Windenergieanlagen in den Gemeinden Düngenheim und Eulgem Schallimmissionsprognose

Nachtrag vom 08.05.2008

Bearbeitung:

ABO Wind AG Hirtenstr. 26 65193 Wiesbaden

Dipl. Geogr. Christopher Kopp

Diese Schallimmissionsprognose wurde gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen erstellt.
ABO Wind AG
Wiesbaden, den 08.05.2008
Christopher Kopp

Aufgabenstellung

Die ABO Wind AG plant in den Gemeinden Düngenheim und Eulgem die Errichtung von je einer Windenergieanlage (WEA) der Firma VESTAS (V 90, NH 95 m) mit einer Gesamthöhe von 140,0 m. Beim geplanten Standort handelt es sich um eine Hochfläche, die im Regionalplan zwar nicht für eine Windkraftnutzung ausgewiesen wurde, für die eine Windkraftnutzung allerdings auch nicht ausgeschlossen wird. Es handelt sich demzufolge also um eine sogenannte "weiße Fläche".

Die Standorte der Anlagen befinden sich in der Nähe benachbarter Wirtschaftswege, die Haupterschließung erfolgt aus südlicher Richtung von der Kreisstraße K 21.

Windkraftanlagen unterliegen der TA Lärm (TA Lärm Nr. 1). Demzufolge ist zu prüfen, ob die in der TA Lärm festgelegten Immissionsrichtwerte eingehalten werden.

Das vorliegende Gutachten berechnet die durch die geplanten Windenergieanlagen zu erwartenden Schallimmissionen an verschiedenen relevanten Immissionspunkten.

Bestehende, bereits genehmigte und beantragte Windkraftanlagen (s. Anhang 1, Anlage B) werden als Vorbelastung in die Berechnungen mit einbezogen. Die berücksichtigten WEA wurden für diesen Nachtrag erneut mit der Genehmigungsbehörde abgestimmt. Die anderen im Gutachten verwendeten Eingangsdaten sind (im Vergleich zum Originalgutachten aus 2004) weitgehend gleich geblieben, abgesehen von den Schallleistungspegeln einiger WEA (wo es aktuellere Daten gab, wurden diese verwendet) und dem digitalen Geländemodell (das an einigen Stellen überarbeitet wurde und nun noch exakter ist). Die Immissionspunkte (Schallrezeptoren) aus dem Originalgutachten wurden nochmals durch die VG Kaisersesch bestätigt und für diesen Nachtrag übernommen.

Diese Schallimmissionsprognose stellt einen Nachtrag zu den Gutachten vom 17.05.2004 und vom 20.03.2008 dar, der wegen einigen Änderungen bei den als Vorbelastung zu berücksichtigen WEA erforderlich wird.

Methode des Berechnungs- und Beurteilungsverfahrens 2

Emission der Windkraftanlagen

Die in der Schallimmissionsprognose verwendeten Werte für die Schallleistungspegel der Windenergieanlagen (in dB(A)) beruhen auf Herstellerangaben. Die Bestimmung der Geräuschemission der Anlagen erfolgte nach den Technischen Richtlinien zur Bestimmung der Leistungskurve, der Schallemissionswerte und der elektrischen Eigenschaften von Windenergieanlagen, Teil I, Rev. 13 [1]. Die Messungen erfolgten demgemäss nach DIN EN 61400-11 [2], die Bestimmung der Impulshaltigkeit wurde nach DIN 45645-1 [3], die der Tonhaltigkeit nach DIN EN 61400-11 durchgeführt.

Der Schallleistungspegel der zu beurteilenden Anlagen der Firma VESTAS, der die Grundlage dieses Gutachtens darstellt, wurde aus drei Messungen gemittelt (der zusammenfassende Messbericht WT 5633/07 liegt diesem Gutachten bei). Dieser Pegel beinhaltet eventuelle Zuschläge für Ton- und Impulshaltigkeiten.

Folgende Einzelmessungen wurden hierbei verwendet:

	Schallleistungspegel	Nabenhöhe	Messbericht	Datum
V _{8, 95%}	102,7 dB(A)	95,0 m	WT 4126/05	12.04.2005
V _{8, 95%}	103,8 dB(A)	95,0 m	WT 4846/06	06.02.2006
V _{8, 95%}	102,9 dB(A)	95,0 m	WT 5308/06	12.10.2006

In der Tabelle sind die Werte für 8 m/s (Windgeschwindigkeit bei 95% der Nennleistung = 7,8 m/s) in 10 m Höhe angegeben. Bei den Messungen sind weder Tonhaltigkeiten noch Impulshaltigkeiten aufgetreten, deshalb werden in dieser Prognose keine Zuschläge erteilt. Aus den drei Messungen ergibt sich ein mittlerer Schallleistungspegel von:

$$L_{WA,m} = \sum_{j=1}^{n} \frac{L_{WA,j}}{n} = 103,13 \approx 103,1 \text{ dB(A)}.$$

Ausbreitungsrechnung

Die Ausbreitungsrechnung zur Beurteilung der Immission an den relevanten Immissionspunkten erfolgt gemäß TA-Lärm (Technische Anleitung zum Schutz gegen Lärm). Diese sieht als Berechnungsvorschrift für die Ausbreitungsrechnung die DIN ISO 9613-2 [6] vor.

Die Berechnungen erfolgen als detaillierte Prognose (TA-Lärm, A.2.3, DIN ISO 9613-2, s. Anhang 2) für freie Schallausbreitung mit A-bewerteten Schalldruckpegeln. Zugrunde gelegt wurde ein digitales Höhenmodell. Abschirmung und Dämpfung durch Bebauung und Bewuchs wurden nicht berücksichtigt. In den Berechnungen wurde für die meteorologische Dämpfung ein Wert von $C_0 = 2 dB(A)$ angenommen.

Die Berechnungen wurden mit dem Programm WindPro, Version 2.5, durchgeführt (alternative Methode nach DIN ISO 9613-2).

2.3 **Immission**

Für die Beurteilung der Immission an den relevanten Immissionspunkten werden die in der TA-Lärm, Nr. 6.1 genannten Richtwerte für Immissionsorte außerhalb von Gebäuden herangezogen. Die Gebietszuweisungen erfolgen gemäß den Angaben der Verbandsgemeindeverwaltung (s. Anlage A).

Da Windkraftanlagen kontinuierlich betrieben werden, ist für die Beurteilung der jeweilige Richtwert für nachts heranzuziehen.

Bei der Bewertung der Gesamtschalldruckpegel sind folgende Punkte als Besonderheiten von Windenergieanlagen zu beachten:

- Die abgegebene Leistung und damit auch die von der Maschine verursachten Geräusche sind abhängig von der jeweils auftretenden Windgeschwindigkeit. Der eingesetzte Schallleistungspegel bezieht sich auf die Referenzwindgeschwindigkeit in einer Höhe von 10 m über Grund bei der 95 % der Nennleistung erreicht werden.
- Die Ausbreitungsrichtung ist abhängig von der jeweils auftretenden Windrichtung.
- Der Grundgeräuschpegel (Umgebungsgeräuschpegel) am Immissionsort ist ebenfalls abhängig von der Windstärke und nimmt, wie die von der Maschine verursachten Geräusche, mit steigender Windgeschwindigkeit zu. Im Rahmen der vorliegenden Untersuchung war eine Berücksichtigung dieser Umgebungsgeräusche nicht zu realisieren.

2.4 Prognoseunsicherheit

Der TA Lärm entsprechend sind bei Geräuschimmissionsprognosen auch Aussagen über die Qualität der Prognose (s. A. 2.6. TA Lärm) zu treffen. Die Unsicherheit der Prognose wird bestimmt durch

- die Unsicherheit, mit der die Emissionsdaten erhoben wurden (σ_R),
- die möglichen Schwankungen der Emission aufgrund von Serienstreuungen (σ_P),
- der Unsicherheit des Prognosemodells ($\sigma_{Progn.}$).

Die Gesamtunsicherheit der Prognose σ_{ges} berechnet sich wie folgt:

$$\sigma_{\rm ges} = \sqrt{\sigma_{\rm R}^2 + \sigma_{\rm P}^2 + \sigma_{\rm Pr\,ogn.}^2}$$

hierbei ist

$$\sigma_{Progn}$$
 = 1,5 dB(A)
 σ_{R} = 0,5 dB(A) (da nach DIN 61400 - 11 vermessen)
 σ_{P} = 1,22 dB(A)

also
$$\sigma_{\text{ges}} = 1,997 \approx 2,0 \text{ dB(A)}$$

Da die Zusatzbelastung mit einem aus drei Messungen gemittelten Schallleistungspegel berechnet wird, verändert sich die Gesamtunsicherheit der Prognose.

Hierbei entspricht σ_P der Standardabweichung s, die sich wie folgt berechnet:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (L_i - \overline{L}_W)^2}$$

wobei

$$\overline{L}_W = \sum_{n=1}^n \frac{L_i}{n}$$

$$\overline{L}_W = \frac{102,7}{3} + \frac{103,8}{3} + \frac{102,9}{3} = 103,13 \approx 103,1$$
 [dB(A)]

somit ergibt sich

$$s = \sqrt{\frac{1}{2}(0.16 + 0.49 + 0.04)} = 0.58 \approx 0.6 = \sigma_P$$
 [dB(A)]

also

$$\sigma_{\text{ges}} = \sqrt{0.5^2 + 0.6^2 + 1.5^2} = 1.69 \approx 1.7$$
 [dB(A)]

Die Gesamtunsicherheit der Prognose wird bei der Beurteilung durch einen Sicherheitsaufschlag berücksichtigt. Dieser Sicherheitsaufschlag ergibt sich aus einer statistischen Größe sowie der Gesamtunsicherheit der Prognose (σ_{ges}).

In einer statistischen Betrachtung ergibt sich die obere Vertrauensbereichsgrenze Lo des Beurteilungspegels für eine Sicherheit von 90 % nach:

$$L_0 = L_m + 1,28 \cdot \sigma_{ges}$$

wobei L_m = prognostizierter Immissionswert

Für die Berechnung der Gesamt- und Vorbelastung ergibt sich somit eine obere Vertrauensbereichsgrenze von:

$$L_0 = L_m + 1.28 \cdot 2.0 = L_m + 2.56 \approx L_m + 2.6 \text{ dB(A)}$$

Für die Berechnung der Zusatzbelastung ergibt sich eine obere Vertrauensbereichsgrenze von:

$$L_0 = L_m + 1,28 \cdot 1,7 = L_m + 2,17 \approx L_m + 2,2 dB(A)$$

Der Richtwert der TA Lärm gilt als eingehalten, wenn:

L₀ ≤ Richtwert nach TA Lärm

Berechnung

Anlagenbeschreibung

Bei den geplanten Anlagen der Fa. ABO Wind AG handelt es sich um Windkraftanlagen des Herstellers VESTAS:

Anlagentyp:

V 90

Nabenhöhe:

95.0 m

Rotordurchmesser:

90 m

Nennleistung:

2000 kW

3.2 **Immissionspunkte**

Beeinträchtigungen durch Schall sind vor allem in den benachbarten Ortschaften Düngenheim und Eulgem zu erwarten. Der Abstand zwischen dem südlichen Ortsrand von Düngenheim und der nächsten von der ABO Wind AG geplanten Windenergieanlage beträgt ca. 740 m. Die Strecke zwischen dem nördlichen Ortsrand von Eulgem und der nächstgelegenen von der ABO Wind AG geplanten Windenergieanlage beträgt ca. 860 m. Am Ortsrand von Düngenheim wurden zwei Immissionspunkte gesetzt, und am Ortsrand von Eulgem ein weiterer. Ebenfalls in der Nähe der geplanten Anlagen befindet sich ein Hof, die Eulgemermühle (min. Abstand ca. 670 m), für dessen Wohnhaus die Immission berechnet wurde.

Ein weiterer zu untersuchender Immissionspunkt liegt am Rande der Ortschaft Gamlen. Dieser Immissionspunkt befindet sich jedoch in einem Abstand von mindestes 1500 m von den geplanten Windkraftanlagen, so dass relevante Beeinträchtigungen nicht zu erwarten sind.

Im Anhang 1 ist eine topographische Karte (1: 20.000) mit den Positionen der Windkraftanlagen und der Immissionspunkte angefügt. In Tabelle 1 sind die Immissionspunkte mit ihren zugehörigen Koordinaten aufgeführt (s. auch Anhang 1, Anlage A).

Für die Immissionspunkte gelten nach TA-Lärm folgende Richtwerte (lt. Angabe der Verbandsgemeinde Kaisersesch, s. Anhang 1, Anlage A):

ΙP	Bezeichnung	Zuordnung gem. Angaben der Verbandsgemeinde	Rechtswert	Hochwert	Immissions- richtwert (nachts)
Α	Düngenheim, Im Kirchenbungert 20	MD - Dorfgebiet	2.583.567	5.569.447	45 dB(A)
В	Eulgemermühle	M - Gemischte Baufläche	2.583.450	5.568.595	45 dB(A)
С	Eulgem, Düngenheimer Str.6	M - Gemischte Baufläche	2.583.923	5.567.880	45 dB(A)
D	Gamlen, Auf dem Käulchen 10	WA - Allgem. Wohngebiet	2.585.663	5.568.032	40 dB(A)
Е	Düngenheim, Blumenstr. 23	M - Gemischte Baufläche	2.583.664	5.569.522	45 dB(A)

Tab. 1: Immissionspunkte und Immissionsrichtwerte nach TA-Lärm (6.1)

Vor-, Zusatz- und Gesamtbelastung

Die in der TA-Lärm festgesetzten Immissionsrichtwerte beziehen sich auf die Gesamtbelastung eines Immissionsortes. Diese Gesamtbelastung setzt sich zusammen aus der Vor- und der Zusatzbelastung. Als Vorbelastung wird in der TA-Lärm die Belastung eines Ortes mit Geräuschimmissionen durch alle Anlagen, für die die TA-Lärm gilt, mit Ausnahme der zu beurteilenden Anlage bezeichnet (s. Anhang 1, Anlage B). Die Zusatzbelastung ist der Immissionsbeitrag, der an einem Immissionsort durch die zu beurteilende Anlage voraussichtlich hervorgerufen wird.

3.3.1 Vorbelastung

Als Vorbelastung sind zunächst die bereits errichteten Windkraftanlagen anzusehen. Es handelt sich um vier Anlagen des Typs Enercon E-40 mit 65 m Nabenhöhe, um vier WEA des Typs GE Wind 1,5 sl mit 85 m NH und um 2 WEA des Typs Nordex N 90 mit 80 bzw. 100 m NH. Die Anlagendaten sind in der nachfolgenden Tabelle aufgeführt.

Anlagen-Nr.	Rechtswert	Hochwert	Nabenhöhe	L _{wA} /dB(A) ¹	Tonzuschlag K _{TN} /dB
WEA 61	2.584.641	5.569.036	65 m	101,0	Nein
WEA 62	2.584.810	5.569.238	65 m	101,0	Nein
WEA 101	2.584.694	5.569.324	65 m	101,0	Nein
WEA 102	2.584.534	5.569.113	65 m	101,0	Nein
WEA 63	2.584.972	5.569.132	85 m	104,0	Nein
WEA 64	2.584.762	5.568.890	85 m	104,0	Nein
WEA 103	2.584.572	5.569.449	85 m	104,0	Nein
WEA 104	2.584.352	5.569.186	85 m	104,0	Nein
WEA 66	2.585.228	5.568.846	80 m	104,5	≤ 2
WEA 67	2.585.146	5.568.548	100 m	104,5	≤ 2

Tab. 2: Anlagenposition und schalltechnische Kennwerte der bestehenden Windkraftanlagen

Vom Anlagenhersteller garantierter Schallleistungspegel der Windkraftanlage

Bei der Bestimmung der Vorbelastung sind neben den vorhandenen Windkraftanlagen auch die bereits genehmigten sowie sämtliche beantragten Windenergieanlagen zu berücksichtigen. Die dadurch ebenfalls miteinzubeziehenden Anlagen sind in der nachfolgenden Tabelle aufgeführt. Informationen zu den Schalleistungspegeln dieser WEA in Form von zusammenfassenden Messberichten finden sich in Anhang 5 dieses Gutachtens.

Anlagen-Nr.	Rechtswert	Hochwert	Nabenhöhe	L _{wA} /dB(A) ²	Tonzuschlag K _{TN} /dB
WEA 71	2.584.695	5.568.677	98 m	103,0	Nein
WEA 74	2.584.913	5.568.654	86 m	103,0	Nein
WEA 75	2.585.063	5.568.900	86 m	103,0	Nein
WEA 155	2.584.500	5.567.390	78 m	101,0	Nein

Anlagenposition und schalltechnische Kennwerte der beantragten und bereits genehmigten Tab. 3: Windkraftanlagen

Die durch diese Windkraftanlagen verursachte Vorbelastung (Lv) an den einzelnen Immissionspunkten wurde gem. DIN ISO 9613-2 bestimmt (s. Anhang 3).

ΙP	Bezeichnung	Zuordnung gem. Angaben der Verbandsgemeinde	Immissions- richtwert (nachts)	Beurteilungs- pegel L _v Vorbelastung	Vertrauensbe- reichsgrenze ³ L ₀
Α	Düngenheim, Im Kirchenbungert 20	MD - Dorfgebiet	45 dB(A)	38,1 dB(A)	40,7 dB(A)
В	Eulgemermühle	M - Gemischte Baufläche	45 dB(A)	36,3 dB(A)	38,9 dB(A)
С	Eulgem, Düngenheimer Str. 6	M - Gemischte Baufläche	45 dB(A)	37,6 dB(A)	40,2 dB(A)
D	Gamlen, Auf dem Käulchen 10	WA - Allgemeines Wohn- gebiet	40 dB(A)	39,4 dB(A)	42,0 dB(A)
Е	Düngenheim, Blumenstr. 23	M - Gemischte Baufläche	45 dB(A)	39,1 dB(A)	41,7 dB(A)

Berechnung der Vorbelastung durch die bestehenden, genehmigten und bereits beantragten Tab. 4: Windkraftanlagen

Außer den Windkraftanlagen sind auch sonstige gewerbliche Anlagen zu überprüfen, die sich in der näheren Umgebung der Immissionspunkte befinden und schalltechnisch eine Vorbelastung darstellen könnten. Die einzigen Anlagen, die diesen Kriterien entsprechen, sind zwei holzverarbeitende Fabriken im Industriegebiet von Kaisersesch, die Glunz AG und die Classen GmbH. Es wurde überprüft, ob die beiden Anlagen tatsächlich eine Vorbelastung darstellen.

Die von den beiden rund um die Uhr arbeitenden Fabriken verursachten Emissionen führen zu keiner Erhöhung der Schallpegel an den besagten Immissionsorten. Durch die relativ große Entfernung zwischen Emissions- und Immissionspunkt, die im kleinsten Fall immer noch 1150 m beträgt, ist dies nachvollziehbar.

³ Für eine 90 %-Sicherheit.

² Vom Anlagenhersteller garantierter Schallleistungspegel der Windkraftanlage

3.3.2 Zusatzbelastung

Die von der ABO Wind AG geplanten Windkraftanlagen der Firma VESTAS weisen folgende Positionen und Kennwerte auf:

Anlagen-Nr.	Rechtswert	Hochwert	Nabenhöhe	L _{wA} /dB(A)⁴	Tonzuschlag K _{TN} /dB
WEA 107	2.584.053	5.568.884	95,0 m	103,1	Nein
WEA 158	2.584.232	5.568.685	95,0 m	103,1	Nein

Tab. 5: Anlagenpositionen und schalltechnische Kennwerte der von der ABO Wind AG geplanten Windkraftanlagen

Grundsätzlich kann laut 3.2.1 TA Lärm die Genehmigung nur versagt werden, wenn der durch die zu beurteilenden Anlagen verursachte Immissionsbeitrag im Hinblick auf den Gesetzeszweck als relevant anzusehen ist. Dies ist nicht der Fall, wenn die von den zu beurteilenden Anlagen ausgehende Zusatzbelastung, die Immissionsrichtwerte am maßgeblichen Immissionsort um mindestens 6 dB(A) unterschreitet.

Auch bei der Berechnung der Zusatzbelastung ist die Prognoseunsicherheit zu berücksichtigen.

Die zu erwartende Zusatzbelastung (Lz) durch die von der Fa. ABO Wind beantragten Windkraftanlagen ist in der folgenden Tabelle dargestellt (s. auch Anhang 4).

IP	Bezeichnung	Immissions- richtwert (nachts)	Beurteilungspegel L _v Zusatzbelastung	Vertrauensbe- reichsgrenze ⁵ L ₀	Unterschreitung des Immissions-richtwertes
Α	Düngenheim, Im Kirchenbungert 20	45 dB(A)	35,0 dB(A)	37,2 dB(A)	7,8 dB(A)
В	Eulgemermühle	45 dB(A)	37,0 dB(A)	39,2 dB(A)	5,8 dB(A)
С	Eulgem, Düngenheimer Str.6	45 dB(A)	34,7 dB(A)	36,9 dB(A)	8,1 dB(A)
D	Gamlen, Auf dem Käulchen 10	40 dB(A)	25,7 dB(A)	27,9 dB(A)	12,1 dB(A)
E	Düngenheim, Blumenstr. 23	45 dB(A)	35,1 dB(A)	37,3 dB(A)	7,7 dB(A)

Berechnung der Zusatzbelastung durch die geplanten Windkraftanlagen der ABO Wind AG Tab. 6:

3.3.3 Gesamtbelastung

⁴ Aus drei Schallmessungen gemittelter Schallleistungspegel.

⁵ Für eine 90 %-Sicherheit.

Die Gesamtbelastung wird nach TA-Lärm ermittelt (A1.2):

$$L_G = 10 lg (10^{0.1 LV} + 10^{0.1 Lz})$$

3.4 Ton-, Impuls- und Informationshaltigkeit

Bei der Vermessung der Anlagen wurde keine Ton- oder Impulshaltigkeit festgestellt. Bei dem Betrieb von Windkraftanlagen treten gewöhnlich keine informationshaltigen Geräusche auf.

Tieffrequente Geräusche/Infraschall

Die von modernen Windkraftanlagen erzeugten Infraschallemissionen liegen im Immissionsbereich deutlich unterhalb der Wahrnehmungsschwelle des Menschen [8].

3.6 Kurzzeitige Geräuschspitzen

Kurzzeitige Geräuschspitzen können z.B. beim Bremsen der Anlagen oder der Windnachführung der Gondel verursacht werden. Nach TA-Lärm dürfen diese Spitzenpegel in der Nacht die Immissionsrichtwerte um nicht mehr als 20 dB überschreiten.

4 Ergebnisdarstellung und Beurteilung

Die Gesamtbelastung die durch die bestehenden, die genehmigten und die bereits beantragten sowie die geplanten Anlagen der Firma VESTAS verursacht wird, wurde nach TA-Lärm / DIN ISO 9613-2 ermittelt:

IP ·	Bezeichnung	Zuordnung gem. Angaben der Verbandsgemeinde	Immissions- richtwert (nachts)	Beurteilungspegel L _v Gesamtbelastung	Vertrauensbe- reichsgrenze ⁶ L ₀
Α	Düngenheim, Im Kir- chenbungert 20	MD - Dorfgebiet	45 dB(A)	39,9 dB(A)	42,5 dB(A)
В	Eulgemermühle	M - Gemischte Baufläche	45 dB(A)	39,7 dB(A)	42,3 dB(A)
С	Eulgem, Düngenheimer Str.6	M - Gemischte Baufläche	45 dB(A)	39,4 dB(A)	42,0 dB(A)
D	Gamlen, Auf dem Käul- chen 10	WA - Allgemeines Wohn- gebiet	40 dB(A)	39,6 dB(A)	42,2 dB(A)
E	Düngenheim, Blumenstr. 23	M - Gemischte Baufläche	45 dB(A)	40,6 dB(A)	43,2 dB(A)

Tab. 7: Berechnung der zu erwartenden Gesamtbelastung

Die Geräuschemissionen aller bestehenden, bereits genehmigten und geplanten WEA (Gesamtbelastung) führen an einem der fünf untersuchten Immissionspunkte zu einer Überschreitung der Immissionsrichtwerte. Demnach kommt es am Immissionspunkt D "Gamlen, Auf dem Käulchen 10" zur Überschreitung der Immissionsrichtwerte um 2,2 dB(A). Unter Berücksichtigung der oberen Vertrauensbereichsgrenze beträgt die prognostizierte Gesamtbelastung dort 42,2 dB(A).

Eine detaillierte Analyse von Vor- und Zusatzbelastung zeigt, dass diese Überschreitung maßgeblich durch die bestehenden, geplanten und genehmigten WEA anderer Betreiber verursacht werden. Der Anteil der von der ABO Wind AG geplanten Anlagen (Zusatzbelastung) ist, wie Tabelle 6 zeigt, im Sinne der TA Lärm nicht relevant. Die Unterschreitung der Immissionsrichtwerte am kritischen Immissionspunkt durch diese WEA beträgt 12,1 dB(A), bezogen auf die obere Vertrauensbereichsgrenze.

Die Berechnung der Immissionen nach dem alternativen Verfahren nach DIN ISO 9613-2 (frequenzunabhängig) führt in der Regel zu Immissionswerten, die etwas oberhalb der tatsächlich gemessenen Werte liegen. Nach Empfehlungen des Landesumweltamtes Nordrhein-Westfalen sollten Immissionsprognosen daher nach dem alternativen Verfahren durchgeführt werden, da damit ein "worst case" angenommen wird [8]. Im Berechnungsverfahren wurden Dämpfungen durch Bebauung und Bewuchs nicht berücksichtigt. Auch dies

⁶ Für eine 90 %-Sicherheit.

führt zu höheren Ergebnissen als sie in der Realität zu erwarten sind. Weiterhin ist zu berücksichtigen, dass die Bedingungen der Berechnung (Windgeschwindigkeiten von 10 m/s in 10 m Höhe bzw. 95% der Nennleistung) nur sehr selten erreicht werden.

Zu berücksichtigen ist außerdem, dass mehrere Immissionspunkte wie z.B. die Eulgemermühle in Hauptwindrichtung vor den geplanten Windkraftanlagen liegen. Da der Schall in seiner Ausbreitung gegen den Wind schnell an Energie verliert, ist davon auszugehen, dass der tatsächliche Immissionspegel meistens weit unter dem berechneten liegen wird.

Es kommt durch alle bestehenden, geplanten und bereits genehmigten Anlagen lediglich an einem Immissionspunkt (IP D "Gamlen, Auf dem Käulchen 10") zu einer Überschreitung der Immissionsrichtwerte.

Durch die geplanten WEA der ABO Wind AG (Zusatzbelastung) wird jedoch unter Berücksichtigung der Prognoseunsicherheit an diesem "kritischen" Immissionspunkt der Immissionsrichtwert um 12,1 dB(A) unterschritten (s. 3.3.2 Zusatzbelastung). Demzufolge ist der Immissionsbeitrag, der durch die von der ABO Wind AG geplanten Anlagen verursacht wird, im Sinne der TA Lärm als nicht relevant zu bezeichnen.

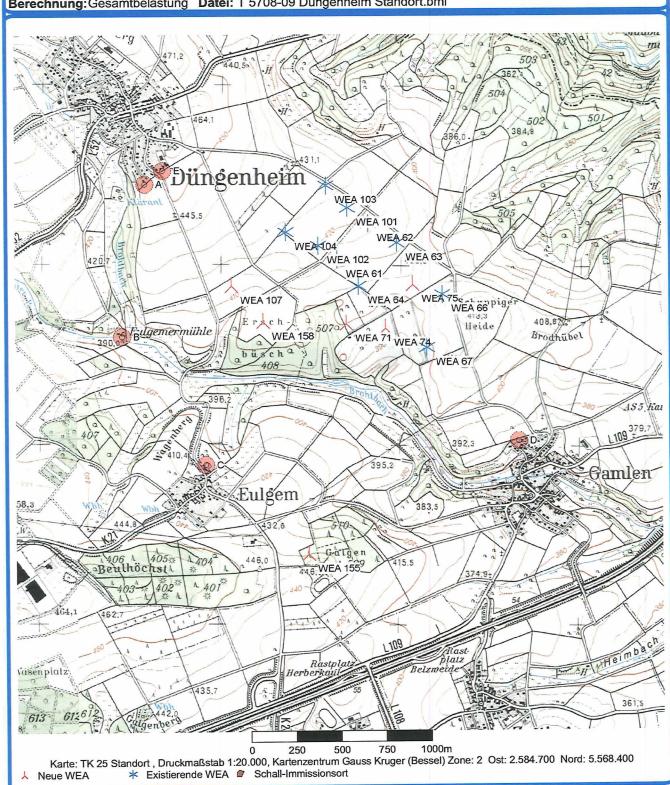
Literatur 5

- Technische Richtlinien für Windenergieanlagen, Revision 13, Ausgabe 01.01.2000 [1] Teil 1: Bestimmung der Schallemissionswerte, Fördergesellschaft Windenergie e.V.
- DIN EN 61400-11, Windenergieanlagen; Teil 11: Schallmessverfahren (IEC 61400-11: [2] 1998), Februar 2000
- DIN 45645, Teil 1, Ermittlung von Beurteilungspegel aus Messungen, Teil 1: Ge-[3] räuschemissionen in der Nachbarschaft, Juli 1996
- Schallimmissionsschutz im Genehmigungsverfahren von Windenergieanlagen, Emp-[4] fehlungen des Arbeitskreises "Geräusche von Windenergieanlagen", Entwurf Oktober 1999.
- Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz [5] (Technische Anleitung zum Schutz gegen Lärm - TA-Lärm) vom 26. August 1998
- DIN ISO 9613-2, Ausgabe Oktober 1999: [6] Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2: Allgemeine Berechnungsverfahren
- VDI Richtlinie: VDI 2714 Schallausbreitung im Freien, Januar 1988 [7]
- Landesumweltamt Nordrhein-Westfalen: Sachinformationen zu Geräuschemissionen [8] und -immissionen von Windenergieanlagen.
- DETLEF PIORR, Schallemissionen und -immissionen von Windenergieanlagen (in: Ta-[9] gungsband der Deutschen Akustischen Gesellschaft 1991, S.365 ff)
- [10] Staatliches Umweltamt Herten, Sicherheitszuschläge, Dez 23 / Ag Stand: 11.3.03 Sicherheitszuschläge bei Windenergieanlagen

Anhang

- Anhang 1: Kartenausschnitt der topographischen Karten TK 5708 "Kaisersesch" und TK 5709 "Kaifenheim" (1:20.000) mit Standortmarkierungen der Windkraftanlagen und der Immissionspunkte (A-E)
 - Anlage A: Immissionsaufpunkte (Nachweis Gebietsausweisungen)
 - Anlage B: Zu berücksichtigende Vorbelastung Tabelle der KV Cochem-Zell
- Anhang 2: Berechnungsergebnisse der durchgeführten Berechnungen für sämtliche Anlagen (Gesamtbelastung)
- Anhang 3: Berechnungsergebnisse der durchgeführten Berechnungen für die existierenden, genehmigten und bereits beantragten Anlagen anderer Betreiber (Vorbelastung)
- Anhang 4: Berechnungsergebnisse der durchgeführten Berechnungen für die von der ABO Wind AG geplanten Anlagen (Zusatzbelastung)
- Anhang 5: Zusammenfassende Messberichte zu den Schallleistungspegeln aller bestehenden, genehmigten und geplanten Windenergieanlagen

Anhang 1


WP Düngenheim / Eulgem

28.04.2008 11:16 / 1 **ABO Wind AG** Hirtenstraße 26 DE-65193 Wiesbaden

+49 611 26765 0 C. Kopp 28.04.2008 11:00/2.5.7.83

DECIBEL - Karte: T 5708-09 Düngenheim Standort.bmi

Berechnung: Gesamtbelastung Datei: T 5708-09 Düngenheim Standort.bmi

Immissionsaufpunkte (Nachweis Gebietsausweisungen)

Gebietsausweisung Bebauungsplan, wenn nach BauNVO Flachennutzungsplan Flachennutzungsplan A Constant Langer A Constant L	Die aufgeführten Gebietsauswersungen sowie der aktuelle Planungssachstand werden bestatigt unterschrift und Stempel (u. h.
Rechtswert Hochwert Inchwert nach nach sections Gebiets	of low of the ball
In Flustück Gemarkung 15.5 Dangelein 6.2 Eulge 4.3 Eulge 89/12 Ganglein 130/1 Dangelein	Ort und Datum: Ort und Datum:
Straße/Hausnummer Flu A Denge Leern In Krith burgeth 9 Extende runhie Denge Gr. 6 E Jasen lan Aufstume Gr. 6 E Dange Leein Bihmanstr. 23 F H	Oct und Datum: (Active Local Recognition of Medical Color of of Color of Medical Co

Lageplan Maßstab 1:5000 mit Darstellung der Abstände WKA zu den Immissionspunkten

Anhang:

De bestähigten Gebietsanswicksungen haben sch wicht geaudert. Diese habenmeiterlich Gichglied Kansaresch, ge geoß

Ba-k 0912/2005
Emehry von Zurer WKA
Dingenteilu (Fulger
Dingenteilu (Fulger)

Aktenzeichen: Bauvorhaben:

Gemarkung: Bauherr:

	ni haylgirlari-noT bnu -sluqmi (A) Ab		-																	ser		-			Konkretisierung der Betriebsbeschreibung für Windkraftanlagen Anlage Nr. 6.2 Geräuschemissionen der Betriebsbeschreibung Anlage 3 Blatt 1	
	(A) 8b ni sw.l		-																	sverfas		1		7	ung für uschemis	
	Wennleistung in KW	 200	200	1500	1500	2300	2300	1800	1800	1800	200	200	1500	1500	009		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ę		Unterschrift Entwurfsverfasser			2000	╛	beschreib 6.2 Gerä 3.3 Blatt 1	
	Rotordurchmesser in Meter	 4	8	12	77	8	8	02	0,2	02	40	8		11	44			Ort und Datum		schrift			200	╝	Betriebs ilage Nr. g Anlag	
	Nabenhöhe in Meter	65	65	85	85	8	100	98	88	86	65	65	85	85	78			h TO		Unter			S	SS	ung der l lagen Ar chreibun	
	d∳inagsinA	E 40	E 40	GF 158	GE 1.5 sL	06-N	06-N	E 66/18.70	E66/18.70	E66/18.70	E-40	E-40	GE 1,5 sL	GE 1,5 sL	E 40/6.44					auherr		9	06 >	06 /	Konkrelisierung der Betriebsbeschreibung für Windkraftanlagen Anlage Nr. 6.2 Geräuscher Betriebsbeschreibung Anlage 3 Blatt 1	
afen	Anlagenhersteller	Fronce	Fileron	בוופוספו	19 19	Nordex	Nordex	Enercon	Enercon	Enercon	Enercon	Enercon	JE JE	36	Enercon			ш		Bauherrin/Ba	ermerken IIII		Vestas	Vestas	1 1 1	I
buonelay onjour	Вететкилдел	0		Designid	Bestand	Bestand	Bestand		5 BIM-Antrag		Bestand		Bestand	3 Bestand	Genehmiot			Ort und Datum		Unterschrift Bauherrin/Bauherr	und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!		414 BIM-Antrag	405 BIM-Antrag		The second secon
100	Z	1	412	410	11.4		L	L													en und					
	Hochwert E	000	2208030	5569238	5569132	3300090	5568548	5568677	5568654	2588000	5560324	5560113	2203113	250000	5567390	200					zu verwend		5568884	5568685		
	DewarthoeR		2584641	2584810	2584972	70/4867	0770907	2007140	2504030	2304913	7383003	4504007	4004034	2304012	2584352	7.004.000	† * * * * * * * * * * * * * * * * * * *	7			tenprognosen	-	2584053	2584232	ach § 16 BimSchG	
	Fluretűck			14							23, 24				× ×	0	1						10 53-56			
	Flur		_	12	12		_	1		\downarrow	- [- 1	- 1	- 1	0		-				n Scha		_		antrag	!
			Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Gamlen	Dungenne	Düngenhe	Dungenha	Düngenh	Enlgem					naiog in de) gr	Düngen	Eulgem	derungs	
stung	sab nammunnagsinA analatagarinA															. 6 4 7 5 7 4 5 5 8 8 8 8 9 7 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			100g	, <u> </u>	Datum Stempel u Opterschrift Datum Schaller Sind u.a. analog in den Schall-	(Zusatzbelastung	-1		BIM-K 0168/2008 Errichtung von 2 WKA - Anderungsantrag n Düngenhelm / Eulgem	Düngenheim / Eulgem ABO Wind AG
Vorbelastung																		1 1 1 1 1 1		为	Sohriff	nlager	1 407	158	BIM-K Errich Dünge	Dünge ABO V
Zu berücksichtigende V		11. 及其50. 次至1. 对数据条件																		身 注	Stempel u. Ugter	Michitig: Die vorgegebenen ginagemitalieren Besantsante Windkraftanladen (To VIII della Cita	Dungenneim	an:	
Zu berücks																			Hat vorgeleisen		Datum	Wichtig: Die W	Dealinage	135 K	rzeich orhabe	Gemeinde: Bauherr:

Anhang 2

WP Düngenheim / Eulgem

28.04.2008 10:52 / 1

ABO Wind AG Hirtenstraße 26 DE-65193 Wiesbaden +49 611 26765 0

C. Kopp

28.04.2008 10:51/2.5.7.83

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung

Schallberechnungs-Modell:

ISO 9613-2 Allgemein

Windgeschwindigkeit:

95% der Nennleistung ansonsten 10,0 m/s

Bodeneffekt:

Alternatives Verf.

Meteorlogischer Koeffizient, C0:

2,0 dB Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Einzelton- und Impulszuschläge werden zu Schallwerten addiert

Aufpunkthöhe ü.Gr.,wenn im Immissionsort-Objekt kein abweichende Wert:

5,0 m Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im V verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Maßstab 1:50.000 * Existierende WEA

Schall-Immissionsort

WEA

Berechnungsergebnisse

Beurteilungspegel

н	Dear conangepage							Beurteilungspegel	Anforde	rungen e	rfiillt?
	Schall-Immissionsort Nr. Name	GK (Besse Ost	Nord	Z	Aufpunkthöhe	Anforder Schall [dB(A)]	Abstand	Von WEA [dB(A)]	Schall	Abstand	Gesamt
	A IP A Düngenheim, Im Kirchenbungert 20 B IP B Eulgemermühle C IP C Eulgem, Düngenheimer Str. 6 D IP D Gamlen, Auf dem Käulchen 10 E IP E Düngenheim, Blumenstr. 23	2.583.567 2.583.450 2.583.923 2.585.663 2.583.664	5.568.595 5.567.884 5.568.032	393,2 412,2 369,9	5,0 5,0 5,0 5,0	45,0 45,0 45,0 45,0 40,0 45,0	500 500 500 500	39,9 39,7 39,4 39,6	Ja Ja Ja Ja Ja	Ja Ja Ja Ja Ja	Ja Ja Ja Ja Ja

Abstände (m)

WEA	Α	В	C	D	E
1	744	669	1008	1822	747
	1012				
	1366				
	1563				
	1593				
	2259				
	1005				
8	828	1078	1371	1747	766
9	1440	1614	1630	1300	1365
	1319				
11	1023	1201	1372	1564	961

^{Projekt:} WP Düngenheim / Eulgem

28.04.2008 10:52 / 2

ABO Wind AG Hirtenstraße 26 DE-65193 Wiesbaden +49 611 26765 0

C. Kopp

28.04.2008 10:51/2.5.7.83

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung

..Fortsetzung von der vorigen Seite WEA A B C D E 12 1134 1442 1633 1616 1049 13 1261 1504 1619 1478 1181 14 1150 1270 1357 1433 1091 15 1767 1795 1621 923 1704 16 1817 1696 1392 731 1773

WindPRO version 2.5.7.83 Aug 2007 28.04.2008 11:18 / 1 WP Düngenheim / Eulgem **ABO Wind AG** Hirtenstraße 26 DE-65193 Wiesbaden +49 611 26765 0 C. Kopp 28.04.2008 11:00/2.5.7.83 DECIBEL - Karte: T 5708-09 Düngenheim Standort.bmi Berechnung: Gesamtbelastung Datei: T 5708-09 Düngenheim Standort.bmi Düngenheim WEA 103 WEA 101 WEA 62 WEA 104 **WEA 63** WEA 102 **WEA 61** WEA 75 WEA 64× WEA 66 Pig **WEA 107** 408,82 Heide Fulgemer miihle WEA 71 WEA 74 WEA 158 Brodhübel 390,0 büscho 408 396. AS/5 Kai 379,7 395.2 Gamlen Eulgem Galgen Beulhöchs 446,0 46 WEA 1559 A 401 vásenplatz 435,7

* Existierende WEA Schall-Immissionsort

40,0 dB(A)

Neue WEA

35,0 dB(A)

250

500

Karte: TK 25 Standort , Druckmaßstab 1:20.000, Kartenzentrum Gauss Kruger (Bessel) Zone: 2 Ost: 2.584.700 Nord: 5.568.400 Schallberechnungs-Modell: ISO 9613-2 Allgemein. Windgeschw.: 95% der Nennleistung ansonsten 10,0 m/s

Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

45,0 dB(A)

750

1000m

50,0 dB(A)

361,5

- 55,0 dB(A)

Anhang 3

WP Düngenheim / Eulgem

28.04.2008 11:25 / 1

ABO Wind AG Hirtenstraße 26 DE-65193 Wiesbaden +49 611 26765 0 C. Kopp

28.04.2008 11:24/2.5.7.83

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung

Schallberechnungs-Modell:

ISO 9613-2 Allgemein

Windgeschwindigkeit:

95% der Nennleistung ansonsten 10,0 m/s

Bodeneffekt:

Alternatives Verf.

Meteorlogischer Koeffizient, C0:

2,0 dB

Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Einzelton- und Impulszuschläge werden zu Schallwerten addiert

Aufpunkthöhe ü.Gr.,wenn im Immissionsort-Objekt kein abweichende

5,0 m Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im N verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Maßstab 1:50.000

★ Existierende WEA Schall-Immissionsort

WEA

GK (Besse	1\ Zone: 2			WEA-T	vro					Schall	verte					Oldani
Ost	Nord	Z	Beschreibung			Тур	Leistung	Rotord.	Höhe	Quelle	Name	Windgeschw.	Nabenhone	LWA,ret	töne	Oktav- Bänder
Ost	11014	_										r/-1	[m]	[dB(A)]	tone	Danuel
		[m]					[kW]	[m]	[m]		a et a management a	[m/s]			0 dB	Nein
4 2 504 605	5.568.677		WEA 71	Ja	ENERCON	E-66/18.70	1,800	70,0	98.0		Garantie Enercon (basiert auf 3 Messungen)	(95%)	98,0	103,0		
2.584.913				Ja	ENERCON	E-66/18.70	1.800	70.0	86.0	USER	Garantie Enercon (basiert auf 3 Messungen)	(95%)	86,0	103,0	0 dB	
				Ja	ENERCON	E-66/18.70		70.0	86.0	USER	Garantie Enercon (basiert auf 3 Messungen)	(95%)	86,0	103,0	0 dB	
3 2.585.063					ENERCON	E-40/6.44	600	44.0	78.0		Garantierter SLP bei 95% - 12/2001	(95%)		101,0	0 dB	
4 2.584.500				Ja			574 R	77.0	85.0	USER	10m/s all hub h. Man. calc. 05/01	10,0		104,0	0 dB	Nein
5 2.584.572				Ja	GE WIND ENERGY	GE 1.5sl	1.500		85.0	USER	10m/s all hub h. Man. calc. 05/01	10.0		104.0	0 dB	Nein
6 2.584.352	5.569.186	423.	4 WEA 104	Ja	GE WIND ENERGY	GE 1.5sl	1.500	77,0				10.0		104.0	0 dB	Nein
7 2.584.972	5.569,132	410.	4 WEA 63	Ja	GE WIND ENERGY	GE 1.5sl	1.500	77,0	85,0	USER	10m/s all hub h. Man. calc. 05/01	10.0		104,0	0 dB	Nein
8 2.584.762				Ja	GE WIND ENERGY	GE 1.5sl	1.500	77,0	85,0	USER	10m/s all hub h. Man. calc. 05/01			101.0		
9 2.584.534				Nein	ENERCON	E-40/5.40	500	40,3	65,0	EMD	10m/s Man. guaranteed all Hub heights 12/98	10,0				
10 2.584.694				Nein	ENERCON	E-40/5.40	500	40,3	65,0	EMD	10m/s Man. guaranteed all Hub heights 12/98	10,0		101,0		
				Nein	ENERCON	E-40/5.40	500	40.3	65.0	EMD	10m/s Man. guaranteed all Hub heights 12/98	10,0		101,0		
11 2.584.810					ENERCON	E-40/5.40	500	40.3	65.0	EMD	10m/s Man. guaranteed all Hub heights 12/98	10,0		101.0		
12 2.584.641				Nein				90.0	80.0			(95%)		104,5	0 dB	Nein
13 2.585.228				Ja	NORDEX	N90	2.300				N 90 2,3 MW 10m/s official	(95%)		104,5	0 dE	Nein
14 2.585.146	5.568.548	398,	1 WEA 67	Ja	NORDEX	N90	2.300	90,0	100,0	USER	IN 30 2,3 INIVY TOTALS OFFICIAL	(00.0)				

Berechnungsergebnisse

Beurteilungspegel

0.00		GK (Besse	1) 7000: 2			Anforde	rungen	Beurteilungspegel	Anforde	rungen e	rfüllt?
	chall-Immissionsort				Aufpunkthöhe		Abstand		Schall	Abstand	Gesamt
Nr	r. Name	Ost	Nord	-					O O I I G II		
				[m]	[m]	[dB(A)]	[m]	[dB(A)]			15.
	A IP A Düngenheim, Im Kirchenbunger	202.583.567	5.569,447	442,8	5,0	45,0	500	38,1	Ja	Ja	Ja
		2.583.450	5 568 595	393.2	5.0	45.0	500	36,3	Ja	Ja	Ja
	B IP B Eulgemermühle		5.567.884			45.0	500	37.6	Ja	Ja	Ja
	C IP C Eulgem, Düngenheimer Str. 6				10.50			·	Ja	Ja	Ja
	D IP D Gamlen, Auf dem Käulchen 10	2.585.663	5.568.032	369,9	5,0	40,0					
	F IP F Düngenheim, Blumenstr. 23	2.583.664	5.569.522	451,7	5,0	45,0	500	39,1	Ja	Ja	Ja

Abstände (m)

WEA	Α	В	С	D	Е	
1	1366	1248	1107	1164	1333	
2	1563	1464	1254	975	1521	
3	1593	1641	1527	1056	1531	
4	2259	1598	760	1329	2290	
5	1005	1410	1694	1789	911	
6	828	1078	1371	1747	766	
7	1440	1614	1630	1300	1365	
8	1319	1345	1310	1245	1267	
9	1023	1201	1372	1564	961	
10	1134	1442	1633	1616	1049	
11	1261	1504	1619	1478	1181	
12	1150	1270	1357	1433	1091	

WindPRO version 2.5.7.83 Aug 2007

Projekt:

WP Düngenheim / Eulgem

Ausdruck/Seite 28.04.2008 11:25 / 2

ABO Wind AG
Hirtenstraße 26
DE-65193 Wiesbaden
+49 611 26765 0

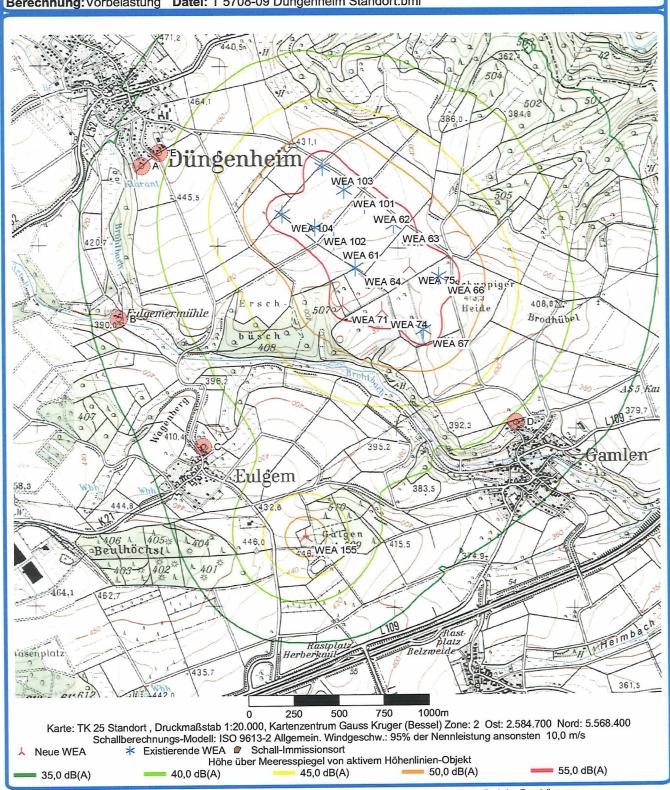
C. Kopp Berechnet:

28.04.2008 11:24/2.5.7.83

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung

...Fortsetzung von der vorigen Seite WEA A B C D E 13 1767 1795 1621 923 1704 14 1817 1696 1392 731 1773 WP Düngenheim / Eulgem


28.04.2008 13:04 / 1

ABO Wind AG Hirtenstraße 26 DE-65193 Wiesbaden +49 611 26765 0 C. Kopp

28.04.2008 11:24/2.5.7.83

DECIBEL - Karte: T 5708-09 Düngenheim Standort.bmi

Berechnung: Vorbelastung Datei: T 5708-09 Düngenheim Standort.bmi

Anhang 4

WP Düngenheim / Eulgem

28.04.2008 13:04 / 1 ABO Wind AG Hirtenstraße 26 DE-65193 Wiesbaden +49 611 26765 0 C. Kopp 28.04.2008 12:40/2.5.7.83

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung

Schallberechnungs-Modell:

ISO 9613-2 Allgemein

Windgeschwindigkeit: 95% der Nennleistung ansonsten 10,0 m/s

Bodeneffekt:

Alternatives Verf.

Meteorlogischer Koeffizient, C0:

2,0 dB Art der Anforderung in der Berechnung:

1: WEA-Geräusch vs. Schallrichtwert (DK, DE, SE, NL etc.)

Schallleistungspegel in der Berechnung:

Schallwerte sind Lwa-Werte (Mittlere Schallleistungspegel; Standard)

Einzeltöne:

Einzelton- und Impulszuschläge werden zu Schallwerten addiert

Aufpunkthöhe ü.Gr.,wenn im Immissionsort-Objekt kein abweichende

5,0 m Aufpunkthöhe in Immissionsort-Objekt hat Vorrang vor Angabe im Na verlangte Unter- (negativ) oder zulässige Überschreitung (positiv) des Schallrichtwerts:

0,0 dB(A)

Maßstab 1:50.000 Schall-Immissionsort

WEA

GK (Besse Ost	el) Zone: 2 Nord	z	Beschreibur	WEA ngAktue	- Typ ell Hersteller Typ	Leistun	g Rotord	. Höhe	Schallwerte Quelle Name	Wi	ndgeschw.	LwA,ref	Oktav- Bänder
1 2.584.053 2 2.584.232				Ja Ja	VESTAS V90-2.0 VESTAS V90-2.0				USER Windtest vermessener SLP 95% (aus 3 M USER Windtest vermessener SLP 95% (aus 3 M				Nein Nein

Berechnungsergebnisse

Beurteilungspegel

п	5.5										
	Schall-Immissionsort	GK (Besse	l) Zone: 2			Anforde	rungen	Beurteilungspegel			
ľ	Nr. Name	Öst	Nord	Z	Aufpunkthöhe	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
ı	5.57 September 1996			[m]	[m]	[dB(A)]	[m]	[dB(A)]			
ı	A IP A Düngenheim, Im Kirchenbungert 20	2.583.567	5.569.447	442,8	5,0	45,0	500	35,0	Ja	Ja	Ja
ı	B IP B Eulgemermühle		5.568.595			45,0	500	37,0	Ja	Ja	Ja
ł	C IP C Eulgem, Düngenheimer Str. 6	2.583.923	5.567.884	412,2	5,0	45,0	500	34,7	Ja	Ja	Ja
ı	D IP D Gamlen, Auf dem Käulchen 10	2.585.663	5.568.032	369,9	5,0	40,0	500	25,7	Ja	Ja	Ja
Ĭ	E IP E Düngenheim, Blumenstr. 23	2.583.664	5.569.522	451,7	5,0	45,0	500	35,1	Ja	Ja	Ja

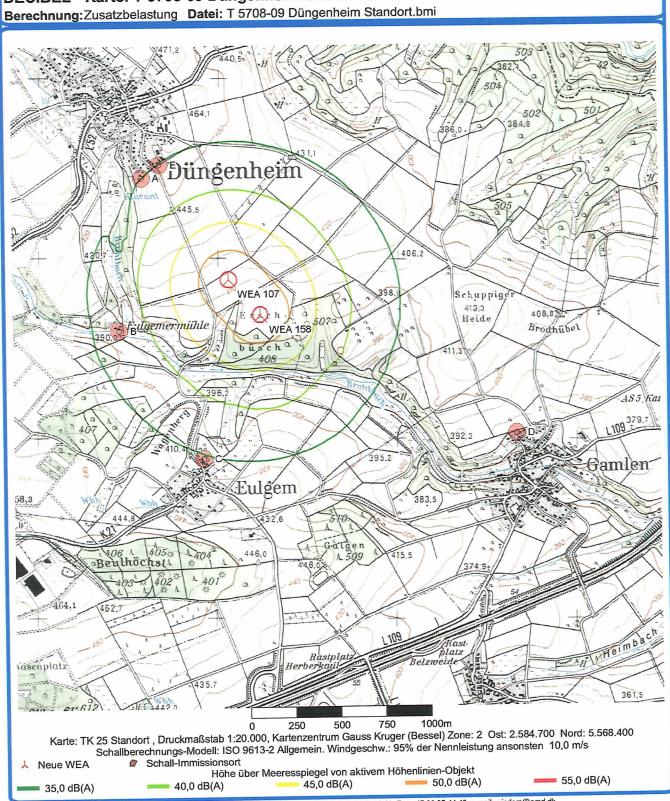
Abstände (m)

		v	

Schall-Immissionsort

744 1012

В 669 787


C 1008 858

D 1822 1573 747 1011 WP Düngenheim / Eulgem

28.04.2008 13:05 / 1 ABO Wind AG Hirtenstraße 26 DE-65193 Wiesbaden

+49 611 26765 0 C. Kopp 28.04.2008 12:40/2.5.7.83

DECIBEL - Karte: T 5708-09 Düngenheim Standort.bmi

Anhang 5

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V90-2MW (Mode 0) aus mehreren Einzelmessungen bei Nabenhöhen von 80 m, 95 m und 105 m über Grund

März 2007

Kurzbericht WT 5633/07

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium.

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V90-2MW (Mode 0) aus mehreren Einzelmessungen bei Nabenhöhen von 80 m, 95 m und 105 m über Grund

März 2007

Kurzbericht WT 5633/07

Standort bzw. Messort:	Schönhagen ur	Schönhagen und Porep, Landkreis Prignitz							
Auftraggeber:									
Auftragnehmer:	Sommerdeich	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog							
Datum der Auftragserteilung:	2007-02-21 Auftragsnummer: 4250 07 03643								

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst insgesamt 5 Seiten.

Seite 2 von

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten						
Hersteller	Vestas Wind Systems A/S	Anlagenbezeich	nung	V90-2MW		
	Alsvej 21	Nennleistung in	kW	2,0 MW		
	8900 Randers	Nabenhöhe in m	า	80		
	Denmark	Rotordurchmesser in m		90		
Angaben zur Einzelmessung		Messung-Nr.				
_	11			2		
Seriennummer		V 18864		V 19702		
Standort	Schönhagen, Landkreis Prign	itz, Deutschland	Porep,	Landkreis Prignitz, Deutschland		
Vermessene Nabenhöhe (m)		105		105		
Messinstitut	WINDTEST Kaiser-Wilhe	Im-Koog GmbH	WINDTE	ST Kaiser-Wilhelm-Koog GmbH		
Prüfbericht		WT 4126/05	WT 4846/0			
Datum des Prüfberichts		2005-04-12		2006-02-06		
Getriebetyp	Mets	so PLH1400V90		Metso PLH1400V90		
Generatortyp	ABB AMK	500L4A BAYHA		ABB AMK 500L4A BAYHA		
Rotorblatttyp		Vestas 44 m		Vestas 44 m		
Angaben zur Einzelmessung		Messu	ing-Nr.			
	3			4		
Seriennummer		V 19697				
Standort	Porep, Landkreis Prign	itz, Deutschland				
Vermessene Nabenhöhe (m)		105				
Messinstitut	WINDTEST Kaiser-Wilhe	elm-Koog GmbH				
Prüfbericht		WT 5308/06				
Datum des Prüfberichts		2006-10-12				
Getriebetyp	Hansen EH 802 C	N 21-BN-112.83				
Generatortyp	Weier D	VSG 500/4MST				
Rotorblatttyp		Vestas 44 m				

challlei	istungspegel L _{WA,k} [dB(A)]	: auf Basis der Nab	enhöhenumrechnung	en WT 5611/07, WT	5315/06 und WT 561:	3/07
				schwindigkeit in 10 ı		· · · · · ·
	Messung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
	1	102,2	103,2	102,8	102,0	101,6
	2	101,9	103,5	103,7	-	-
	3	102,3	103,4	103,1	102,0	101,1
	4					
	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$	102,1	103,4	103,2	102,0	101,4
	[dB(A)]	•				
	Standard- Abweichung s [dB(A)]	0,2	0,2	0,5	0,0	0,4
	K nach /2/					
	σ_R =0,5 dB /3/ [dB(A)]	1,0	1,0	1,3	1,0	1,2

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 3 von 5

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten					
Hersteller	Vestas Wind Systems A/S	Anlagenbezeich	nung	V90-2MW	
	Alsvej 21	Nennleistung in	kW	2,0 MW	
	8900 Randers	Nabenhöhe in n	n	95	
	Denmark	Rotordurchmess	ser in m	90	
Angaben zur Einzelmessung		Messur	ng-Nr.		
	1	1			
Seriennummer		V 18864		V 19702	
Standort	Schönhagen, Landkreis Prigni	tz, Deutschland	Porep,	Landkreis Prignitz, Deutschland	
Vermessene Nabenhöhe (m)		105		105	
Messinstitut	WINDTEST Kaiser-Wilhe	lm-Koog GmbH	WINDTE	ST Kaiser-Wilhelm-Koog GmbH	
Prüfbericht		WT 4126/05	WT 4846/06		
Datum des Prüfberichts		2005-04-12		2006-02-06	
Getriebetyp	Mets	so PLH1400V90		Metso PLH1400V90	
Generatortyp	ABB AMK	500L4A BAYHA		ABB AMK 500L4A BAYHA	
Rotorblatttyp		Vestas 44 m		Vestas 44 m	
Angaben zur Einzelmessung		Messui	ng-Nr.		
	3			4	
Seriennummer		V 19697			
Standort	Porep, Landkreis Prign	itz, Deutschland			
Vermessene Nabenhöhe (m)		105			
Messinstitut	WINDTEST Kaiser-Wilhe	lm-Koog GmbH			
Prüfbericht		WT 5308/06			
Datum des Prüfberichts		2006-10-12			
Getriebetyp	Hansen EH 802 C	N 21-BN-112.83			
Generatortyp	Weier D	VSG 500/4MST			
Rotorblatttyp		Vestas 44 m			

	emissionsparame					
Schallleis	tungspegel L _{WA,k} [dB(A)]: auf Basis der Nab	enhöhenumrechnung	jen WT 5611/07, WT	5315/06 und WT 561	3/07
	Messung		Windge	schwindigkeit in 10	m Höhe	
	Micourig	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s
	1	102,5	103,2	102,7	101,8	101,6
	2	102,3	103,6	103,8	-	-
	3	102,6	103,4	102,9	101,8	100,9
	4					
	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$	102,5	103,4	103,1	101,8	101,3
	[dB(A)]					
	Standard- Abweichung s [dB(A)]	0,2	0,2	0,6	0,0	0,5
	K nach /2/	1.0	1.0	1,5	1,0	1,4
	σ_R =0,5 dB /3/ [dB(A)]	1,0	1,0	1,5	1,0	,,,

^{/1/} Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte , Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 4 von 5

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten	***************************************		**			
Hersteller	Vestas Wind Systems A/S	Anlagenbezeich	nnung	V90-2MW		
	Alsvej 21	Nennleistung in	kW	2,0 MW		
	8900 Randers	Nabenhöhe in n	n	105		
	Denmark	Rotordurchmes	ser in m	90		
Angaben zur Einzelmessung		Messu	ng-Nr.			
	1			2		
Seriennummer		V 18864		V 19702		
Standort	Schönhagen, Landkreis Prigni	tz, Deutschland	Porep,	Landkreis Prignitz, Deutschland		
Vermessene Nabenhöhe (m)		105		105		
Messinstitut	WINDTEST Kaiser-Wilhe	lm-Koog GmbH	WINDTE	ST Kaiser-Wilhelm-Koog GmbH		
Prüfbericht		WT 4126/05	WT 4846/06			
Datum des Prüfberichts		2005-04-12		2006-02-06		
Getriebetyp	Mets	o PLH1400V90		Metso PLH1400V90		
Generatortyp	ABB AMK	500L4A BAYHA	ABB AMK 500L4A BAYH			
Rotorblatttyp		Vestas 44 m	Vestas 44 r			
Angaben zur Einzelmessung		Messu	ng-Nr.			
	3			4		
Seriennummer		V 19697				
Standort	Porep, Landkreis Prigni	tz, Deutschland				
Vermessene Nabenhöhe (m)		105				
Messinstitut	WINDTEST Kaiser-Wilhe	lm-Koog GmbH				
Prüfbericht		WT 5308/06				
Datum des Prüfberichts		2006-10-12				
Getriebetyp	Hansen EH 802 Cf	N 21-BN-112.83				
Generatortyp	Weier D	VSG 500/4MST				
Rotorblatttyp		Vestas 44 m				

Schalle	allemissionsparameter: Messwerte (berechnete Leistungskurve vom Hersteller bereitgestellt)									
Schallleis	eistungspegel L _{WA,k} [dB(A)]: auf Basis der Nabenhöhenumrechnungen WT 5611/07, WT 5315/06 und WT 5613/07									
	Messung		Windge	schwindigkeit in 10	m Höhe					
		6 m/s	7 m/s	8 m/s	9 m/s	10 m/s				
	1	102,6	103,2	102,6	101,8	101,7				
	2	102,4	103,6	103,9	-	-				
	3	102,7	103,4	102,8	101,7	100,9				
	4									
	Mittelwert $\overline{L}_{\!\scriptscriptstyle W}$	102,6	103,4	103,1	101,8	101,3				
	Standard- Abweichung s [dB(A)]	0,2	0,2	0,7	0,1	0,6				
	K nach /2/ σ _R =0,5 dB /3/ [dB(A)]	1,0	1,0	1,6	1,0	1,5				

/1/ Technische Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 17, Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, 24103 Kiel /2/ IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03 /3/ Empfehlung des Arbeitskreises "Geräusche von Windenergieanlagen" 2001-11-07

Seite 5 von 5

Schalle	Schallemissionsparameter: Zuschläge										
Tonzusch	hlag K _{TN} in dB bei	vermessen	er Naben	höhe:							
	Messung				Windge	schwindi	gkeit in 10 i	n Höhe			
		6 m	/s	7	m/s	8	m/s	9	m/s	10	m/s
	1	0	- Hz	0	- Hz	0	- Hz	-	- Hz	=	- Hz
	2	0	- Hz	0	- Hz	0	- Hz	-	- Hz	-	- Hz
	3	0	- Hz	0	- Hz	0	- Hz	0	- Hz	0	- Hz
	4	1									

Messung		Windgeschwindigkeit in 10 m Höhe								
	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s					
1	0	0	0	-	-					
2	0	0	0	: - :	-					
3	0	0	0	0	0					
4										

Terz- Schall	lleistungs	pegel (Mitt	tel aus 3 N	/lessunge	n) Referer	nzpunkt V	10 <i>L_{WA}</i> ,max i	n dB(A)				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
L _{WA.max}	77.0	79,7	82,2	84,1	85,7	86,4	87,5	89,2	90,0	90,2	92,3	92,3
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA,max}	93,3	93,6	93,7	92,6	91,7	90,6	90,1	89,7	87,3	82,3	75,4	67,6

Oktav- Schallleis	stungspegel (M	ittel aus 3	Messung	en) Refer	enzpunkt	$v_{10L_{W\!A, ext{max}}}$	in dB(A)			
Frequenz	63	125	250	500	1000	2000	4000	8000		
Lwa max	84.8	90,2	93.7	96,4	98,2	96,4	93,9	83,2		

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

Bemerkungen:

Ausgestellt durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14 b 25709 Kaiser-Wilhelm-Koog

Datum:

2007-03-07

Dipl.-Ing. J. Neubert

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Schallemissionskennwerte der GE Wind Energy 1.5SL

Auf den nachfolgenden Seiten sind die Ergebnisse aus drei Geräuschmessungen an verschiedenen GE Wind Energy 1.5st entsprechend der Technischen Richtlinie für Windenergieanlagen Teil 0, Revision 13, Stand 01.01.2000 (FGW-Richtlinie) zusammengefaßt, um die schalltechnische Planungssicherheit zu erhöhen.

Die Einzelmessungen wurden entsprechend dem Teil 1 der oben aufgeführten Richtlinie von akkreditierten Meßinstituten durchgeführt. Grundlage für die Messungen sind die Normen "DIN EN 61400-11, DIN E 45681, DIN 45645-1".

Es ergeben sich folgende, über drei Messungen ermittelte Meßwerte:

Windgeschwindigkeit in 10 m Höhe v _{10m} [m/s]	Schallleistungspegel L _{WA} [dB(A)]	Immissionsrelevante Tonhaltigkeit	Impulszuschlag
6 m/s	102,4	Nein	Nein
7 m/s	103,8	Nein	Nein
8 m/s	104,0	Nein	Nein
8,4 m/s bzw. 95% der Nennleistung	104,0	Nein	Nein

Der Referenzschallleistungspegel bei 95% Nennleistung gilt unverändert für alle von GE Wind Energy angebotenen Nabenhöhen über 61,4 m.

Prepared by:	18.09.2003	Jörg Wanink	on Vanciu
(Oparos sy	Date	Name	Signature
Checked and approved:	18.09.2003	Andreas Petersen	A 124
Silection and approximate	Date	Name	Signature

Frühere Bezeichnung: Tacke 1.5sl bzw. Enron Wind 1.5sl

Page

1 of 28

Document:

1.5sl_SCD_allComp_SLPxxxxx

Originator:

Andreas Petersen

Revision:

n: 05

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach dieser Richtlinie besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäss /1/ anzugeben, um die schalltechnische Planungssicherheit zu

Schallemissions -	Wind-	1. Messung	2. Messung ¹⁾	3. Messung	Energe-	Standard-	к
Parameter	Geschwin- digkeit	Messinstitut: KÖTTER	Messinstitut: KÖTTER	Messinstitut: WIND-consult	tischer Mittelwert	Abweichung	nach /1/
	in 10m Höhe	CONSULTING ENGENEERS Prüßericht - Nr.: 32108-1.002 Datum der Messung: 13./22.04.2001 Getriebe: Eickhoff G44900x CPNHZ- 195sl Generator: VEM DASAA5023-4UB Rotorblatt: LM LM37.3P	CONSULTING ENGENEERS Prüfbericht - Nr.: 25574-1.002 Datum der Messung: 29.05.2001 Getriebe: Eickhoff G44900x CPNHZ-195sl Generator: Loher JFRA500LB-04A Rotorblatt: LM LM LM37.3P	Prüfbericht - Nr.: 286SEA01 Datum der Messung: 01.10.2001 Getriebe: Eickhoff G44900x CPNHZ-195sl Generator: VEM DASAA5023-4UB Rotorblatt: LM LM37.3P		S	σ _R = 0.5 dB
Schalleistungs- pegel Lwa.p :	6 m/s 7 m/s 8 m/s 8,4 m/s	102,2 dB(A) 103,6 dB(A) 103,9 dB(A) 103,9 dB(A)	102,2 dB(A) 103,4 dB(A) 103,7 dB(A) 103,7 dB(A)	102,9 dB(A) 104,4 dB(A) 104,5 dB(A) 104,5 dB(A)	102,4 dB(A) 103,8 dB(A) 104,0 dB(A) 104,0 dB(A)	0,4 dB(A) 0,5 dB(A) 0,4 dB(A) 0,4 dB(A)	1,2 dB(A) 1,4 dB(A) 1,2 dB(A) 1,2 dB(A)
Tonzuschlag KTN :	6 m/s 7 m/s 8 m/s 8,4 m/s	0 dB (- Hz) 2 dB (164166 Hz) 2 dB (164166 Hz)	0 dB (- Hz) 0 dB (- Hz) 2 dB (164 Hz) 1 dB (166 Hz)	0 dB (- Hz) 0 dB (- Hz) 2 dB (166 Hz) 2 dB (166 Hz)	0 dB (- Hz) 1 dB (166 Hz) 2 dB (166 Hz) 1 dB (166 Hz)	-	-
Impulszuschlag KIN :	6 m/s 7 m/s 8 m/s 8,4 m/s	0 dB 0 dB 0 dB 21	0 dB 0 dB 0 dB 0 dB	0 dB 0 dB 0 dB 0 dB	0 dB(A) 0 dB(A) 0 dB(A) 0 dB(A)		-

Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:
1) Umgerechnet
2) Keine Angaben im Bericht

Ausgestellt durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Unterschrift Dipl.-Ing. R.Haevernick

Unterschrift. Dipl.-Ing. W.Wilke

Datum: 20.12.2001

Nach DIN EN 45001 durch die DAP Deutsches Akkreditierungssystem Prüfwesen GmbH akkreditiertes Prüflaboratorium, Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

/1/ CENELEC / BTTF83-2-WG4, 5. Draft Declaration of Sound Power Level and Tonality Values of Wind Turbines 2000-01*

WIND-consult GmbH

Seite 9

ENERCON Schalleistungspegel E-40/5.40

Seite 1 v. 1

Die Schalleistungspegel der ENERCON E-40 mit 500 kW Nennleistung und 40m Rotordurchmesser werden wie folgt angegeben:

Naben- höhe	gemessener Schalleistungspegel und Tonhaltigkeitszuschlag für 8 m/s in 10 m Höhe KÖTTER		ENERCON Garantie	gemesser Schalleistungsp Tonhaltigkeitsz für 10 m/s in 10 KÖTTEF	ENERCON Garantie	
44 m	98,9 dB(A)	0 dB	98,3 dB(A) 0-1 dB	100,2 dB(A)	0 dB	101 dB(A) 0-1 dB
50 m	99,1 dB(A)	0 dB	98,5 dB(A) 0-1 dB	100,4 dB(A)	0 dB	101 dB(A) 0-1 dB
55 m	99,2 dB(A)	0 dB	99,0 dB(A) 0-1 dB	100,5 dB(A)	0 dB	101 dB(A) 0-1 dB
65 m	99,5 dB(A)	0 dB	99,0 dB(A) 0-1 dB	100,8 dB(A)	0 dB	101 dB(A) 0-1 dB

- Diese Angaben beziehen sich auf die Schalleistungspegelvermessungen der E-40 mit 500kW Nennleistung und einem Rotordurchmesser von 40m durch das Ingenieurbüro Kötter Beratende Ingenieure, Rheine entsprechend dem neuesten Meßbericht 23554-2.002 vom 03.03.1998 und gelten für 8 m/s und 10 m/s in 10 m Höhe, wobei eine Meßgenauigkeit von < 2 dB(A) im o.g. Bericht bestätigt wird.
- 2. Die Schalleistungspegelvermessungen wurden entsprechend dem Entwurf DIN IEC 88/48/CDV ("Klassifikation VDE 0127, Teil 10 Windenergieanlagen, Teil 10: Schallmeßverfahren Ausgabe März 1996"), der IEA-Empfehlung ("Recommended Practices For Wind Turbine Testing, 4. Acoustics: Measurements of Noise Emission From Wind Turbines" 3. Ausgabe 1994), sowie dem DIN Entwurf 45681 ("Bestimmung der Tonhaltigkeit von Geräuschen und Ermittelung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen" Ausgabe Januar 1992) durchgeführt.
- 3. Aufgrund einer geänderten Betriebsweise, sowie im Hinblick auf die angegebene Meßgenauigkeit garantiert die Firma ENERCON geringere Schalleistungspegelwerte, als die vom Ingenieurbüro Kötter zertifizierten.
- ENERCON Anlagen gewährleisten mit ihrer variablen Betriebsführung, daß vorgegebene Schallgrenzwerte während der gesamten Lebensdauer der Anlagen eingehalten werden.
- Die konstruktive Bauweise der ENERCON Anlagen (keine schnelldrehenden Teile somit kein mechanischer Verschleiß) gewährleistet, daß eine Erhöhung des Maschinengeräusches während der gesamten Anlagenlebensdauer ausgeschlossen werden kann.

Schallleistungspegel N90/2300

Nabenhöhe	80 m	100 m				
Messung 1	103,0 dB(A) K _{TN} = 0 dB					
	30.04.2004					
Messung 2	103,7 dB(A) K _{TN} = 1 dB					
	05.11.2004					
Messung 3		103,2 dB(A) K _{TN} = 0 dB				
		13.01.2005				
Gewährleistung bei 95 % Nennleistung	104,5 dB(A), $K_{TN} \le 2 dB$					

Die Schallgewährleistungen bei 95 % P_N gelten für alle Nabenhöhen!

Die Schallvermessungen sowie die Ermittlung der Tonhaltigkeit beruhen auf den Technischen Richtlinien der Fördergesellschaft Windenergie e.V. (FGW).

Die Ergebnisse und Schallgewährleistungen beziehen sich auf den Referenzwert bei 95 % der Nennleistung. Die angegebenen Tonzuschläge K_{TN} sind die maximal gemessenen Werte in den Bins 6 bis 10 m/s.

N90-6-noise-de 13.02.2007 Alle Rechte vorbehalten 1/1

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiei)

Auszug aus dem Prüfbericht WICO 063SE204/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Allgemeine Angaben		Technische Daten (Herstellerar	Technische Daten (Herstellerangaben)					
Aniagenhersteller:	Nordex Energy GmbH	Nennleistung (Generator):	2300 kW					
	Bombarch 2	Rotordurchmesser:	90 m					
	D-22848 Norderstedt	Nabenhöhe über Grund:	80 m					
Seriennummer:	8098	Turmbauart:	Stahlrohrturm					
WEA-Standort (ca.):	WP Gut Losten, WEA 4	Leistungsregelung:	Pitch/Stall/Aktiv-Stall					
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Ge	Erg. Daten zu Getriebe und Generator (Herstellerangaben)					
Rotorblatthersteller:	LM Glasfiber a/s	Getriebehersteller:	Eickhoff					
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichung Getriebe:	CPNHZ-244					
Blatteinstellwinkel:	Variabel (0 - 90°)	Generatorhersteller:	Loher					
Rotorblattanzahi	3	Typenbezeichung Generator:	JFWA-560MQ-06A					
Rotordrehzahlbereich:	9,6 - 16,9 U/min	Generatordrehzahlbereich:	744 - 1310 U/min					
Prüfbericht zur Leistungs	kurve: Risø -l-2052							

Prüfberich	t zur Leist	tungsku	rve: Risø -l-	2052									
			Referenzpunkt					Schallemissions- Parameter			Bemerkungen		
			Standard Windgeschw in 10 m	vindigkeit		lektrische irkleistung							
			6 ms			972 kW			iB(A)				
Schalleistur	ngs-	ĺ	7 ms		1	1481 kW		102,0 (
Pegel		1	8 ms		i	2017 kW		102,9					
LWAP			8,4 m			2185 kW		103.0	and the second second second second		(1)		
			6 ms		E .	972 kW		- dB bei - Hz					
Tonzuschla	ıg für	1	7 m:		1	1481 kW		-dB bei-Hz					
den Nahbe	reich	- 1	8 ms		1	2017 kW		-dB bei-Hz					
K _{TN}			8,4 m			2185 kW		- dB bei - Hz			(1)		
		1	6 m:		1	972 kW		0 dB					
Impulszuschlag			7 m:		1481 kW			0 0					
	für den Nahbereich		8 m	1	2017 kW		0 0			(4)			
Km			8.4 n					0 48			(1)		
			Terz-/Oktav-	Schalleis:	tungspeg	el Referen	zpunkt v	₁₀ = 8,0 ms					
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
LWAP	77,3	80.4	82.9	86,5	89.9	89,4	90,7	92,3	93.1	92,4	90,3	91,1	
LWAP		85.5			93.6			96.9			96,1		
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
LNAP	89,6	90.0	90.7	91,1	91.5	90,1	87.0	84.4	80.8	75,6	72,3	70.3	
LWAP		94.9			95,7			89,5			78,1		
			Terz-/Oktav	-Schalleis	tungspeg	el Referer	zpunkt v	10 = 8,4 m	s ⁻¹ in dB(A	()			
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630	
LVAP	77,1	80.8	83,4	86.6	91,0	89,6	91,0	92,5	93,3	92.5	90,2	91,1	
LWAP		85,9	A		94,2			97.1			96.1		
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	
LNAP	88,9	89.9	90,7	91.2	91,5	90,0	86.9	84.0	80.5	74.9	71,3	69.4	
LNAP		94.7			95,7			89,3			77.3		

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 07.05.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bernerkungen: (1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhohe der vermessenen WEA sowie den meteorologischen Bedingungen am Meßtag bei v₁₀= 8,4 ms² in 10 m u.G.

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

> Unterschrift Dipl.-Ing. R. Haevernick Dipl.-Ing. W. Wilke

Unterschrift

Datum: 10.05.04

DAP-PL-2756.00

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 274SE604/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Allgemeine Angaben			Technische Daten (Herstellerangaben)					
Anlagenhersteller:	NORDEX En	ergy GmbH	Nennicistung (Generator):	2300 kW				
	Bornbarch 2		Rotordurchmesser:	90,0 m				
	D-22848 NOF	RDERSTEDT	Nabenhöhe über Grund:	80 m				
Seriennummer:	8107		Turmbauart:	Kon. Stahlrohr				
WEA-Standort (ca.):	WP Gut Lost	en, WEA 3	Leistungsregelung:	<u>Pitch</u>				
Ergänzende Daten zu	m Rotor (Herst	ellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)					
Rotorblatthersteller:		LM Glasfiber	Getriebehersteller:	Winergy				
Typenbezeichnung B	latt:	LM 43.8P	Typenbezelchnung Getriebe:	PZAB 3450				
Blatteinstellwinkel:		variabel (0° 90°)	Generatorhersteller:	Loher				
Rotorblattanzahi		3	Typenbezeichnung Generator:	JFWA-560MQ-06A				
Nenndrehzahl / -berei	ch:	14,9 / 9,6-16,9 min ⁻¹	Generatordrehzahlbereich:	744 1310 min ⁻¹				
Prüfbericht zur Leistu	ıngskurve: Risc	o – I – 2052(EN) bzw. 205	2.1 vom 09.09.2003					

	EBSONO GALOSO Intermedia in relativo di			Dofor				Saba	llon	lecione	-	emerku	****	NA CONTRACTOR OF THE PARTY OF T
			Referenzpunkt				Schallemissions- Parameter			6	emerko	nye	511	
		ALCOCATION OF THE PARTY OF THE	Standar Windgesch in 10 n	windigkeit		Elektrische Virkleistung								
Schallleist	ungs-		6 n	ns ⁻¹		1015 kW		10	1,5	dB(A)			*********	
Fegel LwA	.Р		7 n	15 ⁻¹		1533 kW		10	2,7	dB(A)				
			8 n	1S ⁻¹		2066 kW	İ	10	3,6	dB(A)				
			8,3	rs¹		2185 kW		103,7 dB(A)						
Tonzuschl	ag für		6 n	1S ⁻¹		1015 kW		0 dB bei - Hz						
den Nahbe	ereich K	n.		1S ⁻¹		1533 kW		0 dB bei - Hz						
			8 n	15 ⁻¹		2066 kW		1 dB pei 106 Hz						
				ms ⁻¹		2185 kW		0 dB bel - Hz						
Impulszus				ารา์		1015 kW			_	JB				
für den Na	hbereich	Kin		15-1		1533 kW		0 dB						
				าร 1		2066 kW			0 dB					
			8,3	ms ⁻¹		2185 kW			0	dB.				**************************************
			Terz-Sc	nallleistun	gspegel l	Referenzp	unkt v ₁₀	= 8,3 m	s¹ ir	ndB(A)				
Frequenz	50	63	50	100	125	160	200	25	0	315	400	500	\Box	630
LWA,P	79,1	82,0	84,5	92,3	90,6	89,9	93,7	91,	7	93,3	92,8	91,1		91,9
Frequenz	800	1000	1250	1600	2000	2500	3150	400	0	5000	6300	8000		10000
LWA, P	88,2	88.8	90,3	92,0	92,3	91,1	88,1	86,	4	82,6	75,3	69,7		67,9
			Oktav-Sc	hallleistu	ngspegel	Referenza	ounkt v	10 = B,3 m	15 ⁻¹	n dB(A)				
Frequen	z	63	125	2:	50	500	T	1000	1	2000	400	0	8000	
LWAP		87,2	95,8	97	',8	96,8		94,0	T	96,6	91,0)	7	6,9
					~			****						

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 06.12.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Scheillimmissionsprognosen).

Beimerkungen:

(1) Der Betriebepunkt der 96%igen Nennleistung, bis zu dem der meximale Scheilleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und den meteorologischen Bedingungen des Messtages und der Nabenhöhe der vermessenen WEA bel v₁₀= 8,3 ms⁻¹ in 10 m û.G..

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Unterschrift Dipl.-Ing. A. Petersen Dipl.-Ing. W. Wilke

Unterschrift

Datum: 09.12.2004

Auszug WT 4205/05 aus dem Prüfbericht WT 3989/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90 2300 kW

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerangaben)				
Anlagenhersteller:	Nordex Energy GmbH	Nennleistung (Generator):	2500 kW			
	Bornbarch 2	Rotordurchmesser:	90 m			
	22848 Norderstedt	Nabenhöhe über Grund:	100 m			
Seriennummer	8127	Turmbauart:	konisches Rohr			
WEA-Standort (ca.)	Schliekum, WEA 5	Leistungsregelung:	pitch			
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)				
Rotorblatthersteller:	LM Glasfiber	Getriebehersteller:	Eickhoff			
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichnung Getriebe:	CPNHZ-244			
Blatteinstellwinkel:	variabel 090 Grad	Generatorhersteller:	Loher			
Rotorblattanzahl	3	Typenbezeichnung Generator:	JFWA-560MQ-06A			
Rotordrehzahlbereich:	9,616,9 U/min	Generatordrehzahlbereich:	744 - 1310 U/min			

Prüfbericht zur Leistungskurve: 2052.1

		Refere	nzpunk	t		Scha	llemissi	ons-Par	ameter			Beme	rkungei	า
9 O O O O O O O O O O O O O O O O O O O	Standard Windgesc keit in 10	hwindig-		lektrische irkleistun										
Schallleistungs- Pegel L _{WA,P}	5 m 6 m 7 m 8 m 8,1 n 9 m	s 1 s 1 s 1		616 kW 1092 kW 1633 kW 2158 kW 2185 kW 2300 kW			102,0 102,0 103,1 103,1	8 dB(A) 0 dB(A) 9 dB(A) 2 dB(A) 2 dB(A) 0 dB(A)					r	
Tonzuschlag für den Nahbereich K _{IN}	5 m 6 m 7 m 8 m 8,1 r 9 m	s 1 s 1 s 1		616 kW 1092 kW 1633 kW 2158 kW 2185 kW 2300 kW		0 d 0 d 0 d 0 d	IB IB IB IB	b b b	ei - Hz ei - Hz ei - Hz ei - Hz ei - Hz ei - Hz					
Impulszuschlag für den Nahbereich K _{IN}	5 m 6 m 7 m 8 m 8,1 r 9 m	s ¹ s ¹ s ¹ ns ¹		616 kW 1092 kW 1633 kW 2158 kW 2185 kW 2300 kW			0) dB) dB) dB) dB) dB) dB						
0						renzpunk							056	
Frequenz 12,5 1	16 20	25	31,5	40	50	63	80	100	125	160	U	200	250	315

				1617-201	lameistu	myspey	el lieleli	EIRPUIN	L 410 - U	,0 1113 11	(UU(N)				
Frequenz	12.5	16	20	25	31.5	40	50	63	80	100	125	160	200	250	315
LWA P	46.5	52.5	58.9	62.7	67,0	71,7	76,5	80.8	82,5	85,2	0,88	88,5	89,8	92,3	92,2
Frequenz	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa, P	91.4	92,3	92,0	91,8	92.7	91,7	91,5	90,6	90,4	88,4	85,8	83,8	77,8	70,2	61,8
			C	ktav-Sc	hallleist	ungspe	gel Refe	renzpun	kt v ₁₀ = 8	3,0 ms ⁻¹ i	in dB(A)				
Frequenz	16		31,5	63		125	250		500	1000		2000	4000		8000
L _{WA,P}	60,0		73,4	85,3	3	92,2	96,3		96.7	96,9		95,6	91.2	2	78,6

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-01-17. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,1 ms 1.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Datum:

2005-05-09

R. Brown (M.Sc.)

Dipl.-Ing. J. Neubert

Durch das DAP Deutsches Akkréditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkréditiertes Prüfaboratorium Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren

ENERCON Schalleistungspegel E-40/6.44

Seite 1 v. 1

Die Schalleistungspegel der ENERCON E-40 mit 600kW Nennleistung und 44m Rotordurchmesser werden wie folgt angegeben:

	Schalleistungs für 95% Ner	ENERCON <u>Garantie</u>				
Anzahl	1. Vermessung	2. Vermessung	3. Vermessung			
WEA	E-40/6.44 mit 46m NH	E-40/6.44 mit 65m NH	E-40/6.44 mit 78m NH	Garantierter Schallei- stungspegel und Tonhal-		
Institut	WIND-consult GmbH	WINDTEST KWK	WIND-consult GmbH	tigkeitszuschlag für 95% Nennleistung nach FGW-		
Bericht	WICO 207SE899 vom 27.03.2000	WT 1740/01 vom 11.04.2001	WICO 287SEA01/01 vom 05.12.2001	Richtlinie		
46m NH	100,7 dB(A) 0 dB	100,5 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
50m NH	100,7 dB(A) 0 dB	100,6 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
58m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
65m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		
78m NH	100,8 dB(A) 0 dB	100,8 dB(A) 0 dB	100,1 dB(A) 0 dB	101,0 dB(A) 0-1 dB		

- 1. Die Schalleistungspegelvermessungen, sowie die Ermittlung der Tonhaltigkeit und der Impulshaltigkeit, wurden entsprechend den FGW-Richtlinien (Technische Richtlinien für Windenergieanlagen, Revision 12 Stand 01.10.1998 und Revision 13 Stand 01.01.2000, Hamburg, Fördergesellschaft Windenergie e.V., Teil 1: Bestimmung der Schallemissionswerte), basierend auf der DIN EN61400-11 (Windenergieanlagen, Teil 11: Geräuschimmissionen) mit Stand Februar 2000 durchgeführt. Die Bestimmung der Impulshaltigkeit entspricht der DIN 45645 (T1, "Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen", Stand Juli 1996). Zur Feststellung der Tonhaltigkeit wurde entsprechend der Technischen Richtlinie nach DIN 45681 (Entwurf, "Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen", Stand Januar 1992) verfahren.
- 2. Der Schalleistungspegel für 95% der Nennleistung bezieht sich nach FGW-Richtlinie auf die Referenzwindgeschwindigkeit von 10 m/s in 10 m Höhe.
- 3. Aus den drei vorliegenden Meßberichten (WICO 287SEA01/01, WT 1740/01 und WICO 207SE899) lassen sich folgende energetische Mittelwerte bilden: für den Schalleistungspegel ergibt sich ein Wert von L_{WA, 95% Nennleistung, Mittel} = 100,6dB(A). In Bezug auf die Standardabweichung wurde ein Wert von s_{95% Nennleistung, Mittel} = 0,4dB(A) ermittelt.
- 4. Umgerechnete Schalleistungspegelwerte für die genannten Nabenhöhen ergeben sich als Berechnung aus den Vermessungen der E-40/6.44 der jeweils vermessenen Nabenhöhe.
- 5. ENERCON Anlagen gewährleisten aufgrund ihres verschleißfreien Konzeptes und ihrer variablen Betriebsführung, daß vorgegebene Schallwerte während der gesamten Lebensdauer eingehalten werden.

ENERCON Schalleistungspegel E-66/18.70

Seite 1 v. 1

Die Schalleistungspegel der ENERCON E-66 mit 1.800kW Nennleistung und 70m Rotordurchmesser werden wie folgt angegeben:

	Schalleistungspeg Nennle	ENERCON <u>Garantie</u>				
Anzahl	1. Vermessung	2. Vermessung	3. Vermessung			
WEA	E-66/18.70 mit 65m NH	E-66/18.70 mit 98m NH	E-66/18.70 mit 86m NH	Garantierter Schalleistungspegel und		
Institut	WINDTEST KWK	KÖTTER Consulting Engineers	KÖTTER Consulting Engineers	Tonhaltigkeitszuschlag für 95% Nennleistung		
Bericht	WT1618/00 vom 21.12.2000	KÖTTER 25716 -1.001 vom 30.11.2001	KÖTTER 26207 -1.001 vom 28.05.2002	nach FGW-Richtlinie		
65m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB		
86m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB		
98m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB		
114m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB		

- 1. Die Schalleistungspegelvermessungen, sowie die Ermittlung der Tonhaltigkeit und der Impulshaltigkeit, wurden entsprechend den FGW-Richtlinien (Technische Richtlinien für Windenergieanlagen, Revision 13, Stand 01.01.2000, Hamburg, Fördergesellschaft Windenergie e.V., Teil1: Bestimmung der Schallemissionswerte), basierend auf der DIN EN61400-11 (Windenergieanlagen, Teil 11: Geräuschimmissionen) mit Stand Februar 2000 durchgeführt. Die Bestimmung der Impulshaltigkeit entspricht DIN 45645 (T1, "Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen", Stand Juli 1996). Zur Feststellung der Tonhaltigkeit wurde entsprechend der Technischen Richtlinie nach DIN 45681 (Entwurf, "Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen", Stand Januar 1992) verfahren.
- Der Schalleistungspegel für 95% der Nennleistung bezieht sich nach FGW-Richtlinie auf die Referenzwindgeschwindigkeit von 10 m/s in 10 m Höhe.
- Aus den drei vorliegenden Meßberichten (VVT1618/00, KCE 25716-1.001 und KCE 26207-1.001) lassen sich folgende energetische Mittelwerte bilden: Für den Schalleistungspegel ergibt sich ein Wert von L_{WA, 95% Nennleistung, Mittel} = 102,9dB(A). In bezug auf die Standardabweichung wurde ein Wert von S_{95% Nennleistung, Mittel} = 0,2db(A) ermittelt.
- 4. Umgerechnete Schalleistungspegelwerte für die genannten Nabenhöhen ergeben sich als Berechnung aus den Vermessungen der E-66/18.70 der jeweils vermessenen Nabenhöhe.
- ENERCON Anlagen gewährleisten bei ordnungsgemäßer Wartung aufgrund ihres verschleißfreien Konzeptes und ihrer variablen Betriebsführung, daß vorgegebene Schallwerte während der gesamten Lebensdauer eingehalten werden.