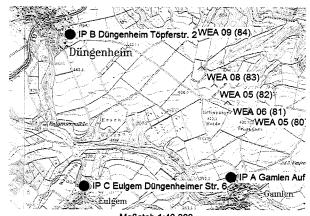
DE-49078 Osnabrück +49 541 6687 259

22.02.2007 22:06/2.5.6.79

DECIBEL - Hauptergebnis

Berechnung: A2 Zusatzbelastung

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

人 Neue WEA

Maßstab 1:40.000 ☑ Schall-Immissionsort

WEA

SCALE SECURIOR		GK (Besse Ost	l) Zone: 2 Nord	z	Beschreibung .	WEA-T Aktueli	yp Hersteller	Тур	Leistung	Rotord.		Kreis- radius	Kreis- Qu	challw ueile i		Windgeschw.	LwA,ref	Einzel- töne
#				[m]					[kW]	[m]	[m]	[m]	[m]			[m/s]	[dB(A)]	
					ENERCON E-82 E		ENERCON			82,0	84,5	67,0	41,0 US	SER I	eistungsoptimiert Inkl. Zuschläge	(95%)	106.0	0 dB
					ENERCON E-82 E		ENERCON	E-82 ENPn	2.000	82,0	84,5	67,0			eistungsoptimiert inkl. Zuschläge	(95%)	106.0	
					ENERCON E-82 E		ENERCON	E-82 ENPn	2.000	82,0	84,5	67,0			eistungsoptimiert inkl. Zuschläge	(95%)	106.0	
					ENERCON E-82 E		ENERCON	E-82 ENPn	2.000	82,0	84,5	67,0			eistungsoptimiert inkl. Zuschläge	(95%)	106.0	0 dB
	WEA 09 (84)	2.585.161	5.569.879	372,6	ENERCON E-82 E	Ja	ENERCON	E-82 ENPn	2.000	82,0	84,5	67,0			eistungsoptimiert inkl. Zuschläge	(95%)	106,0	0 dB

Berechnungsergebnisse

Beurteilungspegel

	Schall-immissionsort	GK (Besse	l) Zone: 2			Anforder	ungen	Beurteilungspegel	Anforde	rungen e	rfüllt?
	Nr. Name	Öst	Nord	z	Aufpunkthöhe	Schall	Abstand	Von WEA			Gesamt
				[m]	[m]	[dB(A)]	[m]	[dB(A)]			
9	IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m	(10) 2.585.658	5.568.033	368,5	5,0	40,4	300	38.4	Ja	Ja	Ja
Œ.	IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m	(11) 2.583.716	5.569.697	460,0	5.0	45,4	. 300	32.0	Ja	Ja	Ja
	IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m	(12) 2.583.925	5.567.895	411,7	5,0	45,4	300	29,7	Ja	Ja	Ja

Abstände (m)

WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
WEA 05 (80)	814	2308	2139
WEA 05 (82)	1132	1804	1956
WEA 06 (81)	907	2027	1969
WEA 08 (83)	1366	1597	1980
WEA 09 (84)	1912	1456	2337

02.07_2.5

Berechnung der Zusatzbelastung durch 5 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. 22.02.2007 22:08 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

22.02.2007 22:06/2.5.6.79

DECIBEL - Detaillierte Ergebnisse

Berechnung: A2 Zusatzbelastung Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Agr:

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10)

1	WEA					95% der No	ennleistur	าต							
10000	Nr.	Abstand :	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
100		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	WEA 05 (80)	814	821	33,0	Ja	34,75	106,0	3,00	69,29	1,56	3,40	0,00	0,00	74.25	0.00
200	WEA 05 (82)	1.132	1.137	26,1	Ja	30,31	106,0	3,01	72,11	2,16	4,01	0.00	0.00	78.28	0.42
	WEA 06 (81)	907	913	28,9	Ja	33,33	106,0	3,01	70,21	1,74	3,70	0,00	0.00	75.65	0.03
	WEA 08 (83)	1.366	1.370	25,4	Nein	27,18	106,0	3,01	73,73	2,60	4.80	0.00	0.00	81.14	0.69
	WEA 09 (84)	1.912	1.914	20,8	Nein	22,87				3,64				85,07	

Summe 38,41

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11) WEA

						/- act 140	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	139								
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]					[dB]	- [dB]	[dB]	
	WEA 05 (80)	2.308	2.308	51,5	Ja	21,10	106,0	3,01	78,26	4.38	4.04	0.00	0.00	86.68	1.22	
	WEA 05 (82)	1.804	1.804	46,7	Ja	24,54	106,0	3,01	76,12	3,43	3,91	0.00	0.00	83.46	1.01	
	WEA 06 (81)	2.027	2.027	49,6	Ja	22,95	106,0	3,01	77,14	3,85	3.96	0,00	0.00	84.95	1.12	
	WEA 08 (83)	1.597	1.598	41,9	Ja	26,13	106,0	3,01	75,07	3,04	3,90	0.00	0.00	82.00	0.88	
Skeller	WEA 09 (84)	1.456	1.456	47,7	Ja	27,53	106,0	3,01	74,27	2,77	3,67	0,00	0,00	80,71	0,77	

Summe

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12)

B	AACM					95% der No	ennleistui	ηg								
SIENIS	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
SECRE		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
100	WEA 05 (80)	2.139	2.140	49,2	Ja	22,16	106,0	3,01	77,61	4,07	4,01	0,00	0,00	85,69	1,16	
	WEA 05 (82)	1.956	1.957	51,4	Ja	23,48	106,0	3,01	76,83	3,72	3,90	0,00	0,00	84,45	1.08	
	WEA 06 (81)	1.969	1.970	52,7	Ja	23,41	106,0	3,01	76,89	3,74	3,88	0,00	0,00	84,51	1.09	
	WEA 08 (83)	1.980	1.981	49,6	Ja	23,27	106,0	3,01	76,94	3,76	3,94	0.00	0.00	84.64	1.10	
	WEA 09 (84)	2.337	2.338	35,8	Ja	20,68	106,0	3.01	78.38	4.44	4.28	0.00	0.00	87.09	1.23	

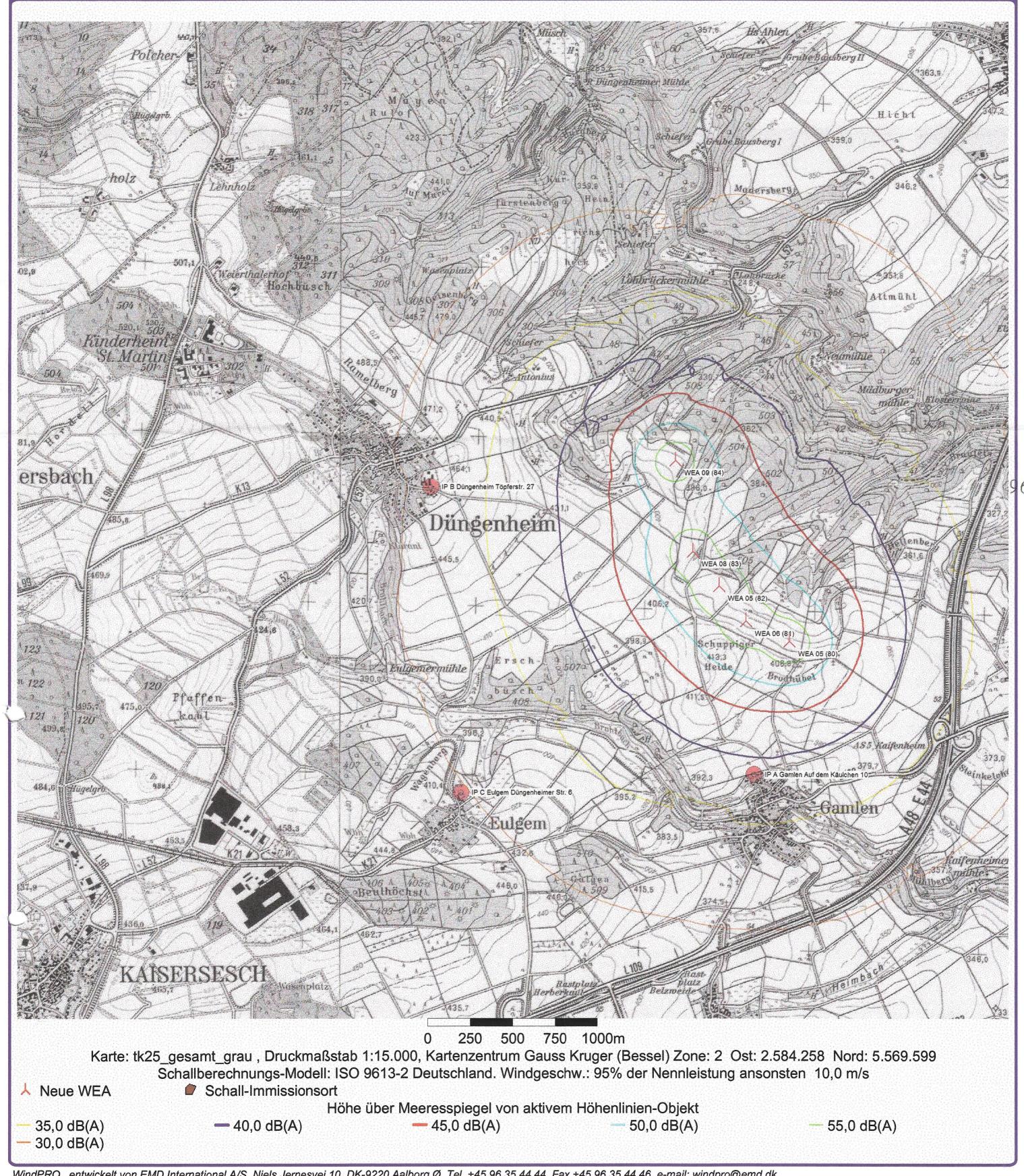
Summe 29,71

Berechnung der Zusatzbelastung durch 5 WEA. Alle im 02.07 2.5 Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

23.02.2007 09:37 / 1

Lizenzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. m Katharinenstraße 51


DE-49078 Osnabrück +49 541 6687 259

Berechnet:

22.02.2007 22:06/2.5.6.79

DECIBEL - Bitmap map: tk25_gesamt_grau.bmi

Berechnung: A2 Zusatzbelastung Datei: tk25_gesamt_grau.bmi

Projekt:

30,0 dB(A)

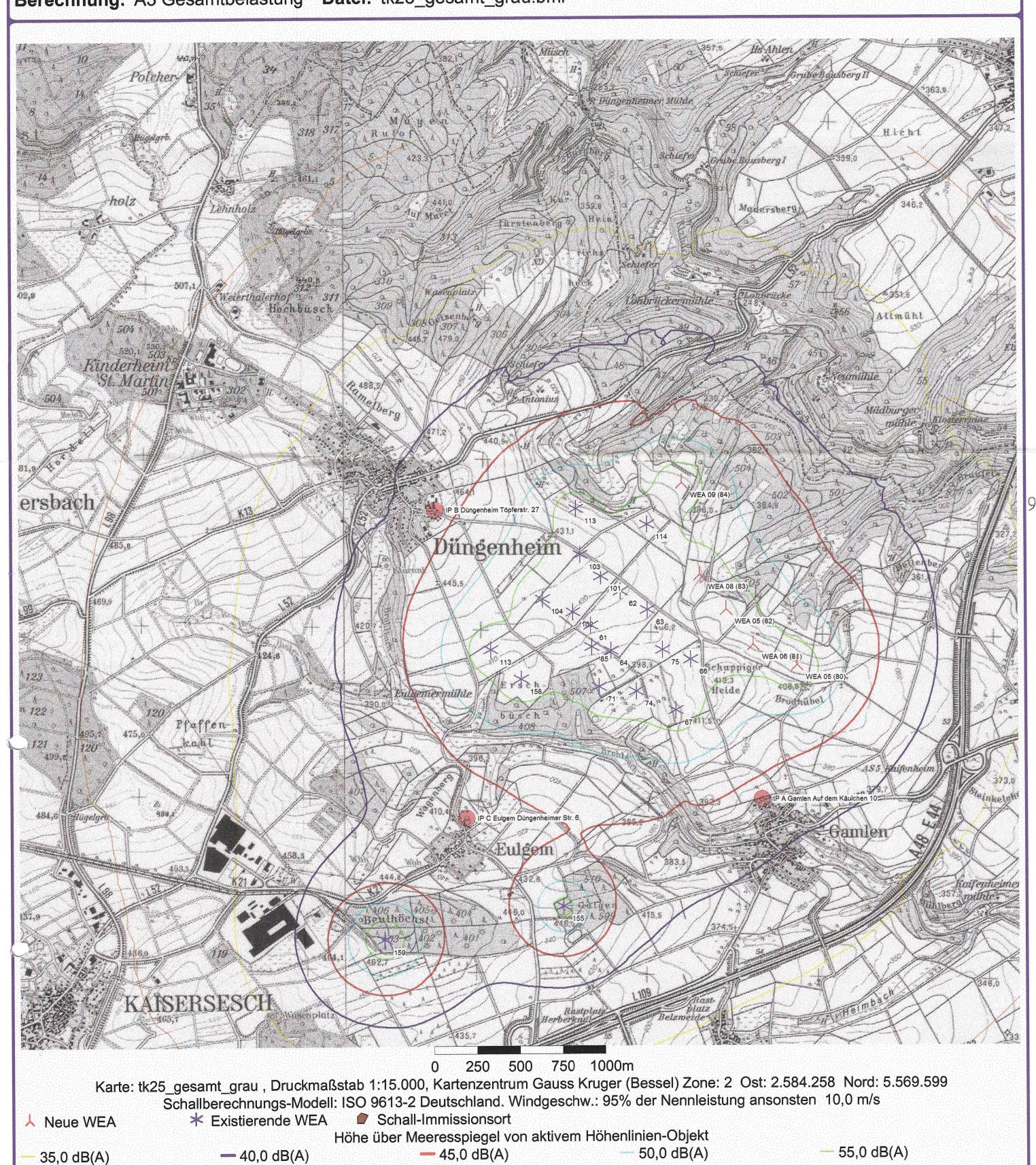
Beschreibung:

02.07_2.5
Berechnung der Gesamtbelastung durch 25 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

Ausdruck/Seite 23.02.2007 10:08 / 1

Lizenzierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. m Katharinenstraße 51 DE-49078 Osnabrück


Berechnet:

22.02.2007 22:03/2.5.6.79

+49 541 6687 259

DECIBEL - Bitmap map: tk25_gesamt_grau.bmi

Berechnung: A3 Gesamtbelastung Datei: tk25_gesamt_grau.bmi

Projekt: 02.07_2.5

Beschreibung

Berechnung der Gesamtbelastung durch 25 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

WindPRO 2 version 2.5.6.79 Jan 2007

Ausdruck/Seite 23.02.2007 12:46 / 1

translates Assessed

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

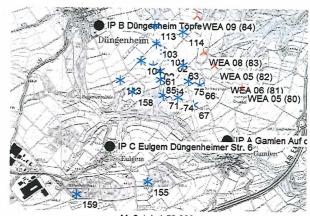
+49 541 6687 259

Berechnet: 23.02.2007 12:42/2.5.6.79

DECIBEL - Hauptergebnis

Berechnung: A3 Gesamtbelastung

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

Neue WEA☐ Schall-Immissionsort

Maßstab 1:50.000 ★ Existierende WEA

WEA

		G	K (Bessel) Zone: 2			WEA-T	VD							Schall				
			Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	HAbo	Kreis-						200
1						AL 15			.,,,	Loistang	rtotoru.	rione	radius		Quelle	Name	Windgeschw.	LwA,ref	
					[m]					[kW]	[m]	[m]	[m]	[m]		£			tone
	. 61	1 2	2.584.641	5.569.036	412,2	ENERCON E-40/6.44	4Ja	ENERCON	E-40/6.44 ENP	600	44.0	65,0	Luij	[m]	USER	lalaborana stining to 1.14 7	[m/s]	[dB(A)]	
	62	2 2	2.584.810	5.569.238	417,8	ENERCON E-40/6.44	4Ja	ENERCON	E-40/6.44 ENP	600	44,0	65.0			USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
	63	3 2	2.584.972	5.569.132	410,1	GE Wind Energy GE	Ja	GE Wind Energy		1.500	77,0	85.0			USER	leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
	64	1 2	2.584.762	5.568.890	405,0	GE Wind Energy GE	Ja	GE Wind Energy		1.500	77.0	85,0			USER	leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
	66	5 2	2.585.228	5.568.846	407,5	NORDEX N90 ENP 2	2Ja	NORDEX	N90 ENP	2.300	90.0	80,0				leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
	67	2	2.585.146	5.568.548	400,0	NORDEX N90 ENP 2	2Ja	NORDEX	N90 ENP	2.300	90,0	100,0				leistungsoptimiert inkl. Zuschläge	10,0	105,4	0 dB
	71	2	2.584.695	5.568.677	400,0	ENERCON E-66/18.7	7Ja	ENERCON	E-66/18.70 ENP	1.800	70.0	98,0				leistungsoptimiert inkl. Zuschläge	10,0	105,4	0 dB
	74	2	2.584.913	5.568.654	394,1	ENERCON E-66/18.7	Ja	ENERCON	E-66/18.70 ENP	1.800	70.0	86,0				leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	10,0	104,9	0 dB
	75	2	2.585.063	5.568.900	404,1	ENERCON E-66/18.7	Ja	ENERCON	E-66/18.70 ENP	1.800	70.0	86,0				leistungsoptimiert inkl. Zuschläge	10,0	104,9	0 dB
	85	2	2.584.648	5.568.910	407,0	GE Wind Energy GE	Ja	GE Wind Energy		1.500	77.0	85.0				leistungsoptimiert inkl. Zuschläge	10,0	104,9	0 dB
	101	2	2.584.694	5.569.324	422,3	ENERCON E-40/6.44	Ja	ENERCON	E-40/6.44 ENP	600	44.0	65.0				leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
	102	2	2.584.534	5.569.113	419,9	ENERCON E-40/6.44	Ja	ENERCON	E-40/6.44 ENP	600		65.0				leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
	103	2	.584.572	5.569.449	425,4	GE Wind Energy GE	Ja	GE Wind Energy	GE 1.5sl ENP	1.500		85.0				leistungsoptimiert inkl. Zuschläge	10,0	102,6	0 dB
	104	2	2.584.352	5.569.186	423,6	GE Wind Energy GE	Ja	GE Wind Energy	GE 1.5sl ENP	1.500		85,0				leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
	113	2	.584.543	5.569.717	412,6	ENERCON E-66/18.7	Ja	ENERCON	E-66/18.70 ENP	1.800		98.0				leistungsoptimiert inkl. Zuschläge	10,0	106,1	0 dB
	113	2	.584.053	5.568.884	413,6	NEG MICON NM82/1	Nein	NEG MICON	NM82/1500 ENP	1.500/400		100,0				leistungsoptimiert inkl. Zuschläge	10,0	104,9	0 dB
	114	2	.584.960	5.569.632	405,0	ENERCON E-70 E4	Ja	ENERCON	E-70 E4 ENP	2.000		85.0				leistungsoptimiert inkl. Zuschläge	(95%)	105,4	0 dB
	155	2	.584.500	5.567.390	439,8	ENERCON E-40/6.44		ENERCON	E-40/6.44 ENP	600		78,0				leistungsoptimiert inkl. Zuschläge	10,0 10,0	103,9	0 dB
	158	2	.584.235	5.568.716	406,6	NEG MICON NM82/1	Nein	NEG MICON	NM82/1500 ENP	1.500/400		100,0				leistungsoptimiert inkl. Zuschläge		102,6	0 dB
	159	2	.583.455	5.567.178	460,0	VESTAS V52 ENP 8	Ja	VESTAS	V52 ENP	850		60,0				leistungsoptimiert inkl. Zuschläge	(95%)	105,4	0 dB
	WEA 05 (80)	2	.585.852	5.568.824	392,9	ENERCON E-82 EN	. Ja	ENERCON	E-82 ENPn	2.000		84.5	67.0			leistungsoptimiert inkl. Zuschläge	10,0	105,3	0 dB
	WEA 05 (82)	2	.585.432	5.569.142	393,1	ENERCON E-82 EN	. Ja	ENERCON	E-82 ENPn	2.000		84.5	67,0			leistungsoptimiert inkl. Zuschläge	(95%)	106,0	0 dB
	WEA 06 (81)	2	.585.595	5.568.938	395,4	ENERCON E-82 EN	. Ja	ENERCON	E-82 ENPn	2.000		84.5	67.0			leistungsoptimiert inkl. Zuschläge	(95%)	106,0	0 dB
	WEA 08 (83)	2	.585.274	5.569.344	391,4	ENERCON E-82 EN		ENERCON	E-82 ENPn	2.000		84,5	67.0			leistungsoptimiert inkl. Zuschläge	(95%)	106,0	0 dB
d	WEA 09 (84)	2	.585.161	5.569.879	370,9	ENERCON E-82 EN	. Ja	ENERCON	E-82 ENPn	2.000		84,5	67.0			leistungsoptimiert inkl. Zuschläge	(95%) (95%)	106,0 106,0	0 dB
	D 1	L									10	100				goopannor. IIId. Zuscillage	(95%)	100,0	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort Nr.	Name	GK (Besse		_		Anforder		Beurteilungspegel	Anforde	rungen er	füllt?
	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
IP A Camlen Auf dem Käulehen 10	Caball Immississes 40 ID 41 4 age 444			[m]	[m]	[dB(A)]	[m]	[dB(A)]			
ID B Düngenheim Tänfamte 07	Schall-Immissionsort: 40 dB Abst.: 300 m (10)	2.585.658	5.568.033	368,5	5,0	40,4	300	43.1	Nein	Ja	Nein
IP C Eulean Disease below St. 27	Schall-Immissionsort: 45 dB Abst.: 300 m (11)	2.583.716	5.569.697	460,0	5,0	45,4	300	43.3	Ja	Ja	Ja
IP C Euigem Dungenneimer Str. 6	Schall-Immissionsort: 45 dB Abst.: 300 m (12)	2.583.925	5.567.895	411,7	5.0	45.4	300	42.5	.la	la	Ja
								,0	00	oa	Ja

Abstände (m)

WEA	,	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Fulgem Düngenheimer Str. 6
	61	1428	1137	1347
	62	1473	1186	1608
	63	1295	1377	1621
	64	1240	1321	1300
	66	920	1735	1613
	67	726	1834	1385
	71	1158	1414	1097
	74	970	1588	1246

Fortsetzung auf nächster Seite... WindPRO entwickelt von EMD International A/S, Niels Jemesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Beschreibung:
Berechnung der Gesamtbelastung durch 25 WEA. Alle im
Vollleistungsbetrieb. Berechnete Immissionswrte als obere
Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%. 02.07_2.5

Ausdruck/Seite 23.02.2007 12:46 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

23.02.2007 12:42/2.5.6.79

DECIBEL - Hauptergebnis

Berechnung: A3 Gesamtbelastung

Fortsetzung	von der vorigen Seite	- The state of the	
WEA	IP A Gamlen Auf dem Käulchen 10	IP B Düngenheim Töpferstr. 27	IP C Eulgem Düngenheimer Str. 6
75	1051	1565	1518
85	1338	1220	
101	1611	1047	1246
102	1559		1623
103		1005	1362
8	1784	891	1683
104	1742	816	1360
113	2020	827	1924
113	1817	880	997
114	1745	1246	2022
155	1325	2437	765
158	1578	1110	703 878
159	2363	2533	. 857
WEA 05 (80)	814	2308	2139
WEA 05 (82)	1132	1804	1956
WEA 06 (81)	907		
WEA 08 (83)		2027	1969
	1366	1597	1980
WEA 09 (84)	1912	1456	2337

02.07_2.5

Berechnung der Gesamtbelastung durch 25 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

23.02.2007 12:47 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

DE-49078 Osnabrüc +49 541 6687 259

Berechnet: 23.02.2007 12:42/2.5.6.79

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption

Agr:

Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung

Abar: Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Gamlen Auf dem Käulchen 10 Schall-Immissionsort: 40 dB Abst.: 300 m (10)

WEA					95% der Ne	ennleistu	ng							•	
Nr.	Abstand			Sichtbar	Berechnet			Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
6		1.432	,-	Nein	22,95	102,6	3,01	74,12	2,72	4,80		0.00			
6:		1.478		Nein	22,56	102,6	3,01	74,39	2,81	4,80	0,00	0,00	82,00	1,05	
6:		1.301	32,2	Nein	27,94	106,1	3,01	73,29	2,47	4,80	0,00	0,00	80,56		
6-			35,1	Ja	29,46	106,1	3,01	72,91	2,37	3,83	0,00	0,00	79.10	0,55	
66		927	29,5	Ja	32,46	105,4	3,01	70,34	1,76	3,70	0,00	0,00	75.80	0,15	
67		737	40,4	Ja	35,76	105,4			1,40	2,89	0,00	0,00	72,64	0.00	
7.		1.165	43,9	Ja	29,64	104,9		72,33	2,21	3,50	0,00	0,00	78,04	0,22	
74		976	33,0	Ja	31,51	104,9	-,	70,79	1,85	3,63	0,00	0,00	76,27	0,12	
75		1.058	31,6	Ja	30,37	104,9		71,49	2,01	3,77	0,00	0,00	77,27	0,27	
85		1.343	36,7	Ja	28,48	106,1		73,56	2,55	3,86	0,00	0,00	79,97	0,65	
101 102		1.615	26,4	Nein	21,44	102,6		75,16	3,07	4,80	0,00	0,00	83,03	1,13	
102		1.563	29,5	Nein	21,86	102,6		74,88	2,97	4,80	0,00	0,00	82,65	1,10	
104		1.790	36,1	Nein	23,86	106,1	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,99	
113		1.747	39,7	Nein	24,17	106,1	3,01	75,85	3,32	4,80	0,00	0,00	83,97	0,97	
113		2.024	33,6	Nein	21,16			77,13	3,85	4,80	0,00	0,00	85,77	0,98	
114		1.822	48,5	Nein	23,09	105,4		76,21	3,46	4,80	0,00	0,00	84,47	0,84	
155		1.749	29,0	Nein	21,96		3,01	75,85	3,32	4,80	0,00	0,00	83,98	0,97	
158		1.332	56,5	Ja	25,50	102,6		73,49	2,53	3,34	0,00	0,00	79,36	0,75	
159		1.584	48,2	Ja	25,98	105,4		75,00	3,01	3,75	0,00	0,00	81,76	0,67	
WEA 05 (80)		2.368	34,4	Ja	19,57	105,3		78,49		4,30	0,00	0,00	87,29	1,45	
WEA 05 (82)		821	32,9	Ja	34,75			69,29	1,56		0,00	0,00	74,25	0,00	
WEA 06 (81)		1.137	26,2	Ja	30,31		3,01	72,11	2,16	4,00	0,00	0,00	78,28	0,42	
WEA 08 (83)		913	28,7	. Ja	33,32			70,21	1,74		0,00	0,00	75,66	0,03	
WEA 09 (84)		1.370	25,4	Nein	27,18		3,01	73,73	2,60		0,00	0,00	81,14	0,69	
**EA 09 (04)	1.912	1.913	19,8	Nein	22,87	106,0	3,01	76,64	3,64	4,80	0,00	0,00	85,07	1,06	

Summe 43,14

Schall-Immissionsort: IP B Düngenheim Töpferstr. 27 Schall-Immissionsort: 45 dB Abst.: 300 m (11)

77						95% der No	ennleistu	na							
Nr.		Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	61	1.137	1.137	36,0	Ja	26,86	102,6	3,01	72.12	2,16				77.98	
	62	1.186	1.187	38,1	Ja	26,36				2,25				78,43	-,
	63	1.377	1.378	47,6	Ja	28,40				2,62				80.01	
	64	1.321	1.321	46,1	Ja	28,94				2,51				79.53	
	66	1.735	1.735	49,7	Ja	24,49				3,30				82,90	-,
	67	1.834	1.835	60,6	Ja	24,13			76.27					83.42	
	71	1.414	1.414	53,3	Ja	27,17			74.01					80.20	-,
	74	1.588	1.588	46,9	Ja	25,24			75,02	,				81,82	-,

Fortsetzung auf nächster Seite...

WindPRO entwickett von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@ernd.dk

02.07_2.5

Summe

Berechnung der Gesamtbelastung durch 25 WEA. Alle im Vollleistungsbetrieb. Berechnete Immissionswrte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

WindPRO 2 version 2.5.6.79 Jan 2007

Ausdruck/Seite 23.02.2007 12:47 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

23.02.2007 12:42/2.5.6.79

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzung	von der vo	origen Seite						MUST CHARLES	4446644001469941	endentia Englishi S	CONTRACTOR STATE			200000000000000000000000000000000000000
WEA					95% der No	ennleistu	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet			Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
75			49,2	Ja	25,49	104,9	3,01	74.89	2,97					0.84
85			45,2	Ja	30,01	106,1	3,01	72,73		3,52				0.52
101		1.047	38,1	Ja	28,02	102,6	3,01	71,40		3,54				0,66
102		1.005	37,3	Ja	28,53	102,6	3,01	71,05		3,52		.,	-,	0.61
103		892	46,9	Ja	34,42	106,1	3,01	70,01		2.98				0.00
104		817	45,6	Ja	35,44	106,1	3,00	69,24	1,55	2,86	0.00	0.00	73.66	0.00
113		828	47,1	Ja	34,14	104,9	3,00	69,37	1,57	2,83	0.00	0.00	73.77	0.00
113		881	49,3	Ja	33,96	105,4	3,00	69,90	1,67	2.86	0.00	0.00		0.00
114		1.246	45,6	Ja	27,54	103,9	3,01	72,91	2,37	3,54	0.00	0,00	78.82	0.56
155		2.437	71,8	Ja	17,13	102,6	3,01	78,74	4,63	3,79	0.00		87.16	1.32
158		1.111	52,5	Ja	31,11	105,4	3,01	71,91	2,11	3,17	0.00	0.00	77.19	0.11
159		2.533	63,3	Ja	18,99	105,3	3,01	79,07	4,81	3,95	0.00	,	87.83	1.49
WEA 05 (80)		2.308	51,5	Ja	21,10	106,0	3,01	78,26	4,38	4,04	0.00		86.68	1,22
WEA 05 (82)		1.804	46,6	Ja	24,54	106,0	3,01	76,12	3,43	3,91	0.00	-	83,46	1,01
WEA 06 (81)		2.027	49,6	Ja	22,95	106,0	3,01	77,14	3,85	3,96	0,00		84.95	1.12
WEA 08 (83)		1.598	42,0	Ja	26,13	106,0	3,01	75,07	3,04	3,90	0,00		82.00	0.88
WEA 09 (84)	1.456	1.456	46,5	Ja	27,50	106,0	3,01	74,27	2,77	3,70	0,00		80,73	0,77

Schall-Immissionsort: IP C Eulgem Düngenheimer Str. 6 Schall-Immissionsort: 45 dB Abst.: 300 m (12) WEA

						30% GBL ME	ennieistui	ng								
	Nr.			Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	61	1.347	1.348	,.	Ja	24,96	102,6	3,01			3,53		0,00			
	62	1.608	1.610	50,3	Ja	22,56			75,13		3,73		0.00		-,	
	63	1.621	1.622	59,7	Ja	26,40	106,1				3,54	0.00	0.00	,	.,	
	64	1.300	1.302	60,0	Ja	29,51	106,1	3.01			3,21	0.00	0.00	78.98	• • • •	
	66	1.613	1.615	58,3	Ja	25,67	105,4				3,56	-,	0,00	-,-	0,95	
	67	1.385	1.387	67,7	Ja	28,33	105,4				3.12		0,00		0,48	
	71	1.097	1.100	66,3	Ja	31,14	104,9		71,83	2,09	2,72	-,	0.00		0,12	
	74	1.246	1.247	56,2	Ja	28,83	104,9			2,37		-,	0,00	78.54	0,12	
0000	75	1.518	1.520	59,7	Ja	26,13	104,9			2,89		. ,		80.97	0,80	
	85	1.246	1.248	60,0	Ja	30,11	106.1		72.93		3,14	0.00			0,56	
	101	1.623	1.624	49,2	Ja	22,41	102,6		75,21		3.76	0.00		82.06	1,14	
	102	1.362	1.363	50,5	Ja	24,83	102,6				3,52		0,00	79.81	0,97	
	103	1.683	1.686	57,6	Ja	25,81	106.1	3,01	75,54		3,63				0,93	
	104	1.360	1.363	60,5	Ja	28,88	106,1		73,69	2,59		0.00		79.55	0,53	
	113	1.924	1.926	54,5	Ja	22,80	104,9				3,83	0.00		84,18	0,93	
ě	113	997	1.002	68,8	Ja	33,06	105,4				2,42			75.34	0,00	
	114.		2.023	49,4	Ja	20,87	103,9		77,12	3,84		0,00	-	84,93	1,11	
	155	765	772	41,2	Ja	32,44	102,6			1,47		0.00		73,16	0,00	
	158	878	882	66,9	Ja	34,65	105,4			1,68		0.00		73.76	0,00	
	159	857	864	27,4	Ja	32,76	105,3		69,73	1,64		0.00		75.07	0.48	
	WEA 05 (80)	2.139	2.140	49,4	Ja	22,16	106,0		77.61	4.07		0.00		85.68	1,16	
	WEA 05 (82)	1.956	1.957	51,5	Ja	23,48	106,0			3,72		0.00	-	84.45	1,08	
٠	WEA 06 (81)	1.969	1.970	52,9	Ja	23,41			76,89	3,74		0.00		84.51	1,00	
	WEA 08 (83)	1.980	1.981	49,7	Ja	23,27			76.94	3,76		0.00		84,64	1,10	
	WEA 09 (84)	2.337	2.338	34,5	Ja	20,66	106,0			4,44		0.00		87.11	1.23	

Summe 42,51

Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen)

Eint	Eintragung Antragsteller			·				*** code	Eintragung in Abstimmung mit der zuständigen Bauleitplanungsbehörde
В	Out	Straße/Hausnummer	Flur	Flur Flurstück	Gemarkung	Rechtswert	Hochwert	Immissions richtwert nachts	Ausweisung nach BauNVO Flächennitzungsplan, wenh Vothanden, ansonsten
∢ ¤	Gamlen	Auf dem Käulchen 10	9	89/2	Gamlen	2.585.658	5.568.033	40 dB(A)	WW. Beh. Unflex.
ماداد	Eulgem	Düngenheimer Str. 6	8 4	105 43	Düngenheim Eulgem	2.583.716 2.583.925	5.569.697 5.567.895	45 dB(A) 45 dB(A)	"H" FRicharmkingan Cher.
υ									S. Carlotte
ц									
ב									
-									
			 						
۷ -									
Wicht	a: Die Immissionsaufnunk	the sind application of the si	To built						
		S. S	DIID O	inatteriprogr	losen Vorzusenen	und im Lageplar	zu vermerken !		Bauleitplanungsbehörde
Ort u	nd Datum: Osmæl	Ort und Datum: Osnabwick, 21.02.07	X					- Andrews Systems (State	Market Color
Unter	Unterschrift Antragsteller:							accession — See See See See See See See See See S	Datum, Unterschrift und Stempel der (\mathbf{W}, \mathbf{k}) zuständigen Bauleitplanungsbehörde

Anhang:
Lageplan Maßstab 1:5000 mit Darstellung der
Character Char

BIM-K 0867/2003 Neubau von 5 WEA Gamlen

Gamlen ENP GmbH

Ort: Gemarkung: Antragsteller:

Aktenzeichen: Vorhaben: Zu berücksichtigende Vorbelastung im Kreis Cochem-Zell - Seite 1 von 2

	Impuls- und Ton- haltigkeit in dB (A)	-				-	-	-	-	-		-					N		
	(A) Ab ni swJ	100 5	2 0	5,00	1040	103.3	103.3	102.0	102.0	102.0	104.0	100,00	100.5	1040	1040		24.01.01	Intersobrit Entwireforce	elidssei
	WA ni gnutsiəlnnə	1	200	1500	1500	2300	2300	1800	180	1800	1500	200	200	1500	1500			han inform	Wallsv
	Rotordurchmesser in Meter	AO	4	2 -	12	6	6	2	2 2	2 2	2 1	40	404	77	1	Datum	pruch	1 to	
	Vabenhöhe in Meter	9	65	85	85	8	100	86	88	8	85	65	65	85	85	Ort und Datum	Usnabruch	De la Constantina	חוובו מר
	qvjnəgslnA	F 40	F 40	GE 1.5 sl	2	06-N	06-N	E 66/18.70	E66/18.70	F66/18 70	GF 1 5sl	E-40	E-40	GE 1.5 sl	GE 1,5 sL				
agendaten	Anlagenherateller	Enercon	Enercon	GE	GE	Nordex	Nordex	Enercon	Enercon	Enercon	GE	Enercon	Enercon	GE	GE	70 00 60 1	. 1	Therrin/Bau	20101101102
Standortdaten und allgemeine Anlagendaten	Ветегкилдел	Bestand	418 Bestand				400 Bestand	ad		Π	[m	\top				Ort und Datum	- Smaonne	Unterschrift Bauherrin/Bauherr	
aten und	Z	412	418	411	405	408	400	399	395	405	405	422	420	426	423				
Standortd	Носһwert	5569036	5569238	5569132	5568890	5568846	5568548	5568677	5568654	5568900	5568910	5569324	5569113	5569449	5569186	ia V			
	Rechtswert	2584641	2584810	2584972	2584762	2585228	2585146	2584695	2584913	2585063	2584648	2584694	2584534	2584572	2584352				The second secon
	Flurstück	14	14	11	11	38	35	10,4	194	23,24	51	92	92	87	87				
-	Tul∃	12	12	12	12	9	9	9	9	9	7	10	10	10	10				
	Сетапкипд	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Düngenheim	Düngenheim	Düngenheim	Düngenheim				17 - 17 - 1
	Anlagennummer siellets Antragstellers	Ŭ	Ŭ	Ü							<u></u>		ᅴ		븨	197	0	D.	0 /
ehörde	Anlagennummer	61	62	63	64	99	29	71	74	75	82	101	102	103	104	ė	vairu	کر chrift	
Eintragungen der Genehmigungsbehörde	abniamaĐ	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Düngenheim	Düngenheim	Düngenheim	Düngenheim	waltung Coo	eine Badwerk	Stempel u/ Unterschrift	Wichtig: Die worgegebenen Aufgegen
agungen	-SerbandsgemeineV														¥	Ar verge legen waltu	6-Allemeine		oy oid
Eintr	kreis	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135	135 K	135 K	135 K	135 K	Harver	一十二	Datum	Wichtig

Wichtig: Die vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!! Beantragte Windkraftanlagen (Zusatzbelastung

Errichtung von 5 WEA BIV-K 0867/2003 Gamlen Gamlen ENP Aktenzeichen: Bauvorhaben: Gemarkung: Bauherr:

Konkretisierung der Betriebsbeschreibung für Windkraftanlagen Anlage Nr. 6.2 Geräuschemissionen der Betriebsbeschreibung Anlage 3 Blatt 1

Ein	tragunge	Eintragungen der Genehmigungsbehörde	shörde						Standortd	aten und	Standortdaten und allgemeine Anlagendaten	lagendaten						
Kreis	Verbandsgemeind 9	a ebniemeĐ	Anlagennummer	nammunagslnA des Antragstellers	динучиеше	Flur	Flurstück	Rechtswert	Носһмең	Z	geшецкпидеи c	Anlagenhersteller	qvjnəpsinA	Nabenhöhe in Meter	Rotordurchmesser in Meter	Nennleistung in	(A) 8b ni swJ	Impuls- und Ton- naltigkeit in dB (A)
135	ㅈ	Eulgem	155	Ēι	Eulgem	9	-	2584500	5567390	438	BIM-Antrag	Enercon	E 40/6.44	78	44	900	100.5	
135		Eulgem	158	Eı	Eulgem	3	40	2584235	5568716	405	405 BIM-Antrag	Neg Micon	NM 82	100	83	1500	102.5	
135	7	Eulgem	159	Er	Eulgem	2	331/5	2583455	5567178	464	464 BV pos	Vestas	V52	09	52	006	103.2	
135	ㅈ	Düngenheim	107	Dï	Düngenheim	10	54,55	2584053	5568884	414	414 BIM-Antrag	Neg Micon	NM 82	100	82	1500	102.5	
135	쏘	Düngenheim	113	Dí	Düngenheim	9	103	2584543	5569717	412	412 BIM-Antrag	Enercon	E 66/18.70	86	102	1800	102.9	-
135	×	Düngenheim	114	וֹם	Düngenheim	9	06	2584960	5569632	405	405 BIM-Antrag	Enercon	E 70/E4	85	77	2000	101,8	
				,				 										
														+-	+-		+-	-
																		-
	ne p						‡	1	†	+								
,														-	-	+-	+-	-
Hat	Hat vorgelegen	Sec. 15-10	7-46	(3)							Ort und Datum Osnabrüth,	in 22.02.07		Ort und Datum	Datum	20.	22.02.07	N.
T T	getne	elne Galcastat	3	1							1			14	M			
Datum	ے	In Stemper a Unterschrift	chrift		5 N					_	Unterschrift E	Unterschrift Bauherrin/Bauherr		Unterschriff Entwurfsverfasser	riik Fi	hwurfsve	rfasser	
Wich	tig: Die	Wichtig: Die vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!	nnumme	ern (Spalte	e 4) sind u.a. ana	log in c	den Schall-	und Schatten	iprognosen zu	ı verwen	iden und im La	geblan zu verme						

Beantragte Windkraftanlagen (Zusatzbelastung)

11 101				-											
735 K	Gamlen	80	Gamlen	2	130,131	2585852	5568824	393 BimV	Enercon	E-82	84.5	82	2000	103.4	
135 K	Gamlen	81	Gamlen	2	141	2585595	5568938	395 BimV	Enercon	E-82	84.5	8	2000	1	
135 K	Gamlen	82	Gamlen	5	150	2585423	5569142	393 BimV	Enercon	E-82	84.5	82	2000	1	
	Gamlen	83	Gamlen	2	163,164	2585274	5569344	391 BimV	Enercon	E-82	84,5	82	2000	103,4	
135 K	Gamlen	84	Gamlen	2	193	2585161	5569879	373 BimV	Enercon	E-82	84,5	82	2000	1	
Aktenzeichen:	:ue	BIV-K 0867/2003	//2003									2			10000
Bauvorhaben:	∍n:	Errichtung	Errichtung von 5 WEA												
Ort:		Gamlen								Konkratici	Konkretisierung der Betriebebeschreibung für	rioheboe	, diordo	£(),	
Gemarkung:		Gamlen								Windkrafts	Windkraffanlagen Anlage Nr. 6.2 Geräuschemissionen de	e Nr. 6.2	Geräuse	J Iur Shemissi	ionen de
Bauherr:		ENP							1	Betriebsbe	Betriebsbeschreibung Anlage 3 Blatt 1	nlage 3	3latt 1		1
															- Contraction

schemissionen der Betriebsbeschreibung Anlage 3 Blatt 1

WindPRO 2 version 2.5.6.79 Jan 2007 02.07_2.5 Abstände zwischen Emissions- und Immissionsorten 22.02.2007 21:01 / 1 ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259 Berechnet: 22.02.2007 20:59/2.5.6.79 BASIS - Bitmap map: tk25_gesamt_grau.bmi Berechnung: Abstände Datei: tk25_gesamt_grau.bmi WEA 09 (84)-502 384.8 traße 27, Düngenheim 445,5 WEA 08 (83) WEA 05 (82) 40.6:2 WEA 06 (81) 398, huppig WEA 05 (8 413:3 Heids Eulgemermühle $907 m^{Br}$ 392,3 IP C Düngenheimer Straße 6, Eulgem

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

☼ Schattenrezeptor

人 Neue WEA

250

Karte: tk25_gesamt_grau , Druckmaßstab 1:15.000, Kartenzentrum Gauss Kruger (Bessel) Zone: 2 Ost: 2.584.784 Nord: 5.568.887

1000m

Messung 1 Messung 2 Messung 3	100,7 dB(A) WICO 207SE899 100,1 dB(A) WICO 287SEA01/01 100,8 dB(A) Windtest 1740/01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	100,53 dB(A) 0,38 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,63 dB(A)
1,28*Sigma ges	2,08 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	102,61 dB(A)

Schallreduktion 200kW

Messung 1 Messung 2 Messung 3	97,8 dB(A) WICO 207SE899 96,9 dB(A) WICO 287SEA01/01 96,4 dB(A) Windtest 1740/01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	97,03 dB(A) 0,71 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,73 dB(A)
1,28*Sigma ges	2,22 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	99,25 dB(A)

Seite 1

Auszug aus dem Prüfbericht Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergleanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 207SE899

zur Schallemission der Windenergieanlage vom Typ E-40/6.44

Allgemeine Angaben	,	Technische Daten (Herstellera	naahon)
Anlagenhersteller:	ENERCON GMBH	Nennleistung (Generator):	600 kW
		Rotordurchmesser:	44.00 m
		Nabenhöhe über Grund:	46 m
Serlennummer:	44155	Turmbauart:	Stahlrohrturm
WEA-Standort (ca.):	RW: 2588140 HW: 5947430	Leistungsregelung:	Pitch/Stall/Aktiv-Stall
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Ger	
Rotorblatthersteller:	Enercon GmbH	Getriebehersteller:	entfällt
Typenbezelchnung Blatt:	E-40/6.44	Typenbezeichung Getriebe:	entfällt
Blatteinstellwinkel:	variabel	Generatorhersteller:	Enercon GmbH
Rotorblattanzahl	3	Турепьеzeichung Generator:	E-40/6.44
Rotordrehzahlbereich:	18 - 34.5 U/min	Generatomenndrehzahl:	18 - 34.5 U/min

Prüfbericht zur Leistungskurve: keine Angabe

	Referenz	punkt	Schallemissions- Parameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		
Schalleistungs- Pegel L _{WA.P}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW	97,8 dB(A) 98,9 dB(A) 99,8 dB(A) 100,4 dB(A) 100,7 dB(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW	0 dB bei 352 Hz 2 dB bei 304 Hz 0 dB bei 302 Hz 0 dB bei 192 Hz 0 dB bei 192 Hz	
Impulszuschlag für den Nahbereich K _{IN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW	0 dB 0 dB 0 dB 0 dB 0 dB	

	Т	erz-Sci	halloiet											
			tancist	ungspe	₃gel Ref	ferenzp	unkt v₁	o = 8 m:	s ⁻¹ in di	3(A)				
20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
59,2	62,8	66,5	69,7	73,2	76,3	79,0	81,9	83,6	84,8	85,0	86.7			88.9
800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000			1
90,3	90,4	89,9	88,8	87,1	84,5	81,7	78,9	76,1	71,8	67,3	61,5	55,8	53.0	48.2
	59,2 800	59,2 62,8 800 1000	59,2 62,8 66,5 800 1000 1250	59,2 62,8 66,5 69,7 800 1000 1250 1600	59,2 62,8 66,5 69,7 73,2 800 1000 1250 1600 2000	59,2 62,8 66,5 69,7 73,2 76,3 800 1000 1250 1600 2000 2500	59,2 62,8 66,5 69,7 73,2 76,3 79,0 800 1000 1250 1600 2000 2500 3150	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 800 1000 1250 1600 2000 2500 3150 4000	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 800 1000 1250 1600 2000 2500 3150 4000 5000	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 84,8 800 1000 1250 1600 2000 2500 3150 4000 5000 6300	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 84,8 85,0 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 903 1004 2004 2006 2500 3150 4000 5000 6300 8000	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 84,8 85,0 86,7 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 84,8 85,0 86,7 87,6 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500 90,3 100,4 200,0 280,0 237,0 400,0 5000 6300 8000 10000 12500	59,2 62,8 66,5 69,7 73,2 76,3 79,0 81,9 83,6 84,8 85,0 86,7 87,6 88,2 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 10000 12500 16000 03 004 800 800 800 10000 12500 16000

		<u> </u>		1,-		01,0	0.,,	10,3	70,1	11,0	01,3	01,0	೨၁,೮	53,0	48,2
		Т	erz-Sch	alleisti	ungspe	gel Ref	erenzp	unkt v ₁₀	, = 10 π	ıs' ¹ in d	B(A)				
16	20	25	31,5	40	50	63	80	100				250	315	400	500
62,3	65,6	68,5	71,1	74,1	76,0	78,8	80,3	83.1							90.2
630	800	1000	1250	1600	2000	2500	3150	4000	5000						
	91,1	91,1	90,5	89,5	87,3	84,7	81,9	79,5	76,6	72.7	68.0	62.0	E0.0	547	40.5
g. riun	senont (üfberich insbesc	it gilt nu indere b	r in Ver ei Scha	bindung allimmis	mit de sionspr	r Herste ognose	ellerbeso n).	helnigu	ng vom	01.03.	2000. D	ie Anga	ben ers	etzen
	62,3 630 90,7 ug aus g. Prüft	62,3 65,6 630 800 90,7 91,1 ug aus dem Pr g. Prüfbericht (16 20 25 62,3 65,6 68,5 630 800 1000 90,7 91,1 91,1 ug aus dem Prüfbericht 9. Prüfbericht (insbeso	16 20 25 31,5 62,3 65,6 68,5 71,1 630 800 1000 1250 90,7 91,1 91,1 90,5 ug aus dem Prüfbericht gilt nu 9. Prüfbericht (insbesondere the programment general genera	16 20 25 31,5 40 62,3 65,6 68,5 71,1 74,1 630 800 1000 1250 1600 90,7 91,1 91,1 90,5 89,5 ug aus dem Prüfbericht gilt nur in Verg. Prüfbericht (insbesondere bei Schie	16 20 25 31,5 40 50 62,3 65,6 68,5 71,1 74,1 76,0 630 800 1000 1250 1600 2000 90,7 91,1 91,1 90,5 89,5 67,3 ug aus dem Prüfbericht gilt nur in Verbindung g. Prüfbericht (insbesondere bei Schallimmis	Terz-Schalleistungspegel Ref 16 20 25 31,5 40 50 63 62,3 65,6 68,5 71,1 74,1 76,0 78,8 630 800 1000 1250 1600 2000 2500 90,7 91,1 91,1 90,5 89,5 87,3 84,7 ug aus dem Prüfbericht gilt nur in Verbindung mit deg. Prüfbericht (insbesondere bei Schallimmissionsprosprometere bei Schallimmissionsprometere bei Sc	Terz-Schalleistungspegel Referenzp 16	Terz-Schalleistungspegel Referenzpunkt v _{tt}	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 10 m 16 20 25 31,5 40 50 63 80 100 125 62,3 65,6 68,5 71,1 74,1 76,0 78,8 80,3 83,1 84,7 630 800 1000 1250 1600 2000 2500 3150 4000 5000 90,7 91,1 91,1 90,5 89,5 87,3 84,7 81,9 79,5 76,6 ug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbeschelnigg. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen)	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in deciding 16	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A)	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A)	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A)	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A)

Gemessen durch:

WIND-consult GmbH

Datum:

27.03.2000

Unterschrift

Unterschrift

DAP-P-02.756-00-94-28

Nach DIN EN 45001 durch die DAP Deutsches Akkreditierungssystem Prüfwesen GmbH akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht WICO 287SEA01/01 zur Schallemission der Windenergieanlage vom Typ ENERCON E-40/6.44

Allgemeine Angaben		Technische Daten (Herstellera	naghan)
Anlagenhersteller: Seriennummer: WEA-Standort (ca.): Ergänzende Daten zum Ro	ENERCON GmbH Dreekamp 5 D-26605 Aurich 44979 RW 3418170, HW 5883430	Nennleistuna (Generator): Rotordurchmesser: Nabenhöhe über Grund: Turmbauart: Leistungsregelung:	600 kW 44 m 78 m Stahlrohrturm Pitch/Stall/Aktiv-Stall
Rotorblatthersteller: Typenbezelchnung Blatt: Blatteinstellwinkel: Rotorblattanzahl	ENERCON GmbH E-40/6.44 variabel	Erg. Daten zu Getriebe und Ge Getriebehersteller: Typenbezeichung Getriebe: Generatorhersteller:	entfällt entfällt ENERCON GmbH
Rotordrehzahlbereich: Prüfbericht zur Leistungsk	18 – 34,5 U/mln	Typenbezeichung Generator: Generatornenndrehzahl:	E-40/6.44 18 34,5 U/min

1					-												
							zpunkt			S		nissions neter	·-	Be	merkun	gen	
				andardi: schwind m l				ektrisch irkleistu	-								
Schalleist	ıngs-			71	ทร ⁻¹ ทร ⁻¹		;	212 kW 343 kW			96,9 d 98,5 d	iB(A)					
Pegel L _{WAP}					ns ⁻¹ ms ⁻¹			484 kW 570 kW			99,6						
			_		ns ⁻¹						100,1				(1)		
Tonzuschl den Nahbe				7 r	ns ⁻¹ ns ⁻¹		;	212 kW 343 kW 484 kW		000	iB t	oei - Hz oei - Hz oei - Hz					
K _{TN}				8,9	ms ⁻¹	- 1		570 kW		0 dB bei - Hz					(4)		
6 ms ⁻¹ Impulszuschlag 7 ms ⁻¹								212 kW		1	0 d				(1)		
für den Na		L	1		ns ⁻¹			343 kW			0 d	В	- 1				
K _{IN}	inereid	11			ns ⁻¹ ms ⁻¹			184 kW 570 kW			0 d			(4)			
· · · · · · · · · · · · · · · · · · ·									<u>.</u>	<u> </u>			L_		(1)		
Frequenz	16	20	25	31,5	40	Stungs	pegel R					dB(A)					
L _{WA.P}	55,5	59,5	62,9	65,7		50	63	80	100	125	160	200	250	315	400	500	
Frequenz	630	800	1000	1250	67,3	70,6	72,8	74,5	77,3	78,7	80,9	83,7	84,6	87,3	88,9	90,8	
L _{WA P}	89,5	90.5			1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	
LWA P	09,5	90,5	91,2	89,1	87,7	85,4	83,4	82,2	81,4	79,1	76,6	73,4	70,3	62,6	53,1	45,9	
			Terz-Schalleistungspegel Referenzpunkt v ₁₀ :									dB(A)					
requenz	16	20	25	25 31,5 40 50 63 80 100						125	160	200	250	315	400	500	
-WA, P	54,5	57,9	61,3	64,7	66,7	69,6	72,7	76,4	76,7	75,8	81,8	85.0	85,2	87,9	89.4	90,9	
requenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	
L _{WA,P} 89,7 90,8 91,7 89,7 88,5 86,4 84,4 83,4 82,6							82,6	80,2	77,7	74,1	70,3	62,2	52,1	42,9			

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 12.11.2001. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,9 ms⁻¹ in 10 m ü.G..

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 05.12.2001

Unterschrift

Dipl.-Ing. R.Haevernick Dipl.-Ing. W.Wilke

Bemerkung:

Der Schalleistungspegel für die 10 m/s Windklasse ändert sich nicht, da die errechneten Windgeschwindigkeiten oberhalb der 95% - Grenze liegen, d.h. die Anlage It. gültiger Leistungskurve dann bereits im Nennleistungsbereich liegt. Die in der Tabelle 7 aufgeführten Werte gelten nur für die baugleiche Anlagen des vermessenen Typs.

5 Zusammenfassung und Bewertung

Im Auftrag der Enercon GmbH, 26605 Aurich, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA Enercon E40/6.44 mit einer Nabenhöhe von h_N = 65 m nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichlich des Schallleistungspegels ist die DIN 61400-11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 T1 /3/ Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die Enercon E40/6.44 die in Tabelle 7 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich..

Tabelle 7: Schalleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

WG in 10 m Höhe [m/s]	6	7	8	9	10 ¹
Schalleistungspegel L _{WA,P} [dB]	96,4	98,3	99,6	100,7	100,8
bewerteter Impulshaltigkeitszuschlag [dB]	0	0	0	0	0
Tonhaltigkeitszuschlag [dB]	0	0	0	0	0

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

Bezüglich des Schallleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge festgestellt worden von:

$$s_{tot} = 1,5 \text{ dB}.$$

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, daß das Gutachten gemäß dem Stand der Technik unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

Messung 1 Messung 2 Messung 3	103,0 dB(A) KCE 26207-1.001 103,0 dB(A) KCE 25716-1.001 102,7 dB(A) Windtest 1618/00
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	102,90 dB(A) 0,17 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,59 dB(A)
1,28*Sigma ges	2,04 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	104 94 dB(A)

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e.V. Flotowstraße 41-43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 26207-1.001

zur Schallemission der Windenergieanlage vom Typ Enercon E-66/18.70 in Hückeswagen

Allgemeine Angaben Technische Daten (Herstellerangaben)

Anlagenhersteller:

Enercon GmbH

Nennleistung (Generator): 1800 kW

Seriennummer:

70.4 m

WEA-Standort (ca.):

70494 42499 Hückeswagen

86 m

GK RW 25.92.350 GK HW 56.67.312

kon. Rohr + Sockel Blattverstellung

Ergänzende Daten zum Rotor (Herstellerangaben)

Erg. Daten zu Getriebe und Generator (Herstellerang.) Getriebehersteller:

Rotorblatthersteller:

Enercon Enercon entfällt

Rotorblattyp: Blatteinstellwinkel:

Variabel

Typenbezeichnung Getriebe: Generatorhersteller:

entfällt Enercon

Rotorblattanzahl:

Typenbezeichnung Generator:

Rotordurchmesser:

Leistungsregelung:

Turmbauart:

Nabenhöhe über Grund:

E-66/18.70, Ringbauweise

Rotordrehzahlbereich:

8-22 U/min

Generatordrehzahlbereich: 8-22 U/min Prüfbericht zur Leistungskurve: Leistungskurvenmessung DEWI-PV 0002-05-F, Deutsches Windenergie-Institut GmbH

												, 500	.001100	VIIIIaciic	gie-insut	ut Gillb	П	
			Ĺ		F	Refere	nzpunk	t										
				Windge	dardisier schwind) m Höh	igkeit	So	hallemi Param	ssions- eter					Bemei	kungen			
Schalleistu	ngs-Peg	iel L _{WA,P}			8 ms ⁻¹ 9 ms ⁻¹ 	-		101,4										
Tonzuschla Nahbereich		n			8 ms ⁻¹ 9 ms ⁻¹ 			0 dE										
Impulszusci Nahbereich	hlag für K _{in}	den			8 ms ⁻¹ 9 ms ⁻¹ 			0 dE										
Terz-Scha	lleistun	gspege	el Refe	renzpu	nkt v ₁₀	= 9,0 r	ns ⁻¹ in (dB(A) e	entspre	cher	nd 95	5% de	er Nenr	nleistund	n hier 1	710k\//		
Frequenz	16	20	25	31,5	40	50	63	80	100	12		160	200	250	315	400		500

	 			0.,0	1.0	00	00	- 00	100	125	100	200	250	315	1 400	500
L _{WA,P}	59,4	62,1	67,6	71,1	74,8	78,4	88,4	92,4	87,4	89,3	93.5	89.9	90.2	91.5	91,1	90,4
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
$L_{WA,P}$	91,4	90,8	91,9	91,3	89,9	88,9	84,9	81,5	78,4	75,2	71,0	66,8	70,6	69,3	66,1	68,8
Terz-Scha								dB(A)		·						
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA,P}	55,4	61,5	67,3	70,8	74,2	78,3	81,2	83,6	85,6	87,8	90,5	88,7	89.0	90.4	89.9	89,3
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
L _{WA,P}	90,5	90,0	91,1	90,7	89,7	88,2	85.2	81.4	77.8	74.6	69.6	64.9	68.1	66.7	63.4	66.2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung . Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Der Abstand zwischen eingeschalteter und ausgeschalteter Windenergieanlage betrug während der Messung <5 dB(A) zwischen WEA an und Hintergrundgeräusch, witterungsbedingt konnten für v₁₀= 6 m/s und 7 m/s keine

Minutenmittelwerte erfasst werden.

Gemessen durch: KÖTTER Consulting Engineers

- Rheine -

Datum:

04.03.2003

Bonifatiusstraße 400 - 48432 Rheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43 i.V. And Schally

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e.V. Flotowstraße 41-43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 25716-1.001 zur Schallemission der Windenergieanlage vom Typ Enercon E-66/18.70 im Windpark Wilsum Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: Enercon GmbH Nennleistung (Generator): 1800 kW Rotordurchmesser: 70,4 m Seriennummer: 70350 Nabenhöhe über Grund: 98m WEA-Standort (ca.): 49849 Wilsum Turmbauart: kon. Rohr + Sockel GK RW 25.60.880, Leistungsregelung: Blattverstellung GK HW 59.23.400

Ergänzende Daten zum Rotor (Herstellerangaben)

Erg. Daten zu Getriebe und Generator (Herstellerang.)

Rotorblatthersteller:

Enercon

Getriebehersteller:

Ontfällt

Rotorblatthersteller: Enercon Getriebehersteller: entfällt Typenbezeichnung Getriebe: entfällt Blatteinstellwinkel: Variabel Generatorhersteller: Enercon

Rotorblattanzahl: 3 Typenbezeichnung Generator: E-66/18.70, Ringbauweise Rotordrehzahlbereich: 10-22 U/min Generatordrehzahl: 10-22 U/min

	² rüfberi	cht zur i	_eistung	jskurve:	Leistun	gskurve	enmessi	ung DE\	M-PV 0	002-05	-E, Deι	tsches	Windener	gie-Institu	ıt GmbH	
					F	eferen	zpunk	t								
			١	Vindges	lardisier chwindi m Höh	gkeit	Sc	hallemi Param					Bemer	kungen		
					6 ms ⁻¹			97,2 df	3(A)							
0-5-7-1	_		-		7 ms ⁻¹			99,7 dE	3(A)				1			
Schalleistu	ngs-Peg	iel L _{WAP}			8 ms ⁻¹		1	01,6 dE								
			-		9 ms ⁻¹		1	02,9 dE	3(A)	-						
					9,15 m	s ⁻¹		03,0 dE		- 1						
					6 ms ⁻¹			0 dE								
Tonzuschla	a für de	n			7 ms ⁻¹			0 dE	3				1			
Nahbereich					8 ms ⁻¹			0 dE	3				İ			
	.,.,				9 ms ⁻¹			0 dE	3							
				9,15 ms ⁻¹ 0 dB												
					6 ms ⁻¹			0 dE	3					**		
Impulszusci	blaa für	don	1		7 ms ⁻¹			0 dE	3	- 1						
Nahbereich		uen			8 ms ⁻¹			0 dE					İ			
1 Valiber Cicir	M		l		9 ms ⁻¹			0 dE					1			
			ļ		9,15 ms	s ⁻¹		0 dE					1			
Terz-Scha	lleistun	aenea	al Pofo			"	-1:	2/4)			****			****	***	
Frequenz	16	20	25		40		T						,	1		
				31,5		50	63	80	100	125	160	200	250	315	400	500
L _{WA,P}	60,9	66,4	70,3	73	75,9	79,3	81,9	85,2	84,1	85	90	85,8	87,9	90,3	90	89,6
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
L _{WA,P}	91,9	92	92,8	91,2	89,5	87,2	84,8	82,1	80,4	77,2	72,6	68,6	66,2	64,5	63,4	
Terz-Schal	lleistun	gspege	el Refe	renzpu	nkt v ₁₀	= 9,15	ms ⁻¹ in	dB(A)	, entsp	recher	d 95%	der Ne	nnleistur	na (1710	kW)	
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
	20.0	07.0							——		<u> </u>			0.0	700	500

										<u> </u>				4 .,0	, 00,.	
Terz-Scha	lleistun	gspeg	el Refe	renzpu	nkt v ₁₀	= 9,15	ms ⁻¹ ir	dB(A)	, entsp	rechen	d 95%	der Ne	nnleistu	na (1710) k\//)	
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA,P}	62,3	67,8	71,7	74,4	77,3	80,7	83,3	86,6	85,5	86,4	91,4	87,2	89,3	91,7	91,4	91,0
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
L _{WA,P}	93,3	93,4	94,2	92,6	90,9	88,6	86,2	83,5	81,8	78,6	74,0	70,0	67,6	65,9	64,8	
D: .											·					

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung . Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Gemessen durch: KÖTTER Consulting Engineers

- Rheine -

Datum: 04.03.2003

Bonifatiusstraße 400 · 48432 Rheine | V And Schally
Tel. 059 71 - 97 10.0 · Fax 059 71 - 97 10.43

Unterschrift

Dieser Auszug aus dem Prüfbericht enthält 1 Seite.

nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schalleistungspegels ist die DIN 61400-11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 T1 /3/ Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die E66/18.70 die in Tabelle 8 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich..

Tabelle 8: Schalleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

WG in 10 m Höhe [m/s]	6	7	8	9	10 ¹
Schalleistungspegel L _{WA,P} [dB]	_	-	100,5	102,1	102.7
bewerteter Impulshaltigkeitszuschlag [dB]	_	0	0	0	0
Tonhaltigkeitszuschlag [dB]	-	-	0	0	0

¹ bzw. die der 95%igen Nennleistung entsprechende WG

Bezüglich des Schalleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge festgestellt worden von:

$$s_{tot} = 1,5 dB.$$

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

Messung 1 Messung 2 Messung 3	102,0 dB(A) WICO 392SEA3/01 101,9 dB(A) KCE 28277-1.004 101,6 dB(A) Müller-BBM M62 910/1
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	101,83 dB(A) 0,21 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,59 dB(A)
1,28*Sigma ges	2,04 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	103,87 dB(A)

		<u> Barriera de la co</u>					Seite 1/
Auf der Basis von	maindentane de l'At						
Schallemissionsw	n mindestens drei Messungen nac verte eines Anlagentyps gemäß [2	ch der "Technischei 2] anzugeben, um c	n Richtlinie für W lie schalltechnisc	indenergieanlage he Planungssiche	n" [1] besteht die erheit zu erhöhen.	Möglichkeit die	•
Anlagendater							
Hersteller	Enercon GmbH		Anlagenbezeio	hnung	E-70 E4	i garantet er gar I	
	Dreekamp 5		Nennleistung	ung	2000 kW		
	26605 Aurich		Nabenhöhe		85 m		
			Rotordurchme	sser	71 m		
Angab	en zur Einzelmessung	1	2	Mess	ung-Nr. 4	5	6
Seriennummer		701496	701858				_
Standort		Ostermarsch	Ahaus-Wüllen	Schwaförden			
vermess. Nabent	nöhe (m)	65	113	98			
Messinstitut		Wind-Consult	Kötter C.E.	Müller-BBM			
Prüfbericht		392SEA3/01	l .	1	1		
Datum		23.07.2004	14.03.2005	1	1		
Getriebetyp		-					
Generatortyp Rotorblatttyp		E-70	E-70				
. Соготанцур		70-4	70-4	70-4			
	·····						
Schallemissio	nsparameter: Messwerte	(Prüfbericht Le	istungskurve:	berechnete Le	eistungskurve)		
					gonarie/		
Schallleistungs	pegel						
Messung	Schallleistungspegel	6 m/a		hwindigkeit in 1	0 m Höhe		1
1	L _{WAP} [3]	6 m/s 99.1 dB(A)	7 m/s	8 m/s	9 m/s	10 m/s	
1 2	L WA,P	99,1 dB(A)	7 m/s 100,2 dB(A)	101,4 dB(A)	102,0 dB(A)	10 m/s	102,0 dB(A)
	L _{WA,P} [4]		100,2 dB(A) 	101,4 dB(A) 101,3 dB(A)	102,0 dB(A) 101,9 dB(A)		102,0 dB(A) 101,9 dB(A)
2	L WA,P [4]	99,1 dB(A) 98,7 dB(A)		101,4 dB(A)	102,0 dB(A)	10 m/s	102,0 dB(A)
2 3	L _{WA,P} [4]	99,1 dB(A) 98,7 dB(A) 	100,2 dB(A) 	101,4 dB(A) 101,3 dB(A)	102,0 dB(A) 101,9 dB(A)		102,0 dB(A) 101,9 dB(A)
2 3 Mittelwert L _W	L _{WA,P} [4] L _{WA,P} [5]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A)	100,2 dB(A) 	101,4 dB(A) 101,3 dB(A)	102,0 dB(A) 101,9 dB(A)		102,0 dB(A) 101,9 dB(A)
2 3 Mittelwert L _w Standardabweich	L _{WA,P} [4] L _{WA,P} [5]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A)	100,2 dB(A) 100,5 dB(A)	101,4 dB(A) 101,3 dB(A) 101,2 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A)
2 3 Mittelwert L _w Standardabweich	L _{WA,P} [4] L _{WA,P} [5]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A)	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A)
$\frac{2}{3}$ Mittelwert L_W Standardabweich (nach [2] σ_R =	L _{WA,P} [4] L _{WA,P} [5] L _{WA,P} [6] ung s 0,5 dB(A) [6]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A)	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _w Standardabweich (nach [2]	L _{WA,P} [4] L _{WA,P} [5]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A)	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
$\frac{2}{3}$ Mittelwert L_W Standardabweich (nach [2] σ_R =	L _{WA,P} [4] L _{WA,P} [5] L _{WA,P} [6] ung s 0,5 dB(A) [6]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A)	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _w Standardabweich (nach [2]	L _{WA,P} [4] L _{WA,P} [5] L _{WA,P} [6] ung s 0,5 dB(A) [6]	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A)	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _w Standardabweich (nach [2]	L WA,P [4] L WA,P [5] L WA,P [5] L WA,P [6] ung s 0,5 dB(A) [6] nsparameter: Zuschläge	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A)	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _w Standardabweich (nach [2] σ_R = Schallemission Fonzuschlag Messung	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TM}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) 4,0 dB(A)		102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _w Standardabweich (nach [2]	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) keit in 10 m Höhe	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _W Standardabweich A nach [2] σ _R = Schallemission Tonzuschlag Messung 1 2	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TM}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) 4,0 dB(A)	 e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _W Standardabweich K nach [2]	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) keit in 10 m Höhe	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Mittelwert L _W Standardabweich A nach [2] σ _R = Schallemission Tonzuschlag Messung 1 2	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) keit in 10 m Höhe	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 flittelwert L _W standardabweichi c nach [2] σ _R = fichallemission fonzuschlag Messung 1 2 3	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A) 6 m/s	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W/ 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) **Reit in 10 m Höhn 9 m/s	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 flittelwert L _W standardabweichi c nach [2] σ _R = fichallemission fonzuschlag Messung 1 2 3	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A) 6 m/s	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W 7 m/s	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) keit in 10 m Höh 9 m/s	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 flittelwert L _W standardabweichi c nach [2] σ _R = fichallemission fonzuschlag Messung 1 2 3	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W/ 7 m/s Wi	101,4 dB(A) 101,3 dB(A) 101,2 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) ** ** ** ** ** ** ** ** **	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Alittelwert L _W Standardabweichi Chach [2] $\sigma_R =$ Schallemission Onzuschlag Messung 1 2 3 ittelwert K _{TN} mpulszuschlag Messung	L _{WA,P} [4] L _{WA,P} [5] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschlag K _{TN} K _{TN} K _{TN} K _{TN} Tonzuschlag	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W/ 7 m/s Wi 7 m/s	101,4 dB(A) 101,3 dB(A) 101,3 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) keit in 10 m Höhe 9 m/s seit in 10 m Höhe 9 m/s	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Intelwert L _W Intertact and a standard abweich is challemission In ach [2] or a standard abweich is challemission In ach [2] or a standard abweich is challemission In ach [2] or a standard abweich is challen is standard abweich is challen in ach is challen in	LWA,P [4] LWA,P [5] LWA,P [5] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschlag K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) 7 m/s Wi 7 m/s Wi 7 m/s	101,4 dB(A) 101,3 dB(A) 101,3 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) 1,0 dB(A) indgeschwindig 8 m/s ndgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,9 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) 1,0 dB(A) keit in 10 m Höhe 9 m/s seit in 10 m Höhe 9 m/s	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
2 3 Alittelwert L _W Standardabweichi Chach [2] $\sigma_R =$ Schallemission Onzuschlag Messung 1 2 3 ittelwert K _{TN} mpulszuschlag Messung	LWA,P [4] LWA,P [5] LWA,P [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A)	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W/ 7 m/s Wi 7 m/s	101,4 dB(A) 101,3 dB(A) 101,3 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) **Note of the content of t	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Intelwert L _W Intertact and a standard abweich is challemission In ach [2] or a standard abweich is challemission In ach [2] or a standard abweich is challemission In ach [2] or a standard abweich is challen is standard abweich is challen in ach is challen in	LWA,P [4] LWA,P [5] LWA,P [5] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschlag K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN} K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A) 6 m/s	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) 7 m/s Wi 7 m/s Wi 7 m/s	101,4 dB(A) 101,3 dB(A) 101,3 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) 1,0 dB(A) indgeschwindig 8 m/s ndgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,9 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) 1,0 dB(A) keit in 10 m Höhe 9 m/s seit in 10 m Höhe 9 m/s	e 10 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)
Intelwert L _W Intertact and a standard abweich is challemission In ach [2] or a standard abweich is challemission In ach [2] or a standard abweich is challemission In ach [2] or a standard abweich is challen is standard abweich is challen in ach is challen in	LWA,P [4] LWA,P [5] LWA,P [5] ung s 0,5 dB(A) [6] nsparameter: Zuschläge Tonzuschlag K _{TN}	99,1 dB(A) 98,7 dB(A) 98,9 dB(A) 0,3 dB(A) 1,3 dB(A) 6 m/s	100,2 dB(A) 100,5 dB(A) 100,4 dB(A) 0,2 dB(A) 1,1 dB(A) W/ 7 m/s Wi 7 m/s	101,4 dB(A) 101,3 dB(A) 101,3 dB(A) 101,3 dB(A) 0,1 dB(A) 1,0 dB(A) 1,0 dB(A) indgeschwindig 8 m/s	102,0 dB(A) 101,9 dB(A) 101,6 dB(A) 101,9 dB(A) 0,2 dB(A) 1,0 dB(A) **Note of the content of t	e 10 m/s	101,9 dB(A) 101,6 dB(A) 101,8 dB(A) 0,2 dB(A)

Messung 1 Messung 2 Messung 3	103,9 dB(A) KCE 32106-1.002 103,7 dB(A) KCE 25574-1.002 104,5 dB(A) WICO 286SEA01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	104,03 dB(A) 0,42 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,64 dB(A)
1,28*Sigma ges	2,09 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	106,13 dB(A)

Auszug aus dem Prüfbericht WICO 218SE702

Anlagendaten

Seite 3 von 5

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Amagendaten															
Hersteller	Ho	Isterfel	Energy d 16 alzberg					Ner Nat	inleistu enhöh		-	1:	GE Wind Energy 1.5sl 1500 kW 85 m 77 m		
			1.Messung* 2.Messung 3.Messung*							T					
Seriennummer Standort vermessene Nai	benhö	he		500039 euenfel 100 m			15000 Coppent	336 rügge		1: K	500321 lockaw 100 m		1		
Meßinstitut	***************************************		K	OTTER	₹		KOTT	ER			D-cons	sil:	1		
Prüfbericht.		- 1	KÖTTE	R 3210	3-1.002	KO	TER 25	574-1.1	002		286SE				
Meßdatum				22.04.2			29.05.2				10.200		1		
Getriebe			G44900			G44	900xCPI		9551	G45730					
Generator				A5023		1	FRA500				A5023-		1		
Rotorblatt				M 37.3F		1	LM 37		`		4 37.3P				
Schallemissions	parar	neter			······································						. 01.01		1		
Wind-	1			- b - 0 - 1					· · · · · · · · · · · · · · · · · · ·						
geschwindigkeit in 10m			3	challei: L	war:	ogei				getisch Itelwert		Standa bwelch			K h /2/
Hohe		1. Mess		2. M	อรรมกฎ	:	3. Mossi	ing		Ĩ.,		S***		σ _R =	0,5 dB
6 m/s	1		B(A)	102.			102,6 d			2,2 dB(0.4	dB(A)	1,2 d	B(A)
7 m/s			(B(A)		3 dB(/		104,3 d	B(A)		3.7 dB(0.5	dB(A)	1,4 d	B(A)
8 m/s	1		(B(A)	103.		7 1		9(A)		1,0 dB(dB(A)	1,2 d	B(A)
8,5 m/s	1	03,9 d	B(A)	103,			104,5 d	B(A)	104	.0 dB(A)	0,4	dB(A)	1.2 di	B(A)
			Tonzuschlag** Energetischer Standar KTN: Mittelwert Abwelchu							h /2/					
	<u> </u>									ï	. s***				
6 m/s	i i	0 dB	Hz	0 d		:	0 dB	ng	-1	.4 dE	3 1	0,9	ďВ	1,8	dВ
7 m/s	1 -	2 dB	464 M2	0 d	В "	:	0 dB	Mr.),1 d8	3 :	3,1	dB	5,9	₫₿
8 m/s	1 :	2 dB	766 Hz	2 d	B 164 M		2 dB 16	i nz		3,1 d8	3 6	9,0	dB	1.7	dB
8,5 m/s		k.A.		1 d	В 166 н.		2ರ8 ಜ	e rec	1	,9 dE	3" -	1,1	dB	2,1	dB
				impuls K	zuschl IN :	ag			Energetischer Mittelwert						
6 m/s	1	0 d	В		8b O		0 di	3	1	0 dB	_				·
7 m/s		0 d	8		0 dB	- 1	0 d8	3		0 dB	- 1				
8 m/s	1	0 d	8		0 dB	- 1	0 d8	3		0 dB	-		- 1		
8,5 m/s		0 d	В		0 dB		0 dt	3		0 dB			- 1		
Terz-S	challe	istungs	spegal (energe	tisches	Mittel	aus 3 M	essun	gen) Re	eferenzp	ounkt v	10 = 8 m	ıs ^{ır} in c	IB(A)	
Frequenz	25	31,5	40	50	63	80	100	125	160	200	250	315	400		630
Lwap	65,1	70,7	72,4	76,3	80,2	82,8	85,4	87.6	94.1	91.3	92.7	94.2	93,6		93.1
LWAP		75,1	1	<u> </u>	85.3	<u> </u>		95,4		1	97.7	1 4		98.1	1_55,1
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500		20000
LWAP	93,4	92,7	92.0	90.9	89.2	86.8	84.8	83.3	80.6	78.9	74,0	75,2	80.2		59.1
Lwan		97,5	<u> </u>		94,0	<u> </u>	 	88.0	J	1	81.3	1 . 0,2	+	80.6	1 00,1
Terz-Sc	halleí	Stunner	penel (a	nerneti		Mittela	IIS 3 Ma		eni Pai	laranza		- C C -			
requenz	25	31.5	40	50	63	80	100	125	160	200	250	315			000
	64.3	70.3	72.3	76.5	80.6	83.4	85,8	88.0	94.2				400	500	630
-WA, P	U-4.J	74.8	1 , 5,3	70,3	85.8	03,4	05,0	95.6	1 94,2	91,6	92.7	94,1	93,6		93,0
requenz	800	1000	1250	1600	2000	วรกก	2150		E000	6260	97,7	40000	1	98,0	10000
	93.3	92.3	91.9	91.0	89.2	2500 87.1	3150 85.2	4000	5000	6300	8000	10000	12500	-	
	23,3		1 31,3	91,0		01,1	85.2	83,9	81.0	79.1	73,9	75,4	80.5	70,3	58,9
WA P		97.3			94,2		re bei Sc	88,5			81.5		1	80,9	

Die Angaben ersetzen nicht den o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die Schalleistungspegel sind auf die Nabenhöhe von h_n= 85 m entsprechend den Prüfberichtsauszügen umgerechnet worden.

Es wird drauf hingewiesen, daß die Werte für die Tonhaltigkeit nicht ausschließlich bei der Nabenhöhe h_n=85 m bestimmt wurden und so nicht unmittelbar auf umgerechnete Nabenhöhen übertraubar sind.

Ausgestellt durch: WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 12.07,2002

Unterschrift Dipl.-Ing. R. Haevernick Dipl,-Ing. J. Schwabe

DAP-PL-2756.00 Nach DIN EN ISO/IEC 17025 durch die DAP Deutsches Akkreditierungssystem Prüfwesen GmbH akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Page

26 of 28

Document:

1.5sl_SCD_allComp_SLPxxxxx

Originator:

Andreas Petersen

Revision:

105,44 dB(A)

Vollleistungsbetrieb

Messung 1 Messung 2 Messung 3	102,8 dB(A) WT 3972/05 100,7 dB(A) WT 3280/04 104,0 dB(A) SE04017B1
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	102,50 dB(A) 1,67 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	2,30 dB(A)
1,28*Sigma ges	2,94 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105,44 dB(A)

Auszug WT 3974/05 aus dem Prüfbericht WT 3972/05

zur Schallemission der Windenergieanlage vom Typ NM82/1500

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	Technische Daten (Herstellerangaben)				
Anlagenhersteller: Seriennummer WEA-Standort (ca.)	NEG Micon GmbH Otto-Hahn Str. 2-4 25801 Husum 18290 Beckedorf WEA 4	Nennleistung (Generator): Rotordurchmesser: Nabenhöhe über Grund: Turmbauart: Leistungsregelung:	1500/900 kW 82 m 108,6 m konisches Rohr activ stall				
Ergänzende Daten zum Ro		Erg. Daten zu Getriebe und Gen					
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl Rotordrehzahlbereich:	NEG Micon AL40B1 active stall 3 14,4/10,7 U/min	Getriebehersteller: Typenbezeichnung Getriebe: Generatorhersteller: Typenbezeichnung Generator: Generatornenndrehzahl:	Jahnel-Kestermann Ja-Ke PSC 1430 Elin 2 speed, water cooled 1011/760 U/min				

	Referen	zpunkt	Schallemiss	ions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			Demerkangen
Schallleistungs- Pegel L _{WA,P}	6 ms ⁻¹ 7 ms ⁻¹ 7,6 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	974 kW 1317 kW 1425 kW - kW - kW	102,2 102,8 - d	2 dB(A) 2 dB(A) 3 dB(A) B(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 974 kW 0 dB 7 ms ⁻¹ 1317 kW 0 dB 7,6 ms ⁻¹ 1425 kW 0 dB 9 ms ⁻¹ - kW - dB 10 ms ⁻¹ - kW - dB			B(A) bei - Hz bei - Hz bei - Hz bei - Hz	
lmpulszuschlag für den Nahbereich K _{IN}	6 ms ⁻¹ 7 ms ⁻¹ 7,6 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	974 kW 1317 kW 1425 kW - kW - kW	0 0 0	bei - Hz dB dB dB dB dB	

Frequenz	50	00	7 22	T			Santice 440 -	1,01112	II UDIAI			
requenz		63	80	100	125	160	200	250	315	400	500	T ===
LWAP	76,5	82,2	82,1	84.7	90.3	97.0				400	500	630
Frequenz	800					87,8	88,8	90,1	90,8	91,1	90,7	91,6
requenz		1000	1250	1600	2000	2500	3150	4000	5000	6300		
LWAP	90.4	90.9	91.9	91.3	91,3	90.9					8000	10000
				<u> </u>			89,9	87,7	84,8	79,9	72,2	63,3
			Oktav-	Schallleisti	unaspea	jel Referenz	nunkt v =	7 6 mc-1	in dB(A)			
Frequenz	63		125	250				7,01115				1
1						500	1000	1	2000	4000		8000
LWA, P	82,6		87,2	89,7	ł	90.9	91.3		89.4	91.6		0000

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom . Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 7,6 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Konformitätsstempel

Datum:

2005-02-04

Dipl.-Ing. J. Neubert

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüfaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WT 3280/04

zur Schallemission der Windenergieanlage vom Typ NEG Micon NM82/1500 (große Gen. Stufe)

Allgemeine Angaben

NEG Micon A/S Alsvej 21

DK-8900 Randers

Seriennummer 18300 WEA-Standort (ca.)

Hetendorf WEA H8

Ergänzende Daten zum Rotor (Herstellerangaben) **NEG Micon Rotors**

Typenbezeichnung Blatt:

AL40B1

Blatteinstellwinkel: active stall Rotorblattanzahl

Rotordrehzahlbereich:

Rotorblatthersteller:

Anlagenhersteller:

14,4/10,7 U/min

Technische Daten (Herstellerangaben)

Nennleistung (Generator):

1655/1023 kW 82 m

Rotordurchmesser:

Nabenhöhe über Grund:

108,6 m konisches Rohr

Leistungsregelung:

Turmbauart:

active stall

Erg. Daten zu Getriebe und Generator (Herstellerangaben) Getriebehersteller: Jahnel-Kestermann

Typenbezeichnung Getriebe: Generatorhersteller:

Ja-Ke PSC 1430 Elin

Typenbezeichnung Generator:

Generatornenndrehzahl:

MCS556M31-Z7B 1011/760 U/min

Prüfbericht zur Leis:	tungskurve: LK 01 001	B5			
	Referen		Schallemiss	ions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			Demerkungen
Schallleistungs- Pegel <i>L_{WA,P}</i>	6 ms ⁻¹ 7 ms ⁻¹ 7,6 ms ⁻¹	974,3 kW 1316,6 kW 1425,0 kW	99,3 99,8 100,		
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 7,6 ms ⁻¹	974,3 kW 1316,6 kW 1425,0 kW	0 dB bei - Hz 0 dB bei - Hz 0 dB bei - Hz		·
Impulszuschlag für den Nahbereich <i>K_{IN}</i>	6 ms ⁻¹ 7 ms ⁻¹ 7,6 ms ⁻¹	974,3 kW 1316,6 kW 1425,0 kW	0	dB dB dB	

		Terz-Se	challleistu	naspeae	Referenza	unkt v	7 60 mg-1	in dD/A)			
50	63	1 80	100								
75.7	81.6						+			500	630
		 				87,5	89,7	90,2	89,9	89,9	89,8
				2000	2500	3150	4000	5000	6300	8000	10000
88,3	88,3	88,9	89,4	88,4	87,1	84,0	79,9	75,4	69.8		58,1
		Oktav-S	challleistu	ingspege	Referenz	ounkt v ₁₀ =	7.60 ms ⁻¹	in dB(A)			1 00,.
63		125	250		500				4000		8000
86,6		90,8	94,1		94,6						70,8
	75,7 800 88,3	75,7 81,6 800 1000 88,3 88,3	75,7 81,6 84,4 800 1000 1250 88,3 88,3 88,9 Oktav-S	50 63 80 100 75,7 81,6 84,4 84,2 800 1000 1250 1600 88,3 88,3 88,9 89,4 Oktav-Schallleistu 63 125 250	50 63 80 100 125 75,7 81,6 84,4 84,2 87,1 800 1000 1250 1600 2000 88,3 88,3 88,9 89,4 88,4 Oktav-Schallleistungspege 63 125 250	50 63 80 100 125 160 75,7 81,6 84,4 84,2 87,1 86,2 800 1000 1250 1600 2000 2500 88,3 88,3 88,9 89,4 88,4 87,1 Oktav-Schallleistungspegel Referenz 63 125 250 500	50 63 80 100 125 160 200 75,7 81,6 84,4 84,2 87,1 86,2 87,5 800 1000 1250 1600 2000 2500 3150 88,3 88,3 88,9 89,4 88,4 87,1 84,0 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 63 125 250 500 1000	50 63 80 100 125 160 200 250 75,7 81,6 84,4 84,2 87,1 86,2 87,5 89,7 800 1000 1250 1600 2000 2500 3150 4000 88,3 88,3 88,9 89,4 88,4 87,1 84,0 79,9 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 7,60 ms ⁻¹ 63 125 250 500 1000 1000	75,7 81,6 84,4 84,2 87,1 86,2 87,5 89,7 90,2 800 1000 1250 1600 2000 2500 3150 4000 5000 88,3 88,9 89,4 88,4 87,1 84,0 79,9 75,4 Oktav-Schallleistungspegel Referenzpunkt $v_{10} = 7,60 \text{ ms}^{-1} \text{ in dB(A)}$ 63 125 250 500 1000 2000	50 63 80 100 125 160 200 250 315 400 75,7 81,6 84,4 84,2 87,1 86,2 87,5 89,7 90,2 89,9 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 88,3 88,3 88,9 89,4 88,4 87,1 84,0 79,9 75,4 69,8 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 7,60 ms ⁻¹ in dB(A) 63 125 250 500 1000 2000 4000	50 63 80 100 125 160 200 250 315 400 500 75,7 81,6 84,4 84,2 87,1 86,2 87,5 89,7 90,2 89,9 89,9 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 88,3 88,3 89,4 88,4 87,1 84,0 79,9 75,4 69,8 62,4 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 7,60 ms ⁻¹ in dB(A) 63 125 250 500 1000 2000 4000

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 23.03.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 7,6 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Datum:

2004-04-23

i.V. Dipl.-Ing. J. Neubert

i. A Dipl.-Ing. J. Dedert

Konformitätsstempel

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilf für die In der Urkunde aufgeführten Prüfverfahren.

Schallemissio

mitatssi

5 Zusammenfassung

Im Auftrag der NEG Micon A/S wurde von der Firma WINDTEST Grevenbroich GmbH die Geräuschabstrahlung der WEA NM 82/1500 mit einer Nabenhöhe von H = 93,6 m inkl. Fundament nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die DIN EN 61400 Teil 11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 Teil 1 /3/. Die Aussagen über das Nahfeld der Anlage können nicht direkt auf das Fernfeld (insbesondere an einem Immissionpunkt) übertragen werden.

Die Messung wurde am 15.08.2003 in Dahme (Brandenburg) an der WEA mit der Seriennummer 17814 durchgeführt. Die Auswertung erfolgte mit einer neuen, inzwischen vermessenen Leistungskurve.

Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden. Beim Abschalten der Anlage als Einzelereignis wurde der Mittelungspegel im Betrieb der WEA um mehr als 10 dB überschritten.

Eine Impulshaltigkeit nach DIN 45645 Teil 1 lag nicht vor.

Bezüglich des Schallleistungspegels L_{WA} wurde für diese Messung eine Messunsicherheit von U_C = 1,2 dB ermittelt. Für die gemessene Windgeschwindigkeit wurde ein Korrekturfaktor k = 0,83 festgestellt.

Die Tonhaltigkeitsanalyse nach EDIN 45681 für das in 130 m Entfernung gemessene Anlagengeräusch ergab einen Tonhaltigkeitszuschlag K_{TN} =1 dB in BIN 6 für den Nahbereich der WEA.

Nach Auswertung der gemessenen Werte in den einzelnen BIN's ergeben sich für die NM 82/1500 die in Tabelle 13 aufgeführten Pegel.

Tabelle 13: Schallleistungspegel, Ton- und Impulshaltigkeitszuschläge für Windgeschwindigkeiten von 6 m/s bis 7.7 m/s. bezogen auf 10 m Höhe

H = 93,6 m	BIN 6 5,5–6,5 m/s	BIN 7 6,5–7,5 m/s	7,8 m/s ¹⁾
L _{WA} / dB	99,8	101,9	104,0
U _c / dB	1,2	1,2	1,2
K _{TN} / dB	1	0	0
K _{IN} / dB	0	0	0
P/kW	932	1283	1425

1) 95% Nennleistung

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik, unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

Die in diesem Bericht aufgeführten Ergebnisse beziehen sich nur auf diese Anlage (vgl. Herstellerbescheinigung im Anhang).

Grevenbroich, 06.Mai 2004

Dipl.-Ing. Holger Pasch

Dipl.-Ing. Thomas Fischer

Schallvermessungen Nordex N90

Vollleistungsbetrieb

Messung 1 Messung 2 Messung 3	103,0 dB(A) WICO 063SE204/01 103,7 dB(A) WICO 274SE604/01 103,2 dB(A) WT 4205/05
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	103,30 dB(A) 0,36 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,62 dB(A)
1,28*Sigma ges	2,08 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105,38 dB(A)

Schallreduktion 1700kW

Messung 1	98,5 dB(A) WICO 063SE204/02
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	98,50 dB(A) 1,22 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	2,00 dB(A)
1,28*Sigma ges	2,56 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	101,06 dB(A)

Erstellt: Gr 18.08.2004 Geändert: Gr 05.02.2007 122

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 063SE204/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: Nordex Energy GmbH Nennleistung (Generator): 2300 kW Bornbarch 2 Rotordurchmesser: 90 m D-22848 Norderstedt Nabenhöhe über Grund: 80 m Seriennummer: 8098 Turmbauart: Stahlrohrturm WEA-Standort (ca.): WP Gut Losten, WEA 4 Leistungsregelung:

Pitch/Stall/Aktiv-Stall Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator (Herstellerangaben)

Rotorblatthersteller: LM Glasfiber a/s Getriebehersteller: **Eickhoff**

Typenbezeichnung Blatt: LM 43.8P Typenbezelchung Getriebe: CPNHZ-244 Blatteinstellwinkel: Variabel (0 - 90°) Generatorhersteller: Loher Rotorblattanzahl

Typenbezeichung Generator: JFWA-560MQ-06A Rotordrehzahlbereich: 9,6 - 16,9 U/min Generatordrehzahlbereich: 744 - 1310 U/min

Prüfbericht zur Leistungskurve: Risø -I-2052

				Defe									
				Refer	enzpunk	t		Schaller Para		Bemerkur	ngen		
	Standardisierte Windgeschwindigkeit in 10 m Höhe					Elektrische Virkleistung						. 10.0	
Caballa:-4			6 n			972 kW			dB(A)				
Schalleist	ings-			7 ms ⁻¹		1481 kW			dB(A)				
Pegel			8 m		2017 kW		İ		dB(A)	[
LWAP			8,4 (ms"		2185 kW			dB(A)		(1)		
Tonnusshi	==		6 m	15 [*]	İ	972 kW	1		bei - Hz				
Tonzuschl den Nahbe	_		7 m			1481 kW			bei - Hz	l			
K _{TN}	ereich			8 ms ⁻¹ 8,4 ms ⁻¹		1			-dB bei-Hz		1		
אדאי			6,4 i		+	2185 kW			bei - Hz	(1)			
Impulszus	chlan	l	7 m		1	972 kW		0					
	für den Nahbereich		8 m		•	1481 kW 2017 kW	- 1	0					
Kin			8,4 r					0 ((1)		
		•	Terz-/Oktav	-Schalleist	tungspeg	el Referer	zpunkt	v ₁₀ = 8,0 m	s ⁻¹ in dB(A	N)			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
LWA P	77,3	80,4	82,9	86,5	89,9	89,4	90,7	92,3	93.1	92.4	90,3	91,1	
LWAP		85,5			93,6			96.9		96,1			
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
LWA P	89,6	90,0	90,7	91,1	91,5	90,1	87,0	84,4	80,8	75.6	72,3	70,3	
LWAP	<u> </u>	94,9			95,7			89,5	<u>*</u>		78.1		
		•	Γerz-/Oktav	-Schalleist	ungspeg	el Referer	zpunkt	v ₁₀ = 8,4 m	s ⁻¹ in dB(A)			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
Lwa p	77,1	80,8	83,4	86,6	91,0	89,6	91,0	92,5	93,3	92,5	90.2	91,1	
LWAP		85,9			94,2			97,1	<u> </u>	-,-	96,1	11.	
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
Lwa p	88,9	89,9	90,7	91,2	91,5	90,0	86,9	84,0	80,5	74,9	71.3	69.4	

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 07.05.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

95,7

Bemerkungen: (1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Meßtag bei v₁₀= 8,4 ms⁻¹ in 10 m ü.G..

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Unterschrift Dipl.-Ing. R.Haevernick Dipl.-Ing. W. Wilke

89.3

Datum: 10.05.04

DAP-PL-2756.00

Seite 1

744 ... 1310 min⁻¹

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 274SE604/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Allgemeine Angaben	· 建。 自己建筑建	Technische Daten (Herstellera	ungahan Malamatan
Anlagenhersteller:	NORDEX Energy GmbH	Nennleistung (Generator):	2300 kW
	ngenhersteller: NORDEX Energy GmbH Bornbarch 2 D-22848 NORDERSTEDT ennummer: 8107 A-Standort (ca.): WP Gut Losten, WEA 3 enzende Daten zum Rotor (Herstellerangaben) erblatthersteller: LM Glasfiber enbezeichnung Blatt: LM 43.8P elnstellwinkel: variabel (0° 90°	Rotordurchmesser:	90,0 m
	D-22848 NORDERSTEDT	Nabenhöhe über Grund:	80 m
Seriennummer:	8107	Turmbauart:	Kon. Stahlrohr
WEA-Standort (ca.):	WP Gut Losten, WEA 3	Leistungsregelung:	Pitch
Ergänzende Daten zu	n Rotor (Herstellerangaben)	Erg. Daten zu Getriebe und Ge	
Rotorblatthersteller:	LM Glasfibe	Getriebehersteller:	Winergy
Typenbezeichnung Bl	att: LM 43.8P	Typenbezeichnung Getriebe:	PZAB 3450
Blatteinstellwinkel:	variabel (0°,	90°) Generatorhersteller:	Loher
Rotorblattanzahl	3	Typenbezeichnung Generator:	JFWA-560MQ-06A

Generatordrehzahlbereich: Prüfbericht zur Leistungskurve: Risø - I - 2052(EN) bzw. 2052.1 vom 09.09.2003

14,9 / 9,6-16,9 mln⁻¹

	Referenz	punkt	Schallemissions- Parameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		
Schallleistungs- Pegel L _{WA,P}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,3 ms ⁻¹	1015 kW 1533 kW 2066 kW 2185 kW	101,5 dB(A) 102,7 dB(A) 103,6 dB(A) 103,7 dB(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,3 ms ⁻¹	1015 kW 1533 kW 2066 kW 2185 kW	0 dB bei - Hz 0 dB bei - Hz 1 dB bei 106 Hz 0 dB bei - Hz	
Impulszuschlag für den Nahbereich K _{iN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,3 ms ⁻¹	1015 kW 1533 kW 2066 kW 2185 kW	0 dB 0 dB 0 dB 0 dB	

89,9 2500	93,7	250 91,7	93,3	92,8	500 91,1	630 91,9
2500				1 0-,0	J 07,1	1 01,0
2000	3150	4000	5000	6300	8000	10000
91,1	88,1	86,4	82,6	75.3		67.9
_	91,1	91,1 88,1	91,1 88,1 86,4	1000	91,1 88,1 86,4 82,6 75,3	91,1 88,1 86,4 82,6 75,3 69,7

1							10,0 1 00	,, 0,,0
1		Oktav-Scha	llleistungspeg	el Referenzpu	nkt v ₁₀ = 8,3 m	s ⁻¹ in dB(A)		
Eroquena T					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Frequenz	63	125	250	500	1000	2000	4000	8000
L _{WA} P	87.2	95.8	97.8	00.0				
				96,8	94,0	96,6	91,0	76,9
Dieser Auszug a	aus dem Prüfb	ericht gilt nur ir	n Verbindung m	nit der Herstelle	rbescheinigung	vom 06 12 20	04 Die Angabo	n orgotron
nicht den o a E	Priifhericht /inc	hosondoro boi	Caballimmiasia			70111 00.12.20	04. Die Allgabe	ii eiseizeii

nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: (1) Der Betriebspunkt der 95%igen Nennleistung, bis zu dem der maximale Schallleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und den meteorologischen Bedingungen des Messtages und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,3 ms⁻¹ in 10 m ü.G..

Gemessen durch:

Nenndrehzahl / -bereich:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Unterschrift Dipl.-Ing. A. Petersen Dipl.-Ing. W. Wilke

Datum: 09.12.2004

Auszug WT 4205/05 aus dem Prüfbericht WT 3989/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90 2300 kW

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerangaben)				
Anlagenhersteller: Nordex Energy GmbH Bornbarch 2 22848 Norderstedt Seriennummer 8127 VEA-Standort (ca.) Schliekum, WEA 5		Nennleistung (Generator): Rotordurchmesser: Nabenhöhe über Grund: Turmbauart: Leistungsregelung:	2500 kW 90 m 100 m konisches Rohr pitch			
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)				
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl Rotordrehzahlbereich:	LM Glasfiber LM 43.8P variabel 090 Grad 3 9,616,9 U/min	Getriebehersteller: Typenbezeichnung Getriebe: Generatorhersteller: Typenbezeichnung Generator: Generatordrehzahlbereich:	Eickhoff CPNHZ-244 Loher JFWA-560MQ-06A 744 - 1310 U/min			

			_	gokurve.													
						enzpur	ıkt		Sch	challemissions-Parameter					Ben	nerkung	en
				Standa Windges <u>keit</u> in 10			Elektriscl Virkleistu					****					
Schallleistungs- Pegel <i>L_{WA,P}</i>				5 ms ⁻¹ 6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹ 9 ms ⁻¹			616 kW 1092 kW 1633 kW 2158 kW 2185 kW 2300 kW			/ 102,0 dB(A) / 102,9 dB(A) / 103,2 dB(A) / 103,2 dB(A)						····	**************************************
Tonzusch den Nahb K _{TN}				5 m 6 m 7 m 8 m 8,1 m	s ⁻¹ s ⁻¹ s ⁻¹ s ⁻¹ ns ⁻¹		616 kW 1092 kW 1633 kW 2158 kW 2185 kW 2300 kW	/ V V	103,0 dB(A) 0 dB bei - Hz 0 dB bei - Hz 0 dB bei - Hz 0 dB bei - Hz 0 dB bei - Hz 0 dB bei - Hz 0 dB bei - Hz							•	
lmpulszu: für den N <i>K</i> _{IN}		:h		5 m 6 m 7 m 8 m 8,1 r 9 m	s ⁻¹ s ⁻¹ s ⁻¹ s ⁻¹		616 kW 1092 kW 1633 kW 2158 kW 2185 kW 2300 kW			0 dB bei - Hz 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB							
					erz-Sch	allleist	ungspeg	el Refer	enzpunk	ct v ₁₀ = 8	,0 ms ⁻¹ iı	n dB	(A)				·
requenz -wa, p	12,5 46,5		6 2,5	20 58,9	25 62,7	31,5 67,0	40 71,7	50 76,5	63 80,8	80 82,5	100 85,2	12	25	160 88,5	200 89,8	250 92,3	315 92,2
requenz -wa, p	400 91,4		00 2,3	630 92,0	800 91,8	1000 92.7	1250 91.7	1600 91,5	2000 90.6	2500 90.4	3150 88,4	40	00 5	5000	6300	8000	10000
							ungspeg						<i>,</i> -	33,8	77,8	70,2	61,8
requenz	16			31,5	63	iameisi	125	250		500	1000		3 (A) 20	00	4000)	8000
-WA, P	60,0			73,4	85,3		92,2	96,3	3	96,7	96,9		95	,6	91,2		78,6

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-01-17. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,1 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Fordergese Richard Windoweg a Konformitätsstempel

Datum:

2005-05-09

R:Brown (M.Sc.)

Dipl.-Ing. J. Neubert

Durch das DAP Deutsches Akkreddierungssystem Prufwesen nach DIN EN ISC/IEC 17025 akkreddiertes Prüftaboratorum, Die Akkredserung gilt für die in der Urkunde aufgeführten Prufverfahren.

Messung 1 Messung 2 Messung 3	102,7 dB(A) WT 2465/02 103,6 dB(A) WTG SE02041B1 103,3 dB(A) WTG SE03002B1
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	103,20 dB(A) 0,46 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,65 dB(A)
1,28*Sigma ges	2,11 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105,31 dB(A)

4 Zusammenfassung und Bewertung

Im Auftrag der Vestas Wind Systems A/S, DK-6950 Ringkøbing, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA V52-850 kW 104,2 dB(A) mit einer Nabenhöhe von H_N = 49 m nach [FGW13] untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die [DIN EN 61400-11], für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die [EDIN 45681] bzw. für die Bewertung von Impulshaltigkeiten die [DIN 45645 T1]. Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die V52-850 kW 104,2 dB(A) die in Tabelle 8 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich.

Tabelle 8: Schallleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

WG in 10 m Höhe [m/s]	. 6	7	8	9	10 1
Schallleistungspegel L _{WA,P} [dB]	100,3	102,2	102,7	102,7	102.7
bewerteter Impulshaltigkeitszuschlag [dB]	0	0	0	0	0
Tonhaltigkeitszuschlag [dB]	0	0	0	0	0

¹ bzw. die der 95%igen Nennleistung entsprechende WG

Bezüglich des Schallleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge von 0,8 dB festgestellt worden.

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

4 Zusammenfassung

Im Auftrag der Vestas Deutschland GmbH wurde von der Firma WINDTEST Grevenbroich GmbH die Geräuschabstrahlung der WEA V52-850 kW mit einer Nabenhöhe von H = 74 m über Grund nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die DIN EN 61400 Teil 11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 Teil 1 /3/. Aussagen über Auffälligkeiten im Fernfeld der Anlage (insbesondere an einem Immissionpunkt) konnten auf Basis einer Auffälligkeitsprüfung in 300 m Entfernung getroffen werden.

Die Messung wurde am 15.01.2003 in Saerbeck durchgeführt.

Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden. Einzelereignisse, die den Mittelungspegel im Betrieb der WEA um mehr als 10 dB überschreiten, traten nicht auf. Eine Impulshaltigkeit nach DIN 45645 Teil 1 lag nicht vor.

Bezüglich des Schallleistungspegels L_{WA} wurde für diese Messung eine Messunsicherheit von U_C = 0,8 dB ermittelt. Für die gemessene Windgeschwindigkeit wurde ein Korrekturfaktor k = 1,05 festgestellt.

Die Tonhaltigkeitsanalyse nach EDIN 45681 für das in 100 m Entfernung gemessene Anlagengeräusch ergab einen Tonhaltigkeitszuschlag für BIN 9.

Die Schallleistungspegel bei 9 m/s und 9,2 m/s wurden auf Grundlage Messergebnisse bis 8,5 m/s aus 1-Minuten-Mittelwerten gemäß /1/ extrapoliert und mit Messergebnissen aus 10-s-Mittelwerten untermauert. Die Ergebnisse sind als verlässlich zu betrachten.

Nach Auswertung der gemessenen Werte in den einzelnen BIN's ergeben sich für die V52-850 kW die in Tabelle 8 aufgeführten Pegel.

Tabelle 8: Schallleistungspegel, Ton- und Impulshaltigkeitszuschläge für Windgeschwindigkeiten von 6 m/s bis 9,2 m/s, bezogen auf 10 m Höhe

H = 74 m	BIN 6	BIN 7	BIN 8	BIN 9 (2)	9,2 m/s (1)(2)
	5,5–6,5 m/s	6,5–7,5 m/s	7,5–8,5 m/s	8,5–9,5 m/s	
L _{WA} / dB	101,2	103,1	103,6	103,6 ⁽²⁾	103,6 ⁽²⁾
U _c / dB	0,8	0,8	0,8	0,8	0,8
K _{TN} / dB	0	0	0	1	1
K _{IN} / dB	0	0	0	0	0
P / kW	331	520	674	794	808

(1) 95% Nennleistung (2) extrapolierte Werte

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik, unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

Die in diesem Bericht aufgeführten Ergebnisse beziehen sich nur auf diese Anlage (vgl. Herstellerbescheinigung im Anhang).

Grevenbroich, 20.02.03

Dipl.-Met. Klaus Hanswillemenke

WINDTEST Grevenbroich GmbH

Schalltechnisches Gutachten zur Windenergieanlage Vestas V52-850 kW, Nabenhöhe 74 m

Bericht SE03002B1

Standort bzw. Messort:	Bassum, SerNr. 1	6376	
Auftraggeber:	Vestas Deutschland Otto-Hann-Str. 2-4 25813 Husum	i GmbH	
Auftragnehmer:	WINDTEST Grever Frimmersdorfer Str. 41517 Grevenbroici	73	
Datum der Auftragserteilung:	13.02.03	Auftragsnummer	03 0013 06
Bearbelter			Geprüft
hamilene	كمس	フ	Be
ipiMet. Klaus Hanswillem	enke	DiolIng. (FH) Jürgen Bahr

Grevenbroich, 25.06.03

Dieser Bericht darf teilweise oder ganz nur mit schriftlicher Zustimmung der WINDTEST Grevenbroich GmbH vervielfältigt werden. Er umfasst insgesamt 37 Seiten inkl. der Anlagen.

4 Zusammenfassung

Im Auftrag der Vestas Deutschland GmbH wurde von der Firma WINDTEST Grevenbroich GmbH die Geräuschabstrahlung der WEA Vestas V52-850 kW mit einer Nabenhöhe von H = 74 m inkl. Fundament nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die DIN EN 61400 Teil 11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 Teil 1 /3/. Eine Aussage über das Fernfeld der Anlage (insbesondere an einem Immissionpunkt) kann damit nicht getroffen werden.

Die Messung wurde am 29.04.2003 in Bassum an der WEA mit der Seriennummer 16376 durchgeführt.

Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden. Einzelereignisse, die den Mittelungspegel im Betrieb der WEA um mehr als 10 dB überschreiten, traten nicht auf.

Eine Impulshaltigkeit nach DIN 45645 Teil 1 lag nicht vor.

Bezüglich des Schallleistungspegels L_{WA} wurde für diese Messung eine Messunsicherheit von U_c = 0,8 dB ermittelt. Für die gemessene Windgeschwindigkeit wurde ein Korrekturfaktor k = 0.97 festgestellt.

Die Tonhaltigkeitsanalyse nach EDIN 45681 für das in 100 m Entfernung gemessene Anlagengerāusch ergab einen maximalen Tonhaltigkeitszuschlag von K_m=1 dB im BIN 9.

Nach Auswertung der gemessenen Werte in den einzelnen BIN's ergeben sich für die Vestas V52-850 kW die in Tabelle 8 aufgeführten Pegel.

Tabelle 8: Schallleistungspegel, Ton- und Impulshaltigkeitszuschläge für Windgeschwindigkeiten von 6 m/s bis 9,2 m/s, bezogen auf 10 m Höhe

THE RESERVE THE PROPERTY OF TH		3							
H = 74 m	BIN 6	BIN 7	BIN 8	BIN 9	9,2 m/s ¹⁾				
	5,5–6,5 m/s	6,5-7,5 m/s	7,5-8,5 m/s	8,5-9,5 m/s	-				
L _{WA} / dB	101,4	103,3	104,0	103,5	103,3				
Ud/ dB	0,8	0,8	0,8	0.8	0,8				
K _{TN} / dB	0	0	0	1	1				
K _{IN} / dB	0	0	0	0	n				
P/kW	331	520	574	794	808				
	4\ DEI	V 05	Management of the same of the	**************************************					

1) 95% Nennieistung

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik, unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

Die in diesem Bericht aufgeführten Ergebnisse beziehen sich nur auf diese Anlage (vgl. Herstellerbescheinigung im Anhang).

Dipl.-Met. Klaus Hanswillemenke

Messung 1 Messung 2 Messung 3	103,4 dB(A)	MBBM 65 333_01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	103,40 dB(A) 1,22 dB(A) 0,50 dB(A) 1,50 dB(A)	
Sigma ges	2,00 dB(A)	
1,28*Sigma ges	2,56 dB(A)	
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105,96 dB(A)	
Messung 1 Messung 2 Messung 3	99,5 dB(A)	schallreduziert 1000kW (Hersteller Garantie)
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	99,50 dB(A) 1,22 dB(A) 1,50 dB(A) 1,50 dB(A)	
Sigma ges	2,45 dB(A)	
1,28*Sigma ges	3,13 dB(A)	
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	102,63 dB(A)	
Messung 1 Messung 2 Messung 3	102,5 dB(A) s	challreduziert 1200kW (Hersteller Garantie)
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	102,50 dB(A) 1,22 dB(A) 1,50 dB(A) 1,50 dB(A)	
Sigma ges	2,45 dB(A)	
1,28*Sigma ges	3,13 dB(A)	
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	105,63 dB(A)	

Erstellt: Gr 04.08.2006

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht M65 333/1 zur Schallemission der Windenergieanlage vom Typ Enercon E-82

Allgemeine Angaben		Technische Daten (Herstellerangab	en)			
Anlagenhersteller:	Enercon GmbH	Nennleistung (Generator):	2.000 kW			
	Dreekamp 5	Rotordurchmesser:	82 m			
	26605 Aurich	Nabenhöhe über Grund:	98 m			
Seriennummer:	82001	Turmbauart:	Rohrturm			
WEA-Standort (ca.):	RW: 25.92.266	Material:	Fertigteilbeton			
	HW: 59.14.847	Leistungsregelung:	pitch			
Ergänzende Daten zum R	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Genera	tor (Herstellerangaben)			
Rotorblatthersteller:	Enercon GmbH	Cotriche harmtelle				

Typenbezeichnung Blatt: 82 - 1

Blatteinstellwinkel:

variabel Rotorblattanzahl:

Rotordrehzahlbereich: 6 - 19 U/min (Betrieb I) Getriebehersteller: Typenbezeichnung Getriebe:

Generatorhersteller:

Typenbezeichnung Generator: Generatorennenndrehzahl:

Enercon GmbH E-82 6 - 19 U/min (Betrieb I)

Schallemissio

2007

Prüfbericht zur Leistungskurve: Enercon GmbH: Berechnete Leistungskurve vom Januar 2005

	-			Refere	nzpunkt			missions- meter		Bemerkungen				
			Windgesch	rdisierte windigkeit in Höhe		trische eistung								
		6	6 m/s		1029,7 kW		100,6 dB(A)							
			7 m/s		1617,4 kW		103,1 dB(A)							
Schallleistungs-	Pegel / s		8	m/s	1939,6	kW	103,4	dB(A)						
Goralieisturigs-Pegel L WA,P			9	9 m/s		kW		dB(A)		[1]				
	npulszuschlag für den Nahbereich IN equenz 50 63		10	m/s	kW		dB(A)		[1]					
			7,7 m/s		1900,0 kW		103,4 dB (A)		[2]					
			6	m/s	1029,7	kW		dB						
			7	7 m/s		1617,4 kW		dB						
	den Nahbere	ich	8	m/s	1939,6	kW		dB .						
K _{TN}		9 m/s		kW		dB		[1]						
		10	10 m/s		kW		dB		[1]					
			7.7	m/s	1900,0	kW		dB		[2]				
			6	m/s	1029,7	kW		dB						
			7	7 m/s		1617,4 kW		dB						
Impulszuschlag	für den Nahbe	ereich	8	8 m/s 19		1939,6 kW		dB						
l I		9	9 m/s		kW		dB		[1]					
		10 m/s		kW		dB		[1]						
		m/s	1900,0 kW		dB		[2]							
		7	erz-Schallie	istungspeg	el Referenz	punkt v ₁₀ =	8 m/s							
Frequenz	50		80	100	125	160	200	250	315	400	500	630		
Lunar	75.9	79.1	81.5	82.0	277	99.2	97.5	00.4	00.5	01.0	00.7	00.5		

							0 ,0					
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P,Terz}	75,9	79,1	81.5	82,9	87,7	88,2	87,5	90,4	90,5	91,2	93,7	93,5
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA,P,Terz}	94,9	95,0	93,9	91,6	89,3	85,2	80,9	75,8	72,4	73,4	71,2	73,5
		O	ktav-Schallle	eistungspeg	el Referen	zpunkt v ₁₀ =	8 m/s				***************************************	
Frequenz	63	125	250	500	1000	2000	4000	8000	f			
1	94.2	01.6	04.4	07.7	00.4	04.2	20.5	77.0	1			

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 11.4.2006. Die Angaben ersetzen nicht den o.g. Prüfbericht M65 333/1 (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

[1] In dieser Windklasse wurden keine Daten ermittelt

[2] Der Schallleistungspegel bei 95%iger Nennleistung wurde bei Berücksichtung der Umgebungsbedingungen am Messtag, der verwendeten Leistungskurve und der vermessenen Nabenhöhe bei einer stand. Windgeschwindigkeit von 7,7 m/s festgestellt.

Gemessen durch:

Müller-BBM GmbH

Niederlassung Gelsenkirchen

Am Bugapark 1 45 899 Gelsenkirchen MÜLLER-BBM GMBH

NIEDERLASSUNG GELSENKIRCHEN AM BUGAPARK 45899 GELSENKIRCHT TELEFON (0209) 9 83 5

Datum:

21.04.2006

untteller Dipl.-Ing. (FH) D. Hinkelmann

Dipl.-Ing. (FH) M. Köhl

Akkreditiertes Prüflaboratorium nach ISO/IEC 17025

DAP-PL-2465.10