

Anhang zum Schallgutachten

068-10-0245-03.04

Prognose der Schallimmissionen durch eine Windenergieanlage am Standort

Eulgem

Auftraggeber:

BBG Illerich Windkraftanlagen

GmbH & Co. KG

Trierer Str. 13

D-56759 Kaisersesch

Erstellt am:

27.04.2012

Erstellt von:

SOLvent GmbH

Lünener Str. 211

D-59174 Kamen

Tel 0 23 07 / 24 00 63 Fax 24 00 66

Anhang

Es folgen:

- Die detaillierten Berechnungsberichte sowie zugehörige Karten mit ISO-Schalllinien für die Schallimmissionsprognose.
- Kopien der Unterlagen, die zur Bestimmung der Schallleistungspegel der geplanten Windenergieanlage vom Typ ENERCON E-53 benutzt worden sind.
- Kopien der Unterlagen, die zur Bestimmung der Schallleistungspegel der bestehenden Windenergieanlagen verwendet worden sind.
- WEA Liste der Kreisverwaltung
- Auszug aus der Programmdokumentation der Software WINDpro

^{Projekt:} Eulgem Beschreibung: 068-10-0245-03.04

27.04.2012 09:15 / 1

izenzierter Anwender;

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:34/2.7.490

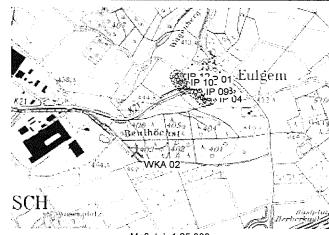
DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung (1 x E-53)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

人 Neue WEA

Maßstab 1:25.000
Schall-Immissionsort

WEA

	UTM WGS84 Zone: 32	_			WEA-1						Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktueli	Hersteller	Generatortyp	Nenn-	Rotor-	Nabenhöhe	Quelle	Name	Windgeschw,	LwA,ref	Einzel-
								leistung	durchmesser				=		töne
i	UTM WGS84 Zone: 33	2	[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
WKA 02	369,42	3 5.566.32	0 465,	0 WKA 02 E-53	Nein	ENERCON	E-53-800	800	53,0	73,3	USER	101,4 dB(A) (3 x vermessen)	10,0		0 dB

Berechnungsergebnisse

Beurteilungspegel

Schal	II-Immissionsort	UTM WG	S84 Zone: 3	32		Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	
	IP 01 Hauptstraße 15, Eulgem	369.863	5.566.812	427,7	5,0	45,0	32,5	Ja
	IP 02 Hauptstraße 23, Eulgem	369.815	5.566.760	433,7	5,0	45,0	33,8	Ja
	IP 03 Hauptstraße 25, Eulgem	369.768	5.566.757	435,8	5,0	45,0	34,5	Ja
	IP 04 In den Hägen 13, Eulgem	369.932	5.566.675	437,6	5,0	45,0	33,1	Ja
	IP 05 In den Hägen 15, Eulgem	369.899	5.566.664	439,9	5,0	45,0	33,7	Ja
	IP 06 In den Hägen 16, Eulgem	369.891	5.566.714	434,9	5,0	45,0	33,3	Ja
	IP 07 In den Hägen 17, Eulgem		5.566.685	438,3	5,0	45,0	33,7	Ja
	IP 08 in den Hägen 18, Eulgem	369.870	5.566.734	433,8	5,0	45,0	33,3	Ja
	IP 09 In den Hägen 21, Eulgem	369.839	5.566.727	435,5	5,0	45,0	33,9	Ja
	IP 10 Sängerweg 1, Eulgem	369.736	5.566.794	434,1	5,0	45,0	34,3	Ja
	IP 11 Sängerweg 3, Eulgem	369.722	5.566.814	433,3	5,0	45,0	34,1	Ja
	IP 12 Sängerweg 5, Eulgem	369.710	5.566.836	431,9	5,0	45,0	33,9	Ja

Abstände (m)

	WEA
Schall-Immissionsort	WKA 02
IP 01	660
IP 02	589
IP 03	557
IP 04	620
IP 05	587
IP 06	611
IP 07	588
IP 08	609
IP 09	582
IP 10	568
IP 11	577
IP 12	590

068-10-0245-03.04

27.04.2012 09:15 / 2

Lizenzierter Anwender SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:34/2.7.490

Berechnung: Zusatzbelastung (1 x E-53)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA.ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption

Agr:

Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP 01 Hauptstraße 15, Eulgem

WEA

95% der Nennleistung

Nr.

Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] WKA 02 660 669 32,45 101,4 3,00 67,50 1,27 3,17 0,00 0,00 71,95

Summe 32,45

Schall-Immissionsort: IP 02 Hauptstraße 23, Eulgem

[m]

597

WEA

WKA 02

95% der Nennleistung

33.78

Nr. Abstand Schallweg Mittlere Höhe Sichtbar

Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)] [dB] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB]

1,13 2,97

0,00

0,00 70,63

101,4 3,00 66,52

589

Summe 33,78

Schall-Immissionsort: IP 03 Hauptstraße 25, Eulgem

WEA

95% der Nennleistung

Nr.

Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet [dB(A)][m] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] fdB1 [dB] 557 565 WKA 02 32.0 34,46 101,4 3,00 66,05 1,07 2,82 0,00 0,00 69,94

34,46

Schall-Immissionsort: IP 04 In den Hägen 13, Eulgem

628

WEA

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] WKA 02

620

[dB(A)] 29.0 33,07

Ja

Adiv Aatm Agr Abar Amisc [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 101,4 3,00 66,96 1,19 3,18 0,00 0.00 71.33 0.00

33.07 Summe

Schall-Immissionsort: IP 05 In den Hägen 15, Eulgem

WEA

95% der Nennleistung

Berechnet LwA,ref Abstand Schallweg Mittlere Höhe Sichtbar Dc Adiv Cmet Aatm Agr Abar Amisc [m] [m] [dB(A)] [dB(A)] [dB] [m] [dB] [dB] [dB] [dB] [dB] [dB] [dB] WKA 02 587 595 29.4 Ja 33,71 101.4 3.00 66.49 1,13 3,07 0.00 0.00 70.69 0.00

Summe 33.71

068-10-0245-03.04

27.04.2012 09:15 / 3 Lizenzierter Anwender:

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:34/2.7.490

Berechnung: Zusatzbelastung (1 x E-53)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: IP 06 In den Hägen 16, Eulgem

WEA 95% der Nennleistung

Nr. WKA 02 619 33.26 101,4 3,00 66,84 1,18 3,12 0,00

33,26 Summe

Schall-Immissionsort: IP 07 In den Hägen 17, Eulgem

WEA 95% der Nennleistung

Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [dB(A)] [dB] [dB] [dB] [dB] [dB] [m] [dB(A)] WKA 02 588 596 29.7 33,72 101,4 3,00 66,50 1,13 3,05 0,00 0,00 70,68

Schall-Immissionsort: IP 08 In den Hägen 18, Eulgem

95% der Nennleistung

Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] 617 B(A)] [dB] [dB] [dB] [dB] [dB] [dB] 101,4 3,00 66,81 1,17 3,09 0,00 0,00 [dB(A)] [dB(A)] [dB] [dB] [dB] 609 WKA 02 30.2 33,34 0,00 71.06 0.00

Summe 33,34

Schall-Immissionsort: IP 09 In den Hägen 21, Eulgem

WEA 95% der Nennleistung

Nr. Cmet [dB] [dB] WKA 02 0.00 70.53

33.87 Summe

Schall-Immissionsort: IP 10 Sängerweg 1, Eulgem

WEA 95% der Nennleistung

Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Nr. [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] . 577 WKA 02 568 32.9 Ja 34,28 101,4 3,00 66,22 1,10 2,80 0,00

Schall-Immissionsort: IP 11 Sängerweg 3, Eulgem

95% der Nennleistung

Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] WKA 02 577 586 33.4 101,4 3,00 66,36 1,11 2,80 0,00 34,12 0.00 70.28 0.00

34,12

Schall-Immissionsort: IP 12 Sängerweg 5, Eulgem

WEA 95% der Nennleistung

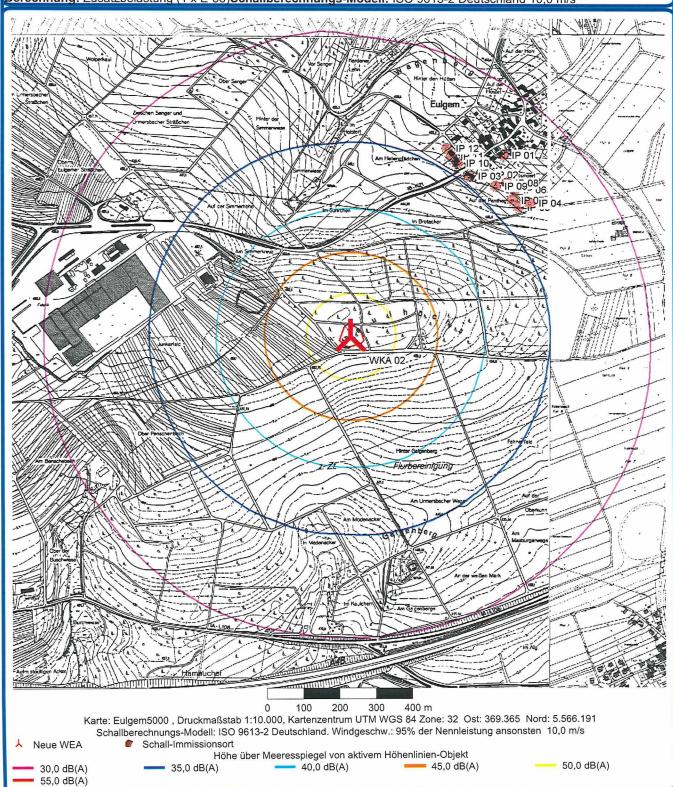
Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Nr. Adiv Aatm Agr Abar Amisc Cmet [dB(A)] [dB] [m] [m] [dB(A)] [dB] [dB] [dB] [dB] [m] [dB] [dB] WKA 02 590 599 33.89 101,4 3,00 66,55 1,14 2,82 0,00 0,00 70,51

Summe 33,89 Projekt: Beschre Eulgem 068-1

068-10-0245-03.04

27.04.2012 09:15 / 4

izenzierter Anwender:

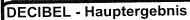

Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:34/2.7.490

Berechnung: Zusatzbelastung (1 x E-53)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

068-10-0245-03.04


27.04.2012 09:29 / 2

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

Berechnung: Vorbelastung (46x Bestand)

	setzung von der vorigen Seite I-Immissionsort	UTM WG	S84 Zone: 3	32				Anforderungen erfüllt? Schall
Nr.	Name	Ost	Nord	Z,	Aufpunkthöhe	Schall	Von WEA [dB(A)]	Schall
İ				[m]	[m]	[dB(A)]		la la
	IP 07 In den Hägen 17, Eulgem	369.884	5.566.685	438.3	5,0	45,0	40,3	Ja
	IP 08 In den Hägen 18, Eulgem		5,566,734			45,0	40,1	Ja
			5.566.727			45.0	39.9	Ja
	IP 09 in den Hägen 21, Eulgem						` .	Ja
	IP 10 Sängerweg 1, Eulgem	369.736	5.566.794	434,1	5,0	45,0	,	
	IP 11 Sängerweg 3, Eulgem	369 722	5.566.814	433.3	5,0	45,0	39,0	Ja
	IP 12 Sängerweg 5, Eulgem		5.566.836			45,0	39,0	Ja

Abstände (m)

Abstände	(m)											
WEA	IP 02	IP 01	IP 04	IP 05	IP 07	IP 06	IP 08	IP 09	IP 10			IP 03
WKA 061	1642	1572	1657	1682	1671	1643	1636	1657	1657	1649	1638	1669
WKA 062	1902	1831	1913	1938	1928	1900	1894	1916	1919	1911	1901	1930
WKA 063	1905	1834	1902	1929	1922	1894	1891	1915	1931	1925	1917	1937
WKA 064	1586	1515	1585	1612	1604	1577	1573	1597	1610	1605	1597	1617
WKA 066	1870	1800	1838	1869	1866	1842	1845	1872	1911	1911	1908	1908
WKA 067	1621	1552	1575	1607	1607	1584	1590	1619	1670	1672	1672	1662
WKA 083	2257	2186	2246	2275	2269	2242	2241	2266	2286	2282	2275	2291
WKA 084	2631	2561	2642	2668	2658	2630	2624	2645	2646	2638	2627	2659
WKA 090	1216	1146	1220	1247	1237	1210	1205	1228	1240	1235	1227	1248
WKA 091	2283	2214	2243	2275	2274	2250	2255	2283	2328	2328	2326	2323
WKA 092	2340	2270	2345	2372	2363	2335	2330	2353	2360	2353	2344	2370
WKA 101	1919	1850	1941	1965	1953	1924	1916	1936	1929	1920	1908	1944
WKA 102	1660	1592	1687	1710	1697	1668	1659	1678	1669	1659	1647	1685
WKA 103	1983	1916	2016	2038	2025	1995	1985		1986	1975	1961	2005
WKA 104	1660	1594	1703	1722	1707	1678	1666		1658	1646	1631	1679
WKA 107	1292	1231	1355	1370	1352	1323	1306		1278	1263	1246	1305
WKA 115	2157	2091	2199	2219	2204	2175	2163		2154	2142	2126	2176
WKA 117	1877	1812	1923	1942		1897	1884		1873	1860	1845	1896
WKA 146	897	883	753	777	800	808	836		982		1025	936
WKA 147	644	677		526	550	575	600		708		757	660
WKA 148	959	970		832		875	904		1037		1086	988
WKA 155	715	691	577	605		627	654		800		840	758
WKA 158	1178	1111	1218	1238		1194					1155	1199
WKA 170	3024	3090		2969		3011	3021					3004 2876
WKA 171	2889	2951		2818								3560
WKA 172	3565			3477		3525						
WKA 185				2678								2900
WKA 186	2926			2889								
WKA 187												
WKA 188												
WKA 189												
WKA 201	3826											
WKA 202												4179
WKA 203												
WKA 204												
WKA 231				3029								
WKA 232												
WKA 233												
WKA 234												
WKA 236												
WKA 245												
WKA 603a												
WKA 604												
WKA 605												
WKA 608												
WKA 609	3801	1 3812	2 3002	. 30/4	+ 3/00	J 11	3740	0 0,00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		- 002	00_0

068-10-0245-03.04

27.04.2012 09:29 / 3

Lizenzierter Anwender: SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption

Agr: Abar: Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung

Abar: Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

95% der Nennleistung

Cmet:

WEA

Meteorologische Korrektur

Berechnungsergebnisse

Eortsetzung auf nächster Seite

Schall-Immissionsort: IP 01 Hauptstraße 15, Eulgem

§ **-^					33 /6 GET 146										
Nr.		•	Mittlere Höhe	Sichtbar				Dc	Adiv	Aatm	Agr		Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 061	1.572	1.573	51,8	Ja	22,02	100,6			74,93					81,59	0,00
WKA 062	1.831	1.833		Ja	20,05	100,6			76,26		3,82			83,56	0,00
WKA 063	1.834	1.836		Ja	23,59	104,0			76,28		3,66			83,42	
WKA 064	1.515	1.516		Ja	26,05	104,0		,	74,62		3,46			80,96	
WKA 066	1.800	1.801	60,1	Ja	23,12	103,3			76,11		3,65			83,19	
WKA 067	1.552	1.554	,	Ja	25,19	103,3			74,83		3,33			81,12	
WKA 083	2.186	2.188		Ja	17,43	100,2			77,80			0,00		85,78	
WKA 084	2.561	2.562		Ja	18,26	103,4			79,17					88,15	
WKA 090	1.146	1.148		Ja	29,25	103,4			72,20		2,78			77,16	
WKA 091	2.214	2.215		Ja	17,23	100,2			77,91		3,86			85,98	
WKA 092	2.270	2.271	•	Ja	16,91	100,2			78,13		3,86			86,30	
WKA 101	1.850	1.851	53,1	Ja	19,93	100,6			76,35		3,82			83,68	
WKA 102	1.592	1.593		Ja	21,89	100,6			75,04		3,65			81,72	
WKA 103	1.916	1.918		Ja	23,04	104,0			76,66		3,67			83,97	
WKA 104	1.594	1.596		Ja	25,51	104,0			75,06		3,41			81,50	
WKA 107	1.231	1.233		Ja	28,34	103,4		-	72,82		2,91			78,07	
WKA 115		2.093		Ja	21,57	103,8			77,42		3,85			85,24	
WKA 117	1.812			Ja	21,09	101,4			76,17		3,70			83,32	
WKA 146				Ja	29,27	101,4			69,96		3,49			75,13	
WKA 147					30,38	100,2			67,67		3,86			72,82	
WKA 148				Ja	26,90	100,2			70,76		3,69			76,30	
WKA 155		696			32,42	101,4			67,85		2,81			71,98	
WKA 158		1.113		Ja	29,54	103,4			71,93		2,82			76,87	
WKA 170		3.092			14,53	103,0			80,81		4,80	-		91,48	
WKA 171	2.951	2.953			15,19	103,0			80,41		4,80			90,82	
WKA 172		3.623		Nein	13,35	104,2			82,18		4,80			93,86	
WKA 185		2.781			•	103,8			79,88		4,80			89,97	
WKA 186				Nein	15,78	103,8			80,53		4,80			91,03	
WKA 187					9,68	100,2			81,99	-	4,80			93,53	
WKA 188				Nein		100,2			81,15		4,80			92,07	
WKA 189					15,95	103,4			80,19		4,80			90,46	
WKA 201	3.896				•	98,7			82,82		4,80		0,00		
WKA 202				Nein	8,92	101,8			83,28		4,80			95,89	
WKA 203					10,26	103,8			83,62		4,80		0,00		
WKA 204						98,7			83,76	•	4,80			96,81	
WKA 231	3.153			Nein	14,84	103,6			80,98		4,80		0,00		
WKA 232			,		•	103,6			81,78		4,80		0,00		
WKA 233					•	101,2			80,97		4,80			91,76	
WKA 234				Nein	13,62	103,6			81,69		4,80		-	92,99	
WKA 236						101,2			80,05		4,80		0,00		
WKA 245	3.332	3.333	46,4	Nein	14,02	103,6		3,01	81,46	6,33	4,80	0,00	0,00	92,59	0,00

Beschreibung: 068-10-0245-03.04

27.04.2012 09:29 / 4

Lizenzierter Anwender;

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

Berechnet: 25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	a von der	vorigen Seit	e												
WEA	g von der	vongen een			95% der Ne	ennleistu	ng							_	
	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr		Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 603a	3.760		43.7	Nein	12,26	103,7		3,01	82,51	7,15	4,80	0,00	0,00	94,45	
WKA 604	3.573		46,0	Nein	13,05	103,7		3,01	82,06	6,79	4,80	0,00		93,66	
WKA 605	3.993			Nein	9.59	102.0		3,01	83,03	7,59	4,80	0,00	0,00	95,42	0,00
WKA 608	3.370		41.8		13.95	103,7		3,01	81,56	6,41	4,80	0,00	0,00	92,76	0,00
WKA 609	3.812				,	103,7		3,01	82,62	7,24	4,80	0,00	0,00	94,67	0,00

Summe 39,92

chall-Immissionsort: IP 02 Hauptstraße 23, Eulgem

Schall-Im	mission	sort: IP ()2 Hauptstra	aße 23, l	Eulgem										
WEA					95% der Ne			_					A	۸	Cmot
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar				Dc	Adiv	Aatm	•		Amisc	(4B)	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB] 82,10	[dB] 0,00
WKA 061	1.642	1.643	53,9	Ja	21,50	100,6		-	75,31		3,67	0,00		84,02	0,00
WKA 062	1.902	1.903	54,7	Ja	19,59	100,6		3,01	76,59	3,62		0,00		83,89	0,00
WKA 063	1.905	1.907	63,3	Ja	23,12	104,0		,	76,61		3,66	0,00		81,51	0,00
WKA 064	1.586	1.587	60,9	Ja	25,50	104,0		3,01	75,01		3,48	0,00		83,66	0,00
WKA 066	1.870	1.871	62,0	Ja	22,65	103,3		,	76,44		3,66	0,00		81,65	0,00
WKA 067	1.621	1.623	67,7	Ja	24,66	103,3		3,01	75,20	3,08	3,37	0,00		86,19	0,00
WKA 083	2.257	2.259	64,5	Ja	17,02	100,2			78,08		3,82 4,10	0,00		88,50	0,00
WKA 084	2.631	2.632	54,0	Ja	17,91	103,4		3,01	79,40		2,86	0,00		77,89	0,00
WKA 090	1.216	1.219	68,7	Ja		103,4			72,72 78,18	4,34	3,86	0,00		86,38	00,0
WKA 091	2.283	2.284	62,7	Ja		100,2		3,01			3,86	0,00		86,70	0,00
WKA 092	2.340	2.342	64,6	Ja		100,2		3,01	76,67		3,81	0,00		84,12	0,00
WKA 101	1.919	1.920	55,4		•	100,6		3,01	75,41		3,65	0,00		82,22	
WKA 102		1.661	55,5			100,6		3,01	76,95					84,39	00,0
WKA 103	1.983	1.985				104,0 104,0			75,41	3,16				81,99	
WKA 104		1.662			•	104,0		3,01	73,24		2,95			78,65	
WKA 107						103,4		3,01	77,68		3,84			85,62	
WKA 115						103,6		3,01			3,70			83,75	
WKA 117					· · · · · · · · · · · · · · · · · · ·	101,4			70,08					75.28	
WKA 146						100,2			67,22		3,83			72,28	
WKA 147					•	100,2		3,01			3,67			76,16	
WKA 148						100,2			68,13		2,87		-	72,37	
WKA 155						103,4			72,44		2,89			77,57	
WKA 158						103,0		3,01			4,80		0,00	91,16	0,00
WKA 170						103,0		3,01			4,80		0,00	90,51	0,00
WKA 171 WKA 172						104,2			82,05		4,80		0,00	93,62	0,00
WKA 172						103,8		3,01			4,80		0,00	89,61	0,00
WKA 186						103,8		3,01			4,80		0,00	90,69	0,00
WKA 187						100,		3,01	81,82	6,60	4,80	0,00	0,00	93,22	0,00
WKA 188						100,		3,01	80,98	6,00	4,80	0,00	0,00	91,78	0,00
WKA 188						103,		0 3,01			4,80			90,18	
WKA 201						98,		3,01	82,66	7,27	4,80	0,00		94,74	
WKA 202					•	101,		3,01		7,68	4,80			95,61	
WKA 203						103,		3,01			4,80				
WKA 204						98,	7	3,01			4,80			96,54	
WKA 23					14,83	103,		3,01			4,80			91,78	
WKA 232				2 Neir	n 13,44	103,	6	3,01			4,80			93,17	
WKA 233			4 45,	3 Neir	n 12,49	101,		3,01			4,80			91,72	
WKA 234			50,3	2 Nei	n 13,64	103,		3,01						92,97	
WKA 236			4 43,	3 Nei		101,		3,01			4,80			90,00	
WKA 24	5 3.345	3.34	5 48,3	2 Nei		103,			81,49					92,6	
WKA 603	a 3.742	2 3.74	3 46,3	2 Nei	-	103,		3,01			4,80			94,38	
WKA 604	4 3.564	4 3.56	5 48,	2 Nei		103,		3,01			7 4,80			93,63	
WKA 60	5 3.979	3.98			•	102,		3,01			3 4,80				
WKA 60	8 3.348	3.34				103,		3,01			4,80				
WKA 60:	9 3.80	1 3.80	2 46,	8 Nei	n 12,08	103,	7	3,01	82,60	7,22 ر	2 4,80	0,0	0,00	94,6	0,00
i															

39,63 Summe

^{Projekt:} Eulgem

Beschreibung: 068-10-0245-03.04

27.04.2012 09:29 / 5

Lizenzierter Anwender:

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall	-Immissio	nsort: IP ()3 Hauptstra	aße 25, l	Eulgem										
WEA					95% der Ne										
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar			Einzel- töne	Dc	Adiv		_		Amisc	(AD)	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	(dB)	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
WKA			54,5	Ja	21,30	100,6		3,01	75,46		3,68	0,00		82,31	0,00
WKA	062 1.930		55,4	Ja	19,41	100,6			76,72	3,67		0,00		84,20	0,00
WKA	063 1.93	7 1.939	63,9		22,91	104,0			76,75	3,68		0,00		84,10	0,00
WKA	064 1.61		61,5		25,26	104,0			75,18	3,08		0,00		81,75	0,00
WKA	066 1.908				22,39	103,3		3,01	76,62	3,63		0,00		83,92	0,00
WKA					24,34	103,3		3,01	75,42	3,16		0,00		81,97	0,00
WKA	083 2.29			Ja	16,82	100,2		3,01	78,21	4,36		0,00		86,39	0,00
WKA					17,76	103,4		3,01	79,50	5,05		0,00	-,	88,65	0,00 00,0
WKA					28,21	103,4			72,94		2,89	0,00		78,20 86,60	0,00
WKA					16,60	100,2		3,01	78,32		3,86	0,00	0,00	86,87	0,00
WKA					16,34	100,2		3,01	78,50	4,51		0,00	0,00	84,29	0,00
WKA					19,32	100,6		3,01	76,78		3,81	,		82,40	0,00
WKA					21,21	100,6		3,01			3,66	0,00	0.00	84.54	0,00
WKA						104,0		3,01	77,05	3,81		0.00	0,00	82,14	0,00
WKA					•	104,0		,	75,51		3,43 2,96	0,00		78,78	0,00
WKA						103,4		3,01	73,33 77,76					85,74	0,00
WKA						103,8		3,01 3,01	76,56		3,70	0,00		83,87	0,00
WKA					•	101,4		3,01	70,45					75,77	
WKA						101,4		3,00	67,44		3,86			72,56	0,00
WKA						100,2 100,2			70,92					76,53	
WKA					,	100,2			68,63		2,97			73,04	
WKA					•	101,4		3,00	72,59					77,79	0,00
WKA						103,4		3,01	80,56		4,80			91,07	
WKA					•	103,0		3,01	80,18		4,80				
WKA WKA					-	104,2		3,01			4,80			93,60	
WKA			•			103.8		3.01	79,57						
WKA						103,8		3.01	,		4,80			90,57	0,00
WKA						100,2		3,01			4,80		0,00	93,09	0,00
WKA						100,2		3,01			4,80		0,00	91,72	0,00
WKA						103,4		3,01	80,00		4,80		0,00	90,16	0,00
WKA						98.7		3,01			4,80		0,00	94,62	0,00
WKA					•	101,8		3,01			4,80		0,00	95,50	0,00
WKA					•	103,8		3,01	83,43	7,95	4,80	0,00	0,00		
WKA		-			•	98,		3,01	83,57	8,08	4,80	0,00	0,00	96,45	
WKA						103,0		3,01	81,08	6,06	4,80	0,00	0,00		
WKA						103,		3,01	81,88	6,65	4,80				
WKA						101,	2	3,01	81,03		4,80				
WKA					13,50	103,	6		81,76		4,80			93,11	
WKA				4 Neir	14,13	101,	2		79,95		4,80			90,08	
WKA			4 48,	2 Neir	13,79	103,	6		81,59		4,80			92,82	
WKA						103,	7	3,01	82,52		4,80			94,48	
WKA			4 48,	1 Neir	12,97	103,		3,01			4,80				
WKA				9 Neir	n 9,55	102,	0	3,01	83,0		4,80			95,46	
WKA				1 Neir	13,96	103,	7	3,01			4,80				
WKA						103,	7	3,01	82,66	7,28	4,80	0,00	0,00	94,74	0,00

Summe

Schall-Immissionsort: IP 04 In den Hägen 13, Eulgem

WEA					95% der Ne	ennleistur	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 061	1.657	1,658	54,5	Ja	21.40	100,6		3,01	75,39	3,15	3,67	0,00	0,00	82,21	0,00
WKA 062		1.914	55.6	Ja	19.53	100.6		3,01	76,64	3,64	3,80	0,00	0,00	84,08	0,00
WKA 063		1.903	64,1	Ja	23,16	104,0		3,01	76,59	3,62	3,64	0,00	0,00	83,85	0,00
WKA 064		1.586	61,4	Ja	25.52	104,0		3,01	75,01	3,01	3,47	0,00	0,00	81,49	0,00
WKA 066		1.839	63.2	Ja	22,91	103,3		3,01	76,29	3,49	3,62	0,00	0,00	83,40	0,00
WKA 067	1.575			Ja	25,05	103,3		3,01	74,95	2,99	3,32	0,00	0,00	81,26	0,00
WKA 083		2.247	65,8	Ja	17,11	100,2		3,01	78,03	4,27	3,80	0,00	0,00	86,10	0,00

Beschreibung:

068-10-0245-03.04

sdruck/Seite

27.04.2012 09:29 / 6

Lizenzierter Anwender:

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

	zung von de	r vorigen Seit	`e			1.7.7									
WEA					95% der Ne			Do	Adiv	Aatm	Agr	Δhar	Amisc	Α	Cmet
Nr.			Mittlere Höhe	Sichtbar	Berechnet		Finzer- tone	Dc			[dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	5,02		0.00		88,54	0,00
WKA (Ja	17,87	103,4			79,44	2,32		0,00		77,93	0,00
WKA (Ja	28,47	103,4			72,74 78.02		3,83	0,00	0,00	86,12	0,00
WKA (Ja	17,09	100,2		3,01	78,41		3,84	0,00	0,00	86,70	0,00
WKA (16,51	100,2		3,01			3,80	0,00	0,00	84,25	0,00
WKA '					19,35	100,6		3,01 3.01	75,55	3,21	3,65	0,00		82,40	0.00
WKA '				Ja	21,20	100,6		3,01			3,66	0,00		84,59	0,00
WKA					22,42	104,0		3.01			3,42		0,00	82,29	0,00
WKA					24,72	104,0		3,01			3,00	0.00	0.00	79.23	0,00
WKA						103,4		3.01	77,85		3,83		0.00	85,86	0,00
WKA						103,8		3,01	76.68		3,69	0,00	0.00	84,03	0,00
WKA						101,4 101,4		3,00		- 1	3,22		0,00	73,23	0,00
WKA						101,4		3.00				0,00	0.00	70.02	
WKA					•	100,2		3,00			3,37			74,24	
WKA					•	100,2		3,00			2,43		0,00	69,82	
WKA						101,4		3,00			2,92	,		77,97	
WKA						103,4		3,01						91,01	0,00
WKA					•	103,0		3,01			4,80			90,26	
WKA						103,0		3,01	,	,	-			93,30	
WKA						104,2		3,01						89,60	
WKA					-	103,8		3,01				,		90,64	
WKA		-			-	100,2		3,01						93,23	
WKA						100,2		3,01	80,84					91,53	
WKA						100,2		0 3,01						89,80	
WKA					•	98,7		3,01			4,80	,			
WKA					•	101,8		3,01							
WKA WKA						103,8		3,01	•		4,80	- , -			
WKA					•	98,7		3,01			4,80			96,45	0,00
WKA						103,6		3,01			4,80				0,00
WKA			·			103,6		3,01			4,80	,		92,53	0,00
WKA						101,2		3,01					0,00	91,06	0,00
WKA						103,6		3,01			4,80				
WKA						101,2		3,01							
WKA						103,6		3,01			4,80	0,00	0,00	91,99	0,00
WKA						103,7		3,01			4,80		0,00	93,80	0,00
WKA						103,		3,01			4,80	0,00	0,00	93,00	0,00
WKA						102,0		3,01			4,80		0,00	94,79	0,00
WKA						103,		3.01					0,00	92,07	7 0,00
WKA						103,			82,28		4,80			94,04	1 0,00
WYKA	009 3.00	.00 عر	5 50,0	o iveli	12,01	, 55,	•	5,0 .	,	,00	.,	.,			

Summe 40,78

Schall-Immissionsort: IP 05 In den Hägen 15, Eulgem

WEA					95% der Ne	ennleistui	ng				_				^
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 061	1.682	1.683	55,3	Ja	21,22	100,6		3,01	75,52	3,20	3,67	0,00	0,00	82,39	
WKA 062	1.938	1.939	56,4	Ja	19,37	100,6		3,01	76,75	3,68	3,80	0,00	0,00	84,24	
WKA 063	1.929	1.931	64,9	Ja	22,98	104,0		3,01	76,71	3,67	3,65	0,00	- 1		
WKA 064	1.612		62,1	Ja	25,31	104,0		3,01	75,16	3,07	3,48	0,00	0,00	81,70	
WKA 066	1.869	1.870	63,8	Ja	22,69	103,3		3,01	76,44	3,55	3,63	0,00	0,00	83,62	
WKA 067	1.607	1.609	·		24,79	103,3		3,01	75,13	3,06	3,33	0,00	0,00	81,52	
WKA 083				Ja	16,94	100,2		3,01	78,14	4,32	3,80	0,00	0,00	86,27	00,0
WKA 084					17,74	103,4		3,01	79,53	5,07	4,08	0,00	0,00	88,67	00,0
WKA 090					28,22	103,4		3,01	72,93	2,37	2,89	0,00			
WKA 091	2.275		64,1	Ja	16,91	100,2		3,01	78,14	4,32	3,84	0,00	0,00	86,30	0,00
WKA 092				Ja	16,36	100,2		3,01	78,51	4,51	3,84	0,00	0,00	86,85	0,00
WKA 101	1.965					100,6		3,01	76,87	3,73	3,80	0,00	0,00	84,40	0,00
WKA 102					21,05	100.6		3,01	75,66	3,25	3,65	0,00	0,00	82,56	0,00
WKA 103				Ja		104,0		3,01	77,19	3,88	3,65	0,00	0,00	84,72	0,00

Fortsetzung auf nächster Seite.

Beschreibung:

068-10-0245-03.04

27.04.2012 09:29 / 7

SOLvent GmbH

Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

	ung von der	vorigen Seit	te		050/		. ~								
WEA					95% der Ne			Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
Nr.			Mittlere Höhe	Sichtbar	Berechnet	LWA'LEI	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]		[dB(A)]	[dB(A)] 104,0	[ub]	3.01	75,73	3,28	3,42	0.00		82,43	0,00
WKA 1				Ja	24,58	104,0		3,01	73,75	2,61	3,01	0,00	0,00	79,37	0,00
WKA 1				Ja	27,04	103,4		3,01	77.93		3,82	0,00		85,97	0,00
WKA 1			63,3	Ja	20,84	103,6		3,01	76.77		3,69	0,00		84,15	0,00
WKA 1				Ja	20,26	101,4		3.01	68,84	1,48	3,26	0,00	0.00	73,58	0,00
WKA 1				Ja	30,83	100,2		3.00	65,47	1,01	3,52	0,00	0,00	70,00	0,00
WKA 1				Ja	33,20	100,2		3,01	69.43	1.59	3,40	0.00	0,00	74,41	0,00
WKA 1				Ja	28,79 34,03	100,2		3.00	66,70	1,16	2,52	0,00	0,00	70,38	0,00
WKA 1						101,4		3,01	72.87	2,36		0,00	0,00	78,16	0,00
WKA 1						103,4		3.01	80,46		4,80		0,00	90,90	0,00
WKA 1						103,0		3.01	80.00			0,00	0,00	90,16	0,00
WKA 1			•			104,2		3,01	81,83		4,80	0,00	0,00	93,24	0,00
WKA 1					• .	103,8		3.01	79,56		4,80	0,00	0,00	89,45	0,00
WKA 1					*	103,8		3,01	80,22			0,00	0,00	90,51	0,00
WKA 1			•			100,2		3,01	81,75	6,55	4,80	0,00	0,00	93,10	
WKA 1						100.2		3,01	80,78	5,86	4,80	0,00		91,44	
WKA 1 WKA 1						103,4		3,01	79,74	5,20	4,80	0,00		89,73	
WKA 2					•	98,7		3,01	82,59	7,22	4,80	0,00		94,61	
WKA 2			-			101,8		3,01	83,05	7,61	4,80	0,00			
WKA 2		-				103,8		3,01	83,40	7,92	4,80	0,00			
WKA 2						98,	7	3,01	83,52	8,03	4,80				
WKA 2		-	-			103,6	3	3,01	80,63		4,80				
WKA 2		-				103,6	3	3,01			4,80				
WKA 2			-			101,2	2	3,01							
WKA 2						103,6	5	3,01						92,40	
WKA 2					14,75	101,	2	3,01						89,46	
WKA				1 Neir	14,52	103,	6	3,01						92,09	
WKA 60					12,87	103,		3,01			4,80			93,84	
WKA			8 52,	7 Neir	13,65	103,		3,01						93,06	
WKA				3 Nei	n 10,17	102,		3,01	-						
WKA				9 Nei	n 14,61	103,		3,01							
WKA				3 Nei	n 12,62	103,	7	3,01	82,3	1 6,98	3 4,80	0,0	0,00	94,09	0,00

40,54 Summe

Schall-Immissionsort: IP 06 In den Hägen 16, Eulgem

Schan-in	111133101	15011		-											
WEA					95% der Ne			_		۸ - ۸	۸	Abor	Amisc	Α	Cmet
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet		Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	[dB]	[dB]	[dB]
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB] 0.00	0,00	82,11	0,00
WKA 061	1.643	1.643	53,8	Ja	21,50	100,6		3,01	75,32	3,12		,	0,00	84.00	00.0
WKA 062	1.900	1.901	54,8	Ja	19,61	100,6		3,01	76,58	3,61	3,81	0,00		83,81	0,00
WKA 063	1.894	1.896	63,4	Ja	23,20	104,0		3,01	76,56	3,60	3,65	0,00	0,00	,	0,00
WKA 064		1.578	60,8	Ja	25,58	104,0		3,01	74,96	3,00					0,00
WKA 066		1.843	62,3	Ja	22,86	103,3		3,01	76,31	3,50					
WKA 067				Ja	24,96	103,3		3,01	75,00	3,01	3,33				
WKA 083				Ja	17,12	100,2		3,01	78,02			0,00		86,09	0,00
WKA 084				Ja	17,92	103,4		3,01	79,40					88,49	
WKA 090					28,58	103,4		3,01	72,67	2,30				77,83	
WKA 091				Ja	17,04	100,2		3,01	78,05						
WKA 092					16,55	100,2		3,01	78,37	-	3,85				
WKA 101				Ja	19,46	100,6		3,01	76,69			0,00			
WKA 102					21,34	100,6		3,01	75,45						
WKA 103					22,54	104,0		3,01	77,01	3,79					
WKA 104					24,89	104,0	•	3,01	75,50		3,42				
WKA 107					27,46	103,4		3,01	73,44		2,98				
WKA 115				. Ja	21,09	103,8	}	3,01	77,75	-	3,83				
WKA 117					20,54	101,4	ļ	3,01	76,57						
WKA 146					30,34	101,4	Ļ	3,01	69,18						
WKA 147						100,2	<u> </u>	3,00	66,25						
WKA 148		-				100,2	2	3,01	69,87	1,67	3,52	0,00	0,00	75,05	0,00

068-10-0245-03.04

27.04.2012 09:29 / 8

Lizenzierter Anwender:

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063 Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	g von der	vorigen Seit	е		050/ J N-		_								
WEA					95% der Ne			e Do	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet		[dB]	[dB		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]	¥	[dB(A)]	[dB(A)] 101,4	լսեյ	3,0			2,62	0.00	0,00	70,83	0,00
WKA 155	627	632	39,3	Ja	33,57	No. of the last of		3,0			2,90	0,00	0,00	77,73	0,00
WKA 158	1.194	1.196	65,7	Ja	28,68	103,4		3,0	con the same		4,80	0.00	0,00	91,10	0,00
WKA 170	3.011	3.012		Nein	14,91	103,0		3,0		20° 0 10	4,80	0.00	0,00	90,39	0,00
WKA 171	2.864	2.865	64,5	Nein	15,62	103,0 104,2		3,0			4,80	0,00	0,00	93,45	0,00
WKA 172	3.525	3.527		Nein	13,76	20022		3,0	o en national		4.80	0.00	0,00	89,64	0,00
WKA 185	2.714	2.715		Nein	17,17	103,8 103,8		3,0	The same of the same		4,80	0,00	0,00	90,69	0,00
WKA 186		2.928		Nein	16,12	100,2		3,0	0.5 0.5 0.00 1.00 0.00	20 100 miles (2)	no Massacran		0,00	93,25	0,00
WKA 187	3.480				9,96	100,2		3,0	20 D D TO	to company			0,00	91,66	0,00
WKA 188	3.129					100,2		0 3.0	and a second frame		4.80		0,00	89,98	0,00
WKA 189	2.781	2.783				98,7		3,0	0000		4,80	0,00	0,00	94,76	0,00
WKA 201	3.831	3.834	ture 'e		5. NOTE 1000000	101,8		3,0	- 10 - 100 mm ⁴ - 40				0,00	95,62	0,00
WKA 202	4.040				100 mar. 100	101,8		3,0		10 1000000			0,00	96,27	0,00
WKA 203						98,7		3,0	10 100000		4,80		0,00	96,51	0,00
WKA 204					A STATE OF THE REAL PROPERTY.	103,6		3,0	a comment		4,80	0,00	0,00	91,37	0,00
WKA 23						103,6		3,	5 80 ACCOUNTS	200 O 10	4,80	0,00	0,00	92,78	0,00
WKA 232			1			101,2		3,	a un manual Com		4,80	0,00	0,00	91,32	0,00
WKA 23					non reforman	103,6		3,				0,00	0,00	92,58	0,00
WKA 23			1			101,2		3,				0,00	0,00	89,72	0,00
WKA 23						103,6		3,				0,00	0,00	92,24	0,00
WKA 24			1272112			103,0		3,				0,00	0,00	94,04	0,00
WKA 603						103,7		3,	and the second of		4,80	0,00	0,00	93,25	0,00
WKA 60					30	102,0		3.				0,00	0,00	95,02	0,00
WKA 60					ACT #0000400	102,0		1000	01 81,3			0,00	0,00	92,31	0,00
WKA 60					Charles and the last	103,7			01 82,4		- 00 m (00 0		0,00	94,27	7 0,00
WKA 60	9 3.71	7 3.71	B 48,6	6 Neir	12,44	103,7		0,	J. 0 <u>L</u> ,						

40,29 Summe

Schall-Immissionsort: IP 07 In den Hägen 17, Eulgem

Schail-II	1111133101	13011. 11	,, ,,, ,,,,		050/ -1 11		~~								
WEA			3.707		95% der Ne			Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar			Einzel- töne [dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]	9	[dB(A)]	[dB(A)]		3,01	75,46	3,18	3,67	0.00		82,31	0,00
WKA 06		1.672	54,9	Ja	21,30	100,6 100,6		3,01	76,71	3,67	3,81	0,00	0,00	84,18	0,00
WKA 06:		1.929	55,9	Ja	19,43	100,6		3.01	76,68	3,65	3,65	0,00	0,00	83,98	0,00
WKA 06		1.923	64,4	Ja	23,03	104,0		3,01	75,11	3,05	3.48	0.00	0,00	81,64	0,00
WKA 06		1.605	61,8	Ja	25,37	104,0		3.01	76,42	3,55	3,64	0,00	0,00	83,61	0,00
WKA 06		1.867	63,4	Ja		103,3		3,01	75,13	3,06	3,34	0,00	0,00	81,52	0,00
WKA 06		1.608		Ja		100,2		3.01	78.12	4,31	3,81	0,00	0,00	86,24	0,00
WKA 08		2.270		Ja		100,2		3,01	79,49	5,05		0,00	0,00	88,63	0,00
WKA 08						103,4		3.01	72.86	2,35		0,00	0,00	78,10	0,00
WKA 09						100,2		3,01	78,14	4,32		0,00	0,00	86,30	0,00
WKA 09						100,2		3.01	78,47	4,49	3,84	0,00	0,00	86,81	0,00
WKA 09					Company of the contract of the	100,6		3.01	76,82	3,71	3,80	0,00	0,00	84,33	0,00
WKA 10					*	100,6		3,01	75,60	3,23	3,65	0,00			0,00
WKA 10						104,0		3,01	77,13	3,85	3,66	0,00		84,64	
WKA 10						104,0		3,01	75,66	3,25	3,42	0,00	0.0400000	82,32	
WKA 10						103.4		3,01	73,63	2,57	3,00	0,00			0,00
WKA 10					n	103,8		3,01	77,87	4,19	3,83	0,00			Ter Transport
WKA 11						101,		3,01	76,70	3,66	3,69	0,00			
WKA 11			The state of the s			101.		3,01	69,09	1,53					
WKA 14		E				100,		3,00	65,86	1,05	3,61	0,00			
WKA 14		50 50 500				100,	2	3,01	69,69	1,63					
WKA 14					and the contract of	101,	4	3,00	66,98						
WKA 1			-0 1000000			103,	4	3,01	72,76						
WKA 1	1778				75.000	103,	0	3,01							
WKA 1			-		- 1-1-1-1	103,	0	3,01		Contract Con		an and the same			
WKA 1	area area areas		- ""			104,	2	3,01	10 ,,(8)						
WKA 1						103,	8	3,01							3-11-20-1
WKA 1	리즈	The second of the second	-			103,	8	3,01	80,2	5 5,5	1 4,80	0,0	0,00	90,56	0,00
VVICA	2.00	2.00	,												

^{Frojekt:} Eulgem Beschreibung

068-10-0245-03.04

27.04.2012 09:29 / 9

Lizenzierter Anwender: SOLvent GmbH

Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	g von der	vorigen Seit	e												
WEA					95% der Ne	ennleistur	ng							^	Cmet
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 187	3.453	3,455	67,0	Nein	10,08	100,2		3,01	81,77	6,56	4,80	0,00	0,00	93,13	0,00
WKA 188	3.099	3.100	63,4	Nein	11,69	100,2		3,01	80,83	5,89	4,80	0,00	0,00	91,52	0,00
WKA 189	2.752	2.754	71.0	Nein	16,58	103,4	C	3,01	79,80	5,23	4,80	0,00	0,00	89,83	
WKA 201	3.804	3.806	65,3	Nein	7,07	98,7		3,01	82,61	7,23	4,80	0,00	0,00	94,64	
WKA 202	4.012	4.015	70,9	Nein	9,31	101,8		3,01	83,07	7,63	4,80	0,00	0,00	95,50	
WKA 203	4,174	4.177	76,5	Nein		103,8		3,01	83,42	7,94	4,80	0,00	0,00	96,15	
WKA 204	4.236					98,7		3,01	83,55	8,05	4,80	0,00	0,00	96,40	
WKA 231	3.054					103,6		3,01	80,70	5,80	4,80	0,00	0,00	91,31	0,00
WKA 232			•			103.6		3,01	81,54	6,39	4,80	0,00	0,00	92,73	
WKA 232		3.042				101,2		3,01	80,66	5,78	4,80	0,00	0,00	91,24	0,00
WKA 234					•	103,6		3,01	81,41	6,30	4,80	0,00	0,00	92,52	0,00
WKA 234			•		-	101,2		3.01	79,64	5,14	4,80	0,00	0,00	89,58	0,00
WKA 245						103,6		3,01	81,23	6,17	4,80	0,00	0,00	92,20	0,00
WKA 603a						103,7		3,01	82,23	6,92	4,80	0,00	0,00	93,95	0,00
WKA 603a						103,7		3,0		6,58	4,80	0,00	0,00	93,17	0,00
2					•	102,0		3,0		7,37	4,80	0,00	0,00	94,94	0,00
WKA 605						103,7		3,0				0,00	0,00	92,21	0,00
WKA 608			•			103,7		3,0				0,00	0,00	94,20	0,00
WKA 609	3.700	3.701	50,1	iveii	12,31	103,7		5,0		.,					

Summe 40,32

Schall-Immissionsort: IP 08 In den Hägen 18, Eulgem

l l			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_	050/										1
WEA					95% der Ne			Do	Adiv	Aatm	Agr	Δhar	Amisc	Α	Cmet
Nr.			Mittlere Höhe	Sichtbar	Berechnet	LWA,ref	Einzei- tone	Dc [dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]				3,68	0,00		82,07	0,00
WKA 06		1.637	53,5	Ja	21,54	100,6		- ,	76,55		3,82			83,97	0,00
WKA 06		1.895	54,4	Ja	19,64	100,6			76,54	3,60		0,00		83,80	0,00
WKA 06		1.893	63,0	Ja	23,21	104,0			74,94	2,99			0,00	81.41	0,00
WKA 06				Ja	25,60	104,0			76,32					83,48	0,00
WKA 06				Ja	22,83	103,3			75,04		3,34			81,40	0,00
WKA 06				Ja	24,90	103,3			78,04		3,82			86,09	0,00
WKA 08		2.242		Ja		100,2		3,01	79.38	-	4,10		0,00	88.46	0,00
WKA 08				Ja		103,4 103,4		3.01	72,64		2,85			77,78	0,00
WKA 09				Ja		103,4		3,01	78,07		3,85				0,00
WKA 09					•	100,2		3.01	78,35		3,85			86,64	
WKA 09						100,2		3.01	76,65		3,81			84,11	0,00
WKA 10					•	100,6		3.01	75,40		3,65			82,21	0,00
WKA 10					•	100,6		3.01	76,96		3,67			84,40	
WKA 10					•	104,0		3.01	75,44		3,42			82,03	
WKA 10						104,0		3.01	73,34		2,98			78,80	
WKA 10					-	103,4		3.01	77,71		3,84			85.66	
WKA 11					•	103,6		3,01	76,51		3,70			83,79	
WKA 11					•	101,4		3.01	69.48		3,40			74,47	
WKA 14						101,4		3.00			3,74			71,51	
WKA 14					*	100,2			70,15		3,58			75,45	
WKA 14						100,2		3,00			2,71			71,33	
WKA 15						103,4		3,01				0,00		77,61	
WKA 15						103,4		3,01			4,80			91,15	
WKA 17						103,0			80,18		4,80	,		90,45	
WKA 17						104,2		3,01			4,80				
WKA 17 WKA 18					•	103,8		3,01	,		4,80		0,00	89,66	00,0
WKA 18					•	103,8		3,01			4,80			90,72	0,00
B					•	100,2		3,01			4,80		0,00	93,27	
WKA 18					•	100,2			80,95		4,80			91,72	0,00
WKA 18					•	103,4		3,01			4,80		0,00	90,07	0,00
WKA 20						98,7			82,68	-	4,80		0,00	94,77	0,00
WKA 20					•	101,8			83,15		4,80		0,00	95,64	0,00
WKA 2					•	103,8			83,49		4,80		0,00	96,29	
WKA 2					-	98.7		3,01			4,80	0,00	0,00	96,54	0,00
VVNAZ	J- 4.2/3	J 4.270	, ,,,,	, 14011	-, -, -,					•					

Beschreibung:

068-10-0245-03.04

k/Seite

27.04.2012 09:29 / 10

Lizenzierter Anwender

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Ĺ.,	.Fortsetzun	g von der	vorigen Seit	te												
l۷	VEA	_				95% der No	ennleistu	ng							_	
N	۸r.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	WKA 231	3.096		49,9	Nein	15,11	103,6		3,01	80,82	5,88	4,80	0,00	0,00	91,50	0,00
	WKA 232	3,403	3.404	56.0	Nein	13,70	103,6		3,01	81,64	6,47	4,80	0,00	0,00	92,91	0,00
	WKA 233	3.087		46,1	Nein	12,75	101,2		3,01	80,79	5,87	4,80	0,00	0,00	91,46	
	WKA 234	3.360		,	Nein	13,89	103,6		3,01	81,53	6,39	4,80	0,00	0,00	92,72	0,00
	WKA 236					14,37	101,2		3,01	79,80	5,23	4,80	00,0	-,		•
ı	WKA 245		3.285	49,0	Nein	14,24	103,6		3,01	81,33	6,24	4,80	0,00		92,37	
	WKA 603a			47,1	Nein	12,55	103,7		3,01	82,34	7,01	4,80	0,00	. ,	94,16	
1	WKA 604			49.0	Nein	13,34	103,7		3,01	81,91	6,67	4,80	0,00	0,00	93,37	
	WKA 605			51,4	Nein	9,87	102,0		3,01	82,88	7,46	4,80	0,00		,	
	WKA 608			•		14,27	103,7		3,01	81,37	6,27	4,80	0,00		92,44	
Messes	WKA 609			•	Nein	12,32	103,7		3,01	82,47	7,12	4,80	0,00	0,00	94,39	0,00

Summe 40,07

Schall-Immissionsort: IP 09 In den Hägen 21, Eulgem

WEA					95% der Ne						_			_	0
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	•	Abar		A	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 061	1.657	1.658	54,3	Ja	21,39	100,6			75,39		3,68	0,00		82,22	0,00
WKA 062	1.916	1.917	55,2	Ja	19,50	100,6			76,65	3,64		0,00		84,11	0,00
WKA 063	1.915	1.917	63,7	Ja	23,06	104,0		3,01			3,66	0,00		83,95	0,00
WKA 064	1.597	1.598	61,2	Ja	25,42	104,0		3,01	75,07		3,48	0,00	0,00	81,59	0,00
WKA 066		1.873	62,4	Ja	22,64	103,3		3,01	76,45		3,66	0,00	0,00	83,67	0,00
WKA 067	1.619	1,620	67,9	Ja	24,68	103,3		3,01	75,19		3,36	0,00		81,63	0,00
WKA 083		2.267	64,9	Ja	16,98	100,2		3,01	78,11		3,82		0,00	86,23	0,00
WKA 084		2.646	54,7	Ja	17,84	103,4		3,01	79,45		4,09	0,00	0,00	88,57	0,00
WKA 090		1.230	68,8	Ja	28,40	103,4		3,01	72,80		2,87			78,01	0,00
WKA 091	2.283	2.284	63,1	Ja	16,84	100,2		3,01	78,18		3,85	0,00		86,37	0,00
WKA 092		2.354	65,2	Ja	16,45	100,2		3,01	78,44		3,85		0,00	86,76	0,00
WKA 101		1.937	55,9		19,38	100,6		3,01			3,81	0,00		84,23	
WKA 102		1.679	56,0			100,6		3,01	75,50		3,65			82,35	
WKA 103		2.005	66,4	Ja	22,49	104,0		3,01	77,04		3,66	0,00		84,52	
WKA 104				Ja	24,86	104,0		3,01	75,53					82,15	
WKA 107			69,8		27,50	103,4		3,01	73,42		2,98			78,91	
WKA 115			61,3	Ja	21,06	103,8		3,01	77,77			0,00		85,75	
WKA 117		1.902	61,1	Ja	20,51	101,4		3,01	76,58		3,70			83,90	
WKA 146				Ja	29,63	101,4		3,01	69,71	1,64				74,77	
WKA 147				Ja	31,62	100,2		3,00	66,67					71,58	
WKA 148				Ja	27,57	100,2		3,01	70,28		3,60		0,00		
WKA 155				Ja	32,61	101,4		3,00					0,00	71,79	
WKA 158			65,8	Ja	28,63	103,4		3,01	72,59		2,91			77,78	
WKA 170	3.003	3.004	61,4	Nein	14,95	103,0		3,01		,			0,00		
WKA 171		2.865	64,7	Nein	15,62	103,0		3,01	80,14		4,80		0,00	90,38	
WKA 172			65,2	. Nein	13,72	104,2		3,01			4,80		0,00		
WKA 185			40,6	Nein	17,27	103,8		3,01	79,62		4,80		0,00		
WKA 186	2.910	2.912	46,5	Nein	16,19	103,8		3,01			4,80		-		
WKA 187		3.462	65,5	Nein Nein	10,04	100,2		3,01			4,80		-		
WKA 188		3.130	61,7	' Nein		100,2		3,01			4,80				
WKA 189	2.790	2.792	2 68,8	8 Nein	16,39	103,4		3,01			4,80				
WKA 201		3.815	63,4	l Nein	7,03	98,7		3,01			4,80			94,68	
WKA 202	4.024	4.027	68,6	S Nein	9,26	101,8		3,01	,		4,80				
WKA 203		4.191	74,0) Nein	•	103,8			83,45		4,80				
WKA 204	4.253	4.256	75,1	Nein Nein	5,24	98,7		3,01			4,80			96,47	
WKA 231	3.115	3.116	50,2	Nein		103,6		3,01			4,80				
WKA 232	3.423	3.424	56,4	Nein Nein	13,61	103,6		3,01			4,80			93,00	
WKA 233			3 46,5	5 Nein	,	101,2		3,01			4,80			91,53	
WKA 234	4 3.377					103,6			81,57		4,80		- ,	92,79	
WKA 236				7 Nein		101,2			79,81		4,80				
WKA 245	3.306	3.307	7 49,4	Nein	14,14	103,6		3,01			3 4,80				
WKA 603a	a 3.701	3.702	2 47,6	6 Nein	12,51	103,7		3,01	82,37	7,03	3 4,80	0,00	0,00	94,20	0,00
I															

Beschreibung:

068-10-0245-03.04

27.04.2012 09:29 / 11

Lizenzierter Anwender

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063

Johannes Waterkamp / jw@solvent.de Berechnet: 25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

39,86

Summe

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzur	a von der	voriaen Seit	e												
WEA	.g				95% der Ne		Ξ	D-	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
Nr.			Mittlere Höhe	Sichtbar		LwA,ref	Einzel- töne [dB]	Dc [dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]	Nein	[dB(A)] 13.27	103.7	[0D]	3.01	81,94	6,70		0,00	0,00	93,44	0,00
WKA 604		3.524 3.939	49,4 52,0		9.82	102,0		3,01	82,91	7,48	4,80	0,00	0,00		
WKA 605 WKA 608		3.308			14,23	103,7		3,01	81,39	6,29			•	92,48	
WKA 609		3.761	48,1	Nein	12,26	103,7		3,01	82,51	7,15	4,80	0,00	0,00	94,45	0,00

Schall-Immissionsort: IP 10 Sängerweg 1. Eulgem

Schall-Im	mission	sort: IP 1	0 Sängerw												and the second
WEA					95% der Ne			n -	A 41:	A atm	۸ar	Abar	Amisc	Α	Cmet
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- tone	Dc	Adiv	Aatm	Agr [dB]	[dB]	[dB]	[dB]	[dB]
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB] 3,15		0.00		82,22	0,00
WKA 061	1.657	1.658	54,1	Ja	21,39	100,6			75,39	3,65		0,00		84.13	0,00
WKA 062	1.919	1.920	54,9	Ja	19,48	100,6			76,66	3,67		0,00		84,06	0,00
WKA 063	1.931	1.932	63,5	Ja	22,95	104,0		,	76,72	3,06	3,49	0,00		81,70	0,00
WKA 064	1.610	1.612	61,3	Ja	25,31	104,0		3,01	75,14	3,63	3,68	0.00		83,95	0,00
WKA 066	1.911	1.913	62,2		22,36	103,3		. ,	76,63 75,46	3,18	3,40	0,00		82,04	0.00
WKA 067	1.670	1.672	68,2		24,27	103,3		3,01	78,19	4,35	3,83	0,00		86,37	0,00
WKA 083	2.286	2.288	64,6		16,84	100,2		3,01 3,01	79,46	5,03		0,00		88,59	0,00
WKA 084	2.646	2.647	53,7		17,82	103,4		3,01	72,89	2,36	2,88	0,00		78,12	0,00
WKA 090	1.240	1.242	69,3		28,29	103,4		3.01	78,34		3,87			86,64	0,00
WKA 091	2.328	2.329	63,2		16,57	100,2		3,01	78,46	4,49	3,86			86,81	0,00
WKA 092		2.362	64,7		16,40	100,2		3.01	76,71		3,82			84,20	0,00
WKA 101	1.929	1.930	55,1		19,41	100,6		3,01	75,45					82,29	0,00
WKA 102		1.670	55,1		21,32	100,6 104,0			76,97		3,68			84,42	
WKA 103		1.988						3.01						81,98	
WKA 104		1.660				104,0 103,4		3.01	•		2,94		•	78,52	
WKA 107		1.280						3,01			3,84			85,61	0,00
WKA 115		2.156				103,8 101,4		3.01			3,70		. ,	83,72	
WKA 117					•	101,4		3,01						76,33	
WKA 146						100,2		3,01			3,92			73,31	0,00
WKA 147						100,2			71,34	,	3,79			77,11	0,00
WKA 148					-	100,2		3,01			3,06			73,69	0,00
WKA 155					•	103,4		3,01	,		2,91		0,00	77,60	0,00
WKA 158						103,0		3.01			4,80		0,00	91,18	0,00
WKA 170						103,0		3.01			4,80		0,00	90,59	0,00
WKA 171						104.2			82,12		4,80	0,00	0,00	93,75	0,00
WKA 172						103,8		3.01			4,80	0,00	0,00	89,55	0,00
WKA 185					· · · · · · · · · · · · · · · · · · ·	103,		3,01	80,30	5,54	4,80	0,00	0,00	90,65	0,00
WKA 186						100,		3,01	81,78	6,57	4,80	0,00	0,00	93,15	0,00
WKA 187						100.		3,01	81,03	6,03	4,80	0,00	0,00	91,86	
WKA 189					•	103,		0 3,01	80,11	5,42	4,80	0,00			
WKA 183					•	98,		3,01	82,63	3 7,25	4,80			94,67	
WKA 20						101,		3,01	83,11		4,80			95,57	
WKA 202						103,		3,01	83,46	3 7,98	4,80			96,24	
WKA 204						98,		3,01	83,61				0,00		
WKA 23						103,		3,01	81,2		4,80			92,16	
WKA 23					-	103,	6	3,01			4,80			93,54	
WKA 23					n 12,13	101,	2	3,01	81,10		2 4,80				
WKA 23						103,	6	3,01	•		5 4,80				
WKA 23					n 13,91	101,	2	3,01			1 4,8				
WKA 24			-		n 13,58	103,	6	3,01			2 4,8				
WKA 603					n 12,03	103,	7	3,01			5 4,8				
WKA 60			-		n 12,76	103,		3,01		-	2 4,8				
WKA 60				7 Nei	n 9,35	102,	,0	3,01			3 4,8				
WKA 60	-			9 Nei	n 13,74	103.	,7	3,01			9 4,8				
WKA 60				7 Nei	n 11,77	103	,7	3,0	1 82,7	7 7,3	7 4,8	0,0	υ 0,00	94,9	4 0,00
1															

Beschreibung:

068-10-0245-03.04

27.04.2012 09:29 / 12

Lizenzierter Anwender:
SOLvent GmbH
Lünener Straße 211
DE-59174 Kamen

+49 2307 240063 Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall	-Immis	ssion	sort: IP 1	11 Sängerwe	∍g 3, Eu	lgem										
WEA				_	_	95% der Ne										_
Nr.	Abs	stand	Schallweg	Mittlere Höhe	Sichtbar				Dc			-		Amisc	Α	Cmet
	[[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
WKA		1.649	1.650	53,8	Ja	21,45	100,6		3,01	75,35	3,13		0,00	,	82,16	0,00
WKA		1.911	1.912	54,5	Ja	19,53	100,6			76,63	3,63		0,00		84,08	0,00
WKA		1.925	1.927	63,3	Ja	22,98	104,0				3,66		0,00		84,03	0,00
WKA		1.605	1.606	61,2	Ja	25,35	104,0			75,12	3,05		0,00		81,66	00,0
WKA		1.911	1.912	62,1	Ja	22,36	103,3		3,01	76,63	3,63		0,00		83,95	0,00
WKA		1.672	1.674	68,2	Ja	24,25	103,3		3,01	75,47	3,18		00,00		82,05	0,00
WKA		2.282	2.283	64,3	Ja	16,86	100,2		3,01	78,17	4,34		0,00		86,34	0,00
WKA		2.638	2.639	53,2	Ja	17,86	103,4		3,01		5,01		0,00	0,00	88,55	0,00
WKA		1.235	1.237		Ja	28,34	103,4			72,85	2,35		0,00		78,07 86.64	00,00 00,0
WKA		2.328	2.329		Ja	•	100,2				4,43		0,00	0,00 0,00	86,64 86,78	0,00
WKA		2.353	2.355		Ja	16,43	100,2			78,44	4,47		0,00		86,78	0,00
WKA		1.920	1.921	54,6	Ja		100,6		3,01	76,67		3,82 3,67			82.22	0,00
WKA		1.659	1.660		Ja	•	100,6			75,40 76,92	3,15		0,00		84.35	0.00
WKA		1.975	1.977		Ja Ia		104,0 104,0		3,01	75,34		3,42	0,00	- 1	81,89	0,00
WKA		1.646	1.648		Ja la		104,0			73,04		2,92			78,37	0,00
WKA WKA		1.263 2.142	1.265 2.143		Ja Ja		103,4		3.01	77,62	4,07		0,00		85.54	0,00
WKA		1.860	1.862		Ja Ja	•	103,6		3,01	,		3,70	0,00		83,63	0,00
WKA		1.004	1.007				101,4			71,06	1,91		0,00		76,59	
WKA		732	735		Ja	-	100,2			68,33		3,94	0,00		73,67	
WKA		1.061	1.064			•	100,2		,	71,54		3,81	0,00		77,37	
WKA		821	824				101,4			69,32		3,09	0,00		73,98	
WKA		1.169	1.171				103,4			72,37		2,90	0,00		77,49	
WKA		3.042				-	103,0		3,01			4,80			91,25	
WKA		2.922					103,0		3,01	80,32		4,80		0,00	90,67	0,00
WKA		3.615					104,2		3,01	82,17	6,87	4,80	0,00	0,00	93,84	
WKA		2.706					103,8		3,01	79,65		4,80			89,60	
WKA		2.927				•	103,8			80,33		4,80				
WKA		3.465				•	100,2			81,80		4,80			93,19	
WKA		3.188				•	100,2			81,07		4,80				
WKA		2.872					103,4		3,01			4,80				
WKA		3.821	3.824			,	98,7		3,01			4,80			,	0,00
WKA		4.039				•	101,8			83,13		4,80			95,61	
WKA		4.207				•	103,8		3,01			4,80				
WKA		4.280				,	98,7		3,01			4,80				
WKA		3.261					103,6		3,01			4,80		•	92,27	
WKA		3.569				•	103,6			82,05		4,80				
WKA		3.245				•	101,2			81,23		4,80				
WKA		3.521				-	103,6			81,94		4,80			93,43 90,41	
WKA		2.870				,	101,2			80,16		4,80			90,41	
WKA		3.452				,	103,6		3,01	81,76 82,69		4,80 4,80		- •		
WKA 6		3.839				•	103,7			82,69		4,80				
WKA		3.666				,	103,7 102,0			82,29		4,80			95,76	
WKA		4.077				•				81,74		4,80			93,70	
WKA		3.441					103,7 103,7			82,83		4,80				
WKA		3.902	9 3.903	3 45,0	, iveir	. 11,0/	103,1		۱ ۱,۰	JZ,0J	· ·, -1 2	-,00	5,00	. 0,00	55,04	5,00

Schall-Immissionsort: IP 12 Sängerweg 5, Eulgem

WEA					95% der Ne	ennleistu	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 061	1.638	1,639	53,1	Ja	21,51	100,6		3,01	75,29	3,11	3,69	0,00	0,00	82,10	0,00
WKA 062	1.901	1.902	53,7	Ja	19,58	100,6		3,01	76,58	3,61	3,83	0,00	0,00	84,03	0,00
WKA 063	1.917	1.919	62,8	Ja	23,03	104,0		3,01	76,66	3,65	3,68	0,00	0,00	83,98	0,00
WKA 064	1.597	1.598	60,9	Ja	25,41	104,0		3,01	75,07	3,04	3,49	0,00	0,00	81,60	0,00
WKA 066	1.908	1.909	61,7	Ja	22,38	103,3		3,01	76,62	3,63	3,69	0,00	0,00	83,93	0,00
WKA 067	1.672	1.674	68,1	Ja	24,25	103,3		3,01	75,47	3,18	3,40	0,00	0,00	82,05	0,00
WKA 083	2.275	2.276	63,6	Ja	16,90	100,2		3,01	78,14	4,33	3,84	0,00	0,00	86,31	0,00

^{Projekt:} Eulgem

Beschreibung: 068-10-0245-03.04

27.04.2012 09:29 / 13

Lizenzierter Anwende **SOLvent GmbH**

Lünener Straße 211 DE-59174 Kamen +49 2307 240063

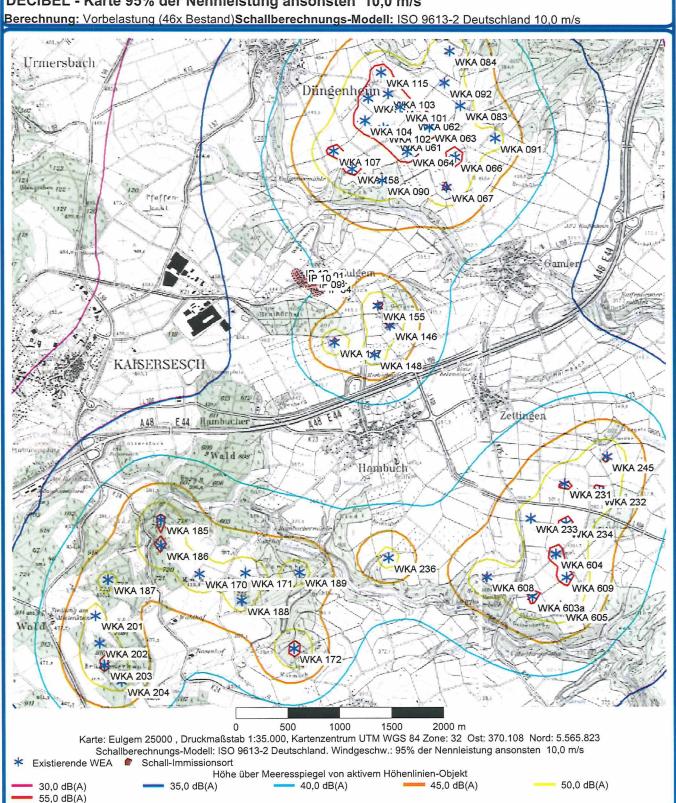
Johannes Waterkamp / jw@solvent.de

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung (46x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzung von der vorigen Seit WEA													
8			95% der Ne										
Nr. Abstand Schallweg	Mittlere Höhe S	Sichthar	Barachnet	ennieistui	ng Finnal täna	D-	۸ سا:، ،	A - 4	۸	A t			
	[m]	Jiciilbai	[dB(A)]	[dB(A)]	[dB]	Dc [dB]	Adiv [dB]	Aatm [dB]			Amisc	A A	Cmet
WKA 084 2.627 2.628	52,1	Ja	17,90	103,4	լսեյ	3.01	79,39		[dB] 4,12	[dB] 0,00	[dB] 0,00	[dB] 88.51	[dB]
WKA 090 1.227 1.229	69,2	Ja	28,42	103,4		3,01	72,79		2,86	0,00	0,00	77,99	0,00 0,00
WKA 091 2.326 2.327	62,5	Ja	16,57	100,2		3,01	78,34		3,88	0,00	0.00	86,64	0,00
WKA 092 2.344 2.345	63,5	Ja	16,48	100,2		3,01	78,40		3,87	0.00	0,00	86,73	0,00
WKA 101 1.908 1.909	53,7	Ja	19,53	100,6		3,01	76,62	3,63		0,00	0.00	84.08	0,00
WKA 102 1.647 1.648	53,9	Ja	21,47	100,6		3,01	75.34		3,68	0.00		82,14	0,00
WKA 103 1.961 1.963	64,0	Ja	22,74	104,0		3.01	76,86	3,73		0,00		84.27	0,00
WKA 104 1.631 1.633	65,6	Ja	25,23	104,0		3,01	75,26		3,42	0,00		81,78	0,00
WKA 107 1.246 1.248	68,6	Ja	28,20	103,4		3,01	72,93		2,91	0,00		78,20	0,00
WKA 115 2.126 2.128	59,2	Ja	21,36	103,8		3,01	77,56	4,04		0,00		85.45	0,00
WKA 117 1.845 1.847	59,3	Ja	20,87	101,4		3,01	76,33	3,51		0,00	0,00	83,53	0,00
WKA 146 1.025 1.028	34,4	Ja	27,57	101,4		3,01	71,24	1,95	3,64	0,00	0,00	76,84	0,00
WKA 147 757 760	18,1	Ja	29,17	100,2		3,01	68,62	1,44	3,97	0,00	0,00	74,03	0,00
WKA 148 1.086 1.088	30,3	Ja	25,56	100,2		3,01	71,74	2,07	3,84	0,00	0,00	77,64	0,00
WKA 155 840 844	40,7	Ja	30,15	101,4		3,01	69,52	1,60	3,12	0,00	0,00	74,25	0,00
WKA 158 1.155 1.157	64,1	Ja	29,05	103,4		3,01	72,27	2,20		0,00	0,00	77,36	0,00
WKA 170 3.058 3.060	56,4	Nein	14,68	103,0		3,01	80,71	5,81	4,80	0,00		91,33	0,00
WKA 171 2.941 2.943	62,2	Nein	15,24	103,0		3,01	80,37	5,59		0,00		90,77	0,00
WKA 172 3.636 3.638	61,4	Nein	13,28	104,2		3,01	82,22	6,91		0,00		93,93	0,00
WKA 185 2.719 2.721	38,2	Nein	17,15	103,8		3,01	79,69	5,17		0,00		89,66	0,00
WKA 186 2.941 2.943 WKA 187 3.477 3.479	42,9	Nein	16,04	103,8		3,01	80,38		4,80	0,00		90,77	0,00
WKA 187 3.477 3.479 WKA 188 3.207 3.209	64,7	Nein	9,97	100,2			81,83	6,61		0,00		93,24	0,00
WKA 189 2.894 2.896	59,2	Nein	11,19	100,2		3,01	81,13	6,10		0,00		92,02	0,00
WKA 201 3.833 3.836	64,9 61,9	Nein	15,87	103,4	Ü	3,01	80,24	5,50		0,00		90,54	0,00
WKA 201 3.833 3.836 WKA 202 4.052 4.055	65,4	Nein Nein	6,94	98,7		3,01	82,68		4,80	0,00		94,77	0,00
WKA 203 4.221 4.224	69,7	Nein	9,15 10,47	101,8		3,01	83,16		4,80	0,00		95,66	0,00
WKA 204 4.295 4.298	70,1	Nein	5,08	103,8 98,7		3,01	83,52 83,67	8,03		0,00		96,34	0,00
WKA 231 3.285 3.286	46,4	Nein	14,24	103,6		3,01		8,17 6,24		0,00		96,63 92,37	0,00 0,00
WKA 232 3.592 3.593	52,5	Nein	12,87	103,6		3.01	82,11	6,83		0.00		93,74	0,00
WKA 233 3.270 3.271	42,5	Nein	11,90	101,2		3,01	81,29		4,80	0,00		92,31	0,00
WKA 234 3.545 3.546	47,4	Nein	13,08	103,6		3,01		6,74		0,00		93,53	0,00
WKA 236 2.894 2.895	40,3	Nein	13,67	101,2			80,23	5,50		0.00		90.54	0,00
WKA 245 3.474 3.475	45,7	Nein	13,39	103,6		3,01	81,82	6,60		0,00		93.22	0,00
WKA 603a 3.864 3.865	43,1	Nein	11,82	103,7		3,01			4,80	0,00		94,89	0,00
WKA 604 3.690 3.691	45,3	Nein	12,55	103,7			82,34		4,80	0,00		94,16	0,00
WKA 605 4.102 4.103	47,8	Nein	9,15	102,0		3,01	83,26	7.80		0,00		95.86	0,00
WKA 608 3.466 3.467	41,0	Nein	13,52	103,7		3,01	81,80		4,80	0,00		93.19	0,00
WKA 609 3.927 3.928	43,9	Nein	11,56	103,7			82,88	7,46		0,00	,	95,15	0,00

Beschreibung: 068-10-0245-03.04 Eulgem


27.04.2012 09:29 / 14

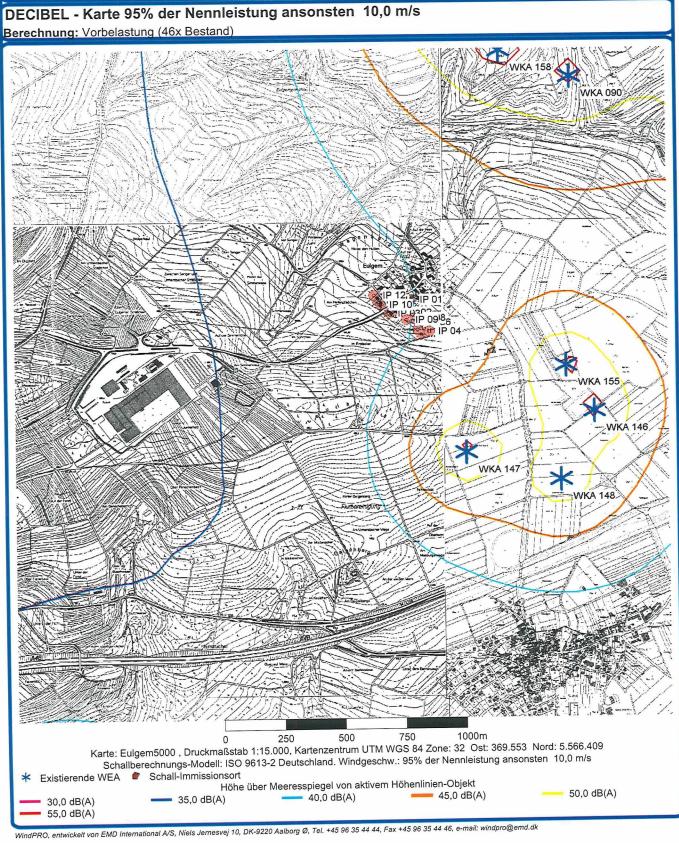
SOLvent GmbH Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

DECIBEL - Karte 95% der Nennleistung ansonsten 10,0 m/s

068-10-0245-03.04 Eulgem


27.04.2012 09:22 / 1

SOLvent GmbH

Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:36/2.7.490

Beschreibung: 068-10-0245-03.04

27.04.2012 09:17 / 2

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

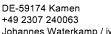
DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)

	tsetzung von der vorigen Seite							
Scha	III-Immissionsort	UTM WG	S84 Zone: 3	32		Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	
	IP 06 in den Hägen 16, Eulgem	369.891	5.566.714	434,9	5,0	45,0	41,1	Ja
	IP 07 In den Hägen 17, Eulgem	369.884	5.566.685	438,3	5,0	45,0	41,2	Ja
	IP 08 In den Hägen 18, Eulgem	369.870	5.566.734	433,8	5,0	45,0	40,9	Ja
	IP 09 In den Hägen 21, Eulgem	369.839	5.566.727	435,5	5,0	45,0	40,8	Ja
	IP 10 Sängerweg 1, Eulgem	369.736	5.566.794	434,1	5,0	45,0	40,3	Ja
	IP 11 Sängerweg 3, Eulgem	369.722	5.566.814	433,3	5,0	45,0	40,2	Ja
	IP 12 Sängerweg 5, Eulgem	369.710	5.566.836	431,9	5,0	45,0	40,1	Ja

Abstände (m)

WEA	IP 02	IP 01	IP 04	IP 05	IP 07	IP 06	IP 08	IP 09	IP 10	IP 11	IP 12	IP 03
WKA 02	589	660	620	587	588	611	609	582	568	577	590	557
WKA 061	1642	1572	1657	1682	1671	1643	1636	1657	1657	1649	1638	1669
WKA 062	1902	1831	1913	1938	1928	1900	1894	1916	1919	1911	1901	1930
WKA 063	1905	1834	1902	1929	1922	1894	1891	1915	1931	1925	1917	1937
WKA 064	1586	1515	1585	1612	1604	1577	1573	1597	1610	1605	1597	1617
WKA 066	1870	1800	1838	1869	1866	1842	1845	1872	1911	1911	1908	1908
WKA 067	1621	1552	1575	1607	1607	1584	1590	1619	1670	1672	1672	1662
WKA 083	2257	2186	2246	2275	2269	2242	2241	2266	2286	2282	2275	2291
WKA 084	2631	2561	2642	2668	2658	2630	2624	2645	2646	2638	2627	2659
WKA 090	1216	1146	1220	1247	1237	1210	1205	1228	1240	1235	1227	1248
WKA 091	2283	2214	2243	2275	2274	2250	2255	2283	2328	2328	2326	2323
WKA 092	2340	2270	2345	2372	2363	2335	2330	2353	2360	2353	2344	2370
WKA 101	1919	1850	1941	1965	1953	1924	1916	1936	1929	1920	1908	1944
WKA 102	1660	1592	1687	1710	1697	1668	1659	1678	1669	1659	1647	1685
WKA 103	1983	1916	2016	2038	2025	1995	1985	2003	1986	1975	1961	2005
WKA 104	1660	1594	1703	1722	1707	1678	1666	1682	1658	1646	1631	1679
WKA 107	1292	1231	1355	1370	1352	1323	1306	1319	1278	1263	1246	1305
WKA 115	2157	2091	2199	2219	2204	2175	2163	2179	2154	2142	2126	2176
WKA 117	1877	1812	1923	1942	1927	1897	1884	1900	1873	1860	1845	1896
WKA 146	897	883	753	777	800	808	836	859	982	1004	1025	936
WKA 147	644	677	527	526	550	575	600	604	708	732	757	660
WKA 148	959	970	819	832	857	875	904	918	1037	1061	1086	988
WKA 155	715	691	577	605	625	627	654	680	800	821	840	758
WKA 158	1178	1111	1218	1238	1223	1194	1182	1199	1180	1169	1155	1199
WKA 170	3024	3090	2992	2969	2981	3011	3021	3003	3028	3042	3058	3004
WKA 171	2889	2951	2838	2818	2834	2864	2877	2863	2905	2922	2941	2876
WKA 172	3565	3621	3491	3477	3496	3525	3543	3534	3595	3615	3636	3560
WKA 185	2709	2780	2706	2678	2686	2714	2718	2695	2696	2706	2719	2682
WKA 186	2926	2995	2916	2889	2898	2926	2932	2910	2916	2927	2941	2900
WKA 187	3472	3543	3474	3445	3453	3480	3483	3460	3456	3465	3477	3443
WKA 188	3155	3217	3102	3083	3099	3129	3142	3128	3171	3188	3207	3142
WKA 189	2822	2877	2747	2733	2752	2781	2799	2790	2853	2872	2894	
WKA 201	3826	3896	3824	3796	3804	3831	3835	3813	3812	3821	3833	3798
WKA 202	4039	4109	4030	4003	4012	4040	4046	4024	4028	4039	4052	4013
WKA 203	4204	4273	4190	4164	4174	4202					4221	4179
WKA 204	4271	4340	4250	4225	4236	4265	4273	4253	4268		4295	
WKA 231	3155	3153	3011	3029	3054	3067	3096	3115			3285	
WKA 232	3463	3457	3318	3338	3362	3374	3403	3423	3546	3569		
WKA 233	3143	3151	3002	3016	3041	3058	3087	3102		3245		
WKA 234	3417	3421	3275	3290	3316	3331	3360	3377	3497	3521	3545	3449
WKA 236	2793	2832	2683	2680	2704	2730	2754	2755	2847	2870	2894	2802
WKA 245	3345	3332	3201	3223	3246	3256	3284	3306	3429	3452	3474	3383
WKA 603a	3742	3760	3608	3616	3642	3662	3690			3839		
WKA 604	3564	3573	3424	3437	3462	3480	3509	3523	3642	3666	3690	3593
WKA 605	3979			3852	3878	3897	3925	3938	4053	4077	4102	
WKA 608	3348	3370	3217	3224	3249	3271	3298	3307	3417	3441	3466	3369
WKA 609	3801	3812	3662	3674	3700	3717	3746	3760	3878	3902	3927	3829


068-10-0245-03.04

27.04.2012 09:17 / 3

SOLvent GmbH Lünener Straße 211

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Agr: Abar:

Dämpfung aufgrund von Abschirmung Dämpfung aufgrund verschiedener anderer Effekte

Amisc: Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP 01 Hauptstraße 15, Eulgem 95% der Nennleistung

WEA					95% der Ne										
Nr.		•	Mittlere Höhe	Sichtbar					Adiv	Aatm			Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	660	669	31,2		32,45	101,4			67,50		3,17			71,95	0,00
WKA 061	1.572	1.573	51,8	Ja	22,02	100,6			74,93			0,00		81,59	0,00
WKA 062	1.831	1.833	52,4	Ja	20,05	100,6			76,26		3,82			83,56	0,00
WKA 063	1.834	1.836	61,2	Ja	23,59	104,0			76,28		3,66	0,00		83,42	0,00
WKA 064	1.515	1.516	59,0	Ja	26,05	104,0			74,62		3,46			80,96	0,00
WKA 066	1.800	1.801	60,1	Ja	23,12	103,3			76,11		3,65		,	83,19	0,00
WKA 067	1.552	1.554		Ja	25,19	103,3			74,83		3,33			81,12	0,00
WKA 083	2.186	2.188	62,2		17,43	100,2		-	77,80		3,82			85,78	0,00
WKA 084	2.561	2.562		Ja	18,26	103,4			79,17		4,11	0,00		88,15	0,00
WKA 090	1.146				29,25	103,4			72,20		2,78	0,00		77,16	0,00
WKA 091	2.214	2.215				100,2			77,91	4,21				85,98	0,00
WKA 092		2.271	62,2	Ja	16,91	100,2		,	78,13		3,86			86,30	0,00
WKA 101	1.850		53,1	Ja	19,93	100,6		3,01	76,35		3,82			83,68	0,00
WKA 102					21,89	100,6		3,01			3,65			81,72	0,00
WKA 103	1.916	1.918		Ja	23,04	104,0			76,66		3,67		,	83,97	0,00
WKA 104	1.594	1.596		Ja	25,51	104,0			75,06		3,41			81,50	0,00
WKA 107		1.233		Ja	28,34	103,4			72,82		2,91			78,07	0,00
WKA 115	2.091	2.093		Ja	21,57	103,8			77,42				,	85,24	0,00
WKA 117					,	101,4		,	76,17		3,70			83,32	
WKA 146					•	101,4		3,01			3,49			75,13	
WKA 147				Ja		100,2		3,00	67,67					72,82	
WKA 148				Ja		100,2		3,01	,		3,69			76,30	0,00
WKA 155		696	·			101,4		3,00	67,85		2,81			71,98	00,0
WKA 158		1.113	, .	Ja		103,4			71,93		2,82			76,87	
WKA 170	3.090				,	103,0			80,81		4,80			91,48	0,00
WKA 171	2.951	2.953			15,19	103,0			80,41		4,80			90,82	
WKA 172		3.623			•	104,2			82,18		4,80			93,86	0,00
WKA 185			•		•	103,8			79,88		4,80			89,97	
WKA 186			_,			103,8			80,53		4,80			91,03	0,00
WKA 187						100,2			81,99		4,80			93,53	0,00
WKA 188					• •	100,2			81,15		4,80			92,07	
WKA 189						103,4	0		80,19		4,80			90,46	0,00
WKA 201	3.896				•	98,7			82,82		4,80			95,03	0,00
WKA 202					•	101,8			83,28		4,80			95,89	0,00
WKA 203		. –			-	103,8			83,62		4,80			96,55	
WKA 204			•		,	98,7		,	83,76		4,80			96,81	0,00
WKA 231	3.153					103,6			80,98		4,80			91,77	
WKA 232						103,6			81,78		4,80			93,15	
WKA 233		3.152			•	101,2			80,97		4,80			91,76	
WKA 234		3.422	,			103,6		,	81,69		4,80			92,99	0,00
WKA 236	2.832	2.833	40,8	Nein	13,98	101,2		3,01	80,05	5,38	4,80	0,00	0,00	90,23	0,00
I															

Eulgem

Summe

40,64

068-10-0245-03.04

27.04.2012 09:17 / 4 Lizenzierter Anwender

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	g von der	vorigen Seit	е	State for the control of the following	endergraph out the control of the specific	oka sa Sanda Salah Salah - Alban Salah	na stanon Nytanania Metrina dia mandri da	in a displacement in the	ad abruing grapes on	Control of Windows	ning in the second	land (spirite de protest		neski pre meseki	Populari disebanyana ya s
WEA	-	•			95% der Ne	ennleistu	ng								
Nr.			Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
14864 045	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 245	3.332	3.333	46,4	Nein	14,02	103,6		3,01	81,46	6,33	4,80	0,00	0,00		0,00
WKA 603a WKA 604	3.760	3.761	43,7	Nein	12,26	103,7			82,51		4,80	0,00	•	94,45	0,00
WKA 605	3.573 3.993	3.574 3.994	46,0	Nein	13,05	103,7			82,06	6,79	4,80	0,00		93,66	00,0
WKA 608	3.370	3.371	48,0 41,8	Nein Nein	9,59 13,95	102,0 103,7			83,03		4,80	0,00		95,42	00,0
WKA 609	3.812	3.813	44,3	Nein	12,04	103,7			81,56 82,62		4,80 4,80	0,00		92,76 94,67	0,00 0,00
Summe	40,64		.,,,	, , , , , ,	,.	, 50,,		0,01	02,02	7,24	4,00	0,00	0,00	54,67	0,00
Schall-Im	missior	sort: IP (2 Hauptstra	aße 23, I	Eulgem										
WEA			•		95% der Ne	ennleistur	ng								
Nr.		Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
14074	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	589	597	31,3	Ja	33,78	101,4		3,00	66,52		2,97	0,00		70,63	0,00
WKA 061 WKA 062	1.642	1.643	53,9	Ja	21,50	100,6		3,01	75,31		3,67	0,00		82,10	0,00
WKA 062	1.902 1.905	1.903 1.907	54,7	Ja	19,59	100,6		3,01	76,59		3,81	0,00		84,02	0,00
WKA 063	1.586	1.587	63,3 60,9	Ja Ja	23,12 25,50	104,0		3,01	76,61		3,66	0,00		83,89	0,00
WKA 066	1.870	1.871	62,0	Ja Ja	23,50 22,65	104,0 103,3		3,01	75,01 76,44		3,48 3,66	0,00		81,51 83,66	0,00 0,00
WKA 067	1.621	1.623	67,7	Ja	24,66	103,3		3,01	75,20		3,37	0,00		81,65	0,00
WKA 083	2.257	2.259	64,5	Ja	17,02	100,3			78,08		3,82	0,00		86,19	0,00
WKA 084	2.631	2.632	54,0	Ja	17,91	103,4		3,01			4,10	0,00		88,50	0,00
WKA 090	1.216	1.219	68,7	Ja	28,52	103,4			72,72		2,86	0,00		77,89	0,00
WKA 091	2.283	2.284	62,7	Ja	16,83	100,2		3,01	78,18	4,34	3,86	0,00	0,00	86,38	0,00
WKA 092	2.340	2.342	64,6	Ja	16,51	100,2		3,01	78,39	4,45	3,86	00,0	0,00	86,70	0,00
WKA 101	1.919	1.920	55,4	Ja	19,49	100,6		3,01		3,65		0,00		84,12	0,00
WKA 102 WKA 103	1.660	1.661	55,5	Ja	21,39	100,6			75,41		3,65	0,00		82,22	0,00
WKA 103	1.983 1.660	1.985 1.662	65,6	Ja	22,62	104,0		3,01			3,67	0,00		84,39	0,00
WKA 104	1.292	1.294	66,7 69,4	Ja	25,02 27,76	104,0			75,41		3,42	0,00		81,99	0,00
WKA 115	2.157	2.159	60,5	Ja Ja	21,19	103,4 103,8		3,01 3,01	73,24 77,68		2,95	0,00		78,65 85,62	0,00
WKA 117	1.877	1.879	60,3	Ja	20,66	101,4		3,01			3,84 3,70	0,00		83,75	0,00 0,00
WKA 146	897	900	34,0	Ja	29,13	101,4			70,08	1,71	3,49	0,00		75,28	0,00
WKA 147	644	647	18,0	Ja	30,92	100,2			67,22		3,83	0,00		72,28	0,00
WKA 148	959	962	31,3	Ja	27,04	100,2			70,66		3,67	0,00		76,16	0,00
WKA 155	715	719	39,8	Ja	32,04	101,4		3,00	68,13	1,37	2,87	0,00		72,37	0,00
WKA 158	1.178	1.180	65,3	Ja	28,84	103,4		3,01	72,44	2,24	2,89	0,00	0,00	77,57	0,00
WKA 170	3.024	3.026	59,9	Nein	14,85	103,0		3,01	80,62	5,75	4,80	0,00	0,00	91,16	0,00
WKA 171	2.889	2.891	63,6	Nein	15,50	103,0		3,01	80,22		4,80	0,00		90,51	0,00
WKA 172	3.565	3.567	63,9	Nein	13,59	104,2			82,05	6,78		0,00		93,62	0,00
WKA 185 WKA 186	2.709 2.926	2.711 2.927	39,6	Nein	17,20	103,8			79,66		4,80	0,00	-	89,61	0,00
WKA 180	3.472	3.475	45,2 64,9	Nein Nein	16,12 9,99	103,8 100,2			80,33	5,56		0,00		90,69	0,00
WKA 188	3.155	3.156	60,6	Nein	9,99 11,43	100,2		3,01	81,82 80,98	6,60 6,00		0,00		93,22 91,78	0,00 0,00
WKA 189	2.822	2.824	67,4	Nein	16,23	100,2	0		80,02	5,36		0,00		90.18	0,00
WKA 201	3.826	3.829	62,5	Nein	6,97	98,7	U		82,66	7,27		0,00		94,74	0,00
WKA 202	4.039	4.042	67,3	Nein	9,20	101,8			83,13	7,68		0,00		95,61	0,00
WKA 203	4.204	4.207	72,5	Nein	10,54	103,8			83,48	7,99		0,00		96,27	0,00
WKA 204	4.271	4.274	73,5	Nein	5,17	98,7			83,62	8,12	4,80	0,00		96,54	0,00
WKA 231	3.155	3.156	49,0	Nein	14,83	103,6			80,98	6,00		0,00	0,00	91,78	0,00
WKA 232	3.463	3.464	55,2	Nein	13,44	103,6			81,79	6,58		0,00		93,17	0,00
WKA 233	3.143	3.144	45,3	Nein	12,49	101,2			80,95	5,97		0,00		91,72	0,00
WKA 234 WKA 236	3.417	3.418	50,2	Nein	13,64	103,6			81,68	6,49		0,00		92,97	0,00
WKA 236 WKA 245	2.793	2.794	43,3	Nein	14,18	101,2			79,92	5,31		0,00		90,03	0,00
WKA 245 WKA 603a	3.345 3.742	3.345	48,2	Nein	13,96	103,6			81,49	6,36		0,00		92,65	0,00
WKA 603a WKA 604	3.742	3.743 3.565	46,2 48.2	Nein	12,33	103,7			82,47	7,11		0,00		94,38	0.00
WKA 604	3.979	3.980	48,2 50,7	Nein Nein	13,09 9,65	103,7 102,0			82,04	6,77		0,00		93,62	0,00
WKA 608	3.348	3.349	44,0	Nein	9,65 14,05	102,0			83,00	7,56 6.36		0,00		95,36	0,00
WKA 609	3.801	3.802	46,8	Nein	12,08	103,7			81,50 82,60	6,36 7,22		0,00		92,66 94,63	0,00
		J.002	+0,0	. 10///	. 2,00	100,7		5,01	52,00	1,22	→ ,00	0,00	0,00	34,03	0,00

Projekt:

Beschreibung:

Eulgem 068-10-0245-03.04

Ausdruck/Seite 27.04.2012 09:17 / 5

izenzierter Anwender:

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063 Johannes Waterkamp / jw@solvent.de Berechnet:

25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Im	missior	sort: IP (3 Hauptstra	aße 25, I	Eulgem	<u></u>									1
WEA					95% der No	ennleistur	ıg								Ī
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm			Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	557	565	32,0	Ja	34,46	101,4			66,05	1,07		0,00		69,94	0,00
WKA 061	1.669	1.670	54,5	Ja	21,30	100,6		3,01	75,46		3,68	0,00		82,31	0,00
WKA 062	1.930	1.931	55,4	Ja	19,41	100,6		3,01	76,72		3,82	0,00		84,20	0,00
WKA 063	1,937	1.939	63,9	Ja	22,91	104,0		3,01	76,75		3,67	0,00		84,10	0,00
WKA 064	1.617	1.619	61,5	Ja	25,26	104,0		3,01	75,18		3,49	0,00		81,75	0,00
WKA 066	1.908	1.910	62,5	Ja	22,39	103,3			76,62		3,68	0,00		83,92	0,00
WKA 067	1.662	1.663	68,3	Ja	24,34	103,3			75,42		3,39	0,00		81,97	0,00
WKA 083	2.291	2.292	65,1	Ja	16,82	100,2		3,01	78,21		3,83		,	86,39	0,00
WKA 084	2.659	2.660	54,5	Ja	17,76	103,4		3,01	79,50		4,10	0,00		88,65	0,00
WKA 090	1.248	1.250	69,3	Ja	28,21	103,4		3,01	72,94		2,89			78,20	0,00
WKA 091	2.323	2.324	63,4	Ja	16,60	100,2			78,32		3,86			86,60	0,00
WKA 092	2.370	2.372	65,2	Ja	16,34	100,2			78,50	4,51				86,87	0,00
WKA 101	1.944	1.946	55,9	Ja	19,32	100,6		3,01	76,78		3,81			84,29	0,00
WKA 102	1.685	1.686	55,9	Ja	21,21	100,6		3,01	75,54	3,20	3,66			82,40	0,00
WKA 103	2.005	2.007	66,0	Ja	22,47	104,0			77,05	3,81				84,54	0,00
WKA 104	1.679	1.681	67,1	Ja	24,87	104,0			75,51		3,43		•	82,14	0,00
WKA 107	1.305	1.307	69,7	Ja		103,4			73,33		2,96			78,78	0,00
WKA 115	2.176	2.178	61,0	Ja	21,07	103,8			77,76		3,84				0,00
WKA 117	1.896	1.898	60,8	Ja		101,4		3,01	76,56	3,61				83,87	0,00
WKA 146	936	939	34,2	Ja	28,63	101,4			70,45	1,78					
WKA 147	660	664	18,0	Ja		100,2			67,44		3,86		,	72,56	
WKA 148	988	991				100,2			70,92						
WKA 155	758	761	40,1	Ja		101,4			68,63		2,97				
WKA 158	1.199					103,4		3,01							
WKA 170	3.004					103,0		3,01							
WKA 171	2.876	2.877	64,7	' Nein		103,0		3,01	80,18		4,80		-,		
WKA 172	3.560	3.561			-	104,2		3,01	82,03		4,80				
WKA 185					•	103,8		3,01			4,80			89,47	
WKA 186					•	103,8		3,01			4,80			90,57	
WKA 187					•	100,2		,	81,75		4,80				
WKA 188	3.142				•	100,2		3,01	80,95		4,80			91,72	
WKA 189						103,4		0 3,01	80,00		4,80			90,16	
WKA 201					,	98,7		3,01			4,80			94,62	
WKA 202					•	101,8		3,01			4,80			95,50	
WKA 20:					•	103,8		3,01			4,80				
WKA 204					•	98,7		3,01			4,80			91,94	
WKA 23					•	103,6		3,01			4,80			93,33	
WKA 23:			-			103,6			81,88		4,80			91,86	
WKA 23:			-		•	101,2		,	81,03		4,80			93,11	
WKA 23					•	103,6			81,76		4,80				
WKA 23						101,2			79,95		4,80			92,82	
WKA 24					•	103,6		3,01			4,80			94,48	
WKA 603					•	103,7		3,01			4,80			94,48	
WKA 60			•		•	103,7		•	82,11		4,80				
WKA 60						102,0			83,05		4,80		•	95,46	
WKA 60						103,7		3,01						92,7	
WKA 60	9 3.829	3.830	0 46,8	B Neir	n 11,97	103,7	,	3,01	82,66) /,28	3 4,80	0,00	J 0,00	94,74	+ 0,00
	10.51														

Summe 40,54

Schall-Immissionsort: IP 04 In den Hägen 13, Eulgem

WEA					95% der Ne	ennleistu	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	620	628	29.0	Ja	33,07	101,4		3,00	66,96	1,19	3,18	0,00	0,00	71,33	0,00
WKA 061	1.657	1.658	54.5	Ja	21,40	100,6		3,01	75,39	3,15	3,67	0,00	0,00	82,21	0,00
WKA 062	1.913	1.914	55,6	Ja	19,53	100,6		3,01	76,64	3,64	3,80	0,00	0,00	84,08	0,00
WKA 063	1,902	1.903	64.1	Ja	23,16	104,0		3,01	76,59	3,62	3,64	0,00	0,00	83,85	0,00
WKA 064			61,4	Ja	25,52	104,0		3,01	75,01	3,01	3,47	0,00	0,00	81,49	0,00
WKA 066			63,2		22,91	103,3		3,01	76,29	3,49	3,62	0,00	0,00	83,40	0,00

068-10-0245-03.04 Eulgem

27.04.2012 09:17 / 6

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortset	zung von d	ier v	vorigen Seit	e												
WEA						95% der Ne			_	A	A = 4 ::	۸	Λ I	- « ا	٨	Cmat
Nr.				Mittlere Höhe	Sichtbar				Dc	Adiv		_		Amisc	رطاعا A	Cmet
	[m]		[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA			1.576	68,1	Ja	25,05	103,3			74,95	2,99		0,00		81,26	0,00
WKA (2.247		Ja	17,11	100,2			78,03	4,27		0,00		86,10 88,54	0,00 0,00
WKA			2.643	55,7		17,87	103,4		3,01	79,44	5,02		0,00			
WKA			1.222		Ja	28,47	103,4		3,01	72,74	2,32		0,00		77,93 86,12	00,00 00,0
WKA (2.244	63,3	Ja		100,2		3,01	78,02		3,83	0,00	0,00	86,70	0,00
WKA			2.346		Ja		100,2		3,01	78,41		3,84	0,00		84,25	0,00
WKA			1.942				100,6		3,01	76,76		3,80	0,00		82,40	0,00
WKA		87	1.688				100,6		3,01	75,55 77,10		3,65 3,66	0,00		84,59	0,00
WKA '		16	2.018				104,0		3,01	75,63		3,42			82,29	0,00
WKA		703	1.704		Ja		104,0		3,01	73,65		3,42	0.00		79,23	0,00
WKA		355	1.357				103,4		3,01	77,85		3,83			85,86	
WKA		199	2.201				103,8 101,4		3,01	76,68		3,69			84,03	
WKA		923	1.924			,	101,4		3,00	68,57		3,22	0,00		73,23	
WKA		753	756				100,2		3.00			3,51	0,00		70,02	
WKA		527	531 822			•	100,2		3.00			3,37		0,00		
WKA		319					100,2		3,00			2,43		0,00	69,82	
WKA		577	581 1.220			•	101,4		3,00			2,92				
WKA		218 992	2.994			•	103,4		3,01	80,52		4,80				•
WKA WKA		338 338	2.839	•			103,0		3,01	80,06		4,80		0.00		
WKA		491	3.492				103,0		3,01	•		4,80				
WKA		706	2.708				103,8		3,01	79,65		4,80				
WKA		916	2.700				103,8		3,01	80,30		4,80			,	
WKA		474	3.476	· ·			100,2		3,01			4,80		0,00	93,23	0,00
WKA		102	3.104				100,2		3,01	80,84		4,80		0,00	91,53	0,00
WKA		747	2.748				103,4		3,01			4,80		0,00	89,80	0,00
WKA		824	3.826			•	98,7		3,01	82,66	7,27	4,80	0,00	0,00	94,72	0,00
WKA		030	4.033				101,8		3,01		7,66	4,80		0,00		
WKA		190	4.193			•	103,8		3,01	83,45		4,80				
WKA		250	4.253			-	98,7		3,01	83,57		4,80				,
WKA		011	3.012				103,6		3,01			4,80			91,10	
WKA		318	3.319		Nein Nein	14,08	103,6	;	3,01	81,42		4,80			92,53	
WKA		002	3.003	3 49,3	Nein	13,15	101,2	?	3,01	80,55		4,80				
WKA		275	3.276	54,1	l Nein	14,28	103,6	5	3,01			4,80			92,33	
WKA	236 2.	683	2.684	47,8	8 Nein	14,73	101,2			79,58		4,80			89,48	
WKA	245 3	201	3.202	52,0) Nein	14,62	103,6	3	3,01	81,11		4,80				
WKA 6		608	3.609	50,5	5 Nein	12,91	103,7		3,01			4,80				•
WKA	604 3.	424	3.425	5 52,2	2 Nein	13,71	103,7		3,01			4,80				
WKA	605 3.	842	3.843	54,7	7 Nein	10,22	102,0)	3,01	82,69		4,80				
WKA	608 3.	217	3.218	3 48,5	5 Nein	14,64	103,7	7	3,01							
WKA	609 3.	662	3.663	50,8	3 Nein	12,67	103,7	7	3,01	82,28	6,96	4,80	0,00	0,00	94,04	0,00

Summe 41,46

Schall-Immissionsort: IP 05 In den Hägen 15, Eulgem

≣WEA					95% der Ne	ennieistui	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr		Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	587	595	29,4	Ja	33,71	101,4		3,00	66,49	1,13	3,07	0,00	0,00	70,69	0,00
WKA 061	1.682	1.683	55,3	Ja	21,22	100,6		3,01	75,52	3,20	3,67	0,00	0,00	82,39	0,00
WKA 062	1.938	1.939	56,4	Ja	19,37	100,6		3,01	76,75	3,68	3,80	0,00	0,00	84,24	0,00
WKA 063	1,929	1.931	64,9	Ja	22,98	104,0		3,01	76,71	3,67	3,65	0,00	0,00	84,03	0,00
WKA 064	1.612	1.614	62,1	Ja	25,31	104,0		3,01	75,16	3,07	3,48	0,00	0,00	81,70	0,00
WKA 066	1.869	1.870	63,8	Ja	22,69	103,3		3,01	76,44	3,55	3,63	0,00	0,00	83,62	0,00
WKA 067	1.607	1.609	68,6	Ja	24,79	103,3		3,01	75,13	3,06	3,33	0,00	0,00	81,52	0,00
WKA 083	2.275	2.276	66.4	Ja	16,94	100,2		3,01	78,14	4,32	3,80	0,00	0,00	86,27	0,00
WKA 084	2.668	2.669	56,5	Ja	17,74	103,4		3,01	79,53	5,07	4,08	0,00	0,00	88,67	0,00
WKA 090	1.247	1.249	69,2	Ja	28,22	103,4		3,01	72,93	2,37	2,89	0,00	0,00	78,19	0,00
WKA 091	2.275	2.276	64,1	Ja	16,91	100,2		3,01	78,14	4,32	3,84	0,00	0,00	86,30	0,00
WKA 092	2.372	2.373	66,8	Ja	16,36	100,2		3,01	78,51	4,51	3,84	0,00	0,00	86,85	0,00
8			•												

Beschreibung: 068-10-0245-03.04

Ausdruck/Seite 27.04.2012 09:17 / 7

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063 Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

B	tzung	g von der	vorigen Seit	'e												
WEA						95% der Ne			_							^
Nr.			_	Mittlere Höhe	Sichtbar				Dc	Adiv	Aatm	-		Amisc	A	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA		1.965	1.965	57,3	Ja	19,21	100,6		3,01	76,87	3,73	3,80	0,00	0,00	84,40	0,00
WKA		1.710	1.711	57,2	Ja	21,05	100,6		3,01	75,66	3,25		0,00		82,56	00,0
WKA		2.038	2.040	68,1	Ja	22,29	104,0		3,01	77,19	3,88	3,65	0,00	0,00	84,72	0,00
WKA		1.722	1.724	69,1	Ja		104,0		3,01	75,73	3,28	3,42	0,00	0,00	82,43	0,00
WKA		1.370	1.372		Ja		103,4		3,01	73,75	2,61	,	0,00		79,37	0,00
WKA		2.219	2.221	63,3	Ja	•	103,8		3,01	77,93		3,82	0,00		85,97	0,00
WKA		1.942	1.943	62,9	Ja	•	101,4		3,01	76,77	3,69	3,69	0,00		84,15	0,00
WKA		777	780		Ja		101,4		3,01	68,84	1,48	3,26	0,00		73,58	0,00
WKA		526	529	19,2	Ja	•	100,2		3,00	65,47		3,52	0,00		70,00	0,00
WKA		832	834	33,7	Ja	,	100,2		3,01	69,43		3,40	0,00		74,41	0,00
WKA		605	609	39,6	Ja	•	101,4		3,00	66,70		2,52			70,38	0,00
WKA		1.238	1.240		Ja		103,4		3,01	72,87		2,94			78,16	0,00
WKA		2.969	2.970		Nein	•	103,0		3,01	80,46		4,80	0,00		90,90	0,00
WKA		2.818	2.820		Nein		103,0		3,01	80,00		4,80	0,00		90,16	0,00
WKA		3.477	3.478		Nein		104,2		3,01	81,83		4,80	0,00		93,24	0,00
WKA		2.678	2.680				103,8		3,01	79,56		4,80	0,00		89,45	0,00
WKA		2.889	2.890	•		•	103,8		3,01	80,22	5,49		0,00		90,51	0,00
WKA		3.445	3.448				100,2		3,01	81,75		4,80		,	93,10	0,00
WKA		3.083	3.084				100,2		3,01	80,78			0,00		91,44	0,00
WKA		2.733	2.735			•	103,4		-,-	79,74	5,20	4,80	0,00	0,00		0,00
WKA		3.796	3.798	•			98,7		3,01	82,59			0,00	0,00	94,61	00,0
WKA		4.003	4.006	,			101,8		3,01	83,05	7,61			,	95,47	00,0
WKA		4.164	4.167			•	103,8		3,01	83,40		4,80			96,11	0,00
WKA		4.225	4.228	,			98,7		3,01	83,52		4,80			96,36 91,19	0,00 0,00
WKA		3.029	3.030			•	103,6		3,01	80,63		4,80			91,19	0,00
WKA		3.338	3.339			•	103,6		3,01	81,47		4,80			91,12	
WKA		3.016	3.017			•	101,2		3,01	80,59	- •				92,40	
WKA		3.290	3.291			•	103,6		3,01	81,35					92,40 89,46	
WKA		2.680	2.681				101,2		3,01	79,57		4,80				
WKA		3.223	3.224				103,6		3,01	81,17		4,80		0,00		0,00
WKA		3.616	3.617	•		•	103,7		3,01	82,17		4,80		0,00		
WKA		3.437					103,7		3,01	81,73		4,80		0,00		0,00
WKA		3.852				. ,	102,0		3,01	82,72		4,80		0,00		
WKA		3.224					103,7		3,01	81,17		4,80		,		
WKA	609	3.674	3.675	51,3	Nein	12,62	103,7		3,01	82,31	6,98	4,80	0,00	0,00	94,09	0,00

Summe 41,36

Schall-Immissionsort: IP 06 In den Hägen 16, Eulgem

8															
WEA					95% der Ne	ennleistui	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	611	619	29,8	Ja	33,26	101,4		3,00	66,84	1,18	3,12	0,00	0,00	71,14	0,00
WKA 061	1.643	1.643	53,8	Ja	21,50	100,6		3,01	75,32	3,12	3,67	0,00	0,00	82,11	0,00
WKA 062	1.900	1.901	54,8	Ja	19,61	100,6		3,01	76,58	3,61	3,81	0,00	-,	,	0,00
WKA 063	1.894	1.896	63,4	Ja	23,20	104,0		3,01	76,56	3,60	,	0,00			0,00
WKA 064	1.577	1.578	60,8	Ja	25,58	104,0		3,01	74,96	3,00		0,00	0,00	81,43	0,00
WKA 066	1.842	1.843	62,3	Ja	22,86	103,3		3,01	76,31	3,50	3,64	0,00	0,00	83,45	0,00
WKA 067	1.584	1.586	67,6	Ja	24,96	103,3		3,01	75,00	3,01	3,33	0,00			0,00
WKA 083	2.242	2.243	64,6	Ja	17,12	100,2		3,01	78,02	4,26		0,00	0,00	86,09	0,00
WKA 084	2.630	2.631	54,5	Ja	17,92	103,4		3,01	79,40	5,00	4,09	0,00	0,00	88,49	0,00
WKA 090	1.210	1.212	68,2	Ja	28,58	103,4		3,01	72,67	2,30		0,00	0,00	77,83	0,00
WKA 091	2.250	2.252	62,7	Ja	17,04	100,2		3,01	78,05	4,28			0,00	,	0,00
WKA 092	2.335	2.336	64,9	Ja	16,55	100,2		3,01	78,37	4,44	,			86,66	0,00
WKA 101	1.924	1.925	55,6	Ja	19,46	100,6		3,01	76,69	3,66		0,00	0,00	84,15	0,00
WKA 102	1.668	1.669	55,7	Ja	21,34	100,6		3,01	75,45			0,00	-	82,27	0,00
WKA 103	1.995	1.997	66,3	Ja	22,54	104,0		3,01	77,01	3,79		,			0,00
WKA 104	1.678	1.680	67,4	Ja	24,89	104,0		3,01	75,50			0,00		82,12	0,00
WKA 107	1.323	1.325	69,8	Ja	27,46	103,4		3,01	73,44	2,52	2,98	0,00		78,94	0,00
WKA 115	2.175	2.176	61,3	Ja	21,09	103,8		3,01	77,75	4,14	3,83	0,00	0,00	85,72	0,00

Beschreibung:

068-10-0245-03.04

usdruck/Seite

27.04.2012 09:17 / 8

Lizenzierter Anwender

SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

Berechnet: 25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	g von der	vorigen Seit	е												
WEA					95% der Ne			D-	۸ طاند	Aatm	Agr	Abar	Amisc	Α	Cmet
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar			Einzel- töne	Dc	Adiv		[dB]	[dB]	[dB]	[dB]	[dB]
l	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB] 3.61	3,70	0,00	0,00	83.87	0.00
WKA 117	1.897	1.898	61,1	Ja	20,54	101,4		3,01	76,57	1,54	3,35	0,00	0,00	74,06	0,00
WKA 146	808	811	33,9	Ja	30,34	101,4		3,01	69,18	1,10	3,68	0,00	0.00	71.03	0,00
WKA 147	575	579	18,6	Ja	32,17	100,2		3,00	66,25 69,87		3,52		0,00	75,05	0,00
WKA 148	875	878	32,4	Ja	28,15	100,2		3,01	67.01		2,62		0,00	70.83	0.00
WKA 155	627	632	39,3	Ja	33,57	101,4		3,00	72.55		2,90	0,00	0.00	77,73	0.00
WKA 158	1.194	1.196		Ja	28,68	103,4		3,01	80,58		4,80	0.00	0.00	91.10	0,00
WKA 170	3.011	3.012		Nein	14,91	103,0		3,01 3,01	80,14		4,80	0.00	0.00	90,39	0,00
WKA 171	2.864	2.865		Nein	15,62	103,0		3.01	81.95		4,80		0,00	93,45	0,00
WKA 172					13,76	104,2		3,01	79.68	5.16		0.00	0,00	89.64	0,00
WKA 185	2.714				17,17	103,8		3.01	80.33				0.00	90,69	0,00
WKA 186					16,12	103,8		3,01	81.84	,		0,00	0.00	93.25	0,00
WKA 187	3.480				9,96	100,2		3,01	80.91	5,95			0,00		0,00
WKA 188					•	100,2		3,01	79,89						0,00
WKA 189					16,43	103,4		3,01	82,67		4,80				
WKA 201	3.831					98,7		3,01	83,13			- ,			•
WKA 202					•	101,8		3,01	83,48		,				
WKA 203						103,8		3,01	83.60				,		0,00
WKA 204					•	98,7		3,01	80.74		4,80				
WKA 231						103,6 103,6		3,01	81.57		4,80				
WKA 232					•	101,2		3.01	80,71					. ,	
WKA 233						101,2		3,01	81.45						
WKA 234					,	103,0		3,01	79,73						
WKA 236					•	103,6		3,01	81.25						
WKA 245						103,0		3,01	82,28					94,04	
WKA 603a					•	103,7		3,01	81,83					-	
WKA 604					•	103,7		3.01	82,82			,	-		
WKA 605					•	102,0		3.01	81.30		4,80		,		
WKA 608					•	103,		3.01	82,41		4,80		-,	94,27	
WKA 609	3.717	3.718	3 48,6	6 Neir	12,44	103,	'	3,01	02,7	, ,,,,,,	٠,٥٥	. 5,00	. 0,00		- 1

Summe 41,07

Schall-Immissionsort: IP 07 In den Hägen 17, Eulgem

OCHAII-IIII	111133101	15011. 11	,, ,,, ,,,,	. 9 ,											
WEA					95% der Ne		•	_			•	A I	A:	^	Cmat
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar			Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	LAD1	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	588	596	29,7	Ja	33,72	101,4		3,00	66,50	1,13		0,00	0,00	70,68	0,00
WKA 061	1.671	1.672	54,9	Ja	21,30	100,6		3,01	75,46	3,18	3,67	0,00	- ,	82,31	0,00
WKA 062	1.928	1.929	55,9	Ja	19,43	100,6		3,01	76,71	3,67	3,81	0,00	-,	84,18	0,00
WKA 063	1.922	1.923	64,4	Ja	23,03	104,0		3,01	76,68					83,98	0,00
WKA 064	1.604	1.605	61,8	Ja	25,37	104,0		3,01	75,11				-,	81,64	0,00
WKA 066	1.866	1.867	63,4	Ja		103,3		3,01	76,42				0,00		00,0
WKA 067	1.607	1.608	68,4	Ja	24,79	103,3		3,01	75,13	3,06	3,34		0,00	81,52	0,00
WKA 083	2.269	2.270	65,8	Ja	16,97	100,2		3,01	78,12			0,00		86,24	0,00
WKA 084	2.658	2.659	55,8	Ja	•	103,4		3,01	79,49	5,05			0,00	88,63	0,00
WKA 090	1.237	1.239	69,0	Ja	28,31	103,4		3,01	72,86				0,00	78,10	0,00
WKA 091	2.274	2.275	63,7	Ja	-	100,2		3,01	78,14		3,84		0,00	86,30	0,00
WKA 092	2.363	2.364	66,2	Ja	•	100,2		3,01	78,47	4,49			0,00	86,81	0,00
WKA 101	1.953	1.954	56,8	Ja	•	100,6		3,01	76,82		3,80				00,0
WKA 102	1.697	1.698	56,8	Ja	•	100,6		3,01	75,60						
WKA 103	2.025	2.026	67,5	Ja	22,37	104,0		3,01	77,13				,		00,00
WKA 104	1.707	1.709	68,6	Ja	•	104,0		3,01	75,66					82,32	-
WKA 107	1.352	1.354	70,7	Ja	27,20	103,4		3,01	73,63						0,00
WKA 115	2.204	2.206				103,8		3,01	77,87						
WKA 117	1.927	1.928	62,3	Ja	-	101,4		3,01	76,70						
WKA 146	800	803	34,3	Ja	•	101,4		3,01	69,09	,	3,32				
WKA 147	550	553			,	100,2		3,00						,	•
WKA 148	857	860				100,2		3,01	69,69						
WKA 155	625	629	39,5	Ja	•	101,4		3,00							
WKA 158	1.223	1.225	66,6	. Ja	28,39	103,4	1	3,01	72,76	2,33	2,93	0,00	0,00	78,02	0,00

Beschreibung: 068-10-0245-03.04

27.04.2012 09:17 / 9

Lizenzierter Anwender SOLvent GmbH

Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

For	tsetzun	g von der	vorigen Seit	e												
WEA						95% der Ne	ennleistu	ng								
Nr.		Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
W	(A 170	2.981	2.983	63,6	Nein	15,05	103,0		3,01	80,49	5,67	4,80	0,00	0,00	90,96	0,00
W	(A 171	2.834	2.836	66,5	Nein	15,77	103,0		3,01	80,05	5,39	4,80	0,00	0,00	90,24	0,00
W	(A 172	3.496	3.497	67,5	Nein	13,89	104,2		3,01	81,87	6,65	4,80	0,00	0,00	93,32	0,00
W	(A 185	2.686	2.688	42,7	Nein	17,32	103,8		3,01	79,59	5,11	4,80	0,00	0,00	89,49	0,00
W	(A 186	2.898	2.900	48,9	Nein	16,25	103,8		3,01	80,25	5,51	4,80	0,00	0,00	90,56	0,00
W	(A 187	3.453	3.455	67,0	Nein	10,08	100,2		3,01	81,77	6,56	4,80	0,00	0,00	93,13	0,00
18	(A 188	3.099	3.100	63,4	Nein	11,69	100,2		3,01	80,83	5,89	4,80	0,00		91,52	0,00
8	(A 189	2.752		71,0	Nein	16,58	103,4			79,80	5,23	4,80	0,00		,	0,00
H	(A 201	3.804	3.806	65,3	Nein	7,07	98,7		3,01	82,61	7,23	4,80	0,00		94,64	0,00
	(A 202	4.012	4.015	70,9		•	101,8		3,01	83,07	7,63		0,00	0,00		0,00
8	(A 203	4.174	4.177			10,66	103,8		3,01	83,42	,		0,00	0,00		0,00
	(A 204	4.236	4.239	,		5,31	98,7		3,01	83,55		4,80	0,00	0,00		0,00
8	(A 231	3.054				- ,	103,6		3,01	80,70		4,80	0,00	0,00		0,00
28	(A 232	3.362			Nein	13,88	103,6		3,01	81,54	6,39		0,00		92,73	0,00
N .	(A 233	3.041	3.042			, ,	101,2		3,01	80,66			0,00	0,00		0,00
B	(A 234	3.316	3.317				103,6		3,01	81,41		4,80		0,00	,	00,0
10	(A 236	2.704			Nein		101,2		3,01	79,64		4,80		,		0,00
B	(A 245	3.246	3.247	•		•	103,6		3,01	81,23				0,00		0,00
B	4 603a	3.642		•		•	103,7		3,01	82,23		4,80		0,00		
	KA 604	3.462					103,7		3,01	81,79	6,58			0,00		0,00
필	KA 605	3.878					102,0		3,01	82,77			,	0,00	,	0,00
	KA 608	3.249			Nein	•	103,7		3,01	81,24				0,00		0,00
W	KA 609	3.700	3.701	50,1	Nein	12,51	103,7		3,01	82,37	7,03	4,80	0,00	0,00	94,20	0,00

Summe 41,18

Schall-Immissionsort: IP 08 In den Hägen 18, Eulgem WEA 95% der Nennleistung

Nr.		Schallweg	Mittlere Höhe	Sichtbar		•		Dc	Adiv		_		Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	609	617	30,2	Ja	33,34	101,4		3,00	66,81	1,17	3,09	0,00	0,00	71,06	0,00
WKA 061	1.636	1.637	53,5	Ja	21,54	100,6		3,01	75,28		3,68	0,00	0,00	82,07	0,00
WKA 062	1.894	1.895	54,4	Ja	19,64	100,6		3,01	76,55		3,82		0,00	83,97	0,00
WKA 063	1.891	1.893	63,0	Ja	23,21	104,0		3,01	76,54	3,60	3,66	0,00	0,00	83,80	0,00
WKA 064	1.573	1.574	60,5	Ja	25,60	104,0		3,01	74,94	2,99	3,48	0,00	0,00	81,41	0,00
WKA 066	1.845	1.846		Ja	22,83	103,3		3,01	76,32		3,65	0,00	0,00	83,48	0,00
WKA 067	1.590	1.592		Ja	24,90	103,3		3,01	75,04	3,02	3,34	0,00	0,00	81,40	0,00
WKA 083	2.241	2.242		Ja	17,12	100,2		3,01	78,01		3,82	0,00	0,00	86,09	0,00
WKA 084	2.624	2.625		Ja	17,94	103,4		3,01	79,38		4,10	0,00	0,00	88,46	0,00
WKA 090	1.205	1.207		Ja	28,62	103,4		3,01	72,64		2,85	0,00	0,00	77,78	0,00
WKA 091	2.255	2.256	•	Ja	•	100,2		3,01	78,07		3,85	0,00	0,00	86,21	0,00
WKA 092	2.330	2.332		Ja	16,57	100,2		3,01	78,35		3,85	0,00	0,00	86,64	0,00
WKA 101	1.916	1.917		Ja	19,50	100,6			76,65		3,81	0,00	0,00	84,11	0,00
WKA 102	1.659	1.660		Ja	21,40	100,6		3,01	75,40		3,65	0,00	0,00	82,21	0,00
WKA 103	1.985	1.987		Ja	22,61	104,0		3,01	76,96	3,78	3,67	0,00	0,00	84,40	0,00
WKA 104	1.666	1.668		Ja	•	104,0		3,01	75,44		3,42		-,	82,03	0,00
WKA 107	1.306	1.309		Ja	•	103,4		3,01	73,34		2,98	0,00	0,00		0,00
WKA 115	2.163	2.165		Ja	•	103,8		3,01	77,71	4,11				85,66	0,00
WKA 117	1.884	1.886		Ja	•	101,4		3,01	76,51	,	3,70			83,79	0,00
WKA 146	836	839	•	Ja	•	101,4		3,01	69,48		3,40	0,00		74,47	0,00
WKA 147	600	604		Ja		100,2		3,00	66,62		3,74	0,00		71,51	0,00
WKA 148	904	907	- •-	Ja	•	100,2		3,01	70,15		3,58	0,00	-	75,45	0,00
WKA 155	654	658		Ja		101,4		3,00	67,37	,	2,71	0,00	0,00	71,33	0,00
WKA 158	1.182	1.184		Ja	. , .	103,4		3,01	72,47		2,90			77,61	0,00
WKA 170	3.021	3.022		Nein		103,0		3,01	80,61		4,80		.,	91,15	0,00
WKA 171	2.877	2.879		Nein		103,0		3,01	80,18	,	4,80			90,45	0,00
WKA 172	3.543	3.545		Nein		104,2		3,01	81,99	- ,	4,80			93,53	0,00
WKA 185	2.718	2.720		Nein	•	103,8		3,01	79,69		4,80		0,00		0,00
WKA 186	2.932	2.933	- , -		•	103,8			80,35		4,80			90,72	0,00
WKA 187	3.483	3.486	64,5	Nein	9,94	100,2		3,01	81,85	6,62	4,80	0,00	0,00	93,27	0,00

068-10-0245-03.04

27.04.2012 09:17 / 10

Lizenzierter Anwender:

SOLvent GmbH

Lünener Straße 211 DE-59174 Kamen

+49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

ı	Fortsetzun	g von der	vorigen Seit	e													
	WEA					95% der Ne	ennleistu	ng									
200	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	WKA 188	3.142	3.144	60,6	Nein	11,49	100,2		3,01	80,95	5,97	4,80	0,00	0,00	91,72	0,00	
	WKA 189	2.799	2.801	68,0	Nein	16,34	103,4	0	3,01	79,95	5,32	4,80	0,00	0,00	90,07	0,00	
	WKA 201	3.835	3.838	62,5	Nein	6,94	98,7		3,01	82,68	7,29	4,80	0,00	0,00	94,77	0,00	
ı	WKA 202	4.046	4.049	67,9	Nein	9,17	101,8		3,01	83,15	7,69	4,80	0,00	0,00	95,64	0,00	
	WKA 203	4.209	4.212	73,4	Nein	10,52	103,8		3,01	83,49	8,00	4,80	0,00	0,00	96,29	0,00	
	WKA 204	4.273	4.276	74,5	Nein	5,17	98,7		3,01	83,62	8,12	4,80	0,00	0,00	96,54	0,00	
	WKA 231	3.096	3.097	49,9	Nein	15,11	103,6		3,01	80,82	5,88	4,80	0,00	0,00	91,50	0,00	
	WKA 232	3.403	3.404	56,0	Nein	13,70	103,6		3,01	81,64	6,47	4,80	0,00	0,00	92,91	0,00	
1	WKA 233	3.087	3.088	46,1	Nein	12,75	101,2		3,01	80,79	5,87	4,80	0,00	0,00	91,46		
1	WKA 234	3.360	3.361	51,0	Nein	13,89	103,6		3,01	81,53	6,39	4,80	0,00	0,00	92,72		
1	WKA 236	2.754	2.755	44,2	Nein	14,37	101,2		3,01	79,80			0,00				
	WKA 245	3.284	3.285	49,0	Nein	14,24	103,6		3,01	81,33	6,24		0,00	0,00	,	0,00	
ı	WKA 603a	3.690	3.691	47,1	Nein	12,55	103,7		3,01	82,34	-	4,80	0,00	0,00			
	WKA 604	3.509	3.510	49,0	Nein	13,34	103,7		3,01	81,91	6,67	4,80	0,00	0,00		0,00	
ı	WKA 605	3.925	3.926	51,4	Nein	9,87	102,0		3,01	82,88	7,46		0,00	0,00			
ı	WKA 608	3.298	3.299	45,0	Nein	14,27	103,7		3,01	81,37	6,27	4,80	0,00	0,00			
1	WKA 609	3.746	3.747	47,6	Nein	12,32	103,7		3,01	82,47	7,12	4,80	0,00	0,00	94,39	0,00	

Summe 40,90

Schall-Immissionsort: IP 09 In den Hägen 21, Eulgem

WEA					95% der Ne	ennleistu	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	D¢	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	582	590	30,6	Ja	33,87	101,4		3,00	66,42		2,98	0,00	0,00	70,53	0,00
WKA 061	1.657	1.658	54,3	Ja	21,39	100,6		3,01	75,39		3,68	0,00	0,00	82,22	0,00
WKA 062	1.916	1.917	55,2	Ja	19,50	100,6		3,01	76,65		3,81	0,00	0,00	84,11	0,00
WKA 063	1.915	1.917	63,7	Ja	23,06	104,0		3,01	76,65	3,64	3,66	0,00	0,00	83,95	0,00
WKA 064	1.597	1.598	61,2	Ja	25,42	104,0		3,01	75,07		3,48	0,00	0,00	81,59	00,0
WKA 066	1.872		62,4	Ja	•	103,3		3,01	76,45		3,66	0,00		83,67	0,00
WKA 067	1.619			Ja	•	103,3		3,01	75,19		3,36	0,00	0,00	81,63	0,00
WKA 083	2.266	2.267	64,9	Ja	16,98	100,2		3,01	78,11		3,82	0,00	0,00	86,23	0,00
WKA 084	2.645		- 1	Ja	,	103,4		3,01	79,45		4,09	0,00		88,57	0,00
WKA 090	1.228			Ja		103,4		3,01	72,80		2,87	0,00		78,01	0,00
WKA 091	2.283		,	Ja	16,84	100,2		3,01	78,18		3,85	0,00	0,00	86,37	0,00
WKA 092				Ja		100,2		3,01	78,44		3,85	0,00	0,00	86,76	0,00
WKA 101	1.936			Ja		100,6		3,01	76,74		3,81	0,00	0,00	84,23	0,00
WKA 102				Ja	,	100,6		3,01	75,50		3,65	0,00		82,35	0,00
WKA 103	2.003			Ja		104,0		3,01	77,04			0,00		84,52	
WKA 104	1.682			Ja	•	104,0		3,01	75,53		3,42	0,00	0,00	82,15	
WKA 107	1.319		69,8	Ja	•	103,4		3,01	73,42		2,98	0,00	0,00	78,91	0,00
WKA 115			61,3	Ja	•	103,8		3,01	77,77		3,84	0,00	0,00	85,75	0,00
WKA 117	1.900			Ja		101,4		3,01	76,58		3,70	0,00	0,00	•	0,00
WKA 146			•			101,4		3,01	69,71		3,43	0,00	,	74,77	0,00
WKA 147					•	100,2		3,00	66,67		3,75	0,00	0,00	71,58	0,00
WKA 148			31,8			100,2		3,01	70,28		3,60	0,00	0,00	75,63	0,00
WKA 155					•	101,4		3,00	67,70		2,78	0,00	0,00	71,79	0,00
WKA 158					,_	103,4		3,01	72,59		2,91	0,00	0,00	77,78	
WKA 170					•	103,0		3,01	80,55		4,80		0,00	91,06	
WKA 171	2.863				,	103,0		3,01			4,80		0,00	90,38	
WKA 172					•	104,2		3,01			4,80		0,00		
WKA 185					•	103,8		3,01			4,80		0,00	89,54	
WKA 186					,	103,8		3,01			4,80		0,00	90,62	
WKA 187						100,2		3,01	81,79		4,80		0,00	93,17	0,00
WKA 188					,	100,2		3,01	80,91	-	4,80		0,00		
WKA 189						103,4		3,01	79,92				0,00	,	
WKA 201	3.813		,		,	98,7		3,01	82,63		4,80		0,00		
WKA 202						101,8		3,01	83,10		4,80		0,00		
WKA 203					•	103,8		3,01	83,45		4,80		0,00	96,21	0,00
WKA 204	4.253	4.256	75,1	Nein	5,24	98,7		3,01	83,58	8,09	4,80	0,00	0,00	96,47	0,00

Beschreibung: 068-10-0245-03.04

27.04.2012 09:17 / 11

SOLvent GmbH

Lünener Straße 211 DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	g von der	vorigen Seit	e												
WEA					95% der No	ennleistui	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Einzel- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 231	3.115	3.116	50,2	Nein	15,02	103,6		3,01	80,87	5,92	4,80	0,00	0,00	91,59	0,00
WKA 232	3.423	3.424	56,4	Nein	13,61	103,6		3,01	81,69	6,51	4,80	0,00	0,00	93,00	0,00
WKA 233	3.102	3.103	46,5	Nein	12,68	101,2		3,01	80,84	5,90	4,80	0,00	0,00	91,53	0,00
WKA 234	3.377	3.378	51,4	Nein	13,82	103,6		3,01	81,57	6,42	4,80	0,00	0,00	92,79	0,00
WKA 236	2.755	2.756	44,7	Nein	14,37	101,2		3,01	79,81	5,24	4,80	0,00	0,00	89,84	0,00
WKA 245	3.306	3.307	49,4	Nein	14,14	103,6		3,01	81,39	6,28	4,80	0,00	0,00	92,47	0,00
WKA 603a	3.701	3.702	47,6	Nein	12,51	103,7		3,01	82,37	7,03	4,80	0,00	0,00	94,20	0,00
WKA 604	3.523	3.524	49,4	Nein	13,27	103,7		3,01	81,94	6,70	4,80	0,00	0,00	93,44	0,00
WKA 605	3.938	3.939	52,0	Nein	9,82	102,0		3,01	82,91	7,48	4,80	0,00	0,00	95,19	0,00
WKA 608	3.307	3.308	45,4	Nein	14,23	103,7		3,01	81,39	6,29	4,80	0,00	0,00	92,48	0,00
WKA 609	3.760	3.761	48,1	Nein	12,26	103,7		3,01	82,51	7,15	4,80	0,00	0,00	94,45	0,00
Summe	40,83														

Schall-Immissionsort: IP 10 Sängerweg 1, Eulgem

ı	WEA					95% der Ne										. .
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar				Dc	Adiv		-		Amisc	A	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	WKA 02	568	577	32,8	Ja	34,28	101,4			66,22		2,80	0,00		70,12	0,00
ı	WKA 061	1.657	1.658	54,1	Ja	21,39	100,6		3,01	75,39		3,68	0,00		82,22	0,00
ı	WKA 062	1.919	1.920	54,9	Ja	19,48	100,6		3,01	76,66		3,82	0,00	0,00	84,13	0,00
	WKA 063	1.931	1.932	63,5	Ja	22,95	104,0		3,01	76,72		3,67	0,00	0,00	84,06	0,00
	WKA 064	1.610	1.612	61,3	Ja	25,31	104,0		3,01	75,14		3,49	0,00	0,00		0,00
	WKA 066	1.911	1.913	62,2		22,36	103,3		3,01	76,63		3,68	0,00	0,00	83,95	0,00
	WKA 067	1.670	1.672	68,2	Ja	24,27	103,3		3,01	75,46		3,40	0,00	0,00	82,04	0,00
9	WKA 083	2.286	2.288	64,6	Ja	16,84	100,2		3,01	78,19		3,83	0,00	0,00	86,37	00,0
	WKA 084	2.646	2.647	53,7	Ja	17,82	103,4		3,01	79,46		4,11	0,00	0,00	88,59	00,0
	WKA 090	1.240	1.242	69,3	Ja	28,29	103,4		3,01	72,89		2,88	0,00	0,00	78,12	0,00
Se of part	WKA 091	2.328	2.329	63,2		16,57	100,2		3,01	78,34		3,87	0,00	0,00	86,64	00,0
	WKA 092	2.360		64,7	Ja	16,40	100,2		3,01	78,46		3,86	0,00	0,00	86,81	0,00
ı	WKA 101	1.929		55,1	Ja	19,41	100,6		3,01	76,71		3,82	0,00	0,00	84,20	0,00
Ĭ	WKA 102	1.669		55,1	Ja	21,32	100,6		3,01	75,45		3,67			82,29 84,42	
	WKA 103	1.986				22,59	104,0		3,01	76,97		3,68	0,00	0,00		•
STATE OF	WKA 104	1.658		66,5		25,03	104,0		3,01	75,40		3,42		0,00	81,98 78,52	
ı	WKA 107	1.278				27,89	103,4		3,01	73,15		2,94	0,00		85,61	
I	WKA 115	2.154		•		21,20	103,8		3,01	77,67		3,84		0,00	83,72	
ı	WKA 117	1.873				20,69	101,4		3,01	76,46		3,70	0,00	0,00	76,33	
	WKA 146	982				28,08	101,4		3,01	70,87		3,59 3,92		0,00	73,31	
I	WKA 147	708					100,2		3,01	68,04			0,00		77,11	
4	WKA 148	1.037				•	100,2		3,01 3,01	71,34 69,10		3,79			73,69	
ģ	WKA 155	800				30,72	101,4 103,4		3,01	72,45		2,91	0.00		77.60	
	WKA 158	1.180				28,80 14,83	103,4		3,01	80.63		4,80	-,		91,18	
8	WKA 170	3.028				•	103,0		3.01	80,27		4,80			90,59	
	WKA 171	2.905				•			3,01	82,12		4,80				
ı	WKA 172	3.595				•	104,2 103,8			•		4,80				
ı	WKA 185 WKA 186	2.696 2.916				•	103,8		3.01	80,30		4,80			90,65	
ı	WKA 186	3.456					100,2			81,78		4,80			93,15	
	WKA 187	3.430				•	100,2		3,01	81,03		4,80				
ı	WKA 188	2.853					103,4		3,01	80,11		4,80				
ı	WKA 201	3.812					98,7		3.01			4,80				
Į	WKA 202	4.028				•	101,8		3,01	83,11		4,80				
ı	WKA 202	4.196		· ·		•	103,8		3.01			4,80				
ı	WKA 203	4.268					98,7			83,61		4,80	,			
ı	WKA 231	3.238				•	103,6		3,01			4,80			,	,
-	WKA 232	3.546					103,6		3.01			4,80				
ı	WKA 232	3.221					101,2		3,01	•		4,80				
1	WKA 234	3.497					103,6		3,01			4,80				
1	WKA 236	2.847					101,2		3,01							
1	WKA 245						103,6			81,71		4,80			93,02	
	1 **** 270	0.720		. ,,2		,	, 50,0		-,-,	,, ,	-, -		-,,-		,	•

Summe

40,23

Beschreibung:

068-10-0245-03.04

27.04.2012 09:17 / 12

izenzierter Anwender:

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063 Johannes Waterkamp / jw@solvent.de

Berechnet: 25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Fortsetzun	a von der	voriaen Seit	е		- Constitution of the Cons										
WEA		Ū				ennleistung								_	
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar		LwA,ref Einze		Dc	Adiv	Aatm			Amisc	rans A	Cmet
	[m]	[m]	[m]		[dB(A)]		dB]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB] 94,68	[dB] 0,00
WKA 603a	3.815	3.816	45,0	Nein	12,03	103,7			82,63 82,23	7,25 6,92		00,00		93,95	0,00
WKA 604	3.642	3.643	47,0	Nein	12,76	103,7			83,16	7,70		0,00		95,66	0,00
WKA 605	4.053	4.054	49,7 42,9	Nein Nein	9,35 13,74	102,0 103,7			81,67	6,49		0,00		92,97	0,00
WKA 608 WKA 609	3.417 3.878	3.418 3.879	42,9 45,7	Nein	11,77	103,7			82,77	7,37		0,00		94,94	0,00
WKA 609	3.070	3.073	45,7	, toll	,	100,7		-,	,	.,-					
Summe	40,33														
			44 65	2 F.	.1										
	missior	nsort: IP	11 Sängerw	eg 3, Eu											
WEA	A 1-4	Caballusas	Mittlere Höbe	Sighthar		ennleistung LwA,ref Einz	el- töne	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
Nr.				Sichibai	[dB(A)]		dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	[m] 577	[m] 586	[m] 33,4	Ja	34,12	101,4	UD]	3,00	66,36		2,80	0,00	0,00	70,28	0,00
WKA 061	1.649				21,45	100,6		3,01	75,35		3,68	0,00	0,00	82,16	0,00
WKA 062	1.911	1.912			19,53	100,6		3,01	76,63		3,82	0,00	0,00	84,08	0,00
WKA 063	1.925				22,98	104,0		3,01	76,70		3,67	0,00		84,03	0,00
WKA 064	1.605				25,35	104,0		3,01	75,12		3,49	0,00		81,66	0,00
WKA 066	1.911				22,36	103,3			76,63		3,69	0,00		83,95	0,00
WKA 067	1.672			Ja	24,25	103,3		-,-	75,47	3,18	3,40	0,00		82,05	0,00
WKA 083	2.282	2.283			16,86	100,2			78,17		3,84	0,00		86,34	0,00
WKA 084	2.638				17,86	103,4			79,43	,	4,11	0,00		88,55 78.07	0,00
WKA 090	1.235				28,34	103,4			72,85		2,87			,	0,00
WKA 091	2.328					100,2			78,35		3,87			86,64 86,78	0,00
WKA 092						100,2			78,44		3,86 3,82	0,00		84,15	0,00
WKA 101	1.920					100,6			76,67 75,40		3,67			82,22	
WKA 102						100,6			76,92		3,68	0,00		84,35	
WKA 103						104,0 104,0			75,34		3,42			81,89	0,00
WKA 104 WKA 107						103,4		3,01			2,92			78,37	
WKA 107						103,8			77,62		3,84			85,54	0,00
WKA 117						101,4		3,01			3,70	0,00	0,00	83,63	0,00
WKA 146						101,4		3,01	71,06	1,91	3,62	0,00	0,00	76,59	0,00
WKA 147						100,2		3,01	68,33	1,40	3,94			73,67	
WKA 148	1.061	1.064	30,5	j Ja	25,84	100,2		3,01	71,54		3,81	0,00			
WKA 155	821	824	40,6	5 Ja	30,43	101,4		3,01			3,09			73,98	
WKA 158	1.169	1.171	64,6) Ja		103,4			72,37		2,90			77,49	
WKA 170	3.042					103,0			80,67		4,80			91,25	
WKA 171					-	103,0		3,01	,		4,80			90,67	
WKA 172						104,2			82,17		4,80			93,84 89,60	
WKA 185						103,8			79,65		4,80 4,80			90,70	
WKA 186					-	103,8 100,2			80,33 81,80		4,80			93,19	
WKA 187						100,2			81,07		4,80			91,94	
WKA 188						103,4	(3,01			4,80			90,43	
WKA 201					1	98,7		3,01			4,80			94,71	
WKA 202						101,8			83,13		4,80			95,61	
WKA 203					· ·	103,8		3,01	83,49	8,00	4,80	0,00			
WKA 204						98,7			83,64		4,80			96,57	
WKA 23		1 3.26	2 47,4	4 Neir	14,34	103,6			81,27		4,80			92,27	
WKA 232	3.569	9 3.570				103,6			82,05		4,80			93,64	
WKA 233						101,2			81,23		4,80			92,20	
WKA 234					•	103,6			81,94		4,80			93,43 90,41	
WKA 236						101,2			80,16		4,80				
WKA 24						103,6			81,76		4,80			93,12 94,78	
WKA 603						103,7			82,69		4,80			94,76	
WKA 604						103,7			82,29 83,21		4,80 4,80			95,76	
WKA 60						102,0 103,7			81,74			0,00		93,08	
WKA 60:						103,7			82.83			0,00		95,04	
VVA 603	J 3.90.	2 3.90	J 40,1	1161		100,7		5,51	52,50	,	,	,,,,,	2,34	,-	** -
I _	40.00														

068-10-0245-03.04

27.04.2012 09:17 / 13

SOLvent GmbH Lünener Straße 211 DE-59174 Kamen

+49 2307 240063 Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Im	missior	nsort: IP 1	I2 Sängerw	eg 5, Eu	lgem	A CANADA A CANADA C	ggo pag (sp. 1965) and a med Million to relieve	tan ja ja ja karanga sertaga		sit Autoria Agrico Agr		* C 7-10-10-10-10-10-1	garden manifestation		
WEA			•	•	95% der Ne	ennleistu	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe				•	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WKA 02	590	599	33,9	Ja	33,89	101,4		3,00	66,55	1,14	2,82	0,00	0,00	70,51	0,00
WKA 061	1.638	1.639	53,1	Ja	21,51	100,6		3,01	75,29	3,11	3,69	0,00	0,00	82,10	0,00
WKA 062	1.901	1.902	53,7	Ja	19,58	100,6		3,01	76,58	3,61	3,83	0,00	0,00	84,03	00,0
WKA 063	1.917	1.919	62,8	Ja	23,03	104,0		3,01	76,66	3,65	3,68	0,00	0,00	83,98	00,00
WKA 064	1.597	1.598	60,9	Ja	25,41	104,0		3,01	75,07	3,04	3,49	0,00	0,00	81,60	0,00
WKA 066	1.908	1.909	61,7	Ja	22,38	103,3		3,01	76,62	3,63	3,69	0,00	0,00	83,93	0,00
WKA 067	1.672	1.674	68,1	Ja	24,25	103,3		3,01	75,47	3,18	3,40	0,00	0,00	82,05	0,00
WKA 083	2.275	2.276	63,6	Ja	16,90	100,2		3,01	78,14	4,33	3,84	0,00	0,00	86,31	0,00
WKA 084	2.627	2.628	52,1	Ja	17,90	103,4		3,01	79,39	4,99	4,12	0,00	0,00	88,51	0,00
WKA 090	1.227	1.229	69,2	Ja	28,42	103,4		3,01	72,79	2,34	2,86	0,00	0,00	77,99	0,00
WKA 091	2.326	2.327	62,5	Ja	16,57	100,2		3,01	78,34	4,42	3,88	0,00	0,00	86,64	0,00
WKA 092	2.344	2.345	63,5	Ja	16,48	100,2		3,01	78,40	4,46	3,87	0,00	0,00	86,73	0,00
WKA 101	1.908	1.909		Ja	19,53	100,6		3,01			3,84	0,00	0,00	84,08	0,00
WKA 102	1.647	1.648		Ja	21,47	100,6		3,01			3,68	0,00		82,14	0,00
WKA 103	1.961	1.963		Ja	22,74	104,0		3,01			3,68	0,00		84,27	0,00
WKA 104	1.631	1.633		Ja	25,23	104,0		3,01			3,42	0,00		81,78	0,00
WKA 107	1.246		,	Ja	28,20	103,4		3,01			2,91	0,00		78,20	0,00
WKA 115	2.126				21,36	103,8		3,01			3,85	0,00		85,45	0,00
WKA 117	1.845		•	Ja	20,87	101,4		3,01			3,70	0,00		83,53	0,00
WKA 146	1.025				27,57	101,4		3,01		1,95		0,00		76,84	0,00
WKA 147	757			Ja	29,17	100,2		3,01			3,97	0,00		74,03	0,00
WKA 148	1.086			Ja	25,56	100,2		3,01			3,84	0,00	,	77,64	0,00
WKA 155	840				,	101,4		3,01		1,60				74,25 77,36	0,00
WKA 158	1.155			Ja	29,05	103,4		3,01			2,89	0,00		91,33	0,00 0.00
WKA 170	3.058				14,68	103,0		3,01			4,80	0,00		90,77	
WKA 171	2.941	2.943	•		,	103,0		3,01 3,01			4,80 4,80	0,00		93,93	
WKA 172					•	104,2					4,80	0,00		89,66	0,00
WKA 185					•	103,8 103,8			79,69 80,38			0.00		90,77	
WKA 186									81,83		4,80	0,00		93,24	
WKA 187 WKA 188						100,2 100,2		3,01				0,00		92,02	
WKA 189						100,2		0 3.01	-					90,54	
WKA 109						98,7			82,68		4,80			94,77	
WKA 202			•		•	101,8		3.01	-					95,66	
WKA 203					•	103,8		3,01			4,80			96,34	
WKA 204					-	98,7		3,01			4,80				
WKA 231					-	103,6		3,01			4,80			92,37	
WKA 232						103,6		3,01			4,80			93,74	
WKA 233						101,2			81.29					92,31	0,00
WKA 234			•			103,6			82,00		4,80		,	93,53	
WKA 236			,			101,2		3,01		-	4,80		0,00	90,54	0,00
WKA 245					-	103.6		3.01			4,80			93,22	
WKA 603a						103,7		3,01		,		•			
WKA 604					•	103,7		3,01			4,80			94,16	0,00
WKA 605					· · · · · · · · · · · · · · · · · · ·	102,0		3,01			4,80				
WKA 608						103,7		3,01					0,00	93,19	0,00
WKA 609						103,7			82,88	-	4,80		0,00	95,15	0,00
	_				•	,									

WindPRO version 2.7.490 Sep 2011 27.04.2012 09:17 / 14 068-10-0245-03.04 Eulgem Lizenzierter Anwender SOLvent GmbH Lünener Straße 211 DE-59174 Kamen +49 2307 240063 Johannes Waterkamp / jw@solvent.de 25.04.2012 14:40/2.7.490 DECIBEL - Karte 95% der Nennleistung ansonsten 10,0 m/s Berechnung: Gesamtbelastung (1 x E-53 + 46 x Bestand)Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s WKA 084 Urmersbach WKA 115 Diingenho im* WKA 092 WKA 083 WKA 101 WKA 104 VKA 002 063 WKA 064 WKA 066 WKA 090 Pfaffen IP 10 01 uls WKA 155 WKA 146 WKA 02 WKA 147 KAISERSESÇH WKA 148 Zettingen Hambucher Hambuch WKA 245 WKA 231 vVKA 232 WKA 233 KA 234 WKA 185 WKA 186 WKA 604 WKA 170 WKA 171 WKA 608 WKA 609 WKA 187 WKA 603a WKA 605 WKA 188 WKA 201 Wald WKA 202 WKA 203 WKA 204 0 500 1000 1500 2000 m Karte: Eulgem 25000 , Druckmaßstab 1:35.000, Kartenzentrum UTM WGS 84 Zone: 32 Ost: 370.108 Nord: 5.565.823 Schallberechnungs-Modell: ISO 9613-2 Deutschland. Windgeschw.: 95% der Nennleistung ansonsten 10,0 m/s * Existierende WEA Schall-Immissionsort Neue WEA Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt 50,0 dB(A) 40,0 dB(A) 45,0 dB(A) 35,0 dB(A) 30,0 dB(A)

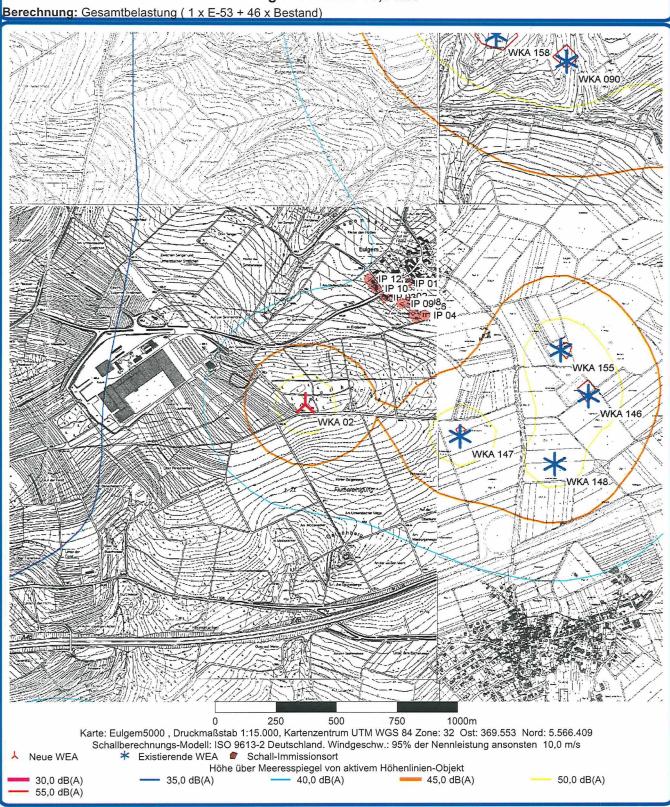
55,0 dB(A)

Projekt: Beschr Eulgem 068-

Beschreibung: 068-10-0245-03.04

27.04.2012 09:25 / 1

Lizenzierter Anwender


SOLvent GmbH Lünener Straße 211

DE-59174 Kamen +49 2307 240063

Johannes Waterkamp / jw@solvent.de

25.04.2012 14:40/2.7.490

DECIBEL - Karte 95% der Nennleistung ansonsten 10,0 m/s

Beschreibung:

068-10-0245-03.04

Ausdruck/Seite 27.04.2012 09:14 / 1

Lizenzierter Anwender: SOLvent GmbH

Lünener Straße 211 DE-59174 Kamen

+49 2307 240063

Johannes Waterkamp / jw@solvent.de

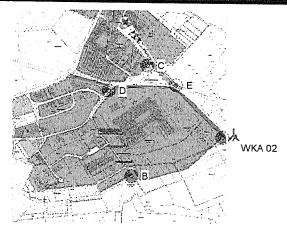
26.04.2012 10:47/2.7.490

Berechnung: 1 x E-53 (Einwirkbereich GI / GE Gebiete Kaisersesch)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

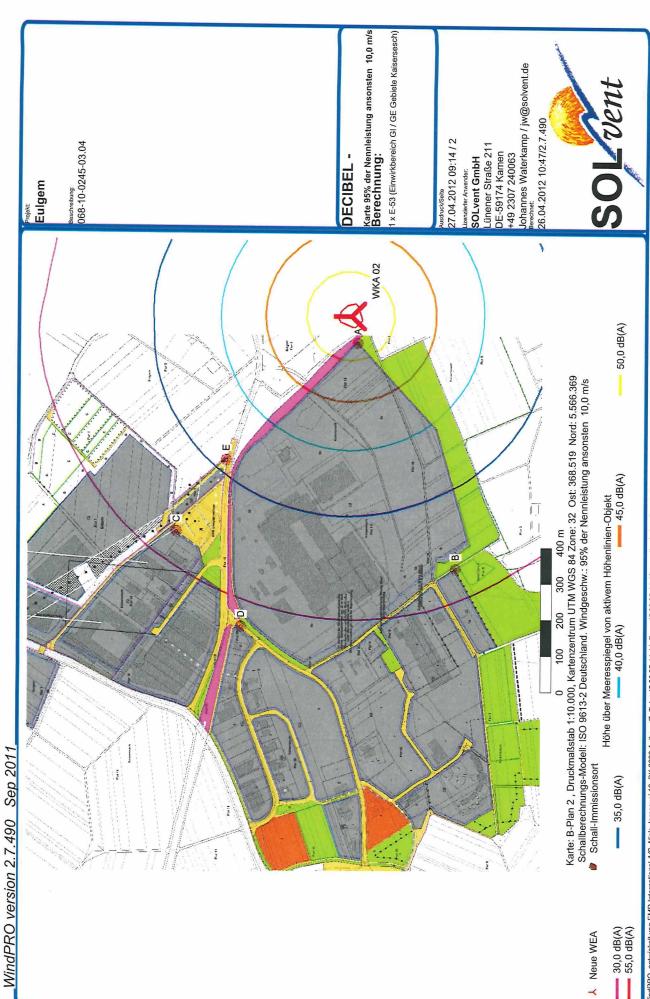
人 Neue WEA

Maßstab 1:25.000

Schall-Immissionsort

WEA

UTM WGS84 Zone: 32 [m] leistung durchmesser [kW] [m] [m]		UTM WGS84 Zone: 32 Ost	Nord	z	Beschreibung	WEA-T Aktuell	, -	Generatortyp		Nabenhöhe	Schalle Quelle		Windgeschw,	LwA.ref	Einzel-
WKA 02 369.423 5.566.320 465,0 WKA 02 E-53 Nein ENERCON E-53-800 800 53,0 73,3 USER 101,4 dB(A) (3 x vermessen)	WKA 02				0 WKA 02 E-53	Nein	ENERCON	F-53-800		[m] 73,3	LICED	101.1 40(0) (0	[m/s] 10.0	[dB(A)]	töne


Berechnungsergebnisse

Beurteilungspegel

	-Immissionsort	UTM WG	S84 Zone: 3	32		Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z [m]	Aufpunkthöhe [m]		Von WEA	Schall
	A GI Gebiet 1	369.349	5.566.302	465,0	5,0	70.0	/3	Ja
	B GI Gebiet 2	368.724	5.566.029	450,0	5,0	•		Ja
	C GI Gebiet 3	368.826	5.566.799	459,8	5,0	70,0		Ja
	D GE Gebiet 1	368.561	5.566.619	457,5	5,0	50.0	- ,-	Ja
	E GE Gebiet 2	369.024	5.566.663	460,6	5,0	50,0		Ja

Abstände (m)

, ,	
	WEA
Schall-Immissionsort	WKA 02
A	76
В	757
С	765
D	912
E	526

MindPRO, entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

ENERCON E-53

Schallvermessungsbericht als Zusammenfassung von drei Einzelvermessungen:

• MÜLLER-BBM, Bericht Nr. M 87 748/2 khl vom 09.11.2010

							Seite
Auf der Basis von Anlagentyps gemä	mindestens drei Messungen nach äß [2] anzugeben, um die schallted	i der 'Technischen Ri chnische Planungssic	ichtlinie für Winden herheit zu erhöhen	ergieanlagen" [1] be	esteht die Möglichke	eit die Schallemissi	onswerte eines
Anlagendaten]						·
-lersteller	Enercon GmbH		Anlagonhonelek				
	Dreekamp 5		Anlagenbezeichni Nennleistung	ung	E-63		
	26605 Aurich		Nabenhohe		800 kW		
			Rotordurchmesse	r	75 m 53 m		
Angabe	en zur Einzelmessung			Messi	ung-Nr.		· · · · · · · · · · · · · · · · · · ·
Seriennummer		1	2	3	4	5	6
Standort		53001	53237	53467			
vermess. Nabenh	óhe (m)	Wittmund	Ringstedt	Vara, Schweden			
	*****	76	73	73			
Messinstitut		Müller-BBM	Windtest KWK	Müller-BBM			
Prùfbericht Datum		M69 915/2	WT 6263/08	M87 748/1			
Datum Getrlebetyp		27.04.2007	14.02.2008	14.06.2010			
Semeratortyp							
Rotorblatttyp		E-53	E-53	E-53			
		E-53/1	E-53/1	E-53/1			
		(Prufbericht Leist		omitte Edistang	jokuituj		
			Windges	chwindigkelt in 10			
Schallleistungs _l Messung	Schalllelstungspegel	6 m/s	Windges 7 m/s	chwindigkeit in 10 8 m/s		10 m/s	L WA.P.95% Pron
Schallleistungs	Schallelstungspegel	6 m/s 96,7 dB(A)	Windges 7 m/s 99,2 dB(A)	chwindigkelt in 10 8 m/s 100,5 dB(A)	m Hóhe 9 m/s 100,9 dB(A)	10 m/s 100,6 dB(A)	
Schallleistungs _i Messung 1	Schallleistungspegel LwAp [3] LwAp [4]	6 m/s 96.7 dB(A) 98.3 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A)	chwindigkeit in 10 8 m/s 100,5 dB(A) 101,4 dB(A)	9 m/s 100,9 dB(A) 101,5 dB(A)		100,7 dB(A)
Schallleistungs _i Messung 1 2	Schallleistungspegel LwAP [3] LwAP [4]	6 m/s 96,7 dB(A)	Windges 7 m/s 99,2 dB(A)	chwindigkelt in 10 8 m/s 100,5 dB(A)	m Hóhe 9 m/s 100,9 dB(A)	100,6 dB(A)	100,7 dB(A) 101,4 dB(A)
Schallleistungs Messung 1 2 3	Schallleistungspegel LwAp [3] LwAp [4]	6 m/s 96.7 d8(A) 98.3 dB(A) 98.4 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A)	chwindigkeit in 10 8 m/s 100,5 dB(A) 101,4 dB(A)	9 m/s 100,9 dB(A) 101,5 dB(A)	100,6 dB(A)	100,7 dB(A) 101,4 dB(A)
Schallleistungs Messung 1 2 3	Schalleistungspegel Lwa,p (3) Lwa,p (4) Lwa,p (5)	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A)	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A)	9 m/s 100,9 dB(A) 101,5 dB(A)	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A)
Schallleistungs Messung 1 2 3 Mittelwert Lw Standardabweicht	Schallleistungspegel Lwa,p [3] Lwa,p [4] Lwa,p [5]	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97,8 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB	chwindigkeit in 10 8 m/s 100,5 dB(A) 101,4 dB(A) 101,9 dB(A)	m Hdhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A)	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A)
Schallleistungs Messung 1 2 3	Schalleistungspegel Lwa,p (3) Lwa,p (4) Lwa,p (5)	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A)	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A)	m Hdhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A)	100,6 dB(A)	L WA.P.95% Pren 100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A) 1,5 dB(A)
Schallleistungs Messung 1 2 3 Mittelwert L _w Standardabweicht C nach [Z] σ _R ≈	Schalleistungspegel LwA,p [3] LwA,p [4] LwA,p [5] ung s 0,5 dB(A) [6]	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97,8 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB	m Hdhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht (nach [2]	Schallleistungspegel Lwa,p [3] Lwa,p [4] Lwa,p [5]	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97,8 dB(A)	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB	m Hdhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht (nach [2]	Schallelstungspegel LwA,P (3) LwA,P (4) LwA,P (5) LwA,P (5) ung s 0,5 dB(A) [6]	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97,8 dB(A)	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB 1,7 dB	m Hóhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht K nach [Z] σ _R ≈ Schallemission Fonzuschlag Messung	Schallleistungspegel LWAP [3] LWAP [4] LWAP [5] UNAP [5] UNG S 0,5 dB(A) [6] Tonzuschlag	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97,8 dB(A)	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB	m Hóhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert L _w standardabwelche (nach [Z] σ _R ≈ Schallemission Fonzuschlag Messung	Schalleistungspegel Lwa,p [3] Lwa,p [4] Lwa,p [5] Lwa,p [6] ung s 0,6 dB(A) [6] nsparameter: Zuschläge Tonzuschlag Krw	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2,0 dB	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A) 101,0 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB 1,7 dB	m Hóhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB	100,6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert L _w Standardabweicht K nach [Z] σ _R ≈ Schallemission Tonzuschlag Messung 1 2	Schallelstungspegel LwA,p [3] LwA,p [4] LwA,p [5] LwA,p [6] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschläg Krw Krw	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99,2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100,6 dB(A) 100,6 dB(A) 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert L _w Standardabweicht K nach [Z] σ _R ≈ Schallemission Fonzuschlag Messung	Schalleistungspegel Lwa,p [3] Lwa,p [4] Lwa,p [5] Lwa,p [6] ung s 0,6 dB(A) [6] nsparameter: Zuschläge Tonzuschlag Krw	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0.9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100,6 dB(A) 100,6 dB(A) 100 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht K nach [Z] σ _R ≈ Schallemission Fonzuschlag Messung 1 2 3	Schallelstungspegel LwA,p [3] LwA,p [4] LwA,p [5] LwA,p [6] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschläg Krw Krw	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB 7 m/s	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100,6 dB(A) 100,6 dB(A) 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht (nach [z]	Schallelstungspegel LwA,p [3] LwA,p [4] LwA,p [5] LwA,p [6] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschläg Krw Krw	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB 7 m/s	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100,6 dB(A) 100,6 dB(A) 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht (nach [Z]	Schallelstungspegel LwA,p [3] LwA,p [4] LwA,p [5] LwA,p [6] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschläg Krw Krw	6 m/s 96,7 dB(A) 98,3 dB(A) 98,4 dB(A) 97,8 dB(A) 0,9 dB 2,0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB 7 m/s	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB 1,3 dB keit in 10 m H6he 9 m/s	100.6 dB(A) 100.6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabwelcht (nach [Z]	Schalleistungspegel LwAp [3] LwAp [4] LwAp [5] ung s 0,5 dB(A) [6] resparameter: Zuschläge Tonzuschlag Kriv Kriv Kriv Kriv Kriv Kriv Kriv Kriv	6 m/s 96,7 dB(A) 98,3 dB(A) 98,4 dB(A) 97,8 dB(A) 0,9 dB 2,0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100.6 dB(A) 100.6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert L _w Standardabweicht (nach [Z] σ _R ≈ Schallemission Fonzuschlag Messung 1 2 3 Messung Messung Messung Messung	Schallleistungspegel Lwa,p [3] Lwa,p [4] Lwa,p [5] Lwa,p [5] Lwa,p [5] Lwa,p [6] Tonzuschlag Kriv Tonzuschlag	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101.3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100.6 dB(A) 100.6 dB(A)	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw Standardabweiche K nach [Z] σ _R ≈ Schallemission Onzuschlag Messung 1 2 3 Messung 1 Messung 1 Messung 1 Messung 1 Messung 1 Messung 1 Messung	Schalleistungspegel LwAp [3] LwAp [4] LwAp [5] ung s 0,5 dB(A) [6] Tonzuschlag Krw Krw Krw Krw Krw Krw Krw Kr	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB 1,7 dB Windgeschwindig	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s	100,6 dB(A) 100,6 dB(A) 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert L _w Standardabweicht (nach [Z] σ _R ≈ Schallemission Fonzuschlag Messung 1 2 3 Messung Messung Messung Messung	Schalleistungspegel LwAp [3] LwAp [4] LwAp [5] ung s 0,5 dB(A) [6] Tonzuschlag Kriv	6 m/s 96.7 d8(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB 7 m/s 7 m/s 7 m/s	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m H6he 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m H6he 9 m/s keit in 10 m H6he 9 m/s	100,6 dB(A) 100,6 dB(A) 10 m/s 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Messung 1 2 3 Mittelwert Lw ttandardabwelchet (nach [2] σ _R ≈ Schallemission Onzuschlag Messung 1 2 3 Messung 1 2 3 Messung 1 2 3 Messung 1 2 3	Schalleistungspegel LwAp [3] LwAp [4] LwAp [5] ung s 0,5 dB(A) [6] Tonzuschlag Krw Krw Krw Krw Krw Krw Krw Kr	6 m/s 96.7 dB(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB 7 m/s 7 m/s	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m Hóhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 101,4 dB(A) 0,5 dB 1,3 dB keit in 10 m Hóhe 9 m/s keit in 10 m Hóhe 9 m/s	100,6 dB(A) 100,6 dB(A) 10 m/s 10 m/s 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)
Schallleistungs Messung 1 2 3 Mittelwert Lw Standardabwelche K nach [2] σ _R ≈ Schallemission Fonzuschlag Messung 1 2 3 Messung 1 2 3 Messung 1 2 3 Messung 1 2 3	Schalleistungspegel LwAp [3] LwAp [4] LwAp [5] ung s 0,5 dB(A) [6] Tonzuschlag Kriv	6 m/s 96.7 d8(A) 98.3 dB(A) 98.4 dB(A) 97.8 dB(A) 0,9 dB 2.0 dB	Windges 7 m/s 99.2 dB(A) 100,6 dB(A) 101,0 dB(A) 100,2 dB(A) 0,9 dB 2,0 dB 7 m/s 7 m/s 7 m/s	chwindigkeit in 10 8 m/s 100.5 dB(A) 101.4 dB(A) 101.9 dB(A) 101,3 dB(A) 0,7 dB 1,7 dB Windgeschwindig 8 m/s	m Hóhe 9 m/s 100,9 dB(A) 101,5 dB(A) 101,9 dB(A) 0,5 dB 1,3 dB 1,3 dB keit in 10 m Hóhe 9 m/s Keit in 10 m Hóhe 9 m/s Keit in 10 m Hóhe	100,6 dB(A) 10 m/s 10 m/s	100,7 dB(A) 101,4 dB(A) 101,9 dB(A) 101,3 dB(A) 0,6 dB(A)

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

entsprechend Anhang D von [1]

Seite 2/2

Schallemissionsparameter: Terz-/ Oktavschallleistungspegel für eine Nabenhöhe von 75 m

Fequenz	50	63	80.0	100.0	125.0	dB(A); Re		250.0	315.0	400.0	500.0	630,0
requenz	30	53	80,0	100,0	125,0	160,0	200,0	250,0	315,0	400,0	300,0	630,0
LWAP	74,8	77,2	79,6	82,2	83,9	86,4	85,9	87,0	87,7	87,5	89,1	89,7
Fequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAP	90.8	91.9	92.5	91.9	90.5	88.88	85.9	84.2	81.7	78.2	72.3	66,7

Oktav-Schallleistungspegel (Mittel aus 3 Messungen) in dB(A); Referenzpunkt v _{10LWA,Pmax} = 9 m/s [7]									
Fequenz	63	125	250	500	1000	2000	4000	8000	
LWAP	82,4	89,3	91,7	93,6	96,6	95,3	89,0	79,4	

Die Angaben ersetzen nicht die u. g. Prufberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- [1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, 01.02.2008, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel
- [2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level und Tonality Values of Wind Turbines, 2005-03
- [3] Die Schallleistungspegel wurden auf Grundlage der Daten in dem Bericht M69 915/2 der Firma Müller-BBM GmbH für die Nabenhöhe von 75 m aktuell ermittelt.
- [4] Die Schallleistungspegel wurden auf Grundlage der Daten in dem Bericht WT 6263/08 der Firma Windtest KWK für die Nabenhöhe von 75 m aktuell ermittelt.
- [5] Die Schallleistungspegel wurden auf Grundlage der Daten in dem Bericht M87 748/1 der Firma Müller-BBM GmbH für die Nabenhöhe von 75 m aktuell ermittelt.
- [6] Die Messunsicherheit σ_R wurde im Rahmen des vom LUA NRW durchgeführten Ringversuches zu σ_R = 0,5 dB(A) festgestellt
- [7] Bei allen drei Messungen (Berichte [3] bis [5]) wurden in der angegebenen Windklasse der maximale Schallleistungspegel

Berechnet durch:

Müller-BBM GmbH

Am Bugapark 1

45 899 Gelsenkirchen

MÜLLER-BBM GMBH Niederlassung Gelsenkirchen NIEDERLASSUNG GELSENKIRCHEN AM BUGAPARK 1 45899 GELSENKIRCHEN

TELEFON (0209) 9 83 08 - 0

Datum:

09.11.2010

Dipl.-Ing. (FH) M. Köhl

MÜLLER-BBM

Akkreditiertes Prüflaboratorium nach ISO/IEC 17025

P.\kh\\87\87748\M87748_02_Ber_30,doc:09, 11, 2010

ENERCON E-40 6.44

Schallvermessungsberichte

WINDTEST, Prüfbericht WT 1740/01 vom 11.04.2001 bzw. die Zusammenfassung WT 1706/01 vom 21.3.2001

WINDconsult, Bericht WICO 207SE899 vom 13.3.2000 bzw. dessen Nachtrag WICO 207SE899/01 vom 24.8.2000

WINDconsult, Bericht WICO 287SEA01/01 vom 5.12.2001.

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Anlagendaten entsprechend Seite 1 dieses Auszugs aus dem Prüfbericht

Auf der Basis von mindestens drei Messungen nach dieser Richtlinie besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäss /1/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Schallemissions - Parameter	Wind- Geschwin-	1. Messung	2. Messung	3. Messung	Energe- tischer	Standard- Abwelchung	К
	digkeit	Messinstitut: WIND-consuit	Messinstitut: WINDTEST	Messinstitut: WIND-consult	Mittelwert		nach /1/
	in 10m	Prüfbericht -	KWK	Prüfbericht -			
	Höhe	Nr.:	Prüfbericht -	Nr.:		s	$\sigma_R = 0.5 \text{ dB}$
		207SE899	Nr.:	287SEA01/01		3	0R-0,5 UB
		Datum der	1740/01	Datum der			
		Messung:	Datum der	Messung:			
		31.01./01.02.	Messung:	06.11.2001			
		2000	13.12.2000	Getriebe:			
		Getriebe:	Getriebe:	entfällt			
		entfällt	entfällt	Generator:			
		Generator:	Generator:	E-40/6.44			
		E-40/6.44	E-40/6.44	Rotorblatt:			
		Rotorblatt:	Rotorblatt:	E-40/6.44			
		E-40/6.44	E-40/6.44				
Schalleistungs-	6 m/s	98,4 dB(A)	96,8 dB(A)	96,9 dB(A)	97,4 dB(A)	0,9 dB(A)	1,9 dB(A)
pegel	7 m/s	99,4 dB(A)	98,6 dB(A)	98,5 dB(A)	98,9 dB(A)	0,5 dB(A)	1,3 dB(A)
L _{WAP} :	8 m/s	100,3 dB(A)	99,9 dB(A)	99,6 dB(A)	99,9 dB(A)	0,4 dB(A)	1,2 dB(A)
-WAP ·	9 m/s	100,7 dB(A)	100,8 dB(A) ¹⁾	100,1 dB(A) ¹⁾	100,5 dB(A)	0,4 dB(A)	1,2 dB(A)
	10 m/s ²⁾	100,8 dB(A)	100,8 dB(A)	100,1 dB(A)	100,6 dB(A)	0,4 dB(A)	1,2 dB(A)
Tonzuschlag	6 m/s	0 dB (- Hz)	0 dB (- Hz)	0 dB (- Hz)	0 dB (- Hz)		
KTN:	7 m/s	2 dB (304 Hz)	0 dB (- Hz)	0 dB (- Hz)	1 dB (304 Hz)		
KIN.	8 m/s	0 dB (- Hz)	0 dB (- Hz)	0 dB (- Hz)	0 dB (- Hz)	_	
	9 m/s	0 dB (- Hz)	0 dB (- Hz) ⁽³⁾	0 dB (- Hz) ³⁾	0 dB (- Hz)	_	-
	10 m/s ²⁾	0 dB (- Hz)	0 dB (- Hz)	0 dB (- Hz)	0 dB (- Hz)		
Impulszuschlag	6 m/s	0 dB	0 dB	0 dB	0 dB(A)		
KIN:	7 m/s	0 dB	0 dB	0 dB	0 dB(A)		
MIN.	8 m/s	0 dB	0 dB	0 dB	0 dB(A)	_	
	9 m/s	0 dB	0 dB ³⁾	0 dB ³⁾	0 dB(A)	-	-
	10 m/s ²⁾	0 dB	0 dB	0 dB	0 dB(A)		

Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Der angegebene Schalleistungspegel entspricht dem Schalleistungspegel bei 95% der Nennleistung. Bei der 2. und 3. Messung wurden 95% der Nennleistung bei einer Windgeschwindigkeit von v_{10} = 8,9 m/s in 10 m 0.G. erreicht, während bei der 1. Messung 95% der Nennleistung bei v_{10} = 10 m/s in 10 m 0.G. erreicht wurden. Es wurde der maximal im jeweils zu vermessenen Windgeschwindigkeitsbereich auftretende Schalleistungspegel verwenden. Bemerkungen: 1)

Die angegebenen Werte entsprechen den Werten bei 95% der Nennleistung. Es wurden die maximal im jeweils zu vermessenen Windgeschwindigkeitsbereich auftretenden Emissionsparameter verwendet

Ausgestellt durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Unterschrift

Unterschrift. Dipl.-Ing. R.Haevernick Dipl.-Ing. W.Wilke

Datum: 05.12.2001

/1/ CENELEC / BTTF83-2-WG4, 5. Draft Declaration of Sound Power Level and Tonality Values of Wind Turbines 1999-11*.

ENERCON Schalleistungspegel E-40/6.44

Seite 1 v. 1

Die Schalleistungspegel der ENERCON E-40 mit 600kW Nennleistung und 44m Rotordurchmesser werden wie folgt angegeben:

	Schalleistungs für 95% Ner	ENERCON <u>Garantie</u>			
Anzahi	1. Vermessung	2. Vermessung	3. Vermessung		
WEA	E-40/6.44 mit 46m NH	E-40/6,44 mit 65m NH	E-40/6.44 mit 78m NH	Garantierter Schallel- stungspegel und Tonhal-	
Institut	WIND-consult GmbH	WINDTEST KWK	WIND-consult GmbH	tigkeitszuschlag für 95%	
Bericht	WICO 207SE899 vom 27.03.2000	WT 1740/01 vom 11.04.2001	WłCO 287SEA01/01 vom 05.12.2001	Nennieistung nach FGW- Richtlinie	
46m NH	100,7 dB(A) 0 dB	100,5 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB	
50m NH	100,7 dB(A) 0 dB	100,6 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB	
58m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB	
65m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB	
78m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB	

- 1. Die Schalleistungspegelvermessungen, sowie die Ermittlung der Tonhaltigkeit und der Impulshaltigkeit, wurden entsprechend den FGW-Richtlinien (Technische Richtlinien für Windenergieanlagen, Revision 12 Stand 01.10.1998 und Revision 13 Stand 01.01.2000, Hamburg, Fördergesellschaft Windenergie e.V., Teil 1: Bestimmung der Schallemissionswerte), basierend auf der DIN EN61400-11 (Windenergieanlagen, Teil 11: Geräuschimmissionen) mit Stand Februar 2000 durchgeführt. Die Bestimmung der Impulshaltigkeit entspricht der DIN 45645 (T1, "Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen", Stand Juli 1996). Zur Feststellung der Tonhaltigkeit wurde entsprechend der Technischen Richtlinie nach DIN 45681 (Entwurf, "Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen", Stand Januar 1992) verfahren.
- 2. Der Schalleistungspegel für 95% der Nennleistung bezieht sich nach FGW-Richtlinie auf die Referenzwindgeschwindigkeit von 10 m/s in 10 m Höhe.
- 3. Aus den drei vorliegenden Meßberichten (WICO 287SEA01/01, WT 1740/01 und WICO 207SE899) lassen sich folgende energetische Mittelwerte bilden: für den Schalleistungspegel ergibt sich ein Wert von $L_{WA, 95\% \, Nennleistung, \, Mittel} = 100,6dB(A)$. In Bezug auf die Standardabweichung wurde ein Wert von $s_{95\% \, Nennleistung, \, Mittel} = 0,4dB(A)$ ermittelt.
- 4. Umgerechnete Schalleistungspegelwerte für die genannten Nabenhöhen ergeben sich als Berechnung aus den Vermessungen der E-40/6.44 der jeweils vermessenen Nabenhöhe.
- ENERCON Anlagen gewährleisten aufgrund ihres verschleißfreien Konzeptes und ihrer variablen Betriebsführung, daß vorgegebene Schallwerte während der gesamten Lebensdauer eingehalten werden.

WICO 287SEA01/01

Messung der Schallemission der Windenergieanlage (WEA) des Typs ENERCON E-40/6.44

nach

FGW-Richtlinie /1/

Standort:

Windpark Friesoythe (Niedersachsen)

Bargeshagen, 5. Dezember 2001

Standort	Windpark Friesoythe				
	(Niedersachsen)				
Aufgabenstellung	Messungen zum Schalldruckpegel und Bestimmung der Emissionsparameter einer Windenergieanlage (WEA)				
- Mining					
Meß-/ Prüfobjekt	ENERCON E-40/6.44, Nabenhöhe 78 m				
Art der Messung / Prü-	Akustische Vermessung nach FGW-Richtlinie /1/				
fung	Ermittlung des Schalleistungspegels				
	Ermittlung der Tonhaltigkeit				
	- Ermittlung der Impulshaltigkeit				
	Umrechnung auf andere Nabenhöhen				
A Change in the control of the c	ENERCON GmbH				
Auftraggeber	Dreekamp 5				
	D-26605 Aurich				
Auftragserteilung/-	01.10.2001				
bestätigung	09.10.2001				
Auftugushman	WIND-consult GmbH				
Auftragnehmer	Reuterstraße 9				
	D-18211 Bargeshagen				
	Tel. +49 (0) 38203-507 25				
	Fax +49 (0) 38203-507 23				

Bearbeitung

Prüfung

Dipl.-Ing. René Haevernick

Dipl.-Ing. Wolfgang Wilke

Bargeshagen, den 5. Dezember 2001

Dieser Bericht darf - mit Ausnahme der Anlage 8 - nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Meß- / Prüsobjekt.

6 Abweichungen zur Richtlinie

Zu Abweichungen mit Bezug auf die Vermessungsrichtline /1/ werden die folgenden Hinweise gegeben:

1. Informationen, die die Herstellerbescheinigung (vgl. Anlage 4) ergänzen:

(1)Turmfußdurchmesser: 4190 mm

- 2. Es sind keine Fotos vom Meßstandort vorhanden. Der Standort ist im Abschnitt 2 sowie durch den Lageplan (Anlage 1) beschrieben.
- 3. Die Daten der Kalibration vor und nach der Meßkampagne können dem Meßprotokoll entnommen werden. Die Meßkette wurde vor und nach der Messung kalibriert.
- 4. Bezüglich der Meßunsicherheit wird die Abschätzung der Gesamtmeßunsicherheit ausgewiesen. Für die Ermittlung der Tonhaltigkeit, der Richtwirkung und der Terzspektren wird keine Unsicherheit ausgewiesen.
- 5. Ein der Wirkleistung proportionales analoges Signal wurde durch den Auftraggeber über die Kundenschnittstelle bereitgestellt und für die Messung verwendet.

7 Zusammenfassung

Am 06.11.2001 wurde die WEA des Typs ENERCON E-40/6.44 mit einer Nabenhöhe von $h_N = 78$ m im Windpark *Friesoythe (Niedersachsen)* akustisch vermessen. Die Datenauswertung erfolgte nach /1/.

Die vermessene WEA zeigte während der Meßkampagne dem subjektiven Eindruck nach keine Auffälligkeiten des Geräusches. Die subjektive Bewertung des Anlagengeräusches wird durch die objektive Geräuschbewertung nach /1/ gestützt.

Die Ergebnisse der akustischen Vermessung werden in der nachfolgenden Tabelle zusammengefaßt dargestellt.

Klassenmitte	ms ⁻¹	6	7	8	8,9 ²⁾
Referenz-Wirkleistung ¹⁾	kW	212	343	484	570
Tonhaltigkeit K _{TN}	dB	0	0	0	0
Impulshaltigkeit K _{IN}	dB	0	0	0	0
Schalleistungspegel LWA, P	dB(A)	96,9	98,5	99,6	100,1

Tab. 12 Ergebnisübersicht

- 1) Ermittlungsbasis: Leistungskurve, die der Ermittlung des Schalleistungspegels zugrunde liegt (vgl. Anlage 5).
- 2) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀ = 8,9 ms⁻¹ in 10 m ü.G..

Die A-bewerteten Schalleistungsspektren sind in Anlage 6 dargestellt.

Die Meßunsicherheit wird nach /1/ mit Uges = 1,4 dB abgeschätzt.

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteilsch erstellt.

Bericht WICO 207SE899/01

Abschätzung des Schalleistungspegels auf andere Nabenhöhen Windenergieanlage (WEA) des Typs E40 /6.44

nach

FGW-Richtlinie /1/

Standort:

Nesse (Niedersachsen)

Bargeshagen, 24. August 2000

Standort	Nesse
	(Niedersachsen)
eri saleri da Jerra e e e e e e e e e e e e e e e e e e	
Aufgäbenstellung	Abschätzung des Schalleistungspegels einer Windenergieanlage (WEA)
Server, and the server server and the server server and the server serve	
Meß-/ Prüfobjekt	E40/6.44
Art der Messung	Unitechning des Seb-11-1-1
Prüfung	Umrechnung des Schalleistungspegels nach /1/
Auftraggeber	ENERCON GmbH
	Dreekamp 5
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	26605 Aurich
Auftragserteilung	24.08.2000
Garages and American Colonials and Colonials	
Bezugsquellen:	"Messung der Schallemission der Windenergieanlage (WEA)
Standort	des Typs E40 /6.44" Nesse

Standort	-
Datum 27.03.2000	
Bericht-Nr. (WIND-consult, WICO 207SE899	
GmbH)	
Auftraggeber ENERCON GmbH	
Dreekamp 5	
26605 Aurich	
	i

Some with the control of the control	
Auftragnehmer WIND-consult GmbH	
Reuterstraße 9	
D-18211 Bargeshagen	
Tel. +49 (0) 38203-507 25	
Fax +49 (0) 38203-507 23	
	1

Bearbeitung

Dipl.-Ing. Wolfgang Wilke

Prüfung

DiplyIng. Ulrich Arndt

Bargeshagen, den 24. August 2000

Dieser Bericht darf nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Meß-/Prüfobjekt.

Inhalt

1	Aufgabenstellung	,
2	Methode	<u>د</u>
3	Ergebnisse	4

Verzeichnis der verwendeten Formelzeichen und Abkürzungen Verzeichnis der verwendeten Literatur

1 Aufgabenstellung

Die Windenergieanlage (WEA) E40/6.44 mit einer Nabenhöhe von $h_N = 46$ m ist akustisch nach /1/ vermessen worden. Der vollständige Meßbericht /2/ liegt vor. Dieser Bericht ersetzt die Umrechnung auf andere Narbenhöhen Pkt. 5) der Bezugsquelle /2/.

Die Richtlinie /1/ sieht die Möglichkeit vor, den für eine Nabenhöhe durch Messung bestimmten Schalleistungspegel rechnerisch für andere Nabenhöhen anzugeben.

Auf dieser Basis ist der Schalleistungspegel aus /2/ für die Nabenhöhen $h_N = 50$ m, $h_N = 58$ m, $h_N = 65$ m und $h_N = 78$ m anzugeben.

2 Methode

Die Richtlinie /1/ ermöglicht die Umrechnung des Schalleistungspegels auf andere Nabenhöhen, wenn die Regressionsparamter für den Zusammenhang Schalleistungspegel - Windgeschwindigkeit bekannt sind (vgl. /1/, Anhang C).

Der maximale Schalleistungspegel wird für den Referenzpunkt $v_{to} = 10 \text{ ms}^{-1}$ in 10 m ü.G. bzw., sofern dieser Betriebspunkt früher erreicht wird, für den Referenzpunkt der 95%igen Nennleistung angegeben.

3 Ergebnisse

Kenng	röβe	Referenzpunkt in 10 m il.G.	$\mathbf{h_N} = 46 \ \mathbf{m}^{(1)}$	$h_N = 50 \text{ m}$	h _N ≒58 m	h _N =65 m	$h_{N} = 78 \text{ m}$
LWAP	[dB(A)]	6 ms ⁻¹	97,8	97,9	98,1	98,2	98,4
LWAP	[dB(A)]	7 ms^{-1}	98,9	99,0	99,1	99,3	99,4
LWAP	[dB(A)]	8 ms ⁻¹	99,8	99,9	100,0	100,1	100,3
LWAP	[dB(A)]	9 ms ⁻¹	100,4	100,5	100,5	100,6	100,7
LWAP	[dB(A)]	10 ms ⁻¹	100,7	100,7	100,8	100,8	100,8

Tab. 1 Abschätzung des Schalleistungspegels

1) Vermessung /2/

Hinweise:

- Die in Tab. 1 gegebene Abschätzung unterstellt eine akustisch baugleiche Anlage!
- Eine Neuauswertung der Ton- oder Impulshaltigkeit ist nicht erforderlich, da das Anlagengeräusch im gesamten vermessenen Bereich weder ton- noch impulshaltig ist (vgl. /2/).

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch erstellt.

Verzeichnis der verwendeten Formelzeichen und Abkürzungen

Bezeichnung Luftdruck	Symbol	Einbeit
Linienabstand	ρ	hPa
Bandbreite der Frequenzgruppe	Δf	Hz
Tonpegeldifferenz	Δf_{ϵ}	Hz
Regressionskoeffizient	ΔL	dB
Bestimmtheitsmaß	a	dB(A)
Regressionskoeffizient	ľ	-
Turmdurchmesser (Turmfuß)	Ь	dB(A)/x
Rotordurchmesser	ρţ	m
relative Luftfeuchte	d_R	m
untere Grenzfrequenz der Gruppe	F	%
obere Grenzfrequenz der Gruppe	$\mathbf{f_1}$	Hz
Akustisch beanspruchte Fläche	f_2	Hz
Tonfrequenz	F_{sku}	ha
Fundamenthöhe	f_{T}	Hz
Nabenhöhe ü.G.	h_{f}	m
Gesamtnabenhöhe (ü.G.)	h _N	m
Referenzhöhe	h _{N, ges.}	m
	h _{ref.}	m
Impulszuschlag nach DIN 45645 ("N" f. Nahbereich)	K _{IN}	dB
Fonzuschlag nach DIN 45681 ("N" für Nahbereich) AF-bewerteter Schalldruckpege!	K _{TN}	dB
äquivalenter Dauerschallpegel [Perzentil]	L _{AF}	dB(A)
Equivalenter Dauerschaller and (%) B. 5	LAFea.[xx]	dB(A)
aquivalenter Dauerschallpegel (für Referenz)	LAFeq. ref.	dB(A)
aquivalenter Dauerschallpegel (für Referenz korrigiert) Perzentilpegel x %	LAFeq. ref., k	dB(A)
	L _{AFx}	dB(A)
Frequenzgruppenpegel des verdeckten Geräusches Fonpegel	$\mathbb{L}_{\mathtt{G}}$	dB
	L _T	dB
Schalleistungspegel bezogen auf V _{10, ref.} Schalleistungspegel bezogen auf P _{ref.}	Lwa	dB(A)
Wirkleistung [95%]	L _{WA, P}	dB(A)
Wirkleichung [93%]	P _[95]	kW
Wirkleistung, korrigiert auf Normalatmosphäre Referenzwirkleistung	P_k	kW
Abstand Rotationsebene-Gondeldrehachse	P _{ref.}	kW
Abstand Scholler War in the Condend of the Condend Scholler War in the Condend Scholle	Τ _ε	m
Abstand Schallquellenmitte-Aufpunkt (IEA)	R_{i}	m
Meßentfernung (Meßpunkt - Turmaußenhaut)	R _{om}	m
Lufttemperatur Meßunsicherheit	T	°C
	$U_{ m ges.}$	₫B
Vindgeschwindigkeit in 10 m ü.G.	V _{i0}	m s ⁻¹
Referenzwindgeschwindigkeit in x m über Grund	V _{x, ref.}	m s ⁻¹
eferenzrauhigkeitslänge	Z _{o. ref.}	m

Verzeichnis der verwendeten Literatur

- /1/ FÖRDERGESELLSCHAFT WINDENERGIE E.V. (FGW) FÖRDERGESELLSCHAFT WINDENERGIE E.V. (FGW): Technische Richtlinien für Windenergieanlagen. Rev. 13 Stand 01.01.2000. Hamburg (D)
- WIND-CONSULT GMBH (WICO): Messung der Schallemission der Windenergieanlage (WEA) des Typs E40/6.44. Berichts-Nr. WICO 207SE899. Bargeshagen (D), 27.03.2000

Zusammenfassung der Messergebnisse für die Schallemissionsmessung an der Windenergieanlage

Enercon E40/6.44

Bericht WT 1706/01 vom 2001-03-21

WINDTEST

Technische Daten der Windenergieanlage: Typ: E40/6.44 Hersteller: Enercon GmbH, Aurich Nennleistung: 600 kW Nabenhöhe über Grund: 65,0 m Nabenhöhe über Fundamentoberkante: 65,0 m Leistungsregelung: pitch Turmbauart: Stahlrohr Rotordurchmesser: 43,7 m Rotorblatthersteller:.... Enercon Rotorblattyp: Enercon Rotordrehzahl(bereich): 18 - 34 min⁻¹ Getriebehersteller: entf. Getriebetyp:entf, Generatortyp: Ringbauweise, synchron

Leistungskurve:.....2001-01-10, WT KWK

Messgeometrie:	
Messentfernung R ₀ :	80 m
Fundamenthöhe hr:	0 m
Mikrophonhöhe ha:	0 m
Rotationsebene ⇒ Turmmittelpkt, d:	2,5 m

Messbedingunge	en:	
Messzeitraum:		19:00h - 22:45h 09:30h - 11:00h
Windgeschwindigkeit: 1-min Mittel, WG _{10m} : Windrichtung WR:		
Elektr, Wirkleistung Pu Luftdruck pluft;	v el. (1-s Wert):	: 130 - 670 kW 1001 hPa
Lufttemperatur T _{Luft} : Luftfeuchte:	•••••••	80 %rel.

Bestimmung der Schalleistung nach FGW-Richtlinie **: L_{eq} [dB] ⁶⁵ wa... 6.0 2.0 8.0 9. 2 **L__ [d8**] 53,7 11.7 15.5 17.2 16,3 17.1 51.0 52.9 51.2 55.3 L., (d8) 96. 4 98. 1 99.6 100.7 100.8 table 1 : results L = f(WS) -1.55933896+02 1.002462(E+D) 1.01197356+07 7. 2805054E-01 1 -1.9774005£+01 1.68750776+00 0. 00000000E+00 -5. +06173[E-02 0.0000000E-00 WEG oper, L-A-B-X-O-X"2-O-X"8-E-X" Backgr, L-A-B-X table 2 : regression parameters WS Im/sl Haseluerine 8 te: Enercon E40/6.44 Measurem: 2000-12-13 WINDTEST Standard: FGW/EC Regression of Lea over Wind Speed Data base 1 Hz sampling Kalasr-Wilhelm-Koog GmbH in charge: Old, ing I Clausen

Bemerkungen:

- Der 95 %-Wert der Nennieistung beträgt 570 kW entsprechend 9,2 m/s in 10 m Höhe,
- ** Die Auswertung erfolgt gemäß Technischer Richtlinie bis 95% der Nennleistung.

WINDTEST

Bericht WT 1706/01 vom 2001-03-21

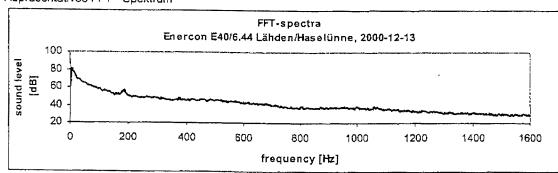
Kaiser-Wilhelm-Koog GmbH

Impulshaltigkeit nach FGW-Richtlinie/DIN 45645 T1 für Referenzbedingungen:

BIN	BIN – Grenzen	BIN - Mitte	Mittelungs- pegel L _{Aeq}	Taktmaxima Ipegel Laftm	Berechneter Impulszuschlag K _{IN}	Impulszuschlag nach FGW-Richtlinie
[m/s]	[m/s]		[dB]	[dB]	[dB]	[dB]
6	5,5 - 6,5	6,1	52,4	54,3	1,8	0
7	6.5 - 7,5	7,0	53,9	55,7	1,8	0
8	7,5 - 8,5	7,9	54,9	56,7	1,8	0
9	8,5 - 9,5	8,9	55,9	57,6	1,8	0
10	9,5 - 10,5	9,9	56,5	58.1	1,7	0

Terzanalyse für Referenzbedingungen (für 9,2 m/s in 10 m Höhe entspr. 570 kW):

	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500	630
Ĺ	63,6	68,8	71,7	75,0	78,2	80,3	82,0	83,7	85,3	88,0	87,6	89,1	91,0	93,0	92,2


800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
90,2	91,3	89,0	86,6	84,0	82,2	81,2	78,8	76,4	71,8	65,8	59,9

Oktavanalyse für Referenzbedingungen (für 9,2 m/s in 10 m Höhe entspr. 570 kW):

31,5	63	125	250	500	1000	2000	4000	8000
73,8	0,88	88,5	93,0	96,9	95,0	89,3	83,9	72,9

Bestimmung der Tonhaltigkeit nach FGW-Richtlinie / EDIN 45681 für Referenzbedingungen (9,2 m/s in 10 m Höhe entspr. 570 kW) :

Repräsentatives FFT - Spektrum

Ergebnistabelle (für Referenzbedingungen **:

Bereich WG _{10m}	BIN - Mittel WG _{10m}	Anzahl der Spektren	Tonfrequenz fr	Pegeldifferenz AL	Tonzuschlag nach FGW - Richtlinie
[m/s]	[m/s]	(-)	[Hz]	[dB]	[dB]
5,5 - 6,5	6	12	-	-	0
6,5 - 7,5	7	12	-	-	0
7,5 - 8,5	8 .	12	•	-	0
8,5 - 9,5	9	12	-	-	0
9,5 - 10,5	10 *	12	176 - 190	-2,38	0

Bearbeiter:

J. Clausen

Geprüft:

Ďipl.-Ing. J. N

GE Wind Energy 1,5sl (Enron Wind 1,5sl)

Kötter Messbericht Nr. 25574-1.001 vom 23.07.2001

Kötter Messbericht Nr. 26272-1.001 vom 18.07.2002

WIND-consult Bericht Nr. WICO 286SEA01 vom 26.10.2001

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte

Rev. 13 vom 01 Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e.V. Flotowstraße 41-43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 25574 - 1.001

zur Schallemission der Windenergieanlage vom Typ Enron Wind 1.5 sl-85

Allgemeine Angaben Technische Daten (Herstellerangaben)

Enron Wind GmbH Nennleistung (Generator): 1500 kW Anlagenhersteller: 77,0 m

Rotordurchmesser:

85m Seriennummer: 1500336 Nabenhöhe über Grund:

kon. Rohr + Sockel WEA-Standort (ca.): N:52°05'10" O:09°32'53" Turmbauart: Leistungsregelung: Blattverstellung

Erg: Daten zu Getriebe und Generator (Herstellerang.) Ergänzende Daten zum Rotor (Herstellerangaben)

Getriebehersteller: Eickhoff Rotorblatthersteller:

G44900xCPNHZ-195sl Typenbezeichnung Blatt: LM 37.3P Typenbezeichnung Getriebe:

Generatorhersteller: Variabel Blatteinstellwinkel:

Typenbezeichnung Generator: JFRA500LB-04A Rotorblattanzahl: 1800 U/min Generatornenndrehzahl: 18,3 / 10 - 20 U/min Rotordrehzahlbereich:

Prüfbericht zur Leistungskurve: vorläufige Leistungskurvenmessung Nr. LK 00 0002 ZB1, Windtest Grevenbroich GmbH, 17.04.2001

					Re	eferenz	punkt				challe	missio	ns-	_		
			w	indgesc	rdisierti hwindig n Höhe	keil		Elektrisc Virkleist			Parameter			Bemerkungen		
·				(ms ⁻¹			750	kW		102,	dB(A)				
				•	7 ms ⁻¹			1080	kW	İ	103,	3 dB(A)				
Schalleistun	gs-Pege	LWAP		1	3 ms ⁻¹			1350	kW		103,	7 dB(A)				
				1	3,6 ms ⁻¹			1425	kW		•	7 dB(A)				
												- dB(A)				
					6 ms ⁻¹			750	kW			dB	1			
Tonzuschlag	s for dec				7 ms ⁻¹			1080				dB				
Nahbereich	-	•			8 ms ⁻¹			1350		1		ei 164 h		Fernfeld:	•	
, , , , , , , , , , , , , , , , , , , ,					8,6 ms ⁻¹			1425 kW			1 dB bei 166 Hz			Fernfeld: $K_T = 0 \text{ dB}$		
					6 ms ⁻¹			750	kW							
					7 ms ⁻¹) dB				
Impulszusci	nlag für d	den	1		/ ms 8 ms ⁻¹			1080 1350		1	-) dB				
Nahbereich	KIN				o ms 8,6 ms	1		1428) dB	1			
					0,0 1113		,									
Terz-Scha	lleistun	aspeae	l Refe	enzpui	nkt v ₁₀	= 8 ms	⁻¹ in dE	3(A)								
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
LWAP		60,6	67,4	72,5	75,7	79,3	82,5	85,4	87,4	89,0	93,0	91,7	93,7	94,0	91,7	92,2
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
LWAP	93,5	92,2	92,1	91,3	90,3	88,6	86,8	83,5	79,5	75,0	68,5	63,5	61,9	60,9	64,8	58,8
Terz-Scha	llaiati-	22222	J Dofo		akt v.	- 86-	nc-1 in	HB(A) -	ntenro	chand	05% d	or Nenr	nleistum	n		
		gspege 20	25	31.5	40	50	63	80	100	125	160	200	250	315	400	500
Frequenz	16					79.4		85,9	87.6	89,2	93,1	91,7	93,2	93,3	91.3	91,7
LWAP	-	59,2	67,0	72,2	75,7		83,0	·	<u> </u>	5000	6300	8000	10000	12500	16000	20000
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000				58.0	58,2	63.3	57,3
LWAP	93,4	92,2	92,5	91,8	90,8	89,2	87,4	84,2	82,5	78,0	74,9	60,8	20,0	50,2	00,0	37,3

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 27.07,2001. Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Standardisierte Windgeschwindigkei bil Höhe von 8,6 ms. entspricht 95 % der Nennleistung Bemerkungen:

Gemessen durch: KÖTTER Consulting Engineers

- Rheine -

23.07.2001 Datum:

Bonifatiusstraße 400 · 48432 Rheine <u>Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43</u>

Dieser Auszug aus dem Prüfbericht enthält 1 Selte.

uszug aus dem Prüfbericht 👑

Selte 1

tammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, eil 1: Bestimmung der Schallemissionswerte"

v. 13 vom 01:Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e.V. Flotowstraße 41-43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 26272-1.001 zur Schallemission der Windenergieanlage vom Typ 1.5 SL

Allgem	eine Angaben	Technische Daten (I	lerstellerangaben)
nlagenhersteller:	GE Wind Energy GmbH	Nennleistung (Generator):	1500 kW
		Rotordurchmesser:	77,0 m
eriennummer:	1500751	Nabenhöhe über Grund:	85 m
VEA-Standort (ca.):	38690 Vienenburg	Turmbauart:	kon. Rohr + Sockel
tandortkoordinaaten		Leistungsregelung:	Blattverstellung
Ergänzende Daten zu	m Rotor (Herstellerangaben)	Erg. Daten zu Getriebe und	Generator (Herstellerang.) 🤄
lotorblatthersteller:	GE Wind Energy	Getriebehersteller:	Lohmann Stolterfoht
ypenbezeichnung Blatt:	LM 37.3P	Typenbezeichnung Getriebe:	GPV 451 R3
latteinstellwinkel:	Variabel	Generatorhersteller:	VEM
lotorblattanzahl:	3	Typenbezeichnung Generator:	DASAA5023-4UC
totordrehzahlbereich:	10 – 20 U/min	Generatornenndrehzahl:	1800 U/min

Leistungskurvenvermessung (Windtest, LK 00 002 ZB2 vom 17.05.2002) zur 1.5SL zur Verfügung gestellt von der GE Wind Energy GmbH

					R	eferen	zpunkt	:			Schalle	missio	ins-			
		Standardisierte Windgeschwindigkeit in 10 m Höhe			Elektrische Wirkleistung			•		meter	-	Ben	nerkung	en		
		****	Tanahira III	6 ms ⁻¹			740 kW				101,	4 dB(A)				
Schalleistur	igs-Peg	el L _{WA,P}			7 ms ⁻¹			1135	kW		103,	9 dB(A)	1			
					8 ms ⁻¹		1425 kW				103,	7 dB(A)			····	
 Tonzuschla	n für der	n		6 ms ⁻¹			740 kW			() dB	1				
Vahbereich			ŀ	7 ms ⁻¹			1135 kW					dB				
				8 ms ⁻¹			1425 kW) dB				
mpulszusci	hlag für	den		6 ms ⁻¹			740 kW				0 dB					
Nahbereich				7 ms ⁻¹			1135 kW 1425 kW) dB				
				8 ms ⁻¹				1425	KVV		() dB				
Terz-Scha	lleistun	gspege	el Refe	enzpui	nkt v ₁₀	= 8 ms	1 in dE	(A) ent	tsprech	en 95%	% der N	lennleis	stung			
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
-WA,P	52,4	59,1	64,9	71,6	73,7	77,2	80,5	83,6	85,2	86,6	90,7	89,7	91,4	93,0	93,1	93,0
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
-WA.P	93,4	93,6	93,1	92,8	92,3	90,7	87,4	85,4	83,3	80,4	77,0	72,3	67,5	51,8	46,2	45,2
Terz-Scha	lleistun	gspege	el Refe	teferenzpunkt v ₁₀ = 7 ms			⁻¹ in dE	B(A)								
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
-WA,P	55,9	61,4	66,9	72,9	75,1	79,1	82,9	85,4	87.2	88,4	90,3	91,2	92,9	93.9	93,8	93,5
requenz	630	800	1000				2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
-WA,P	93,3	92,9	92,8	92,5	91,8	89,6	86,5	84,4	81,8	78.9	75,0	70,6	66,0	50,0	39,6	37,9

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 04.07.2002. Die Angaben ersetzen nicht ten o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Die standardisierte Windgeschwindigkeit von v₁₀= 8,0 ms⁻¹ entsprechen 95 % der Nennleistung Bemerkungen:

KÖTTER Consulting Engineers Gemessen durch:

- Rheine -

Datum: 18.07.2002 Bonifatiusstraße 400 · 48432 Rheime

Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43 Unterschrift

Dieser Auszug aus dem Prüfbericht enthält 1 Seite.

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht WICO 286SEA01 zur Schallemission der Windenergieanlage vom Typ Enron Wind 1.5sl

Allgemeine Angaben		Technische Daten (Herstellera	nanhan)
Anlagenhersteller;	Enron Wind GmbH Holsterfeld 5a	Nennleistung (Generator): Rotordurchmesser:	1500 kW 77 m
Seriennummer:	48499 Salzbergen 1500321	Nabenhöhe über Grund: Turmbauart:	100 m Stahlrohrturm auf Betonsockel
WEA-Standort (ca.): Ergänzende Daten zum Ro	N 53° 19′ 01′′′; O 13° 51′ 42′′′ tor (Herstellerangaben)	Leistungsregelung: Erg. Daten zu Getriebe und Ge	Pitch/Stall/Aktiv-Stall
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl Rotordrehzahlbereich: Prüfbericht zur Leistungsk	LM Glasfiber A/S LM 37.3P variabel 3 10 - 20 U/min	Getriebehersteller: Typenbezeichung Getriebe; Generatorhersteller: Typenbezeichung Generator: Generatornenndrehzahl:	Eickhoff G45730xCPNHZ195sI VEM DASAA 5023-4UB 1000-2000 U/min

	Referenz	punkt	Schallemissions- Parameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		
Schalleistungs- Pegel Lwa.p	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8.4 ms ⁻¹	763 kW 1078 kW 1365 kW 1425 kW	102,9 dB(A) 104,4 dB(A) 104,5 dB(A) 104,5 dB(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻² 7 ms ⁻² 8 ms ⁻² 8,4 ms ⁻²	763 kW 1078 kW 1365 kW 1425 kW	0 dB bei 160 Hz 0 dB bei 166 Hz 2 dB bei 166 Hz 2 dB bei 166 Hz	
	6 ms ⁻¹	763 kW	0 dB	

Impulszuschlag 7 ms¹¹ für den Nahbereich 8 ms¹¹ K _{IN} 8,4 ms⁻¹					1078 kW 1365 kW 1425 kW			0 dB 0 dB 0 dB								
Frequenz	16	20						,		v ₁₀ = 8 i	ns ⁻¹ in	dB(A)				······
- requeriz	<u> </u>		25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
LWA, P	54.7	59,2	64.5	71,2	69,8	74,0	79,0	81,1	84,1	86,9	94,1	91.5	92.7	94.4	94.3	94.5
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	-	12500		20000
LWA, P	93,4	94,2	93,8	92,1	91,6	8,08	86,7	84,8	81,1	80,3	83,1	78,2	79,7	84,9	73,8	62,2

	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 8,4 ms ⁻¹ in dB(A)															
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
Lwa. F	47.6	53.4	62,1	70,7	69,4	74,4	79,2	82,1	85,1	88.0	94.4	92.3	93.3	94.6	94.6	94.6
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300		10000		- 1	
LWA, P	93,2	93,9	92,5	91,1	91,4	89,4	87,1	85,6	81,7	80,5	82.8		79.9	85.2	74.0	62.5

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 10.10.2001. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

(1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,4 ms⁻¹ in 10 m ü.G..

Gemessen durch:

Impulszuschlag

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

7 ms⁻¹

Datum: 26,10,01

Unterschrift Dipl.-Ing. R.Haevernick Dipl.-Ing. W.Wilke

0 dB

NORDEX N-90

Schallmessbericht als Zusammenfassung von drei einzelnen Vermessungen: WINDconsult, vom 18.12.2004

Bestimmung der Schallemisslons-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Tochnischen Richtlinie für Windenargieanlegen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ enzugeben, um die schalllechnische Planungssicherheit zu erhöhen.

Anlagendaten				
Hersteller	NORDEX Enorgy GmbH Bornbarch 2		Anlagenbezeichnung Nennleistung	NORDEX N90 2300 kW
	D-22848 Norderstedt		Nabenhöhe	100 m
			Rolordurchmesser	90 m
	1	Messung Nr. 2	3	
Seriennummer Standort Vermessene	8098 Gul Losten, WEA 4	8107 Gui Losien, WEA 3	8127 Schliekum, WEA 5	
Nabenhöhe Meßinstitut	80 m WIND-consult	80 m WIND-consult	100 m WINDTEST KWK	
Meßbericht Berichtsdatum	WICO 063SE204/01 10.05.2004	WIGO 274SE604/01 09.12.2004	WT 3989/05 14.02.2005	
Getriebetyp Generatortyp	CPNHZ-244 JFWA-560MQ-06A	PZAB 3450 JFWA-560MQ-06A	CPNHZ-244 JFWA-560MQ-06A	
Rotorblatt	LM 43.8 P	LM 43.8 P	LM 43.8 P	

Schallioistungspegel Lwap [dB(A)]	•								
Messung Nr.	Slandardislerte Windgeschwindigkelt in 10 m ü.G.									
	6 ms ⁻¹	7 ms ⁻¹	8 ms 1	8,11 ms ⁻¹						
1 2	101,0 d8(A) 101,7 d8(A)	102,2 dB(A) 102,9 dB(A)	103,0 d8(A) 103,7 dB(A)	103,0 dB(A)						
3	102,0 dB(A)	102,9 dB(A)	103,2 dB(A)	103,7 dB(A) 103,2 dB(A)						
Militelwert Lw	101,6 dB(A)	102,7 dB(A)	103,3 dB(A)	103,3 dB(A)						
Standardabwelchung s	0,51	0,40	0,36	0.36						
Gesamtslandardabweichung (o _R = 0.5 dB)	85 £8,0	0,74 dB	0,71 dB	0,71 dB						
K ₅₀₃₄	1,1 dB	1,0 dB	0.9 dB	85 6.0						

Messung Nr.		Standardislerte Windgeschwindigkeit in 10 m ü.G.							
	მ ms ⁻¹	7·ms ⁻¹	8 ms ^{.1}	V10,051:F1100n					
1	0 dB bel - Hz	0 dB bei - Hz	0 dB bei - Hz	O dB bel - Hz					
2	0 d6 bei - Hz	0 dB bei - Hz	1 dB bel 108 Hz	0 dB bel - Hz					
3	0 dB bei - Hz	0 dB bel - Hz	0 dB bei - Hz	0 dB bei - Hz					

Impulszuschlag K _H Messung Nr.												
	5 ms ⁻¹	7 ms ⁻¹	8 ms ⁻¹	V10 05 WFHERE								
1	0 dB	0 dB	0 dB	0 dB								
2	0 dB	0 dB	0 dB	0 dB								
3	0 dB	0 dB	0 dB	0 dB								

		Terz	- und O	ktav-Scl	halleisti	ngapeg	ci Rofo	ronzpui	nkt v _{io} =	B,11 m	s" in dE	(A)			
Frequenz	12,5	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315
Lwar	53,8	58,3	62,8	66,4	70,4	74,1	77,7	81,2	83,5	89.2	90.1	89.4	91,8	92,2	93
LVILD		64,5		76,1		86,2		94.4		1.017	97.1				
Frequenz	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA P	92,3	91,3	91,7	89,9	90.8	90.9	91.6	91,5	90,5	87.8	85.5	82.5	75.2	70.5	
LWA P	96,6		95,3		96,0		90,6			76,2 70,5 67,4					

Die Angaben ersetzen nicht den o. g. Prüfterichte (insbesondere bei Schallfimmissionsprognosen).

Es wird darauf hingewiesen, daß die Werte für die Tonhaltigkeit nicht ausschließlich bei der Nabenhohe hu= 100 m bestimmt wurden und so nicht unmittelbar auf umgerechnete Nabenhöhen übertragbar sind.

Ausgesteill durch: WIND-consult GmbH

Dalum: 18.12.2004

Reuterstraße 9 D-18211 Bargeshagen

Unterschrift Dipl.-Ing. R. Haevernick

Unlerschrift Dipl.-Ing, W. Wilke

FORDERGESELLSCHAFT WINDENERGIE E.V. (FGW): Technischo Richtlinien für Windenergieanlagen. Rov. 15 Stand 01.01.2004. Kiel (D)
Wind turbines - Part 14: Declaration of epparent sound power level and lonality values of wind turbines. IEC 61400-14 Ed. 1 (CDV),2004 /1/

121

ENERCON E-82

Schallvermessungsbericht als Zusammenfassung von drei Einzelmessungen:

Kötter Consulting Engineers KG, Bericht NR. 207542-02.02 vom 18.09.2008

SCHALLTECHNISCHER BERICHT NR. 207542-02.02

über eine Dreifachvermessung von Windenergieanlagen des Typs Enercon E-82

Datum:

18.09.2008

Auftraggeber:

Enercon GmbH Dreekamp 5 26605 Aurich

Bearbeiter:

Dipl.-Ing. Jürgen Weinheimer Dipl.-Ing. Oliver Bunk

Seite 2 zum Bericht Nr. 207542-02.02

1.) Zusammenfassung

Es wurden die Ergebnisse aus drei Emissionsmessungen an Windenergieanlagen (WEA) des Typs E-82 an den Standorten Ihlow / Simonswolde, Bimolten und Sulingen zusammengefasst.

Die Nabenhöhe beträgt beim Standort Ihlow / Simonswolde h_N = 98 m und an den anderen beiden Standorten übereinstimmend h_N = 108 m abweichend zu [1], wonach bei jeder Einzelmessung eine andere Nabenhöhe vermessen werden muss. Es lag jedoch keine Vermessung zu einer anderen Nabenhöhe vor. Die Emissionsdaten wurden für die Nabenhöhen h_N = 78 m, 85 m, 98 m, 108 m und 138 m sowie für die Windklassen von v_s = 6 m/s bis 10 m/s im Betrieb I mit der Nennleistung von P_{Nenn} = 2.000 kW ermittelt.

Die gemittelte maximale Schallleistung ergab sich für alle Nabenhöhen zu $L_{WA} = 103,8 \text{ dB}(A)$. Die WEA-Geräusche waren nach dem subjektiven Höreindruck weder ton- noch impulshaltig. Die rechnerische Auswertung ergab jeweils keine Tonhaltigkeit. Eine rechnerische Auswertung der Impulshaltigkeit war nicht erforderlich.

Nachfolgender Bericht wurde nach bestem Wissen und Gewissen mit größter Sorgfalt erstellt.

Rheine, 18.09.2008 JW/BB

KÖTTER Consulting Engineers KG

BoniforiussroSe 400 - 43433 Rheine 7e.05071 2710 1 - Fax 0 5071 - 97 1043

i. V. Dipl.-Ing. Oliver Bunk

0.32

i. A. Dipl.-Ing. Jürgen Weinheimer

Juga Win him

Die Weitergabe von Daten oder Informationen ist dem Auftraggeber gestattet. Authentisch ist dieses Dokument nur mit Originalunterschrift. Bezüglich der Urheberrechte verweisen wir auf die jeweils gültigen KCE-Beratungsbedingungen.

Seite 3 zum Bericht Nr. 207542-02.02

INHALTSVERZEICHNIS

1.)	Zusammenfassung	2
2.)	Bearbeitungsgrundlagen	4
3.)	Ergebniszusammenfassung für die Nabenhöhe 78 m	5
4.)	Ergebniszusammenfassung für die Nabenhöhe 85 m	7
5.)	Ergebniszusammenfassung für die Nabenhöhe 98 m	9
6.)	Ergebniszusammenfassung für die Nabenhöhe 108 m	11
7.)	Ergebniszusammenfassung für die Nabenhöhe 138 m	13

Seite 4 zum Bericht Nr. 207542-02.02

2.) <u>Bearbeitungsgrundlagen</u>

Für die Ermittlung der Geräuschemissionen werden folgende Normen, Vorschriften und Unterlagen herangezogen:

- [1] Fördergesellschaft Windenergie e. V.: Technische Richtlinien für Windenergieanlagen, Revision 18, Stand 01.02.2008, Teil 1: Bestimmung der Schallemissionswerte
- [2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03
- [3] DIN EN 61400-11, Windenergieanlagen Teil 11: Schallmessverfahren; Ausgabe März 2007
- [4] Enercon GmbH, Schallemissionsmessung Enercon E-82 am Standort 26632 Ihlow / Simonswolde im Betrieb I, Prüfbericht Nr. M65 333/1, Müller BBM GmbH, 21. April 2006
- [5] Windenergieanlage des Typs Enercon E-82 am Standort 26632 Ihlow / Simonswolde, Umrechnung der aus Messungen ermittelten Schallleistungspegel auf andere Nabenhöhen nach den FGW-Richtlinien, Prüfbericht Nr. M65 333/2, Müller BBM GmbH, 08. Mai 2006
- [6] Schalltechnischer Bericht Nr. 207041-01.01 über die Ermittlung der Schallemissionen einer Windenergieanlage des Typs Enercon E-82 (Betrieb I) im Windpark Bimolten, KÖTTER Consulting Engineers KG, 19.04.2007
- [7] Schalltechnischer Bericht Nr. 207542-01.01 über die Ermittlung der Schallemissionen einer Windenergieanlage des Typs Enercon E-82 im Windpark Sulingen-Ost in 27232 Sulingen, KÖTTER Consulting Engineers KG, 28.04.2008

Seite 5 zum Bericht Nr. 207542-02.02

3.) Ergebniszusammenfassung für die Nabenhöhe 78 m

Bestimmung der Scha	llleistungspegel aus	mehreren Einzelmess	ungen
			Seite 1 von 2
Auf der Basis von mindestens dre lichkeit die Schallemissionswerte höhen.	ei Messungen nach der "Tech eines Anlagentyps gemäß [2]	nischen Richtlinie für Windenergie anzugeben, um die schalltechnis	eanlagen" [1] besteht die Mög- che Planungssicherheit zu er-
Anlagendaten			
Hersteller	Enercon GmbH	Anlagenbezeichnung	E-82
		Nennleistung in kW	2.000 (Betrieb I)
		Nabenhöhe in m	78
		Rotordurchmesser in m	82
Angaben zur Einzelmessung		Messung-Nr.	
,gaba, t zar zzeimessang	1	2	3
Seriennummer	82001	82004	82258
Standort	Ihlow / Simonswolde	Bimolten	Sulingen
vermessene Nabenhöhe (m)	98	108	108
Messinstitut	Müller-BBM GmbH	KÖTTER Consulting Engineers KG	KÖTTER Consulting Engineers KG
Prüfbericht	M65 333/1	207041-01.01	207542-01.01
Datum	21.04.2006	19.04.2007	28.04.2008
Getriebetyp	_		
Generatortyp	E-82	E-82	E-82
Rotorblatttyp	82 - 1	82 - 1	82 - 1

Schallemissionsparameter: Messwerte (Prüfbericht Leistungskurve: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82)

Schall	lleistungspegel	LWAP:
--------	-----------------	-------

Messung		Windgeschwindigkeit in 10 m Höhe									
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	8,0 m/s ²⁾					
1 1)	99,7 dB(A)	102,8 dB(A)	103,4 dB(A)	dB(A)	dB(A)	103,4 dB(A)					
2 1)	99,6 dB(A)	102,9 dB(A)	103,8 dB(A)	103,8 dB(A)	dB(A)	103,8 dB(A)					
3 1)	99,8 dB(A)	103,0 dB(A)	104,1 dB(A)	103,9 dB(A)	dB(A)	104,1 dB(A)					
Mittelwert \overline{L}_{w}	, 99,7 dB(A)	102,9 dB(A)	103,8 dB(A)	dB(A)	dB(A)	103,8 dB(A)					
Standardab- weichung S	1 0140	0,1 dB	0,4 dB	dB	dB	0,4 dB					
K nach [2] $\sigma_R = 0.5 \text{ dB}$	1,0 dB	1,0 dB	1,2 dB	dB	dB	1,2 dB					

^[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel

^[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Seite 6 zum Bericht Nr. 207542-02.02

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

Schallemissionsparameter: Zuschläge Tonzuschlag bei vermessener Nabenhöhe K_{TN} : Windgeschwindigkeit in 10 m Höhe Messung 6 m/s 7 m/s 8 m/s 10 m/s $8,0 \text{ m/s}^{2}$ 0 dB -- Hz 0 dB -- Hz 0 dB -- Hz -- dB -- Hz -- Hz -- dB 0 dB -- Hz 2 0 dB -- Hz 0 dB -- Hz 0 dB -- Hz 0 dB -- Hz -- dB -- Hz 0 dB -- Hz 3 0 dB -- Hz 0 dB -- Hz 0 dB -- Hz 0 dB -- Hz -- dB -- Hz 0 dB -- Hz

pulszuschia	19 NN.					· · · · · · · · · · · · · · · · · · ·
Messung			Windgeschwindig	keit in 10 m Höh	e	
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	8,0 m/s ²⁾
1	0 dB	0 dB	0 dB	dB	dB	0,011//s
2	0 dB	0 dB	0 dB	0 dB	dB	1
3	0 dB	0 dB	0 dB	0 dB	dB	0 dB 0 dB

Terz-Schal	lleistung	spegel (N	/littel aus	drei Mes	ssungen'	Referen	zpunkt v	101 10/4 D	in dR/A	(3)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P}	75,8	78,7	81,5	83,0	87,7	86,8	87,1	89.9	91.5	93.1	94.5	94.7
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10,000
L _{WA,P}	94,9	95,2	93,7	91,6	89,4	85,6	81,6	77,5	73,7 4)	73.2 4)	71.4 4)	73.0 4)

Oktav-Scha	allleistungspe	egel (Mittel au	us drei Messu	ngen) Refere	nzpunkt v _{101 v}	VA Pmay in dB(/	A) 3)	
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000
L _{WA,P}	84,0	91,0	94,6	98,9	99,5	94,3	83,4 4)	77.4 4)

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- 1) Schallleistungspegel bei umgerechneter Nabenhöhe
- 2) Entspricht 95 % der Nennleistung

3) Entspricht v_s = 8 m/s als der Windklasse der maximalen Schallleistung 4) Aufgrund von elektrischen Einflüssen durch die WEA bei der dritten Messung basieren die Terz- und Oktavpegel ab 5 kHz lediglich auf den ersten beiden Messungen.

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 18.09.2008

0.32

i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

Juga Win luin

Boniforiusproße 400 - 43433 Rheine Tel 0 53 71 (37.10.0) (85, 0.53.7), 97.10 **43**

Seite 7 zum Bericht Nr. 207542-02.02

4.) <u>Ergebniszusammenfassung für die Nabenhöhe 85 m</u>

Auf der Basis von mindestens dre lichkeit die Schallemissionswerte ehöhen.	Messungen nach der "Techr eines Anlagentyps gemäß [2]	nischen Richtlinie für Windenergie anzugeben, um die schalltechnis	Seite 1 von anlagen" [1] besteht die Mög- che Planungssicherheit zu er-
Anlagendaten			
Hersteller	Enercon GmbH	Anlagenbezeichnung Nennleistung in kW Nabenhöhe in m Rotordurchmesser in m	E-82 2.000 (Betrieb I) 85 82
Angaben zur Einzelmessung	1	Messung-Nr.	
Seriennummer Standort vermessene Nabenhöhe (m) Messinstitut	82001 Ihlow / Simonswolde 98 Müller-BBM GmbH	82004 Bimolten 108 KÖTTER Consulting	3 82258 Sulingen 108 KÖTTER Consulting
Prüfbericht Datum Getriebetyp Generatortyp Rotorblatttyp	M65 333/1 21.04.2006 E-82 82 - 1	Engineers KG 207041-01.01 19.04.2007 E-82	Engineers KG 207542-01.01 28.04.2008

Schallemissionsparameter: Messwerte (Prüfbericht Leistungskurve: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82)

Schallleistungspegel $L_{WA,P}$:

Messung		V	/indgeschwindig	keit in 10 m Hö	he	
1)	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7,9 m/s ²⁾
1 1)	100,0 dB(A)	102,9 dB(A)	103,4 dB(A)	dB(A)	dB(A)	103,4 dB(A
2 1)	99,9 dB(A)	103,0 dB(A)	103,8 dB(A)	103,8 dB(A)	dB(A)	103,8 dB(A
3 1)	100,1 dB(A)	103,2 dB(A)	104,1 dB(A)	103,8 dB(A)	dB(A)	104,1 dB(A
Mittelwert L _w	100,0 dB(A)	103,0 dB(A)	103,8 dB(A)	dB(A)	dB(A)	103,8 dB(A
Standardab- weichung S	0,1 dB	0,1 dB	0,4 dB	dB	dB	0,4 dB
K nach [2] $\sigma_R = 0.5 \text{ dB}$	1,0 dB	1,0 dB	1,2 dB	dB	dB	1,2 dB

^[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel

^[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Seite 8 zum Bericht Nr. 207542-02.02

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

Schallemiss	sionspa	ramete	r: Zusch	läge	· · · · · · · · · · · · · · · · · · ·					···		
Tonzuschlag					:		·					····
Messung	6 n	n/s	7 n	n/s		chwindig) m Höhe m/s				
1	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz		m/s		n/s 2)
2	0 dB	Hz	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB dB	Hz Hz	0 dB	Hz
] 3	0 dB	Hz	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	0 dB 0 dB	Hz Hz

Messung			Windgeschwindig	gkeit in 10 m Höh	e	*** "
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7.0 /- 2
7	0 dB	0 dB	0 dB	dB	- dB	7,9 m/s ²
2	0 dB	0 dB	0 dB	0 dB		0 dB
3	0 dB	0 dB	0 dB	0 dB	dB	0 dB

Terz-Schal Frequenz	50	CO CO	Viitter aus	ulei ivie:	ssungen,	Referen	zpunkt v	10LWA,Pmax	k in dB(A)) 3)		
· requeriz		63	80	100	125	160	200	250	315	400	500	630
L _{WA,P}	75,8	78,7	81,5	83.0	87.7	86.8	87.1	89.9				
Frequenz	800	1,000	1.250	1,600					91,5	93,1	94,5	94,7
					2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
LWA,P	94,9	95,2	93,7	91,6	89,4	85,6	81.6	77,5	73.7 4)	73.2 4)	71 4 4)	73.0 4)

Oktav-Scha	Illeistungspe	egel (Mittel au	ıs drei Messı	ingen) Refere	enzpunkt v _{10LV}	in dD/	A \ 3)	
Frequenz	63	125	250	500	1.000	2.000		
L _{WA,P}	84,0	91,0	94.6	98.9	99.5		4.000	8.000
Die Angaben	ersetzen nich	nt die oa Prüf	, -	1		94,3	83,4 4)	77,4 4)

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schallleistungspegel bei umgerechneter Nabenhöhe

Entspricht 95 % der Nennleistung

Entspricht $v_s = 8$ m/s als der Windklasse der maximalen Schallleistung Aufgrund von elektrischen Einflüssen durch die WEA bei der dritten Messung basieren die Terz- und Oktavpegel ab 5 kHz lediglich auf den ersten beiden Messungen.

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 18.09.2008

O. B. C. myn Winduin i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

CONSULTING ENGINEERS

Bon for Lestroite 400 + 40412 Rheine Ta (0,6377) (27.10.0) (25.0537) (97.10.46

Seite 9 zum Bericht Nr. 207542-02.02

5.) <u>Ergebniszusammenfassung für die Nabenhöhe 98 m</u>

Auf der Basis von mindestens dre lichkeit die Schallemissionswerte höhen.	i Messungen nach der "Techr eines Anlagentyps gemäß [2]	nischen Richtlinie für Windenergie anzugeben, um die schalltechnis	Seite 1 von 2 ranlagen" [1] besteht die Mög- che Planungssicherheit zu er-
Anlagendaten		The second secon	
Hersteller	Enercon GmbH	Anlagenbezeichnung Nennleistung in kW Nabenhöhe in m Rotordurchmesser in m	E-82 2.000 (Betrieb I) 98 82
Angaben zur Einzelmessung	1	Messung-Nr.	3
Seriennummer Standort vermessene Nabenhöhe (m)	82001 Ihlow / Simonswolde 98	82004 Bimolten 108	82258 Sulingen
Messinstitut Prüfbericht Datum	Müller-BBM GmbH M65 333/1 21.04.2006	KÖTTER Consulting Engineers KG 207041-01.01 19.04.2007	KÖTTER Consulting Engineers KG 207542-01.01 28.04.2008
Getriebetyp Generatortyp Rotorblatttyp	 E-82 82 - 1	E-82 82 - 1	2-0.04.2008 E-82 82 - 1

Schallemissionsparameter: Messwerte (Prüfbericht Leistungskurve: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82)

Schallleistungspegel LWA,P:

Messung		V	indgeschwindig	keit in 10 m Höl	ne	
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7,8 m/s ²⁾
1	100,6 dB(A)	103,1 dB(A)	103,4 dB(A)	dB(A)	dB(A)	103,4 dB(A
2 1)	100,4 dB(A)	103,3 dB(A)	103,8 dB(A)	dB(A)	dB(A)	103,8 dB(A
3 1)	100,6 dB(A)	103,4 dB(A)	104,1 dB(A)	103,7 dB(A)	dB(A)	104,1 dB(A
Mittelwert L _w	100,5 dB(A)	103,3 dB(A)	103,8 dB(A)	dB(A)	dB(A)	103,8 dB(A
Standardab- weichung S	0,1 dB	0,2 dB	0,4 dB	dB	dB	0,4 dB
K nach [2] $\sigma_R = 0.5 \text{ dB}$	1,0 dB	1,0 dB	1,2 dB	dB	dB	1,2 dB

^[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel

^[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Seite 10 zum Bericht Nr. 207542-02.02

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

Sc	hallemiss	sionspa	ramete	r: Zusch	läge				· · · · · · · · · · · · · · · · · · ·					
Tor	nzuschlag	bei verr	nessene	r Naben	höhe K _{TN}	:	·							
1	Messung	_		Windgeschwindigkeit in 10 m Höhe										
\vdash	1	6 n			7 m/s		011113		9 r		10	m/s	7,8 m/s ²⁾	
	2	0 dB 0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	dB	Hz	0 dB	Hz	
	3	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	dB	Hz	0 dB	Hz	
		U UD	Hz	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	0 dB	Hz	

g K _{IN} :	- w						
Windgeschwindigkeit in 10 m Höhe							
	7 m/s	8 m/s	9 m/s		7,8 m/s ²⁾		
	0 dB	0 dB	dB	T**	0 dB		
0 dB	0 dB	0 dB	dB		1		
0 dB	0 dB	0 dB		·	0 dB 0 dB		
	6 m/s 0 dB 0 dB	6 m/s 7 m/s 0 dB 0 dB 0 dB 0 dB	Windgeschwindig 6 m/s 7 m/s 8 m/s 0 dB 0 dB 0 dB 0 dB 0 dB 0 dB	Windgeschwindigkeit in 10 m Höh 6 m/s 7 m/s 8 m/s 9 m/s 0 dB 0 dB dB 0 dB 0 dB dB 0 dB 0 dB dB	Windgeschwindigkeit in 10 m Höhe 6 m/s 7 m/s 8 m/s 9 m/s 10 m/s 0 dB 0 dB 0 dB dB dB 0 dB 0 dB 0 dB dB dB		

Terz-Schal	llleistung	spegel (N	Mittel aus	drei Mes	ssungen)	Referen	znunkt v		in dD/A	(3)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	
L _{WA,P}	75,8	78,7	81,5	83.0	87.7	86.8	87.1	89.9	91.5		500	630
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	93,1	94,5	94,7
$L_{WA,P}$	94,9	95,2	93,7	91,6	89.4	85.6	81.6	77.5	73.7 4)	73.2 4)	8.000	10.000
				<u> </u>			07,0	17,5	13,1	/3,2	71,4 7	73,0 4)

Oktav-Schallleistungspegel (Mittel aus drei Messungen) Referenzpunkt v _{10LWA,Pmax} in dB(A) 3)									
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000	
L _{WA,P}	84,0	91,0	94,6	98.9	99.5	94.3	83.4 4)	77.4 4)	
					,-	0-7,0	1 00,4	1 //.4	

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- Schallleistungspegel bei umgerechneter Nabenhöhe
- Entspricht 95 % der Nennleistung
- Entspricht v_{s,95%} = 7,8 m/s und der maximalen Schallleistung
- Aufgrund von elektrischen Einflüssen durch die WEA bei der dritten Messung basieren die Terz- und Oktavpegel ab 5 kHz lediglich auf den ersten beiden Messungen.

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 18.09.2008

i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

CONSULTING ENGINEERS

Bon forfussiradis 400 + 48,533 Rheine Ta 10,53 Th. 17,70 1, Ft. 1,53 Th. 457 10,43

Seite 11 zum Bericht Nr. 207542-02.02

Ergebniszusammenfassung für die Nabenhöhe 108 m 6.)

Auf der Basis von mindestens dre lichkeit die Schallemissionswerte höhen.	i Messungen nach der "Techr eines Anlagentyps gemäß [2]	nischen Richtlinie für Windenergie anzugeben, um die schalltechnis	Seite 1 von 2 ranlagen" [1] besteht die Mög- che Planungssicherheit zu er-
Anlagendaten		· · · · · · · · · · · · · · · · · · ·	
Hersteller	Enercon GmbH	Anlagenbezeichnung Nennleistung in kW Nabenhöhe in m Rotordurchmesser in m	E-82 2.000 (Betrieb I) 108 82
Angaben zur Einzelmessung	1	Messung-Nr.	3
Seriennummer Standort vermessene Nabenhöhe (m) Messinstitut	82001 Ihlow / Simonswolde 98 Müller-BBM GmbH	82004 Bimolten 108 KÖTTER Consulting	82258 Sulingen 108 KÖTTER Consulting
Prüfbericht Datum Getriebetyp	M65 333/1 21.04.2006	Engineers KG 207041-01.01 19.04.2007	Engineers KG 207542-01.01 28.04.2008
Generatortyp Rotorblatttyp	E-82 82 - 1	E-82 82 - 1	 E-82 82 - 1

Schallemissionsparameter: Messwerte (Prüfbericht Leistungskurve: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82)

Schallleistungspegel $L_{WA,P}$:

Messung		V	indgeschwindig	keit in 10 m Hö	he	
1)	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7,7 m/s ²⁾
1 1)	100,9 dB(A)	103,1 dB(A)	103,4 dB(A)	dB(A)	dB(A)	103,4 dB(A
2	100,7 dB(A)	103,4 dB(A)	103,7 dB(A)	dB(A)	dB(A)	103,8 dB(A
3 100,9 dB(A)		103,6 dB(A)	104,1 dB(A)	103,7 dB(A)	dB(A)	104,1 dB(A
Mittelwert \overline{L}_{w}	100,8 dB(A)	103,4 dB(A)	103,8 dB(A)	dB(A)	dB(A)	103,8 dB(A
Standardab- weichung S	0,1 dB	0,2 dB	0,4 dB	dB	dB	0,4 dB
K nach [2] σ _R = 0,5 dB	1,0 dB	1,1 dB	1,2 dB	dB	dB	1,2 dB

Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel

IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Seite 12 zum Bericht Nr. 207542-02.02

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

T	challemiss onzuschlag	sionspa bei verr	ramete	r: Zusch	läge	·							
	Messung 1					Windges 8 r	n/s	9 1	m Höhe m/s		m/s	7,7 n	n/s ²⁾
	2 3	0 dB 0 dB	Hz Hz	0 dB 0 dB	Hz Hz	0 dB 0 dB 0 dB	Hz Hz Hz	dB dB 0 dB	Hz Hz Hz	dB dB dB	Hz Hz Hz	0 dB 0 dB 0 dB	Hz Hz Hz

Messung	0 1		Windgeschwindig	keit in 10 m Höh	e	
1	6 m/s 0 dB	7 m/s 0 dB	8 m/s	9 m/s	10 m/s	7,7 m/s ²
2	0 dB 0 dB	0 dB 0 dB	0 dB	dB dB	dB dB	0 dB 0 dB

Terz-Schal	lleistung	spegel (I	Mittel aus	drei Me	ssungen)	Referen	znunkt v	4011444 5	in dP(A)	(3)		
Frequenz	- 50	63	80	100	125	160	200	250	315		500	
L _{WA,P}	75,8	78,7	81,5	83,0	87,7	86.8	87.1	89.9	91.5	400	500	630
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	93,1	94,5	94,7
$L_{WA,P}$	94,9	95,2	93,7	91,6	89.4	85.6	81,6	77.5		6.300	8.000	10.000
				· · · · · · · · · · · · · · · · · · ·		00,0	01,0	77,3	73,7 4)	73,2 4)	71,4 4)	73,0 4)

Oktav-Scha	Illeistungspe	egel (Mittel au	ıs drei Messı	ingen) Refere	anznunkt v	:ID/	a \ 3)	
Frequenz	63	125	250	500	1.000	2.000	T	0.000
L _{WA,P}	84,0	91,0	94,6	98.9	99.5	94.3	4.000 83.4 ⁴⁾	8.000
Die Angaben	ersetzen nich	t die o a Drüfi	agrichte () . I		00,0	34,3	03,4	77,4 4)

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- Schallleistungspegel bei umgerechneter Nabenhöhe
- 2) Entspricht 95 % der Nennleistung
- Entspricht $v_{s,95\%} = 7,7$ m/s und der maximalen Schallleistung
- Aufgrund von elektrischen Einflüssen durch die WEA bei der dritten Messung basieren die Terz- und Oktavpegel ab 5 kHz lediglich auf den ersten beiden Messungen.

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 18.09.2008

i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

Bonifor Jastroffe 400 + 43437 Rheine Tak 0.69 nr. 191 10.0 Fby 0.69 TB / 97 10,48

Seite 13 zum Bericht Nr. 207542-02.02

7.) Ergebniszusammenfassung für die Nabenhöhe 138 m

Auf der Basis von mindestens dre lichkeit die Schallemissionswerte höhen.	i Messungen nach der "Techr eines Anlagentyps gemäß [2]	nischen Richtlinie für Windenergie anzugeben, um die schalltechnis	Seite 1 von 2 anlagen" [1] besteht die Mög- che Planungssicherheit zu er-
Anlagendaten			
Hersteller	Enercon GmbH	Anlagenbezeichnung Nennleistung in kW Nabenhöhe in m Rotordurchmesser in m	E-82 2.000 (Betrieb I) 138 82
Angaben zur Einzelmessung	1	Messung-Nr.	
Seriennummer Standort vermessene Nabenhöhe (m)	82001 Ihlow / Simonswolde 98	82004 Bimolten 108	82258 Sulingen
Messinstitut Prüfbericht Datum Setriebetyp Generatortyp Rotorblatttyp	Müller-BBM GmbH M65 333/1 21.04.2006 E-82 82 - 1	KÖTTER Consulting Engineers KG 207041-01.01 19.04.2007 E-82 82 - 1	KÖTTER Consulting Engineers KG 207542-01.01 28.04.2008 E-82

Schallemissionsparameter: Messwerte (Prüfbericht Leistungskurve: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82)

Schallleistungspegel $L_{WA,P}$:

Messung	6 /-	W	indgeschwindig	keit in 10 m Höl	he	
1 1)	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7,4 m/s ²⁾
,	101,6 dB(A)	103,3 dB(A)	103,4 dB(A)	dB(A)	dB(A)	103,4 dB(A
2 ¹⁾	101,4 dB(A)	103,7 dB(A)	103,7 dB(A)	dB(A)	dB(A)	103,8 dB(A
3 1)	101,6 dB(A)	103,8 dB(A)	104,0 dB(A)	103,7 dB(A)	dB(A)	104,1 dB(A
Mittelwert L _w	101,6 dB(A)	103,6 dB(A)	103,7 dB(A)	dB(A)	dB(A)	103,8 dB(A
Standardab-	0,1 dB	00.10				103,8 dB(A
weichung S	0,105	0,3 dB	0,3 dB	dB	dB	0,4 dB
K nach [2] $\sigma_R = 0.5 \text{ dB}$	1,0 dB	1,1 dB	1,1 dB	dB	dB	1,2 dB

^[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel

^[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Seite 14 zum Bericht Nr. 207542-02.02

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

S	Schallemiss	sionspa	ramete	r: Zusch	läge		······································						
耳	onzuschlag	bei verr	nessene	er Naben	höhe K _{TN}	:							······································
	Messung		,			Windges	chwindig	keit in 10	m Höhe				
		6 n			n/s	8 n			n/s	10	m/s	7.4 n	1/s ²⁾
	2	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	dB	Hz	0 dB	Hz
	2	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	dB	Hz	0 dB	Hz
L	3	0 dB	Hz	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	0 dB	Hz

		Vindgeschwindig	keit in 10 m Höhe		
n/s 7	m/s	8 m/s			7,4 m/s ²⁾
dB	0 dB	0 dB			
dB	0 dB	0 dB			0 dB
dB	0 dB				0 dB 0 dB
	dB dB	m/s 7 m/s dB 0 dB dB 0 dB	m/s 7 m/s 8 m/s dB 0 dB 0 dB dB 0 dB 0 dB	m/s 7 m/s 8 m/s 9 m/s dB 0 dB 0 dB dB dB 0 dB 0 dB dB	dB

Terz-Scha	llleistung	spegel (N	Mittel aus	drei Me	ssungen)	Referen	zniinkt v	4011444 5	in dR/A	(3)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P}	75,8	78,7	81,5	83,0	87,7	86,8	87.1	89.9	91.5	93.1	94.5	94.7
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
$L_{WA,P}$	94,9	95,2	93,7	91,6	89,4	85,6	81,6	77,5	73.7 4)	73.2 4)	71 4 4)	73 0 4)

Oktav-Sch	Oktav-Schallleistungspegel (Mittel aus drei Messungen) Referenzpunkt v _{10LWA,Pmax} in dB(A) ³⁾											
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000				
L _{WA,P}	84,0	91,0	94,6	98,9	99.5	94.3	83 4 4)	77.4 4)				

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- Schallleistungspegel bei umgerechneter Nabenhöhe
- Entspricht 95 % der Nennleistung
- 3) Entspricht v_{s,95%} = 7,4 m/s und der maximalen Schallleistung
- Aufgrund von elektrischen Einflüssen durch die WEA bei der dritten Messung basieren die Terz- und Oktavpegel ab 5 kHz lediglich auf den ersten beiden Messungen.

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 18.09.2008

i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

CONSULTING ENGINEERS

Boniforiusstratie 400 - 48400 Rheine 7au 060 71 - 27 100 - 25 105171 - 27 1043

Anhang E

Auszug aus dem Prüfbericht

	latt "Geräu estimmung	1 461 5611	anonnis.	KURSWANA'	-					ayen,		
nev. 17 von	n 01. Juli 2006	(Herausgeb	er: Förderg	esellschaft W	Indenergie	e.V., Strese	mannplatz	4, D-24103 K	iel)			
				Auszug at	ıs dem l	Prüfherich	ot MAGR 3	30/4				
Aligemeine	Angeboo	nanemiss	ion der t	Windenerg	ieanlag	e vom Ty	p Enerc	on E-82				
Anlagenher		Fas	rcon Gmb			Technis	che Daten	(Hersteller	angaben)			
	and one of the		rcon Gmb ekamp 5	М			stung (Ge			1000	kW (reduzi	erti
			05 Aurich				rchmesse			82 m		
Seriennum	ner:	5300				Turmba	dhe über	Grund:		108 n		
WEA-Stand	fort (ca.):	RW:	34.81	.104		Material				Rohrt	utm	
		HW:	58.48	374		1				Stahl		
rgănzende	Daten zum	Rotor (Hers	telleranga	ben)			sregelung			pitch		
Rotorblatthe	ersteller:	Ener	can Gmbl			Getriebe	hersteller	iebe und G	enerator (I	Horstellera	ngaben)	
	hnung Blatt:	82-1						g Getriebe:				
Blatteinstell		varia	bel				orherstelle					
Rotorblattan		3						g Generator		E-82	on GmbH	
Rotordrehza		6 - 1	6 min-1 (r			Generate	rengennd	rehzahl:		6 1	6 min-1 (rec	di minut
Pruibenchi :	zur Leistung:	skurve:	Enercon	GmbH: Ber	echnete r	ennleistun	sreduzier	te Kenntinie	E-82 von	n August 2	Ons (18)	ACI STOLL!
					nzpunkt		Schalle	misslans.	T			
			 		- LPUITAL		Par	ameter	1	Bem	erkungen	
			Windges	fardisierte ichwindigkeit I m Höhe		drische leistung		-				
				6 m/s	84	2 kW	98	7 aB(A)	 			
			ł	7 m/s	96	3 kW	1	6 dB(A)				
challicistungs	Pegel Lwar		l	8 m/s	99	kW	1	3 c8(A)				
			1	9 m/s	-	· kW		dB(A)	1		[2]	
			ł	0 m/s		· kW		· aB(A)			[2]	
				βm/s		kW	98.	* oB (A)			[1]	
			1	6 m/s		*W		· 08			···	*****
onzuschiag fü	r den Nahbere	eich.	l .	7 m/s 8 m/s		kW	l .	· nB	ļ			
r•			1	9 m/s		kW	l	- aB				
			3	o m/s		kW kW		· #8			[2]	
			1	mis		kW		- dB			[2]	
	***************************************			m/s		kW		dB			[1]	
				m/s		kW		. ರB - ರB				
pulszuschlag	für den Nahb	ereich	E	m/s		kW		- nB				
r.			9	mis		kW :		dB			lat	
		ľ	10	m/s	***	kW		пB			[2] [2]	
			6,8	m/s	950	kW		σß			[1]	
		Te	rz-Schallle	istungspege	Referenz	punkt v ₁₀ =	6 m/s					
equenz	50	63	80	100	125	160	200	250	315	400	500	600
A.P. Terr	72,7	75.8	77,7	79,7	81,2	81,6	82,5	83.9	84.9	86.3	87.7	630 87.9
equenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	1000
A.P. ferr	88,6	89,1	89,9	89,4	87.0	85,0	82,8	80,4	76.2	68.7	61.4	65.3
	·	Okt	ıv-Schalile	istungspege	Referenz	punkt v _{to} =	6 m/s					03.3
quenz	63	125	250	500	1000	2000	4000	8000				
A.P.O. Or	80,6	85,7	88,6	92,1	94,0	92,3	85,3	70,9				

[1] Der Schallteistungspregel bei 95%iger Nernleistung wurde bei Berücksichtung der Umgebungsbedingungen am Messtag, der verwenderen Leistungskurve und der vermessenen Nabenhöhe bei einer stand. Windgeschwindigkeit von 6,8 m.s. festgestellt

[2] In dieser Windklasse konnten aufgrund der Welterbedingungen am Messtag keine Daten erfasst werden

Gemessenen von:

Müller-BBM GmbH

D-45 899 Gelsenkirchen

Niederlassung Gelsenkirchen Am Bugapark 1

MÜLLER-BBM GMBH NIEDERLASSUNG GELSENKIRCHEN AMBUGAPARK 1 45899 GELSENKIRCHEN TELEFON (0209) 9 83 08 - 0

Datum:

27.04.2007

Dipl.-Ing. (FH) D. Hinkelmann

Dipl.-Ing. (FH) M. Köhl

Accredited Test Laboratory according to ISO/IEC 17025

challemiss,

VESTAS V 90 2.0 MW

Schallmessberichte

Windtest

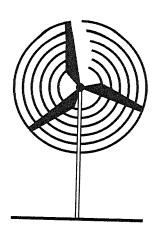
WT 5633/07

vom 07.03.2007

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V90-2MW (Mode 0) aus mehreren Einzelmessungen bei Nabenhöhen von 80 m, 95 m und 105 m über Grund


Marz 2007

Kurzbericht WT 5633/07

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V90-2MW (Mode 0) aus mehreren Einzelmessungen bei Nabenhöhen von 80 m, 95 m und 105 m über Grund

Marz 2007

Kurzbericht WT 5633/07

Standort bzw. Messort:	Schönhagen u	ınd Porep, Landkreis Pr	gnitz
	T		
Auftraggeber:	Vestas Deutsc Otto-Hahn-Stra 25813 Husum Deutschland		
Auftragnehmer:	WINDTEST Ka Sommerdeich 25709 Kaiser-\		pΗ
Datum der Auftragserteilung:	2007-02-21	Auftragsnummer:	4250 07 03643 64

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst insgesamt 5 Seiten.

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu

Anlagendaten					
Hersteller	Vestas Wind Systems A/S Alsvej 21 8900 Randers Denmark	Anlagenbezeichr Nennleistung in k Nabenhöhe in m Rotordurchmesse	tW .	V90-2MW 2.0 MW 80	
Angaben zur Einzelmessung	4	Messung		90	
Seriennummer Standort Vermessene Nabenhöhe (m) Messinstitut Prüfbericht Datum des Prüfberichts Getriebetyp Generatortyp Rotorblatttyp		105			
Angaben zur Einzelmessung		Vestas 44 m Messung	-Nr.	Vestas 44 r	
Seriennummer Standort Vermessene Nabenhöhe (m) Messinstitut Prüfbericht Datum des Prüfberichts Getriebetyp Generatortyp Rotorblatttyp	3 Porep, Landkreis Prigni WINDTEST Kaiser-Wilhe Hansen EH 802 CN Weier D	105 Im-Koog GmbH WT 5308/06 2006-10-12		4	

alle	llemissionsparamet]: auf Basis der Nat	penhöhenumrechnur	ngen WT 5611/07, W	F 5315/06 und WT 56	13/07
	Messung		Windg	eschwindigkeit in 10	m Höhe	.0,0,
	1 2 3 4	6 m/s 102,2 101,9 102,3	7 m/s 103,2 103,5 103,4	8 m/s 102,8 103,7 103,1	9 m/s 102,0 - 102,0	10 m/s 101,6 - 101,1
	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$ [dB(A)]	102,1	103,4	103,2	102,0	101,4
	Standard- Abweichung s [dB(A)]	0,2	0,2	0,5	0,0	0,4
	K nach /2/ σ_R =0,5 dB /3/ [dB(A)]	1,0	1,0	1,3	1,0	1,2

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu

Anlagendaten					
Hersteller	Vestas Wind Systems A/S Alsvej 21 8900 Randers Denmark	Anlagenbezeich Nennleistung in Nabenhöhe in m Rotordurchmess	kW ¯ ı	V90-2MW 2.0 MW 95	
Angaben zur Einzelmessung	1	Messur		30	
Seriennummer Standort Vermessene Nabenhöhe (m) Messinstitut Prüfbericht Datum des Prüfberichts Getriebetyp Generatortyp Rotorblatttyp	Schönhagen, Landkreis Prigr WINDTEST Kaiser-Wilhe	V 18864 Schönhagen, Landkreis Prignitz, Deutschland 105 WINDTEST Kaiser-Wilhelm-Koog GmbH WT 4126/05 2005-04-12 Metso PLH1400V90 ABB AMK 500L4A BAYHA Vestas 44 m			
Angaben zur Einzelmessung		Messunç	g-Nr.	Vestas 44 m	
Seriennummer Standort Vermessene Nabenhöhe (m) Messinstitut Prüfbericht Datum des Prüfberichts Getriebetyp Generatortyp Rotorblatttyp	3 Porep, Landkreis Prigni WINDTEST Kaiser-Wilhe Hansen EH 802 CN Weier D	105 m-Koog GmbH WT 5308/06 2006-10-12		4	

challle	lemissionsparame istungspegel L _{WA,k} [dB(A)]: auf Basis der Nat	penhöhenumrechnun	gen WT 5611/07, W	5315/06 und W/T 56	engestent)
	Messung		Windge	eschwindigkeit in 10	m Höhe	13/07
	1 2 3 4	6 m/s 102,5 102,3 102,6	7 m/s 103,2 103,6 103,4	8 m/s 102,7 103,8 102,9	9 m/s 101,8 - 101,8	10 m/s 101,6 - 100,9
	Mittelwert $\overline{L}_{\mathcal{W}}$ [dB(A)]	102,5	103,4	103,1	101,8	101,3
	Standard- Abweichung s [dB(A)]	0,2	0,2	0,6	0,0	0,5
	K nach /2/ σ_R =0,5 dB /3/ [dB(A)]	1,0	1,0	1,5	1,0	1,4

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu

Hersteller	Tyr / See								
	Vestas Wind Systems A/S Alsvej 21 8900 Randers Denmark	Anlagenbezeichn Nennleistung in k Nabenhöhe in m Rotordurchmesse	W	V90-2MW 2,0 MW 105					
Angaben zur Einzelmessung		Messung-Nr.							
Seriennummer	1			2					
Standort Vermessene Nabenhöhe (m)	Schönhagen, Landkreis Prigr	1	Porep	V 1970. , Landkreis Prignitz, Deutschland					
Messinstitut Prüfbericht	WINDTEST Kaiser-Wilhe		WINDTEST Kaiser-Wilhelm-Koog Gi						
Datum des Prüfberichts Getriebetyp	Met	WT 4126/05 2005-04-12 so PLH1400V90		WT 4846/06 2006-02-06					
Generatortyp Rotorblatttyp		500L4A BAYHA		Metso PLH1400V9(ABB AMK 500L4A BAYHA					
Angaben zur Einzelmessung		Vestas 44 m		Vestas 44 m					
_	•	Messung-	Nr.						
Seriennummer Standort Vermessene Nabenhöhe (m) Messinstitut	3 Porep, Landkreis Prigni	105		4					
Prüfbericht Datum des Prüfberichts	WINDTEST Kaiser-Wilhe	lm-Koog GmbH WT 5308/06							
Setriebetyp Seneratortyp	Hansen EH 802 CN								
Rotorblatttyp	Weier D\	/SG 500/4MST Vestas 44 m							

allleistungspegel L	parameter: Messwerte wa.k [dB(A)]: auf Basis der Na	benhöhenumrechnun	gen WT 5611/07 WT	5315/06 und W/T 56	engestem)
Messu	ng	Windge	eschwindigkeit in 10	m Höhe	13/07
1 2 3 4	6 m/s 102,6 102,4 102,7	7 m/s 103,2 103,6 103,4	8 m/s 102,6 103,9 102,8	9 m/s 101,8 - 101,7	10 m/s 101,7 - 100,9
Mittelwert [dB(A)	102,6	103,4	103,1	101,8	101,3
Standar Abweichu [dB(A) K nach /	ng s 0,2	0,2	0,7	0,1	0,6
$\sigma_R = 0.5 \text{ d}$	B /3/ 1,0	1,0	1,6	1,0	1,5

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel
/2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Schalle	emissionsparam	neter: Zuschläge	<u> </u>							ile 5 von s
		ermessener Naben								
	Messung	6 m/s	7	Windge m/s		gkeit in 10				
	1 2 3 4	0 - Hz 0 - Hz 0 - Hz	0 0 0	- Hz - Hz - Hz - Hz	0 0 0	m/s - Hz - Hz - Hz	- - 0	m/s - Hz - Hz - Hz	- - 0	m/s - Hz - Hz - Hz

Messung		Windge	eschwindigkeit in 10	m Höhe	
	6 m/s	7 m/s	8 m/s	9 m/s	10 (-
1 1	0	0	0	0 111/3	10 m/s
2	0	n		-	-
3	n		U	-	-
1 4	Ŭ	U	0	0	0

Terz- Schal	lleistungs	pegel (Mit	tel aus 3 l	Messunge	n) Refere	nzpunkt 1	, , , i	n dB(A)				
Frequenz	50	63	80	100	125	160	200					·
L _{WA,max}	77,0	79,7	82,2	84,1	85.7	86.4		250	315	400	500	630
Frequenz	800	1000	1250	1600	2000	2500	87,5 3150	89,2 4000	90,0	90,2	92,3	92,3
L _{WA,max}	93,3	93,6	93,7	92,6	91,7	90.6	90.1	89.7	5000 87.3	6300 82.3	8000 75.4	10000

Oktav- Schallleis	stungspegel (M	littel aus 3	8 Messung	jen) Refer	enzpunkt	$v_{10L_{W_4 \text{ max}}}$	in dB(A)			
Frequenz	63	125	250	500	1000	2000	4000	8000	 	
LWA,max	84,8 etzen nicht die	90,2	93,7	96,4	98.2	00.4	00.0		 	

Bemerkungen:

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog

Datum:

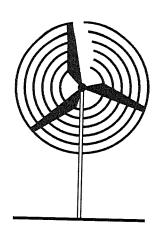
2007-03-07

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V90-2MW (Mode 2) aus mehreren Einzelmessungen bei Nabenhöhen von 80 m, 95 m und 105 m über Grund


März 2007

Kurzbericht WT 5637/07

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V90-2MW (Mode 2) aus mehreren Einzelmessungen bei Nabenhöhen von 80 m, 95 m und 105 m über Grund

Marz 2007

Kurzbericht WT 5637/07

Standort bzw. Messort:	Schönhagen u Wallenhorst, K	Schönhagen und Porep, Landkreis Prignitz Wallenhorst, Kreis Osnabrück						
Auftraggeber:	Vestas Deutschland GmbH Otto-Hahn-Straße 2-4 25813 Husum Deutschland							
Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog							
Datum der Auftragserteilung:	2007-02-21	Auftragsnummer:	4250 07 03643 64					

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst insgesamt 5 Seiten.

Seite 2 von 5

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten					
Hersteller	Vestas Wind Systems A/S	Anlagenbezeich	nung	V90-2MW	
	Alsvej 21 Nennleistung in		kW	2,0 MW	
	8900 Randers	Nabenhöhe in m	า	80	
	Denmark	Rotordurchmess	ser in m	90	
Angaben zur Einzelmessung		Messur	ng-Nr.		
	11			2	
Seriennummer		V 18864		V 19697	
Standort	Schönhagen, Landkreis Prigni	tz, Deutschland	Porep,	Landkreis Prignitz, Deutschland	
Vermessene Nabenhöhe (m)		105		105	
Messinstitut	WINDTEST Kaiser-Wilhe	lm-Koog GmbH	WINDTE	ST Kaiser-Wilhelm-Koog GmbH	
Prüfbericht		WT 4144/05	WT 5312/06		
Datum des Prüfberichts		2005-04-12	2006-10-12		
Getriebetyp	Mets	o PLH1400V90	Hansen EH 802 CN 21-BN-112.83		
Generatortyp	ABB AMK 5	500L4A BAYHA	Weier DVSG 500/4MST		
Rotorblatttyp		Vestas 44 m		Vestas 44 m	
Angaben zur Einzelmessung		Messur	ng-Nr.		
	3			4	
Seriennummer		V 20600			
Standort	Wallenhorst, Kreis Osnabrüd	ck, Deutschland			
Vermessene Nabenhöhe (m)		105			
Messinstitut	Kötter Consu	ulting Engineers			
Prüfbericht		29093-1.006			
Datum des Prüfberichts		2007-01-24			
Getriebetyp	Hansen EH 802 CN	N 21-BN-112.83			
Generatortyp	Weier D	VSG 500/4MSP			
Rotorblatttyp		Vestas 44 m			

Schallemissionsparameter: Messwerte (berechnete Leistungskurve vom Hersteller bereitgestellt) Schallleistungspegel L_{WA,k} [dB(A)]: auf Basis der Nabenhöhenumrechnungen WT 4703/05, WT 5619/07 und Kötter 29093-2.001 Windgeschwindigkeit in 10 m Höhe Messung 6 m/s 7 m/s 8 m/s 9 m/s 10 m/s 99,7 100,6 100,9 101,2 98,0 2 98,8 99,3 99,7 100,0 100,1 3 98,8 99,3 99,5 99,8 99,7 Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$ 98,5 99,5 100,0 100,2 100,2 [dB(A)]Standard-Abweichung s 0,5 0,2 0,6 0,5 1,0 [dB(A)] K nach /2/ σ_R =0,5 dB /3/ 1,3 1,0 1,3 2,0 1,5 [dB(A)]

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 3 von 5

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten					
Hersteller	Vestas Wind Systems A/S	Anlagenbezeich	nnung V90-2MW		
	Alsvej 21 Nennleistung ir		kW	2,0 MW	
	8900 Randers	Nabenhöhe in m	1	95	
	Denmark	Rotordurchmess	ser in m	90	
Angaben zur Einzelmessung		Messur	ng-Nr.	·	
	1			2	
Seriennummer		V 18864		V 19697	
Standort	Schönhagen, Landkreis Prign	itz, Deutschland	Porep,	Landkreis Prignitz, Deutschland	
Vermessene Nabenhöhe (m)		105		105	
Messinstitut	WINDTEST Kaiser-Wilhe	Im-Koog GmbH	WINDTE	ST Kaiser-Wilhelm-Koog GmbH	
Prüfbericht		WT 4144/05	WT 5312/06		
Datum des Prüfberichts		2005-04-12	2006-10-12		
Getriebetyp	Mets	so PLH1400V90	На	nsen EH 802 CN 21-BN-112.83	
Generatortyp	ABB AMK	500L4A BAYHA	Weier DVSG 500/4MST		
Rotorblatttyp		Vestas 44 m		Vestas 44 m	
Angaben zur Einzelmessung		Messur	ng-Nr.		
****	3			4	
Seriennummer		V 20600			
Standort	Wallenhorst, Kreis Osnabrü	ck, Deutschland			
Vermessene Nabenhöhe (m)		105			
Messinstitut	Kötter Consi	ulting Engineers			
Prüfbericht		29093-1.006			
Datum des Prüfberichts		2007-01-24			
Getriebetyp	Hansen EH 802 CI	N 21-BN-112.83			
Generatortyp	Weier D	VSG 500/4MSP			
Rotorblatttyp		Vestas 44 m			

Schallemissionsparameter: Messwerte (berechnete Leistungskurve vom Hersteller bereitgestellt)

Schallleistungspegel L_{WA,k} [dB(A)]: auf Basis der Nabenhöhenumrechnungen WT 4703/05, WT 5619/07 und Kötter 29093-2.001

Messung		Windge	schwindigkeit in 10	m Höhe	
, and the second	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
1	98,3	99,9	100,7	101,0	101,3
2	98,9	99,4	99,8	100,0	100,1
3	98,9	99,5	99,8	99,7	99,2
4	·	,	,	,	
Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$ [dB(A)]	98,7	99,6	100,1	100,2	100,2
Standard- Abweichung s [dB(A)]	0,3	0,3	0,5	0,7	1,1
K nach /2/ $\sigma_R = 0.5 \text{ dB /3/}$ [dB(A)]	1,2	1,1	1,4	1,6	2,2

/1/ Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 4 von 5

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten					
Hersteller	Vestas Wind Systems A/S	Anlagenbezeichn	nnung V90-2MW		
	Alsvej 21	Nennleistung in k	τW .	2,0 MW	
	8900 Randers	Nabenhöhe in m		105	
	Denmark	Rotordurchmesse	er in m	90	
Angaben zur Einzelmessung		Messung	g-Nr.		
	1			2	
Seriennummer		V 18864		V 19697	
Standort	Schönhagen, Landkreis Prign	itz, Deutschland	Porep,	Landkreis Prignitz, Deutschland	
Vermessene Nabenhöhe (m)		105		105	
Messinstitut	WINDTEST Kaiser-Wilhe	elm-Koog GmbH	WINDTE	ST Kaiser-Wilhelm-Koog GmbH	
Prüfbericht		WT 4144/05	WT 5312/06		
Datum des Prüfberichts		2005-04-12	2006-10-12		
Getriebetyp	Met	so PLH1400V90	На	nsen EH 802 CN 21-BN-112.83	
Generatortyp	ABB AMK	500L4A BAYHA	Weier DVSG 500/4MST		
Rotorblatttyp		Vestas 44 m		Vestas 44 m	
Angaben zur Einzelmessung		Messung	g-Nr.		
	3			4	
Seriennummer		V 20600			
Standort	Wallenhorst, Kreis Osnabrü	ck, Deutschland			
Vermessene Nabenhöhe (m)		105			
Messinstitut	Kötter Cons	ulting Engineers			
Prüfbericht		29093-1.006			
Datum des Prüfberichts		2007-01-24			
Getriebetyp	Hansen EH 802 C	N 21-BN-112.83			
Generatortyp	Weier D	VSG 500/4MSP			
Rotorblatttyp		Vestas 44 m			

Schalle	Schallemissionsparameter: Messwerte (berechnete Leistungskurve vom Hersteller bereitgestellt)							
Schallleis	Schallleistungspegel L _{WA,k} [dB(A)]: auf Basis der Nabenhöhenumrechnungen WT 4703/05, WT 5619/07 und Kötter 29093-2.001							
	Messung		Windge	eschwindigkeit in 10	m Höhe			
		6 m/s	7 m/s	8 m/s	9 m/s	10 m/s		
	1	98,5	100,0	100,7	101,0	101,4		
	2	98,9	99,4	99,8	100,0	100,1		
	3	99,0	99,6	99,8	99,6	99,2		
	4			·	•			
:	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$	98,8	99,7	100,1	100,2	100,2		
	[dB(A)]							
	Standard- Abweichung s [dB(A)]	0,3	0,3	0,5	0,7	1,1		
	K nach /2/ $\sigma_R = 0.5 \text{ dB /3/}$ [dB(A)]	1,1	1,1	1,4	1,7	2,3		

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 5 von 5

Schalle	emissionspara	meter: 2	Zuschläge)				······································			
Tonzusci	hlag K _™ in dB bei	vermess	ener Naben	höhe:							
	Messung				Windge	schwindi	gkeit in 10 r	n Höhe	·	·····	
		6	m/s	7	m/s	8	m/s	9	m/s	10	m/s
	1	0	- Hz	0	- Hz	0	- Hz	-	- Hz	-	- Hz
	2	1	2506 Hz	0	- Hz	0	- Hz	0	- Hz	0	- Hz
	3	0	~ Hz	0	- Hz	0	- Hz	0	- Hz	0	- Hz
	4										.,_

Messung		Windge	schwindigkeit in 10	m Höhe	
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
1	0	0	0	-	_
2	0	0	0	0	1 0
3	0	0	0	0	0
1 4			J		

Terz- Schal	lleistungs	pegel (Mit	tel aus 3 N	/lessunge	n) Refere	nzpunkt 1	, 10 <i>L_{WA}</i> ,max i	n dB(A)				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,max}	77,6	79,5	82,2	84,1	84,6	84,8	86,0	86,4	87.3	87.1	88.9	88.5
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA,max}	8,88	89,6	90,0	90,0	88,5	88,1	86,4	84,4	80,9	75,4	70,3	66,0

Oktav- Schallleis	tungspegel (M	ittel aus 3	Messung	en) Refer	enzpunkt	$v_{10L_{WA,\max}}$	in dB(A)			
Frequenz	63	125	250	500	1000	2000	4000	8000	The same same same same same same same sam	T.
L _{WA,max}	85,0	89,3	91,5	93,0	94,3	93,8	89,4	77,1		

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

Bemerkungen:

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog

Datum:

2007-03-07

Rosent. J. Brown M.Sc.

Dipl.-Ing. J. Neubert

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

REPOWER MD 77

Schallvermessungsberichte:

•	WINDTEST, Grevenbroich	SE02011B2	vom 07.08.2002
•	WINDconsult, Bargeshagen	WICO 039SE202	vom 02.10.2002
•	Kötter, Rheine	27053-1.001	vom 08.05.2003

REpower Dokumenten-Nummer Rev.						
D-1.2- YM.	54.04-A A					
Freigane	- Catum :					
TR	13.05.2003					

Seite 1 von 6

Auszug aus dem Prüfbericht 27053-1.001

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von **mindestens drei** Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten			
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77
		Nennleistung	1500 kW
		Nabenhöhe	61,5 m
		Rotordurchmesser	77,0 m
	1. Messung	2. Messung	3. Messung
Seriennummer	70.075	70.036	70.227
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye
vermessene Nabenhöhe	85 m	85 m	61,5 m
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001
Datum	07.08.2002	02.10.2002	06.05.2003
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P

1. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002)
2. und 3. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

Wind- geschwindigkeit		Sc	halleistu	ngspegel L	wa:		Mittelwert	Standard- abweichung	K nach /2/
in 10 m Höhe	1. Mes	ssung 1)	2. Me	essung 1)	3. Me	essung	L _{WA}	S	$\sigma_R = 0.5 \text{ dB}$
6 m/s	100,2	dB(A)	99,	99.0 dB(A)		dB(A)	99,5 dB(A)	0,7 dB	1,6 dB
7 m/s	102,2	dB(A)	100,	4 dB(A)	101,1	dB(A)	101,3 dB(A)	0,9 dB	2,0 dB
8 m/s	103,2	dB(A)	102	1 dB(A)	102,2	dB(A)	102,5 dB(A)	0,6 dB	1,5 dB
8,7 m/s ⁴⁾	103,3	dB(A)	103	3 dB(A)	102,3	dB(A)	103,0 dB(A)	0,6 dB	1,5 dB
	Ton	zuschlag	bei verm	essener Na	benhöhe	K _{TN} :			
	1. Mes	ssung ²⁾	2. Me	2. Messung ²⁾ 3. Mess		ssung 3)			
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
8 m/s	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz			
8,7 m/s ⁴⁾	0 dB	- Hz	1 dB	148 Hz	2 dB	164 Hz			
			Impulsz	uschlag K _{IN}					
	1. Me:	ssung ²⁾	2. M	essung ²⁾	3. Mes	ssung 3)			
6 m/s) dB		0 dB	C) dB			
7 m/s	() dB		0 dB	C) dB			
8 m/s	() dB		0 dB	·) dB			
8,7 m/s ⁴⁾	() dB	0 dB		() dB			

	Terz-	Schalleis	tungspeg	el (Mittel	aus 3 Me	essungen) Referer	zpunkt v	10 in dB(A) ⁴⁾		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa	91,7	91,2	90,5	89,5	88,3	87,3	. 86,2	84,9	82,1	80,4	78,3	72,8

	T	Oktav-Schalle	istungspegel	(Mittel aus 3 l	Messungen) R	eferenzpunkt	v ₁₀ in dB(A) 4	
Frequenz	63	125	250	500	1000	2000	4000	8000
Lwa	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe

2) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N=85~m$ 3) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N=61,5~m$

4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

KÖTTER Consulting Engineers

Bonfatiusstraße 400

48432 Rheine

Datum:

08.05.2003

Bonifatiusstraße 400 · 48432 Rheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

Auszug aus dem Prüfbericht 27053-1.001

Seite 2 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten			
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77
		Nennleistung	1500 kW
		Nabenhöhe	85,0 m
		Rotordurchmesser	77,0 m
	1. Messung	2. Messung	3. Messung
Seriennummer	70.075	70.036	70.227
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye
vermessene Nabenhöhe	85 m	85 m	61,5 m
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001
Datum	07.08.2002	02.10.2002	06.05.2003
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P

Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002)
 und 3. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

Wind- geschwindigkeit		Sc	halleistu	ıngspegel L	wa:		Mittelwert	Standard- abweichung	K nach /2/
in 10 m Höhe	1. M∈	essung	2. N	lessung	3. Mes	ssung 1)	Lwa	s	$\sigma_R = 0.5 \text{ dB}$
6 m/s	100,8	B dB(A)	99	,4 dB(A)	99,	9 dB(A)	100,1 dB(A)	0,7 dB	1,7 dB
7 m/s	102,6	dB(A)	101	,0 dB(A)	101,	7 dB(A)	101,8 dB(A)	0,8 dB	1,8 dB
8 m/s	103,3	B dB(A)	102	,8 dB(A)	102,	4 dB(A)	102,8 dB(A)	0,5 dB	1,3 dB
8,3 m/s ⁴⁾	103,3	B dB(A)	103	,3 dB(A)	102,	3 dB(A)	103,0 dB(A)	0,6 dB	1,5 dB
	Tor	zuschlag	bei vern	essener Na	benhöhe	K _{TN} :		1111	
	1. Mes	ssung 2)	2. Messung ²⁾ 3. Messung ³⁾					ļ	
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
8 m/s	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz			
8,3 m/s ⁴⁾	0 dB	- Hz	1 dB	148 Hz	2 dB	164 Hz			
			lmpulsz	uschlag K _{IN}	•			3//	
	1. Mes	ssung ²⁾	2. M	essung 2)	3. Mes	ssung 3)			
6 m/s	C) dB		0 dB	C) dB			
7 m/s	Ċ	dB		0 dB	c	dB			
8 m/s	c) dB		0 dB) dB			
8,3 m/s ⁴⁾	c	dB		0 dB	0 dB				

	Terz-	Schalleis	tungspeg	el (Mittel	aus 3 M	essunger) Referer	zpunkt v	10 in dB(A) 4)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA}	91,7	91,2	90,5	89,5	88,3	87,3	86,2	84,9	82,1	80,4	78,3	72,8

	(Oktav-Schalle	istungspegel	(Mittel aus 3 l	Messungen) F	Referenzpunkt	V ₁₀ in dB(A) 4)
Frequenz	63	125	250	500	1000	2000	4000	8000
Lwa	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe

2) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 85 m 3) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 61,5 m

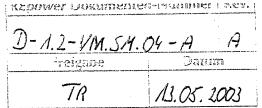
4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

KÖTTER Consulting Engineers

Bonfatiusstraße 400

48432 Rheine


Datum:

08.05.2003

Bonifatiusstraße 400^{Ste4}88432 Rheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

Unterschrift

Auszug aus dem Prüfbericht 27053-1.001

Seite 3 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten			
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77
		Nennleistung	1500 kW
		Nabenhöhe	90,0 m
		Rotordurchmesser	77,0 m
	1. Messung	2. Messung	3. Messung
Seriennummer	70.075	70.036	70.227
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye
vermessene Nabenhöhe	85 m	85 m	61,5 m
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001
Datum	07.08.2002	02.10.2002	06.05.2003
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P

Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002) 1. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

Wind- geschwindigkeit				ngspegel L		<u> </u>	Mittelwert	Standard- abweichung	K nach /2/
in 10 m Höhe	1. Mes	ssung 1)	2. Me	essung 1)	3. Mes	ssung 1)	Lwa	s	$\sigma_R = 0.5 \text{ dB}$
6 m/s		dB(A)	99	,5 dB(A)	99,9	dB(A)	100,1 dB(A)	0,7 dB	1,7 dB
7 m/s	102,6	dB(A)	101	,1 dB(A)	101,7	dB(A)	101,8 dB(A)	0,8 dB	1,7 dB
8 m/s	103,3	dB(A)	102	,9 dB(A)	102,4	dB(A)	102,9 dB(A)	0,5 dB	1,3 dB
8,3 m/s ⁴⁾	103,3	dB(A)	103	,3 dB(A)	102,3	B dB(A)	103,0 dB(A)	0,6 dB	1,5 dB
	Tor	zuschlag	bei vern	nessener Na	benhöhe	K _{TN} :			
	1. Me:	ssung ²⁾	2. M	2. Messung 2)		ssung 3)			
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
8 m/s	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz			
$8,3 \text{ m/s}^{4)}$	0 dB	- Hz	1 dB	148 Hz	2 dB	164 Hz			
			Impulsz	uschlag K _{IN}	:				
	1. Me	ssung ²⁾	2. M	essung 2)	3. Me	ssung 3)			
6 m/s) dB		0 dB	() dB			
7 m/s	() dB		0 dB	. () dB			
8 m/s	() dB		0 dB	() dB		1	
8,3 m/s ⁴⁾	() dB		0 dB) dB			

	Terz-	Schalleis	tungspeg	jel (Mittel	aus 3 Me	essungen) Referer	ızpunkt v	10 in dB(A) ⁴⁾		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lvva	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa	91,7	91,2	90,5	89,5	88,3	87,3	86,2	84,9	82,1	80,4	78,3	72,8

Oktav-Schalleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v ₁₀ in dB(A) ⁴⁾									
Frequenz	63	125	250	500	1000	2000	4000	8000	
Lwa	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9	

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe

2) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N = 85 \text{ m}$

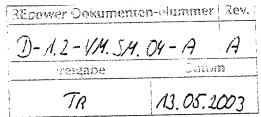
3) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N = 61,5$ m

4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

KÖTTER Consulting Engineers

Bonfatiusstraße 400


48432 Rheine

Datum:

08.05.2003

Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

Auszug aus dem Prüfbericht 27053-1.001

Seite 4 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von **mindestens drei** Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten			
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77
		Nennleistung	1500 kW
		Nabenhöhe	96,5 m
		Rotordurchmesser	77,0 m
	1. Messung	2. Messung	3. Messung
Seriennummer	70.075	70.036	70.227
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye
vermessene Nabenhöhe	85 m	85 m	61,5 m
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001
Datum	07.08.2002	02.10.2002	06.05.2003
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P

Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002)
 und 3. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

Wind- geschwindigkeit		Sc	halleistu	ngspegel L	wa:		Mittelwert	Standard- abweichung	K nach /2/
in 10 m Höhe	1. Mes	ssung 1)	2. Me	essung 1)	3. Mes	sung 1)	Lwa	s	$\sigma_R = 0.5 \text{ dB}$
6 m/s	101,0	dB(A)	99,	5 dB(A)	100,1	dB(A)	100,2 dB(A)	0,8 dB	1,7 dB
7 m/s	102,7	dB(A)	101,	101,2 dB(A)		dB(A)	101,9 dB(A)	0,8 dB	1,7 dB
8 m/s	103,3	3 dB(A)	103,	103,1 dB(A)		dB(A)	103,0 dB(A)	0,4 dB	1,2 dB
8,2 m/s ⁴⁾	103,3	B dB(A)	103	3 dB(A)	102,3	dB(A)	103,0 dB(A)	0,6 dB	1,5 dB
	Tor	nzuschlag	bei verm	essener Na	benhöhe	K _{TN} :			
	1. Me	ssung 2)	2. Me	essung 2)	3. Mes	ssung 3)			
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
8 m/s	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz			
8,2 m/s ⁴⁾	0 dB	- Hz	1 dB	148 Hz	2 dB	164 Hz			
			Impulsz	uschlag K _{IN}	:				
	1. Me	ssung ²⁾	2. M	essung ²⁾	3. Mes	ssung 3)			
6 m/s	() dB		0 dB	(dB			į
7 m/s	(O dB		0 dB		dB			
8 m/s		0 dB		0 dB) dB			
8,2 m/s ⁴⁾		0 dB		0 dB	() dB			

	Terz-	Schalleis	tungspeg	el (Mittel	aus 3 Me	essungen) Referer	zpunkt v	10 in dB(A) ⁴⁾		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa	91,7	91,2	90,5	89,5	88,3	87,3	86,2	84,9	82,1	80,4	78,3	72,8

Oktav-Schalleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v ₁₀ in dB(A) ⁴⁾										
Frequenz	63	125	250	500	1000	2000	4000	8000		
Lwa	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9		

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe 2) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N=85\ m$

2) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N = 85 \text{ m}$ 3) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_N = 61,5 \text{ m}$

4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

KÖTTER Consulting Engineers

Bonfatiusstraße 400

48432 Rheine

Datum:

08.05.2003

Bonifatiusstraße 400 · 48432 Kheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43 D-1.2 - 1/19. S/19. O4 - A A A Freigabe Datum

Auszug aus dem Prüfbericht 27053-1.001

Seite 5 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

TR

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

13.05,2003

Anlagendaten					
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77		
		Nennleistung	1500 kW		
		Nabenhöhe	100,0 m		
		Rotordurchmesser	77,0 m		
	1. Messung	2. Messung	3. Messung		
Seriennummer	70.075	70.036	70.227		
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye		
vermessene Nabenhöhe	85 m	85 m	61,5 m		
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers		
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001		
Datum	07.08.2002	02.10.2002	06.05.2003		
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197		
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580		
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P		

1. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002)
2. und 3. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

z. und a. wessung.	1 10 m Höhe 1. Messung ¹⁾ 2. Messung ¹⁾ 3. Messung ¹⁾ Lwa s 6 m/s 101,1 dB(A) 99,6 dB(A) 100,1 dB(A) 100,3 dB(A) 0,8 dB 7 m/s 102,8 dB(A) 101,2 dB(A) 101,8 dB(A) 102,0 dB(A) 0,8 dB 8 m/s 103,3 dB(A) 103,2 dB(A) 102,5 dB(A) 103,0 dB(A) 0,4 dB								
Wind- geschwindigkeit		Scl	nalleistu	ngspegel L	wa:		Mittelwert		K nach /2/
in 10 m Höhe	1. Mes	ssung 1)	2. Me	essung 1)	3. Mes	sung 1)	Lwa	s	$\sigma_R = 0.5 \text{ dB}$
6 m/s	101,1	dB(A)	99,6 dB(A)		100,1	dB(A)	100,3 dB(A)	0,8 dB	1,7 dB
7 m/s	102.8	dB(A)	101	2 dB(A)	101,8	dB(A)	102,0 dB(A)	0,8 dB	1,8 dB
	103,3	dB(A)	103	2 dB(A)	102,5	dB(A)	103,0 dB(A)	0,4 dB	1,3 dB
8,1 m/s ⁴⁾	103,3	dB(A)	103	3 dB(A)	102,3	dB(A)	103,0 dB(A)	0,6 dB	1,5 dB
	Tor	zuschlag	bei vern	ei vermessener Nab		K _{TN} :			
	1. Mes	ssung ²⁾	2. M	2. Messung ²⁾ 3. Mess					
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			4
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
8 m/s	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz			
8,1 m/s ⁴⁾	0 dB	- Hz	1 dB	148 Hz	2 dB	164 Hz			
			Impulsz	uschlag K _{IN}	:				
	1. Me	ssung ²⁾	2. M	essung ²⁾	3. Mes	ssung 3)			
6 m/s) dB		0 dB	C) dB			
7 m/s	() dB		0 dB	C) dB			
8 m/s	(0 dB		0 dB	c) dB			
8,1 m/s ⁴⁾		0 dB		0 dB	C) dB			

	Terz-	Schalleis	tungspeg	el (Mittel	aus 3 Me	essunger) Referer	izpunkt v	10 in dB(A) ⁴⁾		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa	91.7	91.2	90,5	89,5	88,3	87,3	86,2	84,9	82,1	80,4	78,3	72,8

		Oktav-Schalle	istungspegel	(Mittel aus 3 N	Messungen) R	eferenzpunkt	v ₁₀ in dB(A) 4)
Frequenz	63	125	250	500	1000	2000	4000	8000
Lwa	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe

2) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 85 m 3) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 61,5 m

4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

KÖTTER Consulting Engineers

Bonfatiusstraße 400

48432 Rheine

Datum:

08,05.2003

Bonifatiusstraße 400 State Bres 2 Rheine

Unterschrift

Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

	REpower Dokumente	n-Nummer j	Rev.
	D-1.2- VM. 54.	OV-A	A
	Freigane	Datum	
Auszug aus dem Prüfbericht	7R 27053-1-001	13.05.20	103

Seite 6 von 6

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten			
Hersteller	REpower Systems AG	Anlagenbezeichnung	REpower MD77
	, -	Nennleistung	1500 kW
		Nabenhöhe	111,5 m
		Rotordurchmesser	77,0 m
	1. Messung	2. Messung	3. Messung
Seriennummer	70.075	70.036	70.227
Standort	Linnich bei Heinsberg	Schenkenberg 02	Lindewitt/Blye
vermessene Nabenhöhe	85 m	85 m	61,5 m
Meßinstitut	WINDTEST Grevenbroich GmbH	WIND CONSULT	KÖTTER Consulting Engineers
Prüfbericht	SE02011B2	WICO 039SE202	27053-1.001
Datum	07.08.2002	02.10.2002	06.05.2003
Getriebetyp	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197	Eickhoff, G45260X/A CPNHZ-197
Generatortyp	Loher, JFRA-580	Loher, JFRA-580	Loher, JFRA-580
Rotorblattyp	LM 37.3	LM 37.3	LM 37.3P

Schallemissionsparameter (Prüfbericht Leistungskurve: WT2126/02 vom 06.03.2002) 2. und 3. Messung: Schallemissionsparameter (Prüfbericht Leistungskurve: WT2186/02 vom 13.05.2002)

Wind- geschwindigkeit		Sc	halleistu	ngspegel L	wa:		Mittelwert	Standard- abweichung	K nach /2/
in 10 m Höhe	1. Mes	ssung 1)	2. Messung 1) 99,7 dB(A) 101,4 dB(A) 103,3 dB(A) bei vermessener Na 2. Messung 2) 0 dB - Hz 0 dB - Hz 1 dB 148 Hz		3. Mes	ssung 1)	Lwa	s	$\sigma_R = 0.5 \text{ dB}$
6 m/s		B dB(A)	99,			dB(A)	100,5 dB(A)	0,8 dB	1,8 dB
7 m/s		dB(A)	101,	101,4 dB(A)		dB(A)	102,1 dB(A)	0,8 dB	1,7 dB
8,0 m/s ⁴⁾	103,3	B dB(A)	103,	, , ,		dB(A)	103,0 dB(A)	0,6 dB	1,5 dB
	Tor	nzuschlag	bei verm			K _{TN} :			
	1. Me	ssung 2)	2. Me			ssung 3)			
6 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
7 m/s	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz			
8,0 m/s ⁴⁾	0 dB	- Hz	1 dB	148 Hz	1 dB	163 Hz			
			Impulszı	uschlag K _{IN}					
	1. Me	ssung 2)	2. Me	2. Messung 2)		ssung 3)			
6 m/s	(0 dB		0 dB	C	dB			
7 m/s	(0 dB		0 dB	0	dB			
8,0 m/s ⁴⁾		0 dB		0 dB	(dB			

	Terz-	Schalleis	tungspeg	el (Mittel	aus 3 Me	essungen) Referer	zpunkt v	10 in dB(A) ⁴⁾		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa	76,5	80,8	85,4	87,1	88,5	93,2	90,1	91,3	92,6	92,6	91,3	92,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa	91,7	91,2	90,5	89,5	88,3	87,3	86,2	84,9	82,1	80,4	78,3	72,8

	Oktav-Schalleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v ₁₀ in dB(A) ⁴⁾									
Frequenz	63	125	250	500	1000	2000	4000	8000		
Lwa	87,1	95,2	96,2	96,8	95,9	93,2	89,5	82,9		

Die Angaben ersetzen nicht die o.g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

1) Schalleistungspegel bei umgerechneter Nabenhöhe

2) Gilt für die vermessene WEA mit einer Nabenhöhe von h_N = 85 m 3) Gilt für die vermessene WEA mit einer Nabenhöhe von $h_{\rm N}$ = 61,5 m 4) Entspricht 95 % der Nennleistung

Ausgestellt durch:

KÖTTER Consulting Engineers

Bonfatiusstraße 400 48432 Rheine

Datum:

08.05.2003

Bonifatiusstraße 400 · SEMARE Rheine

Tel. 0 59 71 - 97 10.0 - Fax 0 59 71 - 97 10.43

WINDTEST Grevenbroich GmbH

Schalltechnisches Gutachten zur Windenergieanlage des Typs REpower MD 77, Nabenhöhe 85 m, im schallreduzierten Betrieb (1300 kW)

REpower Dokumenten-	Nummer Rev.	
D-1.2-VM. SM. 03	- - 3	7,00
Freigabe	Datum	
7R	28.08.2003	-

Messung 28.10.2002

Vollständiger Bericht

16.07.03

SE02018B3

Dieser Bericht ersetzt den früheren Bericht SE02018B2 vom 28.11.02

Duron das DAP Deutsches Akkreditierungssyster:
Prüfwesen Gman akkreditiertes Prüfiaboratonum:

Die Akkreditierung gilt für die in der Urkunde aufgefunden Prüfiverfahrer:

Die Akkreditierung gilt für die in der Urkunde giett dur die in der Urkunde giett das die in der Giett das

6 Zusammenfassung

Im Auftrag der Firma REpower Systems AG wurde von der Firma WINDTEST Grevenbroich GmbH die Geräuschabstrahlung der WEA MD 77 mit einer Nabenhöhe von H = 85 m inkl. Fundament nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die DIN EN 61400 Teil 11 /2/. für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulsnaltigkeiten die DIN 45645 Teil 1 /3/

Die Messung wurde am 28.10.2002 in Linnich (NRW) durchgeführt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden. Einzelereignisse, die den Mittelungspegel im Betrieb der WEA um mehr als 10 dB überschreiten, traten beim Abschalten der Anlage nicht auf. Eine Impulshaltigkeit nach DIN 45645 Teil 1 lag nicht vor.

Bezüglich des Schallleistungspegels L_{WA} wurde für diese Messung eine Messunsicherheit von $U_{\rm C}=0.8$ dB ermittelt. Für die gemessene Windgeschwindigkeit wurde ein Korrekturfaktor k=0.96 festgestellt.

Die Tonhaltigkeitsanalyse nach E DIN 45681 für das in 100 m Entfernung gemessene Anlagengeräusch ergab keine Tonhaltigkeitszuschläge in allen untersuchten BIN's.

Die Untersuchung tieffrequenten Schalls von 8 Hz bis 100 Hz ergab keine Hinweise auf nennenswerte Abstrahlung von Infraschall.

Nach Auswertung der gemessenen Werte in den einzelnen BIN's ergeben sich für die MD 77 die in Tabelle 14 aufgeführten Pegel.

Tabelle 14: Schallleistungspegel. Ton- und Impulshaltigkeitszuschläge für Windgeschwindigkeiten von 6 m/s bis 8.5 m/s. bezogen auf 10 m Höhe

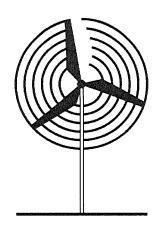
Windgeschwindigke	BIN 6 5,5–6,5 m/s	BIN 7		3IN 8	8.5 m/s
L _{WA} /dB(A)	98,4	99,4		100,0	100,2
U _C / dB(A)	3.0	8.0		3.0	3.0
K _{TN} /dB(A)	0	0		0	C
K _{IN} /dB(A)	0	C		0	C
P / kW	675	958	1	1187	1235

1) 95% Nennieistung

In Kapitel 4 werden die Schallleistungspegel für verschiedene Nabenhöhen umgerechnet.

Es wird versichert, dass das Gutachten gemäß dem Stand der Tecnnik, unparteilsen und nach bestem Wissen und Gewissen erstellt wurde.

Die in diesem Bericht aufgeführten Ergebnisse beziehen sich nur auf diese Anlage (vgl. Herstellerbescheinigung Anhang).


Grevenbroich 16.07.03

Dipi Met Klaus Hanswillemenke

NORDEX N-90/2500 LS

Schallmessbericht:

WINDTEST Kaiser-Wilhelm-Koog, Bericht Nr. WT 4226/05 vom 13.05.2005

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 4226/05 aus dem Prüfbericht WT 4212/05 zur Schallemission der Windenergieanlage vom Typ Nordex N90/2500 LS

Messdatum: 2005-04-18/19

Standort bzw. Messort:	Høvsøre, Ringl	Høvsøre, Ringkøbing Amt, Dänemark,						
Auftraggeber:	Auftraggeber: Nordex Energy GmbH Bornbarch 2 22848 Norderstedt Deutschland							
Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog Deutschland							
Datum der Auftragserteilung:	2005-01-13 Auftragsnummer: 6020 04 02753 06							

Kaiser-Wilhelm-Koog, 2005-05-13

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 4226/05 aus dem Prüfbericht WT 4212/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90/2500 LS

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerangaben)			
Anlagenhersteller:	Nordex Energy GmbH	Nennleistung (Generator):	2500 kW		
	Bornbarch 2	Rotordurchmesser:	90 m		
	22848 Norderstedt	Nabenhöhe über Grund:	80 m		
Seriennummer	8047	Turmbauart:	konisches Rohr		
WEA-Standort	Høvsøre, Stand 4	Leistungsregelung:	pitch		
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Gen	erator (Herstellerangaben)		
Rotorblatthersteller:	LM Glasfiber A/S	Getriebehersteller:	Rexroth		
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichnung Getriebe:	GPV510D		
Blatteinstellwinkel:	variabel	Generatorhersteller:	Loher		
Rotorblattanzahl	3	Typenbezeichnung Generator:	AFWA-630MD-06A		
Rotordrehzahlbereich:	14,9 / 9,6 - 16,9 U/min	Generatornenndrehzahl:	1150/ 744 - 1310 U/min		
Prüfbericht zur Leistungsk	urve: Week Report 050401 - 050419	*			

				Refe	erenz	punkt			;	Schallemis	sions	s-Para	ameter		Beme	rkung	en
			Nind(ndardisierte geschwindig n 10 m Höh		Elektrische Wirkleistung											
				6 ms ⁻¹		949 kW				0,9 dE							
Schallleist	ungs-			7 ms ⁻¹			15 k\				1,7 dE						
Pegel				8 ms ⁻¹		202	20 k\	W		10:	2,8 dE	3(A)					
$L_{WA,P}$			1	8,6ms ⁻¹		237	75 k\	W	ŀ	10	3,3 dE	3(A)					
				10 ms ⁻¹		-	kW				- dB(A	١)					
				6 ms ⁻¹		94	9 kV	٧		0 dB		b	ei - Hz				
Tonzusch	ag für			7 ms ⁻¹		144	15 k\	W	l	0 dB		b	ei - Hz				
den Nahbe	den Nahbereich 8 ms ⁻¹		2020 kW			0 dB bei - Hz											
KTN				8,6ms ⁻¹		2375 k		W	0 dB bei - Hz								
				10 ms ⁻¹		- kW			- dB bei - Hz								
				6 ms ⁻¹		94	9 kV	٧			0 dB						•
Impulszus	chlag			7 ms ⁻¹	1445 k		15 k\	kW			0 dB						
für den Na	-			8 ms ⁻¹	2020 k		20 k	W	0 dB								
KIN				8.6ms ⁻¹		2375 k			0 dB								
<i>"</i> "		İ		10 ms ⁻¹	- 1		kW		- dB								
					chall	leistunc	isne	nel Ref	renzr	unkt v ₁₀ =	8 6 n	ıs ⁻¹ in	dR(A)				
Frequenz	50	6	3	80		00	125		160	200		50	315	400	5	00	630
LWA. P	82,0	82		84,5		7,2	88.		9.9	91,1	94		93,3	93,1	_	1,9	91,5
Frequenz	800	10		1250		500	200		500	3150		00	5000	6300	_	000	10000
L _{WA, P}	89,7	88		89,9		1,4	91.0		9,6	88,4	84		81.0	76,0		0,3	63.7
⊆WA, P	03,1	00	,,,,	<u> </u>						<u> </u>				1 10,0		,,,	00,1
					Schal		gsp			punkt v ₁₀ =		ns" i					
Frequenz	63			125		250		500		1000			2000	400			8000
LWA, P	0,88			93,3		97,9		97,0)	94,3			95,5	90	,3	<u> </u>	77,2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-05-10. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,6 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Dinlara A Jensen

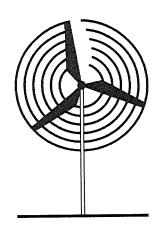
Dipl.-Ing. J. Neuber

Konformitätsstempel

Datum:

2005-05-13

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.


Umrechnung des Schallleistungspegels auf andere Nabenhöhen:

Vermessene Höhe (m): Neue Höhe (m):	80,00 100,00
Standardwindgeschwindigkeit 1 (m/s): Vermessener Pegel bei v1 (dB(A)): v2 > v1 (v2 i.d.R. 10 m/s)	8,00 102,80
Standardwindgeschwindigkeit 2 (m/s): Vermessener Pegel bei v2 (dB(A)):	8,60 103,30
Standardisierte Referenzgeschwindigkeit bei Vermessung in 10 m ü. Gr. (m/s) :	10,00
a: Zähler: Nenner:	0,83 7,60 7,38
Neuer Schallleistungspegel Pegel (dB(A)):	103,55

NORDEX N-90/2500 LS leistungsbegrenzt auf 2000 kW

Schallmessbericht:

WINDTEST Kaiser-Wilhelm-Koog, Bericht Nr. WT 4227/05 vom 13.05.2005

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 4227/05 aus dem Prüfbericht WT 4213/05 zur Schallemission der Windenergieanlage vom Typ Nordex N90/2500 LS begrenzt auf 2000 kW

Messdatum: 2005-04-18/19

Standort bzw. Messort:	Høvsøre, Ringkøbing Amt, Dänemark						
Auftraggeber:	Nordex Energy GmbH Bornbarch 2 22848 Norderstedt Deutschland						
Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog Deutschland						
Datum der Auftragserteilung:	2005-01-13 Auftragsnummer: 6020 04 02753 06						

Kaiser-Wilhelm-Koog, 2005-05-13

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 4227/05 aus dem Prüfbericht WT 4213/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90/2500 LS begrenzt auf 2000 kW Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerang	Technische Daten (Herstellerangaben)			
Anlagenhersteller:	Nordex Energy GmbH	reduzierte Nennleistung:	2000 kW			
	Bornbarch 2	Rotordurchmesser:	90 m			
	22848 Norderstedt	Nabenhöhe über Grund:	80 m			
Seriennummer	8047	Turmbauart:	konisches Rohr			
WEA-Standort (ca.)	Høvsøre, Stand 4	Leistungsregelung:	pitch			
Ergänzende Daten zum Rotor	(Herstellerangaben)	Erg. Daten zu Getriebe und Gene	erator (Herstellerangaben)			
Rotorblatthersteller:	LM Glasfiber A/S	Getriebehersteller:	Rexroth			
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichnung Getriebe:	GPV510D			
Blatteinstellwinkel:	variabel	Generatorhersteller:	Loher			
Rotorblattanzahl	3	Typenbezeichnung Generator:	AFWA-630MD-06A			
reduz. Rotornenndrehzahl:	14,0 min ⁻¹	reduz. Generatornenndrehzahl:	1080 min ⁻¹			
Prüfbericht zur Leistungskur	ve: vom Hersteller berechnet					

	Referen	zpunkt	Schallemissi	Bemerkungen	
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
Schallleistungs- Pegel L _{WA,P}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,8 ms ⁻¹ 10 ms ⁻¹	906 kW 1348 kW 1726 kW 1900 kW - kW	100, 100, 101,	1 dB(A) 1 dB(A) 8 dB(A) 2 dB(A) 1B(A)	
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,8 ms ⁻¹ 10 ms ⁻¹	906 kW 1348 kW 1726 kW 1900 kW - kW	0 dB 0 dB 0 dB 1 dB - dB	bei - Hz bei - Hz bei - Hz bei 460 Hz bei - Hz	
Impulszuschlag für den Nahbereich <i>K</i> _{IN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,8 ms ⁻¹ 10 ms ⁻¹	906 kW 1348 kW 1726 kW 1900 kW - kW	(0 dB 0 dB 0 dB 0 dB - dB	

Frequenz	50	63	80	100	125	160	200	250	315	400	300	030
LWA P	76,4	86,1	82,1	84,0	84,9	86,9	88,9	91,4	90,6	91,2	91,4	89,9
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA. P	87,7	87,1	87,5	89,4	88,6	87,2	85,8	81,9	78,9	70,8	68,9	59,8
			Oktav-S	Schallleist	ungspege	el Referenz	punkt v ₁₀ =	= 8,8 ms ⁻¹	in dB(A)			
Frequenz	63		125	250		500	1000		2000	4000		8000
L _{WA, P}	87,9		90,2	95,2		95,7	92,2		93,3	87,9		73,2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-05-10. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,8 ms⁻¹.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

onformitätsstempel

Datum: 2005-05-13

Dipl-Ing. A. Jensen

Dipl.-Ing. J. Neubert

400

500

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüfaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

TECHNISCHES DATENBLATT TECHNICAL FILE

CODE: DATUM/DATE: 24.10.2005

REV: 1 SEITE/PAGE 1
VON/OF 14

Tite!

Schallemissionswerte G80 - Zusammenfassung - Standard Mode

Title:

Noise power level G80 - summary - Standard Mode

AUTOR/AUTHOR: IEW

GEPRÜFT/ CHECKED: IEW

GENEHMIGT/APPROVED: SSC

This document or embodiment of it in any media and the information contained in it are the property of Gamesa Wind GmbH. It is an unpublished work protected under copyright laws free of any legal responsibility for errors or omissions. It is supplied in confidence and it must not be used without the express written consent of Gamesa Wind GmbH for any other purpose than that for which it is supplied. It must not be reproduced in whole or in part in any way (including reproduction as a derivative work) nor loaned to any third part. This document must be returned to Gamesa Wind GmbH on demand.

ÄNDERUNGSVERZEICHNIS / RECORD OF CHANGES

Rev.	Datum/ Date	Autor/ Author	Beschreibung	Description
1	24.10.05	IEW	Erste Ausgabe Layout Gamesa Wind GmbH	Initial Version layout Gamesa Wind

TECHNISCHES DATENBLATT TECHNICAL FILE

CODE:	DATUM/ DATE:
GW0102	24.10.2005
REV: 1	SEITE/ PAGE 2 VON/ OF 14

Titel

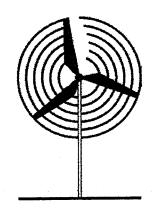
Schallemissionswerte G80 - Zusammenfassung - Standard Mode

Title

Noise power level G80 - summary - Standard Mode

AUTOR/AUTHOR: IEW

GEPRÜFT/ CHECKED: IEW


GENEHMIGT/APPROVED: SSC

GENERIVIG IT APPROVED: SSC

This document or embodiment of it in any media and the Information contained in it are the property of Gamesa Wind GmbH. It is an unpublished work protected under copyright laws free of any legal responsibility for errors or omissions. It is supplied in confidence and it must not be used without the express written consent of Gamesa Wind GmbH for any other purpose than that for which it is supplied. It must not be reproduced in whole or in part in any way (including reproduction as a derivative work) nor loaned to any third part. This document must be returned to Gamesa Wind GmbH on demand.

ERGEBNISZUSAMMENFASSUNG AUS MEHREREN EINZELMESSUNGEN

gemäß Anhang D und unter Verwendung von Anhang C der Technischen Richtlinien für Windenergieanlagen (FGW), Teil 1: "Bestimmung der Schallemissionswerte", Rev. 15 für die Windenergieanlage G80-2000 kW bei Verwendung der Version G8Xv1_xxV (Standard Mode) der Steuerungssoftware für die Nabenhöhen 60 Meter, 67 Meter, 78 Meter und 100 Meter.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs G80 Modus G8Xv1_xxV aus mehreren Einzelmessungen nach FGW Rev. 15 umgerechnet auf eine Nabenhöhe von 60 m über Grund

Juni 2005

Kurzbericht WT 4312/05

Standort bzw. Messort:	La Diana Na 4	r. 4357 (V2), Carrasquillo N 137	Ir. 4356 (N38) und
Auftraggeber:	Gamesa Eólica Poligono Agus 31013 Pamplo Spanien	tinos Calle A, S/N	
Auftragnehmer:	WINDTEST Ka Sommerdeich 25709 Kaiser- Deutschland		
Datum der Auftragserteilung:	2005-06-07	Auftragsnummer:	6020 04 02440 06

Dieses Dokument darf auszugsweise nur mit schnittlicher Zustimmung der WNDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst insgesamt 3 Seiten.

Seite 2 von 3

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendate	∍n						
Hersteller	Gamesa Eólica	S.A.	Anlagenbezeichnung	G80 G8Xv1_xxV			
	Poligono Agust	inos Calle A, S/N	Nennleistung in kW	2000			
	31013 Pamploi	na-Navarra Nabenhöhe in m		60			
	Spanien		Rotordurchmesser in m	80			
Angaben zur Einzelmessung		Messung-Nr.					
7 mg 250 m 26	- Cirizonii Coobiig		1	2			
Seriennumme	er		4357		4356		
Standort			Windpark Carrasquillo Nr. V2	Windparl	Carrasquillo Nr. N38		
Vermess, Nat	oenhöhe (m)		78		67		
Messinstitut		WINDTEST	Kaiser-Wilhelm-Koog GmbH	WINDTEST Kaiser	-Wilhelm-Koog GmbH		
Prüfbericht	ht		WT 4220/05	WT 4223/0			
Datum			2005-05-13		2005-05-20		
Getriebetyp			Hansen 2MW		Hansen 2MW		Hansen 2MW
Generatortyp			Ingecon-W 2000 kW Ingecon-W 20		Ingecon-W 2000 kW		
Rotorblatttyp			G39 P		G39 P		
Angahen zur	Einzelmessung	Messung-Nr. (Fortsetzung)					
	E. I. Louis Good ing		3		n		
Seriennumme	:r			4137			
Standort				Windpark La Plana			
Vermess. Nab	enhöhe (m)		60				
Messinstitut			Deutsches Win				
Prüfbericht D		EWI S AM 136/04 und Nachtra					
Datum							
Getriebetyp							
Generatortyp							
Rotorblatttyp				Ingecon-W 2000 kW G39 P			

Schallle	eistungspegel Lwak:							
	Messung	Windgeschwindigkeit in 10 m Höhe						
		6 m/s	7 m/s	8 m/s	9 m/s	10 m/s 1)		
	1	100,9 dB(A)	102,9 dB(A)	104,0 dB(A)	104,3 dB(A)	104,2 dB(A)		
	2	100,6 dB(A)	102,0 dB(A)	102,9 dB(A)	103,6 dB(A)	103,4 dB(A)		
	3	100,0 dB(A)	101,4 dB(A)	102,5 dB(A)	103,3 dB(A)	103,5 dB(A)		
	4				, , ,	,		
	5							
	6							
	7							
	8							
	9							
	n							
	Mittelwert $\overline{L}_{\!\scriptscriptstyle \mathcal{W}}$	100,5 dB(A)	102,1 dB(A)	103,1 dB(A)	103,7 dB(A)	103,7 dB(A)		
	Standard- Abweichung s	0,5 dB(A)	0,8 dB(A)	0,8 dB(A)	0,5 dB(A)	0,4 dB(A)		
	K nach /2/							
	$\sigma_{\rm p} = 0.5 \text{dB} / 3/$	1,3 dB(A)	1,7 dB(A)	1,8 dB(A)	1,4 dB(A)	1,3 dB(A)		

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 15, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ prEN 50376, Declaration of Sound Power Level and Tonality Values of Wind Turbines July 2001 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 3 von 3

Tonzuschlag bei	vermesse	ner Nabenhöhe K _r	n:			
Mes	sung		Winds	eschwindigkeit in 10) m Höhe	
4	3	6 m/s 0 dB 0 dB 0 dB	7 m/s 0 dB 0 dB 0 dB	8 m/s 0 dB 0 dB 0 dB	9 m/s 0 dB 0 dB 0 dB	10 m/s ¹⁾ 0 dB 0 dB 0 dB

Messung		Windge	eschwindigkeit in 10	m Höhe	
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s ¹
1 1	0 dB	0 dB	0 dB	0 dB	0 dB
2	0 dB	0 dB	0 dB	0 dB	ľ
3	0 dB	0 dB	0 dB	0 dB	0 dB
4			0.00	0.00	0 dB
5					
6		*			
7					
8			ļ		
9					
n			1		

Terz- Schal	leistungs	pegel (Mit	tel aus dre	i Messun	gen) Refe	renzpunki	v ₁₀ ,	in dB(A)			· · · · · · · · · · · · · · · · · · ·	-
Frequenz	50	63	80	100	125	160	200	250	315	400		
LWALMEX	76,9	79,0	82,6	84.1	86,5	88.5	89.9	91.5	92.7	400	500	630
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	92,5	93,7	93,0
LWAmax	92,0	92,5	93,8	93,2	91,2	89,6	87,7	84,8	81.0	6300 75,9	8000 69.0	10000

Oktav- Schall	eistungspegel (Mi	ttel aus di	ei Messu	ngen) Ref	erenzpuni	kt V _{101/m·1}	in dB(A	N)		\neg
Frequenz	63	125	250	500	1000	2000	4000	8000	T	4
L _{WA,max}	84,9	91,5	96,3	97,9	97,7	96.4	90.1	77.0		4

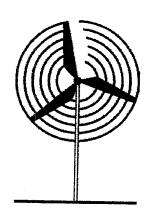
Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

Bemerkungen:

¹⁾ Bei einer 60 m hohen Anlage beträgt die der 95%igen Nennleistung (1900 kW) entsprechende Windgeschwindigkeit 9,3 m/s.

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b 25709 Kaiser-Wilhelm-Koog


Datum:

2005-06-30

Dipl.-Ing. J. Möller

Ourch das DAP Deutsches Akkreditierungssystem Pr nach DIN EN ISO/IEC 17025 alkreditieras Prülabon Die Akkreditierang gilt für die inder Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs G80 Modus G8Xv1_xxV aus mehreren Einzelmessungen nach FGW Rev. 15 umgerechnet auf eine Nabenhöhe von 67 m über Grund

Juni 2005

Kurzbericht WT 4313/05

Standort bzw. Messort:	Carrasquillo Nr. 4357 (V2), Carrasquillo La Plana Nr. 4137	Nr. 4356 (N38) und
Auftraggeber:	Gamesa Eólica S.A. Poligono Agustinos Calle A, S/N 31013 Pamplona-Navarra Spanien	
Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog Deutschland	·
Datum der Auftragserteilung:	2005-06-07 Auftragsnummer:	6020 04 02440 06

Dieses Dokument darf auszugsweise nur mit schoftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog CmbH vervielfältigt werden. Es umfasst insgesamt 3 Seiten.

Seite 2 von 3

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu orbähen.

Anlagendat	en						
Hersteller	Gamesa Eólica	, e A	Anlagenbezeichnung	C00 C0V.4			
1 icrotoller		tinos Calle A, S/N	Nennleistung in kW	G80 G8Xv1_xxV 2000			
	31013 Pamplo	. 1					
Spanien		ila-ilavalia		67			
			Rotordurchmesser in m Messun	80 a Na	·		
Angaben zu	r Einzelmessung						
Seriennumme	<u>-</u>		1 4057	2			
Standorf	er .		4357		4356		
	Lamb 25 - ()		Windpark Carrasquillo Nr. V2	Windpark	Carrasquillo Nr. N38		
Vermess, Na	bennone (m)		78		67		
Messinstitut			- r		er-Wilhelm-Koog GmbH		
Prüfbericht			j ·		WT 4223/05		
Datum			2005-05-13		2005-05-20		
Getriebetyp			Hansen 2MW		Hansen 2MW		
Generatortyp		Ingecon-W 2000 kW			Ingecon-W 2000 kW		
Rotorblatttyp			G39 P		G39 P		
Angaben zur	Einzelmessung		Messung-Nr. (Fortsetzung)				
		•	3		n		
Seriennumme	er			4137			
Standort				Windpark La Plana			
Vermess. Nat	oenhöhe (m)			60			
Messinstitut			Deutsches Wind	denergie-Institut GmbH			
Prüfbericht D		EWI S AM 136/04 und Nachtrag	DEWI AM 050507-02				
Datum			`				
Getriebetyp			,				
Generatortyp			Hansen 2MW Ingecon-W 2000 kW				
Rotorblatttyp	'			G39 P			

Schall	leistungspegel Lwak:								
	Messung	Windgeschwindigkeit in 10 m Höhe							
	eeeang	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s 1)			
	1	101,1 dB(A)	103,1 dB(A)	104,1 dB(A)	104,3 dB(A)	104,2 dB(A)			
	2	100,8 dB(A)	102,1 dB(A)	103,0 dB(A)	103,5 dB(A)	103,4 dB(A)			
	3	100,1 dB(A)	101,5 dB(A)	102,6 dB(A)	103,4 dB(A)	103,5 dB(A)			
	4								
	5			:					
	6								
	7								
	8								
	9		1						
	n		•						
	Mittelwert $\overline{L}_{\!\scriptscriptstyle \mathcal{W}}$	100,7 dB(A)	102,2 dB(A)	103,2 dB(A)	103,7 dB(A)	103,7 dB(A)			
	Standard- Abweichung s	0,5 dB(A)	0,8 dB(A)	0,8 dB(A)	0,5 dB(A)	0,4 dB(A)			
	K nach /2/ σ _R =0,5 dB /3/	1,4 dB(A)	1,8 dB(A)	1,8 dB(A)	1,3 dB(A)	1,3 dB(A)			

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 15, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ prEN 50376, Declaration of Sound Power Level and Tonality Values of Wind Turbines July 2001 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 3 von 3

Schalle	emissionsparar	neter: Zuschläg	je							
Tonzusc	hlag bei vermesse	ner Nabenhöhe Kı	N-							
	Messung	Messung: Windgeschwindigkeit in 10 m Höhe								
		6 m/s	7 m/s	8 m/s	9 m/s	10 m/s 1)				
	1	0 dB	0 dB	0 dB	0 dB	0 dB				
	2	0 dB	0 dB	0 dB	0 dB	0 dB				
	3	0 dB	0 dB	0 dB	0 dB	0 dB				
	4									
	5									
	6									
	7		1			1				
	8									
	9									
	n									

Messung		Windgeschwindigkeit in 10 m Höhe							
g	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s 1				
1	0 dB	0 dB	0 dB	0 dB	0 dB				
2	0 dB	0 dB	0 dB	0 dB.	0 dB				
3	0 dB	0 dB	0 dB	0 dB	0 dB				
4									
5					1				
6									
7									
8									
9									
n									

Terz- Schalleistungspegel (Mittel aus drei Messungen) Referenzpunkt $v_{10L_{1\nu_{A,\max}}}$ in dB(A)												
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAmex	76,9	79,0	82,6	84,1	86,5	88,5	89,9	91,5	92,7	92,5	93,7	93,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAmax	92,0	92,5	93,8	93,2	91,2	89,6	87,7	84,8	81,0	75,9	69,0	63,8

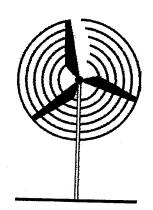
Oktav- Schalleistungspegel (Mittel aus drei Messungen) Referenzpunkt $v_{10L_{W\!A,\max}}$ in dB(A)											
Frequenz	63	125	250	500	1000	2000	4000	8000		T :	
L _{WA,max}	84,9	91,5	96,3	97,9	97.7	96,4	90,1	77,0			

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

Bemerkungen: ¹⁾ Bei einer 67 m hohen Anlage beträgt die der 95%igen Nennleistung (1900 kW) entsprechende Windgeschwindigkeit 9,2 m/s.

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b 25709 Kaiser-Wilhelm-Koog


Datum:

2005-06-30

Dipl,-ing. J. Möller

Durch das DAP Oeulaches Akkredillerungssystem Prüfwe nach DIN EN ISO/IEC 17025 akkredillertes Prüfaborekork Die Akkredillerung gilt für die in der Urkunde aufgelühren Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs G80 Modus G8Xv1_xxV aus mehreren Einzelmessungen nach FGW Rev. 15 umgerechnet auf eine Nabenhöhe von 78 m über Grund

Juni 2005

Kurzbericht WT 4314/05

Standort bzw. Messort:	Carrasquillo Nr. 4357 (V2), Carrasquillo Nr. 4356 (N38) und La Plana Nr. 4137
Auffraggeber:	Gamesa Eólica S.A. Poligono Agustinos Calle A, S/N 31013 Pamplona-Navarra Spanien
Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog Deutschland
Datum der Auftragserteilung:	2005-06-07 Auftragsnummer: 6020 04 02440 06

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu

Anlagendate	en								
Hersteller	Gamesa Eólica	SA	Anlagenbezeichnung	000 000 4					
		tinos Calle A, S/N	Nennleistung in kW	G80 G8Xv1_xxV					
	31013 Pamplo		Nabenhöhe in m	2000					
	Spanien	ia-ivayaija	,,						
			Rotordurchmesser in m 80 Messung-Nr.						
Angaben zu	r Einzelmessung	i							
Seriennumme	er		1 4257	2					
Standort		,	4357	4356					
Vermess, Nat	nenhöhe (m)		Windpark Carrasquillo Nr. V2	Windpark Carrasquillo Nr.					
Messinstitut	ocimone (III)	MANDTECT	78						
Prüfbericht		ANIMO1 F21	Kaiser-Wilhelm-Koog GmbH	WINDTEST Kaiser-	aiser-Wilhelm-Koog Gmbl				
Datum			WT 4220/05		WT 4223/05				
Getriebetyp			2005-05-13		2005-05-20				
31			Hansen 2MW		Hansen 2MW				
Generatortyp			Ingecon-W 2000 kW		Ingecon-W 2000 kW				
Rotorblatttyp			G39 P	G39 P					
Angaben zur	Einzelmessung	Messung-Nr. (Fortsetzung)							
			3		n				
Seriennumme	r			4137	· · · · · · · · · · · · · · · · · · ·				
Standort	j			Windpark La Plana					
Vermess. Nab	enhöhe (m)			60					
Messinstitut			Deutsches Wind	denergie-Institut GmbH					
Prüfbericht	1	DE	EWI S AM 136/04 und Nachtrag						
Datum	l			2005-06-02					
Getriebetyp	ŀ			Hansen 2MW					
Generatortyp			Ingecon-W 2000 kW						
Rotorblatttyp				G39 P					

nallle	istungspegel LwAk:								
	Messung	Windgeschwindigkeit in 10 m Höhe							
	1 2 3 4 5	6 m/s 101,4 dB(A) 101,1 dB(A) 100,3 dB(A)	7 m/s 103,3 dB(A) 102,2 dB(A) 101,7 dB(A)	8 m/s 104,2 dB(A) 103,2 dB(A) 102,8 dB(A)	9 m/s ¹⁾ 104,2 dB(A) 103,4 dB(A) 103,5 dB(A)	10 m/s			
	8 9 n								
	Mittelwert $\overline{L}_{\!\scriptscriptstyle (\!$	100,9 dB(A)	102,4 dB(A)	103,4 dB(A)	103,7 dB(A)				
	Standard- Abweichung s	0,6 dB(A)	0,8 dB(A)	0,7 dB(A)	0,4 dB(A)				
	K nach /2/ σ _R =0,5 dB /3/	1,4 dB(A)	1,8 dB(A)	1,7 dB(A)	1,3 dB(A)				

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 15, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ prEN 50376, Declaration of Sound Power Level and Tonality Values of Wind Turbines July 2001 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Tonzusc	hlag bei vermesse	ner Nabenhöhe K _T	w;			
	Messung		Windq	jeschwindigkeit in 10) m Höhe	
	L	6 m/s	7 m/s	8 m/s	9⁻m/s ¹⁾	10 m/s
	1	0 dB	0 dB	0 dB	0 dB	
	2	0 dB	0 dB	0 dB	0 dB	
	3	0 dB	0 dB	0 dB	0 dB	
	4					
	5					
	6		 			
	7					
	8					
	9					
	n		}		1	

Messung		Windge	eschwindigkelt in 10	m Höhe	
	6 m/s	7 m/s.	8 m/s	9 m/s 1)	10 m/s
1	0 dB	0 dB	0 dB	0 dB	
2	0 dB	0 dB	0 dB	0 dB	
3	0 dB	0 dB	0 dB	0 dB	
4					
5					
6					
7					
8		,			
9					

Terz- Schal	leistungsp	egel (Mitt	tel aus dre	i Messun	gen) Refe	renzpunkt	$v_{_{10}L_{WA,ma}}$	in dB(A)				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAmax	76,9	79,0	82,6	84,1	86,5	88,5	89,9	91,5	92,7	92,5	93,7	93,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWAmax	92,0	92,5	93,8	93,2	.91,2	89,6	87,7	84,8	81,0	75,9	69,0	63,8

Oktav- Schalleistungspegel (Mittel aus drei Messungen) Referenzpunkt $v_{10L_{ m B/4,max}}$ in dB(A)											
Frequenz	63	125	250	500	1000	2000	4000	8000			
LWAMEX	84,9	91,5	96,3	97,9	97.7	96.4	90.1	77.0			

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

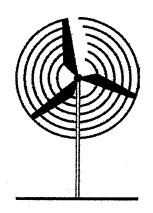
Bemerkungen:

¹⁾ Bei einer 78 m hohen Anlage beträgt die der 95%igen Nennleistung (1900 kW) entsprechende Windgeschwindigkeit 9,0 m/s.

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog


Datum:

2005-06-30

Dipl.-Ing. J. Möller

Durch des DAP Deutsches Akkreditierungssystem Prüfwes nach DIN EN ISO/IEC 17025 akkreditiertes Prüfaborakorkrin Die Akkreditierung git für die in der Unfunde aufgeführten Prüfwerfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs G80 Modus G8Xv1_xxV aus mehreren Einzelmessungen nach FGW Rev. 15 umgerechnet auf eine Nabenhöhe von 100 m über Grund

Juni 2005

Kurzbericht WT 4315/05

Standort bzw. Messort:	Carrasquillo N La Plana Nr.	lr. 4357 (V2), Carrasquillo 4137	Nr. 4356 (N38) und
Auftraggeber:	Gamesa Eólic Poligono Agu 31013 Pample Spanien	stinos Calle A, S/N	
Auftragnehmer:	Sommerdeich	aiser-Wilhelm-Koog GmbH 14 b Wilhelm-Koog	
Datum der Auftragserteilung:	2005-06-07	Auftragsnummer:	6020 04 02440 06

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der MNDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst insgesamt 3 Seiten.

Seite 2 von 3

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendate	n .								
Hersteller	Gamesa Eólica	S.A.	Anlagenbezeichnung	G80 G8Xv1_xxV					
	Poligono Agus	tinos Calle A, S/N	Nennleistung in kW	2000					
	31013 Pamplo	na-Navarra	Nabenhöhe in m	100					
	Spanien		Rotordurchmesser in m	80					
Angaben zur	Einzelmessung		Messung-Nr.						
·			1	2					
Seriennumme	r		4357		4356				
Standort		,	Windpark Carrasquillo Nr. V2	Windpart	Carrasquillo Nr. N38				
Vermess. Nab	enhöhe (m)		78		. 67				
Messinstitut		WINDTEST	Kaiser-Wilhelm-Koog GmbH	WINDTEST Kaiser	-Wilhelm-Koog GmbH				
Prüfbericht			WT 4220/05	WT 4223/					
Datum	ĺ		2005-05-13		2005-05-20				
Getriebetyp			Hansen 2MW		Hansen 2MW				
Generatortyp			Ingecon-W 2000 kW		Ingecon-W 2000 kW				
Rotorblatttyp			G39 P		G39 P				
Angaben zur	Einzelmessuna	Messung-Nr. (Fortsetzung)							
			3		n				
Seriennummer				4137					
Standort				Windpark La Plana					
Vermess, Nabe	enhöhe (m)			60					
Messinstitut	Į		Deutsches Wind	denergie-Institut GmbH					
Prüfbericht	[DE	EWI S AM 136/04 und Nachtra						
Datum		2005-06-02							
Getriebetyp			Hansen 2MW	-					
Generatortyp	1			Ingecon-W 2000 kW					
Rotorblatttyp				G39 P					

Schallk	eistungspegel LwA,k:					
	Messung		Windgesch	nwindigkeit in 10 m	Höhe	
		6 m/s	7 m/s	8 m/s	9 m/s 1)	10 m/s
	1 1	101,9 dB(A)	103,6 dB(A)	104,3 dB(A)	104,2 dB(A)	
	2	101,4 dB(A)	102,5 dB(A)	103,4 dB(A)	103,4 dB(A)	
	3	100,6 dB(A)-	102,0 dB(A)	103,0 dB(A)	103,5 dB(A)	
	4			, ,		
	5					
	6					
	7					
	8					
	9					
	n					
	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$	101,3 dB(A)	102,7 dB(A)	103,6 dB(A)	103,7 dB(A)	
	Standard- Abweichung s	0,7 dB(A)	0,8 dB(A)	0,7 dB(A)	0,4 dB(A)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	K nach /2/ σ _R =0,5 dB /3/	1,6 dB(A)	1,8 dB(A)	1,6 dB(A)	1,3 dB(A)	

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 15, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ prEN 50376, Declaration of Sound Power Level and Tonality Values of Wind Turbines July 2001 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 3 von 3

onzusc	hlag bei vermesse	ner Nabenhöhe K	N:			······································
	Messung		Windo	jeschwindigkeit in 10) m Höhe	
		6 m/s	7 m/s	8 m/s	9 m/s 1)	10 m/s
] 1	0 dB	0 dB	0 dB	0 dB	1011/3
	2	0 dB	0 dB	0 dB	0 dB	
	3	0 dB	0 dB	0 dB	0 dB	
	4			0.00	0 00	
	5					
	6				·	
	7					
	8					
	9		.			
	n					

	Messung		Windgeschwindigkeit in 10 m Höhe								
		6 m/s	7 m/s	8 m/s	9 m/s ⁻¹⁾	10 m/s					
	1 1	0 dB	0 dB	0 dB	0 dB	10 111/3					
	2	0 dB	0 dB	0 dB	0 dB						
	3	0 dB	0 dB	0 dB	0 dB	·					
	4										
	5										
	6										
-	7										
	8										
	9	ļ			ŀ						
	·n										

Terz- Schal	leistungs	egel (Mitt	el aus dre	i Messun	gen) Refe	renzpunkt	v _{10/}	in dB(A)	· · · · · · · · · · · · · · · · · · ·			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
LWAmax	76,9	79,0	82,6	84,1	86,5	88,5	89.9	91,5	92,7	92.5	93.7	93.0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwamax	92,0	92,5	93,8	93,2	91,2	89,6	87,7	84,8	81,0	75,9	69,0	63.8

Oktav- Schalleistungspegel (Mittel aus drei Messungen) Referenzpunkt $v_{10L_{VA,\max}}$ in dB(A)												
Frequenz	63	125	250	500	1000	2000	4000	8000	Γ	T	T	
LWAmax	84,9	91,5	96,3	97,9	97,7	96,4	90.1	77.0		<u> </u>	+	

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

Bemerkungen:

¹⁾ Bei einer 100 m hohen Anlage beträgt die der 95%igen Nennleistung (1900 kW) entsprechende Windgeschwindigkeit 8,7 m/s.

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Datum:

2005-06-30

Ourch das DAP Deutsches Akkredillerungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüfaboratorium. Die Akkrediterung git für die nier Urkunde aufgeführten Prüfwerfahren.

ENERCON E-70 E4 2.3MW

Schallvermessungsbericht als Zusammenfassung von drei Einzelvermessungen:

• WIND-consult GmbH, Bericht Nr. WICO 087SE510/02 vom 02.07.2010

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 1 von 2

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten							
Hersteller ENERCON GmbH	Anlagenbe		ENERCON E-70 E4 2,	3 MW (Betrieb II) 2300 kW			
Dreekamp 5 D-26605 Aurich	Nennleistu Nabenhóhe	_	58 m				
	Rotordurch	nmesser in m	71 m				
		Messung-Nr.					
Angaben zur Einzelmessung	1	2	3				
Seriennummer	702320	78793	781960				
Standort	Holtriem	Fehmarn-Mitte	Bordelum				
Vermessene Nabenhöhe	99 m	64 m	64 m				
Messinstitut	WIND-consult GmbH	WIND-consult Gmbl	H Busch GmbH				
Prufbericht	049SE206/01	191SE908/01	166209gs01				
Datum	16.03.2006	30.03.2010	30.12.2009				
Getriebetyp	-	-	-				
Generatortyp	E-70	E-70	E-70				
Rotorblatttyp	70-4	70-4	70-4				

Schall	leistungspegel L _{WA,P} :						
			Wind	geschwindigkeit	v ₁₀ in 10 m Hól	16	
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	V ₁₀ P[95%]
	1	97,5 dB(A)	99,7 dB(A)	101,9 dB(A)	103,5 dB(A)	104,3 dB(A)	104,4 dB(A) ¹⁾
	2	98,4 dB(A)	100,9 dB(A)	102,6 dB(A)	103,6 dB(A)	104,0 dB(A)	104,0 dB(A) ²
	3	- dB(A)	- dB(A)	103,3 dB(A)	103,8 dB(A)	104,0 dB(A)	104,1 dB(A) ³
	Mittelwert L _W	- dB(A)	- dB(A)	102,6 dB(A)	103,6 dB(A)	104,1 dB(A)	104,2 dB(A)
	Standardabweichung S	- dB(A)	- dB(A)	0,7 dB(A)	0,2 dB(A)	0,2 dB(A)	0,2 dB(A)
	K nach /2/ σ _R = 0,5 dB	- dB(A)	- dB(A)	1,6 dB(A)	1,0 dB(A)	1,0 dB(A)	1,0 dB(A)

^{/1/} Technische Richtlinien für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft für Windenergie e. V., Stresemannplatz 4, 24103 Kiel, 01.02.2008

/2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

- Bemerkungen: $v_{10 P[95\%]} = 10,3 \text{ ms}^{-1}$
- 2) $V_{10 P[95\%]} = 10.2 \text{ ms}^{-1}$ $V_{10 P[95\%]} = 10.5 \text{ ms}^{-1}$

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 2 von 2

Schallemis	sionsparameter:	Zuschläge
-------------------	-----------------	-----------

Tonzuschlag bei vermessener Nabenhöhe K_{TN}:

				Windges	schwindig	keit in 10	m Hóhe			
Messung	6 n	6 m/s		7 m/s		8 m/s		n/s	10 m/s	
1	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz
2	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz
3	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz

Impulszus	schlag K _{IN} :									
			Windgeschwindigkeit in 10 m Höhe							
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s				
	1	0 dB	0 dB	0 dB	0 dB	0 dB				
	2	0 dB	0 dB	0 dB	0 dB	0 dB				
	3	0 dB	0 dB	0 dB	0 dB	0 dB				

	Ter	z-Schallle	istungsp	egel (Mitte	el aus 3 M	essunger	ı) Referen	zpunkt v ₁	_{0LWA,Pmax} ir	n dB(A)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa. P	79,9	82,3	84,8	87,2	93,1	91,9	90,2	93,1	94,2	93,4	93,4	94,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA} P	93,4	93,1	91,8	90,3	89,6	87,5	87,0	84,9	82,7	80,3	78,9	79,0

	Oktav-Schallleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v _{10LWA,Pmax} in dB(A)												
Frequenz	63,0	125	250	500	1000	2000	4000	8000					
L _{WA, P}	87,6	94,7	97,6	98,4	97,6	94,0	90,0	84,2					

Diese Angaben ersetzen nicht die o .g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Ausgestellt durch: WIND-consult GmbH Reuterstr. 9 18211 Bargeshagen

Datum: 02.07.2010

DApl.-Ing. J. Schwabe

Dipl.-Ing. (FH) H. Reichelt

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 1 von 2

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten					
Hersteller ENERCON GmbH	Anlagenbe	zeichnung I	ENERCON E-70 E4 2,	,3 MW (Betrieb II)	
Dreekamp 5	Nennleistu	ng in kW		2300 kW	
D-26605 Aurich	Nabenhóhe	e in m		64 m	
	Rotordurch	nmesser in m		71 m	
		Messung-Nr.			
Angaben zur Einzelmessung	1	2	3		
Seriennummer	702320	78793	781960		
Standort	Holtriem	Fehmarn-Mitte	Bordelum		
Vermessene Nabenhohe	99 m	64 m	64 m		
Messinstitut	WIND-consult GmbH	WIND-consult GmbH	Busch GmbH		
Prufbericht	049SE206/01	191SE908/01	166209gs01		
Datum	16.03.2006	30.03.2010	30.12.2009		
Getriebetyp	-	-	-		
Generatortyp	E-70	E-70	E-70		
Rotorblatttyp	70-4	70-4	70-4		

Schall	leistungspegel L _{WA,P} :						
			Wind	geschwindigkeit	ν ₁₀ in 10 m Hól	ne	
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	V _{10 P[95%]}
	1	97,7 dB(A)	99,9 dB(A)	102,1 dB(A)	103,6 dB(A)	104,3 dB(A)	104,4 dB(A) ¹
	2	98,6 dB(A)	101,1 dB(A)	102,8 dB(A)	103,7 dB(A)	104,0 dB(A)	104,0 dB(A) ²
	3	- dB(A)	- dB(A)	103,4 dB(A)	103,8 dB(A)	104,1 dB(A)	104,1 dB(A)
	Mittelwert L _w	- dB(A)	- dB(A)	102,8 dB(A)	103,7 dB(A)	104,1 dB(A)	104,2 dB(A)
	Standardabweichung S	- dB(A)	- dB(A)	0,7 dB(A)	0,1 dB(A)	0,2 dB(A)	0,2 dB(A)
	K nach /2/ σ _R = 0,5 dB	- dB(A)	- dB(A)	1,6 dB(A)	1,0 dB(A)	1,0 dB(A)	1,0 dB(A)

^{/1/} Technische Richtlinien für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft für Windenergie e. V., Stresemannplatz 4, 24103 Kiel, 01.02.2008

/2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Bemerkungen:

- $V_{10 \text{ P[95\%]}} = 10.2 \text{ ms}^{-1}$ $V_{10 \text{ P[95\%]}} = 10.1 \text{ ms}^{-1}$ $V_{10 \text{ P[95\%]}} = 10.3 \text{ ms}^{-1}$ 2)

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 2 von 2

Schallemissionsparameter	Zuschläge
--------------------------	-----------

Tonzuschlag bei vermessener Nabenhöhe K_{TN} :

Messung		Windgeschwindigkeit in 10 m Höhe									
g	6 г	n/s	7 n	n/s	8 r	n/s	9 n	n/s	10	m/s	
1	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	
2	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	
3	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	

Impulszusc	mpulszuschlag K _{IN} :												
	Messung		Windge	schwindigkeit in 10	m Hohe								
	messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s							
	1	0 dB	0 dB	0 dB	0 dB	0 dB							
	2	0 dB	0 dB	0 dB	0 dB	0 dB							
	3	0 dB	0 dB	0 dB	0 dB	0 dB							

Terz-Schallleistungspegel (Mittel aus 3 Messungen) Referenzpunkt v _{10LWA,Pmax} in dB(A)												
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA, P}	79,9	82,3	84,9	87,2	93,1	92,0	90,2	93,1	94,3	93,4	93,5	94,0
Frequenz	800,0	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA, P	93,5	93,1	91,9	90,3	89,6	87,5	87,1	84,9	82,8	80,3	78.9	79.0

	Okta	av-Schalli	eistungsp	egel (Mit	tel aus 3 N	/lessunge	n) Refere	nzpunkt v _{10LWA}	, _{Pmax} in dB(A)	
Frequenz	63,0	125	250	500	1000	2000	4000	8000		
L _{WA, P}	87,6	94,8	97,6	98,4	97,6	94,1	90,0	84,2		

Diese Angaben ersetzen nicht die o .g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Ausgestellt durch: WIND-consult GmbH Reuterstr. 9 18211 Bargeshagen

Datum: 02.07.2010

Dipl.-Ing. J. Schwabe

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 1 von 2

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendate	en					
Hersteller	ENERCON Gm	bH Anlagenb	ezeichnung	ENERCON E-70 E4 2	,3 MW (Betrieb II)	
	Dreekamp 5	Nennleisti	ung in kW		2300 kW	
	D-26605 Auricl	n Nabenhóh	e in m		85 m	
		Rotordurc	hmesser in m	71 m		
A		:				
Angaben zur Einzelmessung		1	2	3		
Seriennummer		702320	78793	781960		·~~
Standort		Holtriem	Fehmarn-Mitte	Bordelum		
Vermessene N	abenhohe	99 m	64 m	64 m		
Messinstitut		WIND-consult GmbH	WIND-consult Gmb	H Busch GmbH		
Prufbericht		049SE206/01	191SE908/01	166209gs01		
Datum		16.03.2006	30.03.2010	30.12.2009		
Getriebetyp		-	-	-		
Generatortyp		E-70	E-70	E-70		
Rotorblatttyp		70-4	70-4	70-4		

Schallemi	ssionsparameter: N	lesswerte (Le	eistungskurve	e: berechnete	e Kurve)		
Schallleistu	ngspegel L _{WA,P} :						
	Messung		Wind	geschwindigkeit	t v ₁₀ in 10 m Hó	he	
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	V _{10 P[95%]}
	1	98,2 dB(A)	100,6 dB(A)	102,6 dB(A)	104,0 dB(A)	104,4 dB(A)	104,4 dB(A)
	2	99,3 dB(A)	101,7 dB(A)	103,1 dB(A)	103,8 dB(A)	103,9 dB(A)	104,0 dB(A)
	3	- dB(A)	- dB(A)	103,6 dB(A)	103,9 dB(A)	104,1 dB(A)	104,1 dB(A)
	Mittelwert L _w	- dB(A)	- dB(A)	103,1 dB(A)	103,9 dB(A)	104,1 dB(A)	104,2 dB(A)
	Standardabweichung S	- dB(A)	- dB(A)	0,5 dB(A)	0,1 dB(A)	0,3 dB(A)	0,2 dB(A)
	K nach /2/ σ _R = 0,5 dB	- dB(A)	- dB(A)	1,4 dB(A)	1,0 dB(A)	1,1 dB(A)	1,0 dB(A)

^{1/1/} Technische Richtlinien für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft für Windenergie e. V., Stresemannplatz 4, 24103 Kiel, 01.02.2008

/2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Bemerkungen: 1) Van prosext =

- $v_{10 P[95\%]} = 9.8 \text{ ms}^{-1}$
- 2)
- $v_{10 P[95\%]} = 9.7 \text{ ms}^{-1}$ $v_{10 P[95\%]} = 9.9 \text{ ms}^{-1}$

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 2 von 2

Schallemissionsparameter:	Zuschläge
---------------------------	-----------

Tonzuschlag bei vermessener Nabenhöhe K_{TN} :

Messung		Windgeschwindigkeit in 10 m Hóhe									
	6 n	n/s	7 n	n/s	8 n	n/s	9 n	n/s	10 ו	m/s	
1	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	
2	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	
3	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	

lmpulszusc	hlag K _{IN} :					
	Messung		Windge	schwindigkeit in 10	m Hohe	
	messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
	1	0 dB	0 dB	0 dB	0 dB	0 dB
	2	0 dB	0 dB	0 dB	0 dB	0 dB
	3	0 dB	0 dB	0 dB	0 dB	0 dB

	Ter	z-Schallle	istungsp	egel (Mitte	el aus 3 M	essunger	n) Referen	zpunkt v ₁	OLWA,Pmax İI	ı dB(A)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA, P}	79,9	82,3	84,9	87,3	93,1	92,0	90,2	93,1	94,3	93,4	93,5	94,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA. P	93,4	93,1	91,9	90,3	89,6	87,5	87,0	84,9	82,7	80,3	78,8	78,9

	Okta	ıv-Schalil	eistungsp	egel (Mitt	el aus 3 M	Nessunge	n) Refere	nzpunkt v	10LWA,Pmax in dB(A)	
Frequenz	63,0	125	250	500	1000	2000	4000	8000		
L _{WA. P}	87,6	94,8	97,6	98,4	97,6	94,1	90,0	84,1		

Diese Angaben ersetzen nicht die o .g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Ausgestellt durch: WIND-consult GmbH Reuterstr. 9 18211 Bargeshagen The second secon

Datum: 02.07.2010

Dipl.-Ing. J. Schwabe

Dipl.-Ing. (FH) H. Reichelt

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 1 von 2

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagen	daten					
Hersteller	ENERCON GmbH	Anlagenbe	zeichnung	ENERCON E-70 E4 2	,3 MW (Betrieb II)	
	Dreekamp 5	Nennleistu	ng in kW		2300 kW	
	D-26605 Aurich	Nabenhoh	e in m		98 m	
		Rotordurci	hmesser in m		71 m	
Angahan	Einnalmana		Messung-Nr.			
Angaben z	ur Einzelmessung	1	2	3		
Seriennum	ımer	702320	78793	781960		
Standort		Holtriem	Fehmarn-Mitte	Bordelum		
Vermesser	ne Nabenhohe	99 m	64 m	64 m		
Messinstit	ut	WIND-consult GmbH	WIND-consult Gmbl	H Busch GmbH		
Prüfberich	t	049SE206/01	191SE908/01	166209gs01		
Datum		16.03.2006	30.03.2010	30.12.2009		
Getriebety	р	~	-	-		
Generatort	ур	E-70	E-70	E-70		
Rotorblattt	ур	70-4	70-4	70-4		

Cahai	Haiotunganagal I						
Scriai	lleistungspegel L _{WA,P} :						
	Messung		Wind	geschwindigkeit	v ₁₀ in 10 m Hol	16	
	messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	V ₁₀ P[95%]
	1	98,4 dB(A)	100,9 dB(A)	102,9 dB(A)	104,1 dB(A)	104,4 dB(A)	104,4 dB(A) 1)
	2	99,6 dB(A)	101,9 dB(A)	103,3 dB(A)	103,9 dB(A)	103,9 dB(A)	104,0 dB(A) 2)
	3	- dB(A)	- dB(A)	103,7 dB(A)	104,0 dB(A)	104,1 dB(A)	104,1 dB(A) 3)
	Mittelwert L _w	- dB(A)	- dB(A)	103,3 dB(A)	104,0 dB(A)	104,1 dB(A)	104,2 dB(A)
	Standardabweichung S	- dB(A)	- dB(A)	0,4 dB(A)	0,1 dB(A)	0,3 dB(A)	0,2 dB(A)
	K nach /2/ σ _R = 0,5 dB	- dB(A)	- dB(A)	1,2 dB(A)	1,0 dB(A)	1,1 dB(A)	1,0 dB(A)

^{/1/} Technische Richtlinien für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft für Windenergie e. V., Stresemannplatz 4, 24103 Kiel, 01.02.2008

/2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Bemerkungen:

- $v_{10 P[95\%]} = 9,6 \text{ ms}^{-1}$ $v_{10 P[95\%]} = 9,5 \text{ ms}^{-1}$ $v_{10 P[95\%]} = 9,7 \text{ ms}^{-1}$

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 2 von 2

Schallemissionsparameter: Zuschläge

Tonzuschlag bei vermessener Nabenhöhe K_{TN}:

Messung				Windge	schwindig	keit in 10	m Hohe			
wiessung	6 n	n/s	7 п	n/s	8 n	n/s	9 n	n/s	10 :	m/s
1	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz
2	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz
3	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz

Impulszus	chlag K _{IN} :					
			Windges	schwindigkeit in 10	m Hóhe	
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
	1	0 dB	0 dB	0 dB	0 dB	0 dB
	2	0 dB	0 dB	0 dB	0 dB	0 dB
	3	0 dB	0 dB	0 dB	0 dB	0 dB

	Ter	z-Schallle	istungspe	egel (Mitte	el aus 3 M	essungen) Referen	zpunkt v ₁	_{OLWA,Pmax} ii	n dB(A)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA, P}	79,9	82,3	84,9	87,3	93,1	92,0	90,2	93,1	94,3	93,4	93,5	94,0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA, P}	93,4	93,1	91,9	90,3	89,6	87,5	87,0	84,9	82,7	80,3	78,8	78,9

	Okta	v-Schalll	eistungsp	egel (Mitt	el aus 3 N	lessunge	n) Referei	nzpunkt v	_{10LWA,Pmax} ir	n dB(A)		
Frequenz	Frequenz 63,0 125 250 500 1000 2000 4000 8000											
L _{WA, P}	87,6	94,8	97,6	98,4	97,6	94,1	90,0	84,1				

Diese Angaben ersetzen nicht die o .g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Ausgestellt durch: WIND-consult GmbH Reuterstr. 9 18211 Bargeshagen The second secon

Datum: 02.07.2010

Dipl.-Ing. J. Schwabe

Dipl.-Ing. (FH) H. Reichelt

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 1 von 2

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagen	daten					
Hersteller	ENERCON GmbH	Anlagenbe	zeichnung	ENERCON E-70 E4 2	,3 MW (Betrieb II)	
	Dreekamp 5	Nennleistu	ng in kW		2300 kW	
	D-26605 Aurich	Nabenhóh	e in m		113 m	
		Rotordurci	hmesser in m		71 m	
Annahan	Finnelmann		Messung-Nr.			
Angaben z	ur Einzelmessung	1	2	3		
Seriennum	mer	702320	78793	781960		
Standort		Holtriem	Fehmarn-Mitte	Bordelum		
Vermessen	ie Nabenhóhe	99 m	64 m	64 m		
Messinstitu	ıt	WIND-consult GmbH	WIND-consult Gmbł	H Busch GmbH		
Prufbericht	t ·	049SE206/01	191SE908/01	166209gs01		
Datum		16.03.2006	30.03.2010	30.12.2009		
Getriebety	p	-	-	-		
Generatort	ур	E-70	E-70	E-70		
Rotorblattt	ур	70-4	70-4	70-4		

3chall	lleistungspegel L _{WA,P} :						
	Moreuna		Wind	geschwindigkeit	v ₁₀ in 10 m Hół	1e	
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	V _{10 P[95%]}
	1	98,7 dB(A)	101,2 dB(A)	103,1 dB(A)	104,2 dB(A)	104,4 dB(A)	104,4 dB(A)
	2	100,0 dB(A)	102,1 dB(A)	103,4 dB(A)	103,9 dB(A)	103,8 dB(A)	104,0 dB(A)
	3	- dB(A)	- dB(A)	103,7 dB(A)	104,0 dB(A)	104,1 dB(A)	104,1 dB(A)
	Mittelwert L _w	- dB(A)	- dB(A)	103,4 dB(A)	104,0 dB(A)	104,1 dB(A)	104,2 dB(A)
	Standardabweichung S	- dB(A)	- dB(A)	0,3 dB(A)	0,2 dB(A)	0,3 dB(A)	0,2 dB(A)
	K nach /2/ σ _R = 0,5 dB	- dB(A)	- dB(A)	1,1 dB(A)	1,0 dB(A)	1,1 dB(A)	1,0 dB(A)

^{/1/} Technische Richtlinien für Windenergieanlagen Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft für Windenergie e. V., Stresemannplatz 4, 24103 Kiel, 01.02.2008

/2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Bemerkungen: 1) Van Prosess =

 $v_{10 P[95\%]} = 9.4 ms^{-1}$ $v_{10 P[95\%]} = 9.4 ms^{-1}$ $v_{10 P[95\%]} = 9.6 ms^{-1}$ 2)

Datenblatt aus dem Prüfbericht WICO 087SE510/02

Seite 2 von 2

Schallemissionsparameter: Zuschläge

Tonzuschlag bei vermessener Nabenhöhe K_{TN}:

Messung				Windge	schwindig	keit in 10	m Hóhe			
Meddang	6 r	n/s	7 r	n/s	8 r	n/s	9 n	n/s	10 :	m/s
1	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz
2	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz
3	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz	0 dB	- Hz

Impulszuso	chlag K _{IN} :					
	Messung		Windge	schwindigkeit in 10	m Hóhe	
	Messuriy	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
	1	0 dB	0 dB	0 dB	0 dB	0 dB
	2	0 dB	0 dB	0 dB	0 dB	0 dB
	3	0 dB	0 dB	0 dB	0 dB	0 dB

	Terz-S	Schallleist	tungspeg	el (Mittel a	aus 3 Mes	sungen) i	Referenzp	unkt v10L	.WA,Pma	k in dB(A)		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA, P}	79,8	82,3	84,9	87,3	93,1	92,0	90,2	93,1	94,2	93,4	93,4	93,9
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA, P}	93,4	93,1	91,8	90,3	89,6	87,5	87,0	84,8	82,7	80,2	78,7	78,9

	Okta	v-Schalll	eistungsp	egel (Mitt	el aus 3 M	Messunge	n) Refere	nzpunkt v	10LWA,Pmax in dB(A)	
Frequenz	63,0	125	250	500	1000	2000	4000	8000		
L _{WA, P}	87,6	94,8	97,6	98,4	97,6	94,0	89,9	84,1		

Diese Angaben ersetzen nicht die o .g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Ausgestellt durch: WIND-consult GmbH Reuterstr. 9 18211 Bargeshagen

Datum: 02.07.2010

Dipl.-Ing. J. Schwabe

ENERCON E-82 E2 2.3 MW

Schallvermessungsberichte

• KÖTTER Consulting Engineers KG, Bericht 209244-03.03 vom 18.03.2010

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01.Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e.V. Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht 209244-03.03

zur Schallemission der Windenergieanlage vom Typ E-82 E2

Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller Enercon GmbH Nennleistung (Generator):

> 82679 Rotordurchmesser: 26629 Großefehn Nabenhöhe über Grund:

RW: 34.15.287 Turmbauart: HW: 59.14.701 Leistungsregelung:

Konischer Rohrturm Pitch Erganzende Daten zu Getriebe und Generator (Herstellerangaben)

Erganzende Daten zum Rotor (Herstellerangaben) Rotorblatthersteller

Enercon E-82-2 variabel

Getriebehersteller Typenbezeichnung Getriebe: Generatorhersteller

entfällt Enercon E-82 E2

entfällt

2.300 kW

108.4 m

82 m

Blatteinstellwinkel: Rotorblattanzahl:

Typenbezeichnung Blatt:

Seriennummer:

WEA-Standort (ca.):

Standortkoordinaten:

3

Typenbezeichnung Generator: 6 - 18 U/min (Betrieb I) Generatornenndrehzahl:

18 U/min (Betrieb I)

Rotordrehzahlbereich:

Leistungskurve: Kennlinie E-82 E2, 2.3 MW, berechnet Rev 3_0

	· · · · · · · · · · · · · · · · · · ·	L-02 L2, 2.0 MVV, beredime	T	
	Referenzpu		Schallemissions-	D
	Normierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung	Parameter	Bemerkungen
	5 ms ⁻¹	579 kW	96,4 dB(A)	
	6 ms ⁻¹	1.089 kW	100,6 dB(A)	
	7 ms ⁻¹	1.612 kW	102,5 dB(A)	
Schallleistungs-Pegel	8 ms ⁻¹	2.032 kW	103,2 dB(A)	
L _{WA,P}	9 ms ⁻¹	2.255 kW	103,3 dB(A)	
	10 ms ⁻¹	2.300 kW	102,9 dB(A)	
	8,6 ms ⁻¹	2.185 kW	103,4 dB(A)	(1)
	5 ms ⁻¹	579 kW	0 dB	
	6 ms ⁻¹	1.089 kW	0 dB	
	7 ms ⁻¹	1.612 kW	0 dB	
Tonzuschlag für den	8 ms ⁻¹	2.032 kW	0 dB	
Nahbereich K _{TN}	9 ms ⁻¹	2.255 kW	1 dB bei 130 Hz	(2)
	10 ms ⁻¹	2.300 kW	0 dB	•
	8,6 ms ⁻¹	2.185 kW	1 dB bei 130 Hz	(1) (2)
	5 ms ⁻¹	579 kW	0 dB	
	6 ms ⁻¹	1.089 kW	0 dB	
Impulszuschlag für den	7 ms ⁻¹	1.612 kW	0 dB	
Nahbereich K _{IN}	8 ms ⁻¹	2.032 kW	0 dB	
Nambereich KIN	9 ms ⁻¹	2.255 kW	0 dB	
	10 ms ⁻¹	2.300 kW	0 dB	
	8,6 ms ⁻¹	2.185 kW	0 dB	(1)

Terz-Schallle	sistungsp	egel	für $v_s = 8$,	6 ms ⁻¹ in d	IB(A) ents	prechend	dem maxi	imalen Scl	hallleistun	gspegel		
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA,P,max}	78,6	81,6	84,1	85,9	92,7	88,3	86,5	90,4	90,8	91,9	91,6*	94,0
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000
L _{WA,P,max}	94,1	94,5	93,5	91,6	88,5	84,7	80,0	75,5	69,4	65,6*	66,5	71,6

Oktav-Schall	leistungspege	el für v _s = 8,	6 ms ⁻¹ in dB(A)	entsprechend	dem maximale	n Schallleistun	gspegel	
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000
L _{WA,P,max}	86,7	94,7	94,4	97*	98,8	93,9	81,6	73,5

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 05.03.2010.

Die Angaben ersetzen nicht den o. g. Prufbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- (1) Die normierte Windgeschwindigkeit von $v_s = 8.6 \text{ ms}^{-1}$ entspricht 95 % der Nennleistung.
- nach dem subjektiven Höreindruck K_{TN} = 0 dB

Abstand zwischen Anlagengeräusch und Fremdgeräusch < 6 dB, Pegelkorrektur um 1,3 dB

Gemessen durch:

Datum: 18.03.2010

Bonifot userrabe 400 / 43433 Ameine talin soloti intinin isalin an tri ibatin ko

Umrechnung des Schallleistungspegels auf andere Nabenhöhen:

Vermessene Höhe (m):	108,40
Neue Höhe (m):	138,40
Standardwindgeschwindigkeit 1 (m/s): Vermessener Pegel bei v1 (dB(A)): v2 > v1 (v2 i.d.R. 10 m/s)	9,00 103,30
Standardwindgeschwindigkeit 2 (m/s):	10,00
Vermessener Pegel bei v2 (dB(A)):	102,90
Standardisierte Referenzgeschwindigkeit bei Vermessung in 10 m ü. Gr. (m/s) :	10,00
a:	-0,40
Zähler:	7,93
Nenner:	7,68
Neuer Schallleistungspegel Pegel (dB(A)):	102,77

Von: Rainer Weiler < rainer.weiler.vgk@lcoc.de >

An: "Jendrik Hoppmann" < jh@solvent.de>

Betreff: AW: Immissionspunkte Eulgem Datum: Dienstag, 26. Juli 2011, 13:33

Sehr geehrter Herr Hoppmann,

ich nehme Bezug auf Ihre unten aufgeführte email und teile hierzu folgendes mit:

Die Immissionspunkte 01, 02, 04-09 liegen innerhalb eines Bebauungsplanes und sind dort als Dorfgebiet (MD) ausgewiesen. Die Immissionspunkte 03, 10-12 sind im Flächennutzungsplan als M-Fläche ausgewiesen.

Ob in diesem Bereich eine gewerbliche Nutzung vorliegt ist mir nicht bekannt.

Mit freundlichen Grüßen Im Auftrag Rainer Weiler

Verbandsgemeindeverwaltung Kaisersesch Bahnhofstr. 47, 56759 Kaisersesch

Tel. 02653/9996-43

rainer weiler@vg.kaisersesch.de

----Ursprüngliche Nachricht----

Von: Jendrik Hoppmann [mailto:jh@solvent.de]

Gesendet: Montag, 18. Juli 2011 12:27

An: Rainer Weiler

Betreff: Immissionspunkte Eulgem

Guten Tag Herr Weiler,

wie telefonisch besprochen bitte ich Sie um Auskunft über eine evtl. als Vorbelastung zu zu berücksichtigende gewerbliche Nutzung der im Einwirkbereich der geplante WEA liegenden Immissionspunkte. Eine Übersichtstabelle- und Karte findet sich im Anhang. Des Weiteren stellt sich die Frage ob die Einordnung der Immissionspunkte in den Gebietstyp Außenbereich / Dorf- Mischgebiet der BauNVO den Tatsachen entspricht.

SOLvent GmbH Lünener Str. 211 59174 Kamen

Tel: 02307 240063 FAX: 02307 240066

Mit freundlichen Grüßen Jendrik Hoppmann mailto:jh@solvent.de

_
0
\subseteq
3
Ţ
9
<u>a</u>
<u>a</u>
orbe
ェ
0
>
htigende V
nd
_
Φ
<u></u>
=
ے
$\overline{\mathbf{o}}$
<u>-</u>
Ś
×
_⊆
Ξ
~
×
\supset

	Вететкипдеп															1					1 1	3 1 5 1 1	1				
	(A) Bb ni gnuuətrenəfe																										
	Impuls- und Ton- haltigkeitszuschlag in dB (A)																										
	(A) ab ni AWJ əsiəwədəintə8 əpširtəsuS ənrio																										
	WA ni gnutsiəlnnəV	600	009	1500	1500	2000	2000	2000	800	009	600	1500	1500	2300	2300	2000	atum										
	Rotordurchmesser in Meter	40	40	11	2.2	90	82	82	26,45	40	40	77	77	06	8	82	Ort und Datum	rken !!!!									
laten	Nabenhöhe in Meter	92	92	82	85	95	85	85	73,25	92	9	85	85	80	100	84,5		an zu verme									
Standortdaten und allgemeine Anlagendaten	Anlagentyp	E-40 6.44	E-40 6.44	GE 1,5 sL	GE 1,5 sL	V90	E82	E82	E 53	E-40 6.44	E-40 6.44	GE 1,5 sL	GE 1,5 sL	N-90	06-N	E-82	Unterschrift Betreiber	und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
en und allge	rəllətrənhnəgsinA	Enercon	Enercon	GE	GE	Vestas	Enercon	Enercon	Enercon	Enercon	Enercon	GE	GE	408 Nordex	400 Nordex	Enercon	Unterschr	ı verwenden									
ortdat	Z	422	420	426	423	414	422	425	431	412	418	411	405	408	400	392		sen zt				;	1				
Stando	Носһwеп	5568433	5569113	5569449	5569186	5568884	5569660	5569527	5569406	5569036	5569238	5569132	5568890	5568846	5568548	5569344		attenprognos					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Rechtswert	370754	2584534	2584572	2584352	2584053	2584503	2584754	2584384	2584641	2584810	2584972	2584762	2585228	2585146	2585271									MANAGEMENT OF THE PARTY OF THE		
	Flurstück	92	92	87	87	54,55	103	94-97	81	14	14	11	1	38	35	163		og in den Sc	(bur)							
	Flur	10	9	10	10	10	9		9	12	12	12	12	9	9	5		anak	astı		}						
	Сетаћилд	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen		lte 4) sind u.a	Zusatzbelastung		1						
	Anlagennmer des Antragstellers	1																iern (Spa	den (-1			1 1 1				
ıgsbehörde	Anlagennummer	101	102	103	104	107	115	116	117	61	62	63	64	99	67	83	nterschrift	ոեցeոոսար	rgieanle								
Eintragungen der Genehmigungsbehörde	9bni9m9Đ	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Düngenheim	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Stempel u. Unterschrift	Wichtig: Die vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall	Beantragte Windenergieanlagen						ş	•	
ngen de	Verbandsgemeinde																1)ie vor	agte					•	<u>:</u>	:bun	teller
Eintragur	Kreis	135 K 135 K	135 K	135 K	135 K	135 K	135 K	Hat vorgelegen Datum	Wichtig: E	Beantr						Vorigine Orf:	Gemarkung:	Antragsteller									

Anlage B Stand: 21.12.2011

		Serienstreuung in dB (A)			schallred. Nachtzeit, 100,2 dB(A)	schallred. Nachtzeit, 100,2 dB(A)			schallred. Nachtzeit, 100,2 dB(A)	schallred. Nachtzeit, 100,2 dB(A)			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								11 11 11 11 11 11 11 11 11 11 11 11 11			
		Betriebsweise LWA in dB (A) ohne Zuschläge Impuls- und Ton-haltigkeitszuschlag (A) dB ni			schallred. Nach	schallred. Nach			schallred. Nach				1											
		WX ni gnutsiəlnnəM	2000	2000	2000	2000	2000	800	1500		800	2000	1500	1500	2300	2000		atum						
		Rotordurchmesser in Meter	82	82	90	06	06	53	77	77	53	06	77	77	70	82		Ort und Datum	rken IIII					
	ndaten	Nabenhöhe in Meter	84,5	98'38	105	105	105	73,25	61,5	85	73,3	95	111,5	111,5	82	98,3		-	lan zu verme					
	Standortdaten und allgemeine Anlagendaten	d√in9genA	E-82	E82	06/	06/	06/	E53	MD 77		E53	06/	FL MD77		E 70/ E4	E 82		Unterschrift Betreiber	und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!				1 1 1 1 1 1 1 1 1	
	ten und allge	Aniagenhersteller	5 Enercon	3 Enercon	395 Vestas	Vestas	395 Vestas	438 Enercon	Fuhrlände MD	Fuhrlände	8 Enercon	405 Vestas	398 Furhlände	3 Furhlände	3 Enercon	400 Enercon		Unterschi	u verwender		_			
	ortda	Z	385	398					443	423	438		_						sen z		_	1		
	Stand	Носһмец	5569879	5568600	5568605	5569034	5569563	5567198	5567026	5566912	0682933		5564762			5565286			hattenprogno					
		Rechtswert	2585161					2584616			2584500		2582811		2583730	2582432								
		Flurstück	5 193	3 193	6	5 144	5 185	3 10	2 73	3 19	3 1	3 40	3,4	5 22,23	114	1/6			alog in den S	(Buna			1	
		Flur	5	9	9	2	73)	3	2	3	9	3	15	15	4	14			a, ane	last				
		Сетаґкипд	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Hambuch	Hambuch	Hambuch	Eulgem	Eulgem	Illerich	Illerich	Illerich	Illerich			Wichtig: Die vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall-	(Zusatzbelastung				
		Anlagennummer des Antragstellers					1												mern (Sp	lagen (_	
	ıngsbehörde	Aniagennummer	84	88	06	91	36	146	147	148	155	158	170	171	172	185		Stempel u. Unterschrift	Inlagennum	ergieanl				
, 	Eintragungen der Genehmigungsbehörde	abniama2	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Hambuch	Hambuch	Hambuch	Eulgem	Eulgem	Illerich	Illerich	Illerich	Illerich		Stempel u.	rgegebenen A	Beantragte Windenergieanlagen				
	ngen d	Verbandsgemeinde	×					7	Y	Y							legen		Die vo	ragt				
	Eintragu	Kreis	135	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	Hat vorgelegen	Datum	Wichtig:	Beant				

Anlage B Stand: 21.12.2011

bu
stun
ela
/ork
ide V
den
chtic
ksi
rüc
ı be
2

	Ветегкипдел		~	2	! ! !							dB(A), ma:), ma:	 				:	-	!	!			\neg
	000011/120000		100,2 dB(A)	,2 dB(A)								2 dB(A			101,2 dB(A), max	 						<u> </u>	i !			
	(A) Ab ni gnunertzneñe <i>S</i>		1	it, 100								it, 101,2			it, 101,	; ; ; ;										
	gsidəsuszijəkeitisauschlag (A) ab ni		schallred. Nachtzeit	schallred. Nachtzeit, 100,2								schallred. Nachtzeit			2500 schallred. Nachtzeit,	; ; ; ; ; ; ;										
	Betriebsweise LWA in dB (A) ohne SpäldbsuS		schallred	schallred								schallred			schallred	•							! ! !			
State of the state of the	WA ni gnutsiəlnnəM	2000	2000	2000	2300	2000	2000	2000	2000	2500	2500	2500	2500	2500	2500	atum							! ! !			
	Rotordurchmesser in Meter	82	90	06	82	82	82	82	82	90	06	06	06	06	90	Ort und Datum	'ken !!!!					+				
laten	Nabenhöhe in Meter	98'3	105	105	138,38	98,38	98,38	88'38	98'38	100	100	100	100	100	100		ın zu vermei									
Standortdaten und allgemeine Anlagendaten	Anlagentyp	E 82	V 90	V 90	E-82/E2	E 82	E 82	E 82	E 82	06N	06N	06N	06N	06N	N90	Unterschrift Betreiber	nd Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			
en und allge	relletzannagsinA	Enercon	Vestas	398 Vestas	373 Enercon		446 Enercon	465 Enercon	465 Enercon	356 Nordex	360 Nordex	360 Nordex	360 Nordex	Nordex	343 Nordex	Unterschr	ı verwenden			- T - T - T - T - T - T - T - T - T - T			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
ortdat	Z	407	422	398	373	450	446		465	356	360	360		372	343		sen zt				-	!				
Stand	Носһwеп	5565035	5564697	5564515	5564791	5564352	5564080	5563868	5563714	5565684	5565619	5565344	5565298	5564939	5565952		attenprogno					;	E E E E E E E E E E E E E E E E E E E			
	Весhtswert	2582436	2581934	2583221	2583772	2581818	2581861	2581908	2582074	2586319	2586653	2585997	2586336	2584630	2586725		nall- und Sch				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Flurstück	19/3	4/3	28,38	1/6	63	48	48	48	69	58	40	34	14	61		og in den Sch	ing)								
	Flur	13	13	15	2	3	4	4	4	4	4	7	7	9	2	•	. anale	astı				-	-			
	gunyızməg	Illerich	Illerich	Illerich	Illerich	Landkern	Landkern	Landkern	Landkern	Zettingen	Zettingen	Zettingen	Zettingen	Zettingen	Brachtendorf		te 4) sind u.a	Zusatzbel		1	1					
	sıəllətzgartnA səb rəmmunnəgalnA				1			_									ern (Spal	gen (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
igsbehörde	Aniagennummer	186	187	188	189	201	202	203	204	231	232	233	234	236	245	nterschrift	ılagennumm	rgieanla								
Eintragungen der Genehmigungsbehörde	Gemeinde	Illerich	Illerich	Illerich	Illerich	Landkern	Landkern	Landkern	Landkern	Zettingen	Zettingen	Zettingen	Zettingen	Zettingen	Brachtendorf	Stempel u. Unterschrift	Wichtig: Die vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- u	Beantragte Windenergieanlagen (Zusatzbelastung				 	Î	1	'	
gen de	yerbandsgemeinde															1	ie vorg	agte	H	 -			-	<u></u>	:bur	teller:
Eintragun	kreis	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	135 K	Hat vorgelegen Datum	Wichtig: D	Beantr						Vorhaben:	Ort: Gemarkung:	Antragsteller:

Anlage B Stand: 21.12.2011

	П			:			:	:	_		: :	!	<u> </u>	!	!			-		!	!	:	!	;			
Standorfdaten und alligemeine Anla. Standorfdaten und alligemeine Anla. Standorfdaten und alligemeine Anla. Standorfdaten und alligemeine Anla. Sec.		Ветегкилдел) dB(A)				, , , ,						1	1 1 1 1				1					1			
Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und im Lageplan zu verwenden und im Lageplan zu vermerken IIII		(A) 8b ni gnuuətrənəbə		it, 102,0				1	1						-7									-7			
Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und im Lageplan zu verwenden und im Lageplan zu vermerken IIII		Impuls- und Ton-haltigkeitszuschlag in dB (A)		. Nachtze			1	1											1 1		-						
Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und allgemeine Anlar Standortdaten und im Lageplan zu verwenden und im Lageplan zu vermerken !!! Ort und Dat				schallred				1	1							•			1	1	-			-7			
Standorddaten und allgemeine Anlar faten Rechtswert Hochwert Aniagenherstelle Anlar faten Aniagenherstelle Anlar faten Aniagenherstelle Anlar faten Aniagenherstelle Ania Gamesa G80 Aniagenherstelle G80 Aniagenherstelle G80 Aniagenherit Betreiber Unterschrift Betreiber Unterschrift Betreiber Unterschrift Betreiber Unterschrift Betreiber Unterschrift Betreiber		WA ni gnutsiəlnnəM	2000	2000	2000	2000	2000										atum				!		1				
Standorddaten und allgemeine Anlar faten Rechtswert Hochwert Aniagenherstelle Anlar faten Aniagenherstelle Anlar faten Aniagenherstelle Anlar faten Aniagenherstelle Ania Gamesa G80 Aniagenherstelle G80 Aniagenherstelle G80 Aniagenherit Betreiber Unterschrift Betreiber Unterschrift Betreiber Unterschrift Betreiber Unterschrift Betreiber Unterschrift Betreiber		Rotordurchmesser in Meter	80	80	80	80	80										Ort und D	rken !!!!									
	aten	Nabenhöhe in Meter	100	100	100	100	100										_	n zu verme					1	-4			
		Anlagentyp	G80	G80	G80	G80	G80										ift Betreiber	und im Lagepla			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	en und allge		Gamesa	Gamesa													Unterschr	verwenden			1 1 1 1 1		1	- 7			
	rtdate	Z	359	343	340	340	350											nz ue				i		1			
	Stando			-	5564585	5564764	5564772											attenprognos				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Finitingumgen der Genehmigungsbehörde Finitingumgen der Genehmigungsbehörde Finitingumgen der Genehmigungsbehörde Finitingumgen der Genehmigungsbehörde Finitingumgen der Genehmigungsbehörde Finitingumgen Genehmigungsbehörde Finitingumgen Genehmigungsbehörde Finitingumgen Genehmigungsbehörde Finitingumgen Genehmigungen		Rechtswert	2586242	2586293	2586022	2585581	2586348																				
Eintragungen der Genehmigungsbehörde		Flurstück	29/1	30/1	45,46	4	22											g in den Sc	ng)		1 1 1 1 1	1					
Eintragungen der Genehmigungsbehörde Eintragungen der Genehmigungsbehörde Eintragungen der Genehmigungsbehörde Eintragungen der Genehmigungsbehörde Eintragen Eint		Flur	14	-	T	14	1											a. analo	lastu				 	- 			
Eintragungen der Genehmigungsbehörde eigenemen der Genehmigungsbehörde ligher der Genehmingsbehörde ligher der Genehmingsbehö		Сетагкипд	Wirfus	Wirfus	Wirfus	Wirfus	Wirfus											Ite 4) sind u.a	Zusatzbe		[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Eintragungen der Genehmigungsbehörde eigen eine eine eine eine eine eine eine		Anlagennummer des Antragstellers																nern (Spa	agen (1					
Eintragungen der Genehmigu	ngsbehörde	Anlagennummer	604	605	603a	809	609										Interschrift	nlagennumn	ergieank				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Eintragungen da 135 CL	er Genehmigu	Semeinde	Wirfus	Wirfus	Wirfus	Wirfus	Wirfus										Stempel u. L	gegebenen A	Winden		1						
Eintragu 135 (ngen de	Verbandsgemeinde		Ι.			-					H				egen		Jie vor	ragte						en:		teller
	Eintragur	kreis	135 (135	135 (135 C	135 (Hat vorgel	Datum	Wichtig: L	Beantr				- -		Vorhabe	or:	Gemark Anfrags

4.1. DECIBEL - Schallberechnung

4.1.0 Einführung in DECIBEL

DECIBEL ist der Name eines Berechnungsmoduls, das den Schalldruckpegel von WEA an Schall-Immissionsorten (IP, z.B. Höfen, Wohngebäuden, Wohngebiete, Siedlungen) ermittelt und die Einhaltung der Immissionsrichtwerte prüft. Dabei können existierende Vorbelastungen berücksichtigt sowie die Einhaltungen notwendiger Abstände zu den Immissionsrichtwerten, maximal zulässiger Zusatzbelastungen sowie räumlicher Mindestabstände geprüft werden.

Weiterhin bestimmt DECIBEL Linien gleichen Schallniveaus (Isophonen) für einen geplanten Windpark und stellt diese grafisch auf einer Karte dar. Auf diese Weise lassen sich schallkritische Gebiete überprüfen und z.B. Änderungen in der Aufstellungsgeometrie oder Anlagenwahl vornehmen.

Eine Stärke von WindPRO ist die grafische Eingabe der Objekte (WEA, Immissionspunkte und schallkritische Gebiete) direkt auf dem Bildschirm, auf dem eine Hintergrundkarte dargestellt werden kann. Die Anwendung dieser Kartenfunktion bietet wesentliche Vorteile in der Projektierungsarbeit:

- Die einzuhaltenden Grenzabstände von jedem einzelnen Immissionspunkt/schallkritischen Gebiet lassen sich in Form von Restriktionsflächen auf dem Bildschirm anzeigen und die WEA dadurch schnell in den freien Flächen platzieren.
- Die berechneten Isophonen in der Umgebung der WEA k\u00f6nnen auf der Karte in individueller Farbgebung angezeigt und ausgedruckt werden. So hat der Anwender eine Kontrolle, ob an allen Wohngeb\u00e4uden der Schallpegel unter den Grenzwerten liegt.

4.1.1 Die DECIBEL Berechnungsmethoden

Die Geräuschemission einer Windenergieanlage wird durch den Schalleistungspegel Lw beschrieben.

Schalleistungspegel L_W - ist der maximale Wert in dB / dB (A-bewertet), der von einer Geräusch- oder Schallquelle (Emissionspunkt, WEA) abgestrahlt wird. Der Wert kann als Oktavband (d.h. die Einzelpegel unterschiedlicher Frequenzbänder, die das Gesamtgeräusch ausmachen) oder als 500Hz-Mittenpegel angegeben werden. WindPRO kann mit beiden Arten von Schallleistungspegel-Angaben rechnen.

Der Lärm breitet sich kreisförmig um die Schallquelle aus und nimmt mit seinem Abstand zu ihr (logarithmisch) hörbar ab. Dabei wirken Bebauung, Bewuchs und sonstige Hindernisse dämpfend. Die Luft absorbiert den Schall. Reflexion und weitere Geräuschquellen wirken Lärm verstärkend. Die Schallausbreitung erfolgt maßgeblich in Mitwindrichtung.

Schalldruckpegel $L_{\rm S}$ - ist der Wert in dB, der an einem beliebigen Immissionspunkt (z.B. Wohngebäude) in der Umgebung einer oder mehrerer Geräusch- oder Schallquellen gemessen (z.B. mit Mikrofon, Schallmessung), berechnet oder einfach auf natürliche Art wahrgenommen werden kann (z.B. durch das menschliche Ohr). Der Schalldruckpegel unter Berücksichtigung von Zuschlägen wird Beurteilungspegel genannt und bildet die Grundlage für die Beurteilung der Geräuschemissionen zur Überprüfung, ob die Immissionsrichtwerte eingehalten werden.

Die Berechnung der Lärmimmissionen einer oder mehrerer WEA an einem bestimmten Immissionsort bedarf folgender Informationen und Eingabedaten:

- WEA-Platzierung (X,Y,Z-Koordinaten),
- Nabenhöhe der WEA einschl. des Schalleistungspegels (LWA_{ref}) für eine bestimmte Windgeschwindigkeit, evtl. in Oktavbändern,
- Angabe eines Einzelton- oder / und Impulszuschlages (falls vorhanden),
- Koordinaten für die Schallkritischen Orte um die WEA
- Grenzwerte, die in den entsprechenden Gebieten eingehalten werden müssen,
- ein Berechnungsmodell bzw. eine Vorschrift
- Wenn die Geländeform zwischen WEA und Immissionsquelle berücksichtigt werden soll: ein digitales Geländemodell in Form eines Linienobjekts

Zurzeit sind sieben Berechnungsvorschriften in WindPRO implementiert, die in den folgenden Kapiteln genauer beschrieben werden. Die erste ist die weltweit gebräuchliche ISO Norm 9613-2, die für WEA-Lärm in vielen Ländern angewandt wird (z.B.. Deutschland, England, Belgien, Italien, USA). Die ISO 9613-2 basiert auf der Deutschen Norm VDI 2714, die sie in Deutschland seit 1998 abgelöst hat.

4.1.1.1 Die Internationale Berechnungsvorschrift DIN ISO 9613-2, allgemein

Die ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien", Teil 2. beschreibt die Ausbreitungsberechnung des Schalls im Freien.

Die ISO 9613-2 beinhaltet zwei Verfahren zur Berücksichtigung der Bodendämpfung des Schalls. Für die Schallausbreitung der Geräusche von Windenergieanlagen wird in WindPRO das sog. alternative Verfahren verwendet, da die folgenden Vorrausetzungen erfüllt sind:

- Nur der A-bewertete Pegel ist von Interesse
- Der Schall breitet sich überwiegend über porösem Boden aus
- Der Schall ist kein reiner Ton.

Normalerweise wird bei der schalltechnischen Vermessung von Windenergieanlagen der A-bewertete Schalleistungspegel in Form des 500Hz-Mittenpegels ermittelt. Daher werden die Dämpfungswerte bei 500 Hz verwendet, um die resultierende Dämpfung für die Schallausbreitung abzuschätzen. Der Dauerschalldruckpegel jeder einzelnen Quelle am Immissionspunkt berechnet sich nach der ISO 9613-2 dann wie folgt:

$$L_{AT}(DW) = L_{WA} + D_C - A \tag{1}$$

L_{WA}: Schalleistungspegel der Punktschallquelle A-bewertet.

 D_c : Richtwirkungskorrektur für die Quelle ohne Richtwirkung (0 dB) aber unter Berücksichtigung der Reflexion am Boden, D_{Σ} (Berechnung nach dem alternativen Verfahren)

$$D_C = D_{\Sigma} - 0 \tag{2}$$

 D_{Σ} beschreibt die Reflexion am Boden und berechnet sich nach:

$$D_{\Sigma} = 10 \lg\{1 + [d_{p}^{2} + (h_{s} - h_{r})^{2}] / [d_{p}^{2} + (h_{s} + h_{r})^{2}]\}$$
(3)

Mit:

h_s: Höhe der Quelle über dem Grund (Nabenhöhe)

h_r: Höhe des Immissionspunktes über Grund (in WindPRO 5m)

d_p: Abstand zwischen Schallquelle und Empfänger, projiziert auf die Bodenebene. Der Abstand bestimmt sich aus den x und y Koordinaten der Quelle (Index s) und des Immissionspunkts (Index r):

$$d_{p} = \sqrt{(x_{s}-x_{r})^{2}+(y_{s}-y_{r})^{2}}$$
 (4)

A: Dämpfung zwischen der Punktquelle (WEA-Gondel) und dem Immissionspunkt, die während der Schallausbreitung vorhanden ist. Sie bestimmt sich aus den folgenden Dämpfungsarten:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$
 (5)

 A_{div} : Dämpfung aufgrund der geometrischen Ausbreitung $A_{div} = 20 \lg(d/1m) + 11 dB$

d: Abstand zwischen Quelle und Immissionspunkt.

Aatm: Dämpfung durch die Luftabsorption

 $A_{atm} = \alpha_{500} d / 1000$ (7)

 α_{500} : Absorbtionskoeffizient der Luft (= 1,9 dB/km)

Dieser Wert für α_{500} bezieht sich auf die günstigsten Schallausbreitungsbedingungen (Temperatur von 10° und relativer Luftfeuchte von 70%).

(6)

A_{gr}: Bodendämpfung

 $A_{gr} = (4.8 - (2h_m / d) [17 + (300 / d)])$ Wenn $A_{gr} < 0$ dann ist $A_{gr} = 0$ (8)

306 • 4.1. DECIBEL - Schallberechnung

h_m: mittlere Höhe (in Meter) des Schallausbreitungsweges über dem Boden: Wenn in WindPRO kein digitales Geländemodell vorhanden ist

 $h_m = (h_s + h_r)/2 (9a$

 h_s : Quellhöhe (Nabenhöhe); h_r : Aufpunkthöhe 5 m

Bei vorliegendem digitalem Geländemodell wird die Fläche F zwischen dem Boden und dem Sichtstrahl zwischen Quelle (Gondel) und Aufpunkt in einer Auflösung von 100 Intervallen berechnet. Die mittlere Höhe berechnet sich dann mit:

 $h_{m} = F/d \tag{9b}$

 A_{bar} : Dämpfung aufgrund der Abschirmung (Schallschutz), in WindPRO kann kein Schallschutz angegeben werden: $A_{\text{bar}} = 0$.

 A_{misc} : Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung, Industrie). In WindPRO gehen diese Effekte nicht in die Prognose ein: A_{misc} =0.

Berechnungsverfahren in Oktaven

Nach der ISO 9613-2 soll, sofern vorhanden, die Prognose auch über das Oktavspektrum des Schalleistungspegel der WEA durchgeführt werden. Wird im WEA-Katalog das Oktavspektrum angegeben, so kann es in den WEA-Eigenschaften zur Verwendung ausgewählt werden. Im Folgenden sind nur die Unterschiede zu der 500 Hz Mittenfrequenz bezogenen Berechnung aufgezeigt. Der resultierende Schalldruckpegel L_{AT} berechnet sich dann mit:

$$L_{AT}(DW) = 10Ig[10^{0.1LAfT(63)} + 10^{0.1LAfT(125)} + 10^{0.1LAfT(250)} + 10^{0.1LAfT(500)} + 10^{0.1LAfT(18k)} + 10^{0.1LAfT(2k)} + 10^{0.1LAfT(4k)} + 10^{0.1LAfT(8k)})$$
(10)

Mit:

L_{Aff}: A-bewerteter Schalldruckpegel der einzelnen Schallquelle bei den unterschiedlichen Mittenfrequenzen (63, 125, 250, 500, 1000, 2000, 4000, 8000 Hz)

Der A-bewertete Schalldruckpegel LATT bei den Mittenfrequenzen jeder einzelnen Schallquelle berechnet sich aus:

$$L_{AfT} (DW) = (L_W + A_f) + D_C - A$$
 (11)

Mit:

L_w.: Oktav-Schalleistungspegel der Punktschallquelle nicht A-bewertet. L_w+Af entspricht dem A-bewerteten Oktav-Schalleistungspegel L_{wA} nach IEC 651.

A_f: genormte A-Bewertung nach IEC 651 (vgl. WindPRO-Katalog Schalldaten, A-bewertet), WindPRO ermittelt nach diesem Verfahren den A-bewerteten Schallpegel.

 D_c : Richtwirkungskorrektur für die Quelle ohne Richtwirkung (0 dB) aber mit Reflexion am Boden D_{Σ} (siehe oben):

A: Oktavdämpfung, Dämpfung zwischen Punktquelle und Immissionspunkt. Sie bestimmt sich wie oben aus den folgenden Dämpfungsarten:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$
 (12)

A_{div}: Dämpfung aufgrund der geometrische Ausbreitung (=VDI 2714 Abstandsmaß Ds)

A_{atm}: Dämpfung aufgrund der Luftabsorption, abhängig von der Frequenz (=VDI 2714 Luftabsorptionsmaß DL)

A_{gr}: Bodendämpfung (=VDI 2714 Boden und Meterologiedämpfungsmaß DBM)

A_{bar}: Dämpfung aufgrund der Abschirmung (Schallschutz), worst case ohne Abar =0.

A_{misc}: Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung, Industrie;worst case A_{misc} =0)

Bei der Oktavbandbezogenen Ausbreitung ist die Dämpfung durch die Luftabsorption von der Frequenz abhängig mit:

$$A_{atm} = \alpha_f d / 1000 \tag{13}$$

mit:

α_f: Absorptionskoeffizient der Luft für jedes Oktavband

Der Luftdämpfungskoeffizient α_f ist stark abhängig von der Schallfrequenz, der Umgebungstemperatur und der relativen Luftfeuchte. Die ungünstigsten Werte bestehen bei einer Temperatur von 10° und 70% Rel. Luftfeuchte nach folgender Tabelle:

Bandmitten- frequenz, [Hz]	63	125	250	500	1000	2000	4000	8000
α _f , [dB/km]	0,1	0,4	1	1,9	3,7	9,7	32,8	117

Langzeit-Mittelungspegel (Resultierender Beurteilungspegel)

Liegen den Berechnungen n Schallquellen (u.a. Windpark) zugrunde, so überlagern sich die einzelnen Schalldruckpegel LATI entsprechend der Abstände zum betrachteten Immissionspunkt. In der Bewertung der Lärmimmission nach der TA-Lärm ist der aus allen n Schallquellen resultierende Schalldruckpegel LAT unter Berücksichtigung der Zuschläge nach der folgenden Gleichung zu ermitteln:

$$L_{AT}(LT) = 10 \cdot \lg \sum_{i=1}^{n} 10$$

$$L_{AT}(LT) = 10 \cdot \lg \sum_{i=1}^{n} 10$$

$$L_{AT}: \text{ Beurteilungspegel am Immissions punkt}$$
(14)

LAT: Beurteilungspegel am Immissionspunkt

Schallimmissionspegel an dem Immissionspunkt einer Emissionsquelle i L_{ATi}:

Index für alle Geräuschquellen von 1-n i:

Zuschlag für Tonhaltigkeit einer Emissionsquelle i, abhängig von den lokalen Vorschriften K_{Ti}: Zuschlag für Impulshaltigkeit einer Emissionsquelle i abhängig von den lokalen Vorschriften K_{ii}:

Meteorologische Korrektur. Diese bestimmt sich nach den Gleichungen:

 $C_{met} = 0$ für dp < 10 ($h_s + h_r$)

 $C_{met} = C_0 [1-10(h_s+h_r)/dp] \text{ für dp} > 10,$

Abstand zwischen Quelle und Immissionspunkt projiziert auf den Boden. d_n:

wobei der Faktor Co abhängig von den Witterungsbedingungen zwischen 0 und 5 dB liegen kann. Werte über 2 dB treten nur in Ausnahmefällen auf. In WindPRO kann C₀ individuell für jede Schallberechnung definiert werden.

4.1.1.2 Deutsche Vorschriften; TA-Larm und Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen"

Überblick

gesetzliche Grundlage für die Problematik 'Emission-Transmission-Immission' Bundesimmissionsschutzgesetz (BImSchV, 1974, 1990). Bauliche Anlagen müssen von den Umwelt- bzw. Gewerbeämtern anhand der 'Technischen Anleitung zum Schutz gegen Lärm' (kurz: TA-Lärm, 1998) auf ihre Verträglichkeit gegenüber der Umwelt und dem Menschen geprüft werden. Die Richtlinien für die Beurteilung der Lärmproblematik (und damit für die Bemessung und Bewertung) bilden die in Abb. 1 erwähnten Normen nach DIN und VDI und seit November 1998 zusätzlich die ISO 9613-2 (siehe oben). Die Immissionsschutzbehörde, als Teil des Umwelt- bzw. Gewerbeaufsichtsamtes, beurteilt die Lärmimmissionen baulicher Anlagen.