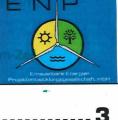
BIM-CL 0/16/2005-1


Projekt:

Genehmi Wirfus (Gemeinde Gehört zur Verfügung

1 2. SEP. 2005

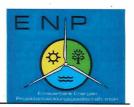
Titel

Schallimmissionsprognose G80

A	ligemeines und Autgabenstellung	
G	rundlagen und Voraussetzungen4	
	Vorbemerkung4	!
	Immissionsorte und mögliche Vorbelastungen4	!
	Emissionsdaten der Windenergienlagen5	ī
P	rognoserechnungen Alternative 18	
	Ermittlung der Vorbelastung Alternative 1 8	?
	Ermittlung der Zusatzbelastung Alternative 1, Vollleistungsbetrieb	7
	Ermittlung der Gesamtbelastung Alternative 1, Vollleistungsbetrieb	7
	Ermittlung der Zusatzbelastung Alternative 1, WEA02 und WEA03 schallreduziert	7
	Ermittlung der Gesamtbelastung Alternative 1, WEAO2 und WEAO3 schallreduziert	?
	eurteilung und Vergleich mit den Richtwerten Iternative 113	}
P	rognoserechnungen Alternative 214	
	Ermittlung der Vorbelastung Alternative 2	1
	Ermittlung der Zusatzbelastung Alternative 2, Vollleistungsbetrieb	5
	Ermittlung der Gesamtbelastung Alternative 2, Vollleistungsbetrieb	3
**	Ermittlung der Zusatzbelastung Alternative 2, WEAO2, WEAO3 und WEAO4 schallreduziert	7
a a	Ermittlung der Gesamtbelastung Alternative 2, WEA02, WEA03 und WEA04 schallreduziert	3

Erstellt:

Dipl.-Ing. Groß 07.07.05


© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.: Seite 1 von 24

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Schallimmissionsprognose G80

Beurteilung und Vergleich mit den Richtwerten	
Alternative 2	19
Qualität der Prognoserechnungen	21
Anhang	23

Genehmigt Gehört zur Verfügung vom 12. SEP. 2005

Kreisverwaltung Cochem-Zell

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

Seite 2 von 24

Schallimmissionsprognose G80

Allgemeines und Aufgabenstellung

Die vorliegende Lärmimmissionsprognose ermittelt die zu erwartenden Schallimmissionen durch den Bau von 4 Windenergieanlagen (WEA) nördlich der Gemeinde Wirfus. Die Berechnung basiert auf der TA-Lärm vom 26. August 1998.

Die ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien", Teil 2. beschreibt die Ausbreitungsberechnung des Schalls im Freien. Für die Schallausbreitung der Geräusche von Windkraftanlagen wird die alternative Methode verwendet, da die folgenden Vorrausetzungen erfüllt sind:

Nur der A-bewertete Pegel ist von Interesse

Der Schall breitet sich überwiegend über porösem Boden aus.

Der Schall ist kein reiner Ton.

1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Gehört zur Verfügung vom

Die von den einzelnen Windenergieanlagen erzeugten Geräusche (Emissionen) werden in Bezug auf ihre Wirkung in schallkritischen Gebieten untersucht (Immission = Einwirkung an einem bestimmten Ort).

Dabei wird angenommen, dass eine Windgeschwindigkeit von 10m/s (= 36km/h) auf einer Höhe von 10m über Grund herrscht und die WEA jedoch nicht mehr als 95% ihrer Nennleistung erreicht.

Bei der Beurteilung der nach TA-Lärm zulässigen Richtwerte sind die für die Nachtstunden angegebenen Richtwerte maßgeblich, da die Windenergieanlagen im 24-Stunden-Betrieb arbeiten.

Tabelle 1: Immissionsrichtwerte nach TA Lärm

Gebiete nach BauNVO	tags	nachts
	dB(A)	dB(A)
Industriegebiet	70	70
Gewerbegebiet	65	50
Kerngebiet, Mischgebiet, Dorfgebiet	60	45
Allgemeines Wohngebiet,	55	40
Kleinsiedlungsgebiet		5 8 ₁₂
Reines Wohngebiet	50	35
Kurgebiet, Klinikgebiet	45	35

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

mbH

Seite 3 von 24

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Genehmiat Wirfus [Gerneinde] Verfügung vom 1 2. SEP. 2005

Titel

Schallimmissionsprognose G80

Grundlagen und Voraussetzungen

Vorbemerkung

In dem näheren Untersuchungsraum, der Windvorrangfläche in der Gemeinde Wirfus, liegt eine immissionsschutzrechtliche Genehmigung für den Bau von vier Windenergieanlagen vom Typ Repower MM82 vor.

Die immissionsschutzrechtlichen Auflagen in der Genehmigung nehmen zum Teil Bezug auf eine vom Verfasser erstellte Immissionsprognose vom 27.04.2005. Hinsichtlich der zu berücksichtigenden Vorbelastung wurden zwei unterschiedliche Situationen erfasst:

- Alternative 1: Innerhalb der Windvorrangfläche Wirfus sind keine WEA als Vorbelastung zu berücksichtigen. Außerhalb der Vorrangfläche werden 11 weitere von der Bauaufsichtsbehörde genannte WEA berücksichtigt, für die Bauvoranfragen bzw. Anträge vorliegen (s. Anhang 12).
- Alternative 2: Innerhalb der Windvorrangfläche Wirfus werden zwei WEA Vestas V80 zusätzlich als Vorbelastung berücksichtigt (s. Anhang 13).

In Folgenden soll die Immissionssituation betrachtet werden, wenn anstatt der vier WEA Repower MM82 vier WEA vom Typ Gamesa G80 mit identischer Nabenhöhe an denselben Standorten errichtet werden.

Immissionsorte und mögliche Vorbelastungen

Im Rahmen von Ortsbesichtigungen am 12.05.2004 und am 02.06.2005 wurden die relevanten Immissionspunkte besichtigt und geprüft, ob weitere gewerbliche Anlagen, Freizeitanlagen oder ständig vorherrschender Verkehrslärm als Vorbelastung zu berücksichtigen sind. Für die Immissionsorte IP A - IP D, die in einem Kerbtal nördlich der Gemeinde Wirfus liegen, ist festzuhalten, dass dort überhaupt keine weitere Bebauung oder immissionsrelevante Anlagen in einem Umkreis von mehreren hundert Metern um die Häuser vorhanden sind. Sie sind nach allen Himmelsrichtungen von mindestens 100m Wald umgeben und liegen jeweils in der Kerbtalsohle. In Richtung Norden (der Richtung der zu prüfenden Anlagen) steigt das Tal sehr steil an, in Richtung Süden ist der Anstieg etwas flacher

Bei den Immissionspunkten IP E und IP F handelt es sich um Wohnhäuser in Ortsrandlage der Gemeinde Wirfus mit Sichtverbindung zu den Anlagen.

Gewerbliche Anlagen oder Freizeitanlagen als immissionsrelevante Vorbelastungen konnten auch an den Immissionspunkten IP E und IP F nicht identifiziert werden.

Als mögliche Vorbelastungen für alle Immissionspunkte wurden daher die von der Bauaufsichtsbehörde genannten WEA in 2 Varianten in einem Umkreis von bis zu 5000m Radius um die zu prüfenden Anlagen berücksichtigt.

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Seite 4 von 24

Genehmigt

Titel

Schallimmissionsprognose G80 hom-Zell

Tabelle 2: Immissionspunkte mit Richtwerten [s. Anhang 11]

Immissionsaufpunkt	Beschreibung	Rich	twert
		tags	nachts
IP A Wirfuserbach 1, Wirfus	Wohnhaus im Außenbereich, vollständig von Wald umgeben	60 dB(A)	45 dB(A)
IP B Wirfuserbach 2, Wirfus	Wohnhaus im Außenbereich, vollständig von Wald umgeben	60 dB(A)	45 dB(A)
IP C Wirfuserbach (Heimlichsmühl), Wirfus	Wohnhaus im Außenbereich, vollständig von Wald umgeben	60 dB(A)	45 dB(A)
IP D Wirfuserbach (Michelsmühl), Wirfus	Wohnhaus mit Gaststätte im Außenbereich, vollständig von Wald umgeben	60 dB(A)	45 dB(A)
IP E Hauptstr. 23, Wirfus	Wohnhaus im allgemeinen Wohngebiet	55 dB(A)	40 dB(A)
IP F Illericher Str. 22, Wirfus	Wohnhaus im Dorf-/Mischgebiet, unmittelbar angrenzend an ein allgemeines Wohngebiet	55 dB(A)	40 dB(A)

Zur Bestimmung der genauen Positionen von Immissionsorten und Windenergieanlagen wurden die Auszüge 55.8462A und 55.8464B aus der Liegenschaftskarte des Vermessungs- und Katasteramtes Cochem sowie die Topographischen Karten TK25 Blattnr. 5708, 5709, 5808 und 5809 des Landesamtes für Vermessung und Geobasisinformationen Rheinland-Pfalz verwendet.

Das Höhenprofil des Untersuchungsraumes wurde mit Hilfe eines digitalen Geländemodells auf Basis der Höhenlinien der Topographischen Karten TK25 berücksichtigt.

Emissionsdaten der Windenergienlagen

Im betrachteten weiteren Untersuchungsraum sind insgesamt 6 verschiedene Typenvarianten zu berücksichtigen.

Für alle zu untersuchenden WEA wurden für den Vollleistungsbetrieb die Ergebnisse aus 3 Schallvermessungen nach FGW-Richtlinie zugrunde gelegt. Für den schallreduzierten Betrieb der Gamesa G80 liegen 2 Vermessungen vor. [s. Anhang 10].

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Schallimmissionsprognose G80

Kreisverwaltung Cochem-Zell

Tabelle 3: Schallleistungspegel und Standardabweichungen der WEA

Hersteller	Тур	Arithmetischer Mittelwert des Schallleistungspegels bzw. garantierter max. Schallleistungspegel	Standardabweichung bzw. Serienstreuung
Gamesa	G80	103,83dB(A)	0,49dB(A)
Gamesa	G80 schallreduzierter Betrieb	101,95dB(A)	1,22dB(A)
Repower	MD77	102,97dB(A)	0,58dB(A)
Enercon	E-40/6.44	100,53dB(A)	0,38dB(A)
Enercon	E 66/18.70	102,90dB(A)	0,17dB(A)
Vestas	V80	104,37dB(A)	0,81dB[A]

Zur Berücksichtigung von Unsicherheiten bei der Prognoserechnung wird der Emissionswert jeder WEA mit einem Sicherheitsaufschlag $\sigma_{_{ges}}$ versehen. Dieser setzt sich zusammen aus:

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{PROG}^2}$$

mit:

 $\sigma_{R} =$

Standardabweichung des Messverfahrens = 0,5dB[A], da alle

Anlagen nach FGW-Richtlinie (beinhaltet Anforderungen der DIN

61400-11] vermessen wurden

 $\sigma_P =$

Produktstandardabweichung = Standardabweichung der Messwerte

bei mindestens 3 Vermessungen, sonst pauschal 1,22 dB(A)

 $\sigma_{PROG} =$

Prinzipielle Unsicherheit des Prognosemodells = 1,5 dB(A)

Die der Schallimmissionsprognose zugrunde gelegten Emissionswerte sind im Sinne der Statistik Schätzwerte. Um eine Irrtumswahrscheinlichkeit von max. 10% der berechneten Immissionswerte zu gewährleisten wird der Sicherheitsaufschlag $\sigma_{\it ges}$ mit der

Standardnormalvariable 1,28 multipliziert. Damit ergeben sich die immissionsrelevanten Schallleistungspegel (Beurteilungspegel) der einzelnen WEA zu:

$$L_{\rm WEA,\sigma} = L_{\rm m} + 1.28 * \sigma_{\rm WEAges}$$

im einzelnen also:

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Seite 6 von 24

Wirfus (Gemeinde)

Titel

Schallimmissionsprognose G80

Gehön zur Verfügung vom

$$L_{G80,\sigma} = 103,83dB(A) + 1,28*\sqrt{0,5^2 + 0,49^2 + 1,5^2} = 105,95dB(A)$$
 The solution of the contempt of the

$$L_{G80red,\sigma} = 101,95dB(A) + 1,28*\sqrt{0,5^2 + 1,22^2 + 1,5^2} = 104,51dB(A)$$

$$L_{MD77,\sigma} = 102,97dB(A) + 1,28 * \sqrt{0,5^2 + 0,58^2 + 1,5^2} = 105,12dB(A)$$

$$L_{E-40,\sigma} = 100,53dB(A) + 1,28 * \sqrt{0,5^2 + 0,38^2 + 1,5^2} = 102,61dB(A)$$

$$L_{E-66,\sigma} = 102,90dB(A) + 1,28 * \sqrt{0,5^2 + 0,17^2 + 1,5^2} = 104,94dB(A)$$

$$L_{V80,\sigma} = 104,37dB(A) + 1,28 * \sqrt{0,5^2 + 0,81^2 + 1,5^2} = 106,64dB(A)$$

Mit den so ermittelten Emissionspegeln werden im Folgenden die Prognoserechnungen durchgeführt.

Der Tonzuschlag für den Nahbereich und der Impulszuschlag für den Nahbereich liegen gemäß Vermessungsprotokollen bei allen WEA Typen unter 2dB (Emissionswert). Gemäß Empfehlungen des Arbeitskreises Windenergie vom Oktober 1999 ist bei Entfernungen über 300m am Immissionsort ein Tonzuschlag zu berücksichtigen, wenn der Emissionswert des Ton- oder Impulszuschlags > 2dB liegt. Dies ist hier nicht der Fall.

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Seite 7 von 24

Schallimmissionsprognose G80

Genehmigt Gehört zur Verfügung vom

1 2. SEP. 2005

Prognoserechnungen Alternative 1

Ermittlung der Vorbelastung Alternative 1

Kreisverwaltung Cochem-Zell Zur Ermittlung der Vorbelastung wurde eine detaillierte Immissionsprognose mit allen 8 WEA außerhalb der Windvorrangfläche Wirfus durchgeführt. Die Betrachtung stellt insofern schon eine Maximalbetrachtung dar, als dass keine Windrichtung möglich ist, die dazu führt, dass alle WEA unter Mitwindbedingungen auf den jeweiligen Immissionsort einwirken. Die Prognose nach DIN ISO 9613-2 geht aber gerade von schallausbreitungsgünstigen Witterungsbedingungen in Mitwindrichtung aus. Damit erhält man als Ergebnis (s. Anhang 1):

Tabelle 4: Vorbelastung Alternative 1

Immissionsaufpunkt	Immissionsricht-	Obere	Überschreitung	
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	31,8	-	-
IP B Wirfuserbach 2, Wirfus	45	29,5	_ *	, -
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	27,0	-	7-
IP D Wirfuserbach (Michelsmühl), Wirfus	45	25,3	, - ,	
IP E Hauptstr. 23, Wirfus	40	25,8	·	, - '
IP F Illericher Str. 22, Wirfus	40	27,0		*

Schallimmissionsprognose G80

Ermittlung der Zusatzbelastung Alternative 1, Vollleistungsbetrieb

1 2, SEP. 2005

[s. Anhang 2]:

Tabelle 5: Zusatzbelastung bei Vollleistungsbetrieb von WEA01 - WEA04

Immissionsaufpunkt	Immissionsricht-	Obere	Überschı	eitung
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	44,0	⊢ "	
IP B Wirfuserbach 2, Wirfus	45	45,2		., -
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	45,3	-	-
IP D Wirfuserbach (Michelsmühl), Wirfus	45	46,1	ja	_
IP E Hauptstr. 23, Wirfus	40	36,3	- ,	-
IP F Illericher Str. 22, Wirfus	40	34,2	. -	.=

Schallimmissionsprognose G80

Ermittlung der Gesamtbelastung Alternative 1, Vollleistungsbetrieb SEP. 2005 [s. Anhang 3]:

Tabelle 6: Gesamtbelastung bei Vollleistungsbetrieb von WEA01 - WEA04

Immissionsaufpunkt	Immissionsaufpunkt Immissionsricht- wert nachts in		Überschreitung	
	dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	44,3	A)	
IP B Wirfuserbach 2, Wirfus	45	45,3	. - ,	-
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	45,4	<u> </u>	
IP D Wirfuserbach (Michelsmühl), Wirfus	45	46,1	ja	
IP E Hauptstr. 23, Wirfus	40	36,7	_	-*
IP F Illericher Str. 22, Wirfus	40	35,0	* - u	= .

Schallimmissionsprognose G80

Ermittlung der Zusatzbelastung Alternative 1, WEAO2 schallreduziert im 1 102dB(A) Modus

(s. Anhang 4):

1 2, SEP. 2005

Tabelle 7: Zusatzbelastung WEA02 schallreduziert

Immissionsaufpunkt	Immissionsricht-	Obere	Überschr	eitung
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	43,9	- "	
IP B Wirfuserbach 2, Wirfus	45	45,0	= .	
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	44,9		
IP D Wirfuserbach (Michelsmühl), Wirfus	45	45,2		
IP E Hauptstr. 23, Wirfus	40	35,7	-	ī
IP F Illericher Str. 22, Wirfus	40	33,8	-	

Schallimmissionsprognose G80

Ermittlung der Gesamtbelastung Alternative 1, WEA02 schallreduziertn i g t im 102dB(A) Modus

(s. Anhang 5):

1 2. SEP. 2005

Tabelle 8: Gesamtbelastung, WEA02 schallreduziert

Immissionsaufpunkt	Immissionsricht-	Obere	Überschreitung	
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	44,2	i	
IP B Wirfuserbach 2, Wirfus	45	45,2	1	ı
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	44,9		ή.
IP D Wirfuserbach (Michelsmühl), Wirfus	45	45,3		-
IP E Hauptstr. 23, Wirfus	40	36,2	<u>-</u>	, -
IP F Illericher Str. 22, Wirfus	40	34,6	-	a

Schallimmissionsprognose G80

Beurteilung und Vergleich mit den Richtwerten Alternative 1

Kreisverwaltung Cochem-Zel

Tabelle 9: Gesamtbelastung, Vergleich mit den Richtwerten bei Vollleistungsbetrieb und bei schallreduzierter Betriebsweise von WEAO2 in der Nachtzeit.

Immissionsaufpunkt	Immissions- richtwert nachts in	Vollleistungsbetrieb		Schallreduktion WEA02	
	dB(A)	Beurteilungs pegel	Über- schreitung	Beurteilungs pegel	Über- schreitung
IP A Wirfuserbach 1, Wirfus	45	44	-	44	-
IP B Wirfuserbach 2, Wirfus	45	45	-	45	-
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	45		45	=
IP D Wirfuserbach (Michelsmühl), Wirfus	45	46	1	45	-
IP E Hauptstr. 23, Wirfus	40	37	-	36	
IP F Illericher Str. 22, Wirfus	40	35	-	35	-

Bei Vollleistungsbetrieb ist nachts eine Überschreitung des Richtwertes an IP D nicht gänzlich auszuschließen. Eine reale Überschreitung erscheint in Anbetracht der lokalen Gegebenheiten – Lage des Immissionsortes in einem Kerbtal und inmitten von Wald – äußerst unwahrscheinlich. Mit schallreduzierter Betriebsweise von WEAO2 kann diese Überschreitung in der Prognose ausgeschlossen werden.

Der Antragsteller beantragt daher den Vollleistungsbetrieb aller 4 WEA in der Zeit von 6-22 Uhr. Für den Zeitraum von 22-6 Uhr beantragt er den Vollleistungsbetrieb von WEAO1, WEAO3 und WEAO4 und den schallreduzierten Betrieb für WEAO2. Unabhängig von den Auflagen in der Genehmigung wird in jedem Fall eine Nachmessung der WEA durchgeführt. Es wird erwartet, dass unter Berücksichtigung der Sicherheitszuschläge bei der Prognose (mehr als 2dB(A) emissionsseitig je WEA) und unter Berücksichtigung des verwendeten Verfahrens, welches tendenziell etwas höhere Werte als in der Realität prognostiziert, der Nachweis erbracht werden kann, dass auch bei Vollleistungsbetrieb aller WEA, die Richtwerte an allen Immissionsorten eingehalten werden. Für diesen Fall wird der Vollleistungsbetrieb aller WEA beantragt.

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

Seite 13 von 24

Schallimmissionsprognose G80

Prognoserechnungen Alternative 2

Kreisverwaltung Cochem-Zell

Ermittlung der Vorbelastung Alternative 2

Zur Ermittlung der Vorbelastung wurde eine detaillierte Immissionsprognose mit allen 10 WEA innerhalb und außerhalb der Windvorrangfläche Wirfus durchgeführt. Die Betrachtung stellt insofern schon eine Maximalbetrachtung dar, als dass keine Windrichtung möglich ist, die dazu führt, dass alle WEA unter Mitwindbedingungen auf den jeweiligen Immissionsort einwirken. Die Prognose nach DIN ISO 9613-2 geht aber gerade von schallausbreitungsgünstigen Witterungsbedingungen in Mitwindrichtung aus. Damit erhält man als Ergebnis (s. Anhang 6):

Tabelle 10: Vorbelastung Alternative 2

lmmissionsaufpunkt	Immissionsricht-	Obere	Überschreitung	
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	37,0		-
IP B Wirfuserbach 2, Wirfus	45	37,9		-
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	38,9	- *	- - - - -
IP D Wirfuserbach (Michelsmühl), Wirfus	45	39,2		- ,,
IP E Hauptstr. 23, Wirfus	40	33,4	- %	-
IP F Illericher Str. 22, Wirfus	40	32,2	_ ·), "

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Şe

Seite 14 von 24

Wirfus (Gemeinde)

Titel

Schallimmissionsprognose G80

Ermittlung der Zusatzbelastung Alternative 2, Vollleistungsbetrieb

Die Zusatzbelastung in Alternative 2 bei Vollleistungsbetrieb entspricht der Genehmigt
Gehört zur Verfügung vom Zusatzbelastung Vollleistungsbetrieb in Alternative 1 (s.a. Tabelle 5).

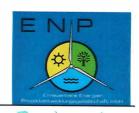
1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft


Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Seite 15 von 24

Schallimmissionsprognose G80

Ermittlung der Gesamtbelastung Alternative 2, Vollleistungsbetrieb gung vom [s. Anhang 7]:

Tabelle 11: Gesamtbelastung bei Vollleistungsbetrieb von WEA01 – WEA04

Immissionsaufpunkt	Immissionsricht-	Obere	Überschi	hreitung		
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags		
IP A Wirfuserbach 1, Wirfus	45	44,8				
IP B Wirfuserbach 2, Wirfus	45	45,9	ja			
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	46,2	ja			
IP D Wirfuserbach (Michelsmühl), Wirfus	45	46,9	ja	h h		
IP E Hauptstr. 23, Wirfus	40	38,1		-		
IP F Illericher Str. 22, Wirfus	40	36,3	·. .	1		

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

Seite 16 von 24

Schallimmissionsprognose G80

Ermittlung der Zusatzbelastung <u>Alternative 2</u>, WEA02 mit Nachtabschaltung (22-6 Uhr), WEA04 schallreduziert im 102dB(A) Mode

(s. Anhang 8):

Tabelle 12: Zusatzbelastung schallreduziert

Immissionsaufpunkt	Immissionsricht-	Obere	Übersch	berschreitung		
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags		
IP A Wirfuserbach 1, Wirfus	45	42,6	-			
IP B Wirfuserbach 2, Wirfus	.45	43,8	-			
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	43,3	-	-		
IP D Wirfuserbach (Michelsmühl), Wirfus	45	41,6	-	-		
IP E Hauptstr. 23, Wirfus	40	33,6	1	-		
IP F Illericher Str. 22, Wirfus	40	31,9	=	<u>=</u> 1°		

Genehmigt Gehört zur Verfügung vom 12. SEP. 2005

Kreisverwaltung Cochem-Zell

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

Seite 17 von 24

Schallimmissionsprognose G80

Ermittlung der Gesamtbelastung <u>Alternative 2</u>, WEA02 mit Nachtabschaltung (22-6 Uhr), WEA04 schallreduziert im 102dB(A) Mode

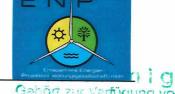

(s. Anhang 9):

Tabelle 13: Gesamtbelastung, WEA02 abgeschaltet und WEA04 schallreduziert im 102dB[A] Mode

Immissionsaufpunkt	Immissionsricht-	Obere	Überschi	reitung
	wert nachts in dB(A)	Vertrauens- bereichs grenze (90%) des Immissions pegels in dB(A)	nachts	tags
IP A Wirfuserbach 1, Wirfus	45	43,7		-
IP B Wirfuserbach 2, Wirfus	45	44,8	-	-
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	44,6	a <u>-</u>	-
IP D Wirfuserbach (Michelsmühl), Wirfus	45	43,6	-	-
IP E Hauptstr. 23, Wirfus	40	36,5	- #	s 3 <u>+</u> s
IP F Illericher Str. 22, Wirfus	40	35,1		-

Genehmigt Gehört zur Verfügung vom 12. SEP. 2005

Schallimmissionsprognose G80

Gehört zur Varfügung vom

Beurteilung und Vergleich mit den Richtwerten 1 2. SEP. 2005 **Alternative 2**

Kreisverwaltung Cochem-Zell

Gesamtbelastung, Vergleich mit den Richtwerten bei Vollleistungsbetrieb und Tabelle 9: bei Nachtabschaltung von WEA02 und schallreduzierter Betriebsweise von WEA04 in der Nachtzeit.

Immissionsaufpunkt	Immissions- richtwert nachts in	Vollleistur	ngsbetrieb		Itung WEA02 tion WEA04
	dB(A)	Beurteilungs pegel	Über- schreitung	Beurteilungs pegel	Über- schreitung
IP A Wirfuserbach 1, Wirfus	45	45	-	44	-
IP B Wirfuserbach 2, Wirfus	45	46	1	45	
IP C Wirfuserbach (Heimlichsmühl), Wirfus	45	46	1	45	-
IP D Wirfuserbach (Michelsmühl), Wirfus	45	47	2	44	-
IP E Hauptstr. 23, Wirfus	40	38	-	37	-
IP F Illericher Str. 22, Wirfus	40	36	-	35	-

Bei Vollleistungsbetrieb ist nachts eine Überschreitung der Richtwerte an IP B, IP C und an IP D nicht gänzlich auszuschließen. Eine reale Überschreitung erscheint in Anbetracht der lokalen Gegebenheiten - Lage der Immissionsorte in einem Kerbtal und inmitten von Wald - äußerst unwahrscheinlich. Mit schallreduzierter Betriebsweise von WEAO4 und Abschaltung von WEA02 nachts, kann diese Überschreitung in der Prognose ausgeschlossen werden.

Der Antragsteller beantragt daher den Vollleistungsbetrieb aller 4 WEA in der Zeit von 6-22 Uhr. Für den Zeitraum von 22-6 Uhr beantragt er den Vollleistungsbetrieb von WEA01 und WEA03 und den schallreduzierten Betrieb für WEA04. Unabhängig von den Auflagen in der Genehmigung wird in jedem Fall eine Nachmessung der WEA durchgeführt. Es wird erwartet, dass unter Berücksichtigung der Sicherheitszuschläge bei der Prognose (mehr als 2dB(A) emissionsseitig je WEA) und unter Berücksichtigung des verwendeten Verfahrens, welches tendenziell etwas höhere Werte als in der Realität prognostiziert, der Nachweis erbracht werden kann, dass auch bei Vollleistungsbetrieb

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Seite 19 von 24

Wirfus [Gemeinde]

Titel

Schallimmissionsprognose G80

aller WEA, die Richtwerte an allen Immissionsorten eingehalten werden. Für diesen Fall wird der Vollleistungsbetrieb aller WEA beantragt.

Ganehmigt Genom zur Verfügung vom 12. SEP. 2005

Kreisverwaltung Cochem-Zell

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Seite 20 von 24

Schallimmissionsprognose G80

Genehmigt Gehört zur Verfügung vom

1 2. SEP. 2005

Qualität der Prognoserechnungen

Die Genauigkeit der Immissionsprognose hängt wesentlich von der Zuverlässigkeit der und Cochem-Zell Eingabedaten ab. Die Eingabedaten wurden daher mit Sicherheitszuschlägen versehen, die die Unsicherheiten des Berechnungsmodells und die Unsicherheiten bei den Schalleistungspegeln berücksichtigen.

Für die Unsicherheit des Prognosemodells σ_{PROG} wurde ein pauschaler Zuschlag von 1,5 dB(A) vorgesehen.

Die Serienstreuung σ_P der WEA wurde bei den Anlagen bzw. Betriebsweisen, bei denen mindestens 3 Vermessungen nach FGW-Richtlinie vorlagen, in Form der Standardabweichungen der einzelnen Messwerte vom arithmetischen Mittelwert berücksichtigt.

$$\sigma_P = s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (L_i - L_W)^2}$$

mit:

$$L_{W} = \sum_{i=1}^{n} \frac{L_{i}}{n}$$

Für alle anderen Anlagen bzw. Betriebarten wurde $\sigma_{\scriptscriptstyle P}$ mit 1,22 dB(A) angesetzt.

Die Messunsicherheit σ_R findet ihre Berücksichtigung mit 0,5 dB(A), da alle Anlagen nach FGW-Richtlinie vermessen wurden.

Die Gesamtunsicherheit berechnet sich zu:

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{PROG}^2}$$

Um zu gewährleisten, dass die berechneten Immissionspegel innerhalb eines Vertrauensbereiches von 90% liegen, wurde $\sigma_{\rm ges}$ mit der Standardnormalvariable 1,28 multipliziert, so dass letztendlich die Immissionsprognose auf einem Schallleistungspegel von

$$L_{WEA,\sigma} = L_m + 1,28 * \sigma_{WEAges}$$

basiert.

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

Seite 21 von 24

D:\Wind\Projekte\Wirfus\BImSchG-Antrag_G80\Schallprognose\WirG_Stellungnahme_Schall_BImschG_G80.doc

Wirfus (Gemeinde)

Titel

Schallimmissionsprognose G80

Für die Berechnung wurden keine dämpfenden Einflüsse durch Bewuchs (Bäume und Sträucher) berücksichtigt. Weiterhin konnten im Rahmen der Ortsbesichtigung keine Gebäude oder natürlichen Gegebenheiten festgestellt werden, die eine Verstärkung der Schallimmissionen durch Reflexionen erwarten lassen.

Alle berechneten WEA weisen keine Einzeltonhaltigkeit und keine Impulstonhaltigkeit auf. Ein entsprechender Zuschlag ist daher nicht vorzusehen.

Gehört zur Verfügung vom

1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Osnabrück, den 07.07.2005

On. Groß

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

Seite 22 von 24

Schallimmissionsprognose G80

Anhang

Ganehmigt Gehört zur Verfügung vom

1. Immissionsberechnung Vorbelastung Alternative 1

1 2. SEP. 2005

- Hauptergebnis
- Detaillierte Ergebnisse

Kreisverwaitung Cochem-Zell

- Karte mit Isophonlinien
- 2. Immissionsberechnung Zusatzbelastung Alternative 1, Vollleistungsbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 3. Immissionsberechnung Gesamtbelastung Alternative 1, Vollleistungsbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 4. Immissionsberechnung Zusatzbelastung Alternative 1, WEA02 schallreduziert
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 5. Immissionsberechnung Gesamtbelastung Alternative 1, WEA02 schallreduziert
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 6. Immissionsberechnung Vorbelastung Alternative 2
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 7. Immissionsberechnung Gesamtbelastung Alternative 2, Vollleistungsbetrieb
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft


Seite 23 von 24

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

Schallimmissionsprognose G80

- 8. Immissionsberechnung Zusatzbelastung Alternative 2, WEA02r Verfügung vom ausgeschaltet und WEA04 schallreduziert
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien

- Kreisverwaltung Cochem-Zell
- 9. Immissionsberechnung Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 schallreduziert
 - Hauptergebnis
 - Detaillierte Ergebnisse
 - Karte mit Isophonlinien
- 10. Herstellerangaben und Vermessungsprotokolle
- 11. Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen)
- 12. Zu berücksichtigende Vorbelastung It. Genehmigungsbehörde, Alternative 1
- 13. Zu berücksichtigende Vorbelastung It. Genehmigungsbehörde Alternative 2
- 14. Karte mit Abständen zu den Immissionspunkten

Erstellt:

Dipl.-Ing. Groß 07.07.05

© ENP Erneuerbare Energien Projektentwicklungsgesellschaft

okia igogocolico lare

Seite 24 von 24

Rev.:

Geprüft:

Dipl.-Ing. (FH) Höhler 07.07.05

mbH

05.07.2005 09:57 / 1

+49 541 6687 259

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

enenmigt Gehört zur Verfügung vom

30.06.2005 17:39/2.4.0.67

1 2. SEP. 2005

DECIBEL - Hauptergebnis

Wirfus Gemeinde

Berechnung: A1 Vorbelastung Alternative 1

Anhang 1

von 90%.

Berechnung der Schallimmissionen durch 8 beantragte

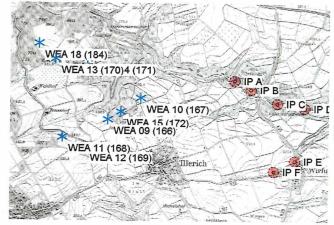
Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

WEA außerhalb der Vorrangfläche Wirfus.

Berechnete Immissionswerte als obere

Kreisverwaltung Cochem-Zell

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

* Existierende WEA

Maßstab 1:50.000 Schall-Immissionsort

WEA

GK (Bessel) Zo Ost N	one: 2 Nord 2		A-Typ uell Hersteller	Тур	Leistung	Rotord.	Höhe	Schall Quelle		LwA,ref		Oktav-
WEA 09 (166) 2.583.551 5.56 WEA 10 (167) 2.583.997 5.56 WEA 11 (168) 2.582.934 5.56 WEA 12 (169) 2.582.232 5.56 WEA 13 (170) 2.582.811 5.56 WEA 14 (171) 2.583.251 5.56 WEA 15 (172) 2.583.730 5.56 WEA 18 (184) 2.582.580 5.56	64.243 44 63.676 4 63.552 42 64.762 39 64.780 39 64.048 42 64.970 40	14 ENERCON E-40/ Ja 04 ENERCON E-66 Ja 17 ENERCON E-66 Ja 26 ENERCON E-66 Ja 98 REpower MD 77 Ja 98 REpower MD 77 Ja 28 ENERCON E-66 Ja 20 ENERCON E-66 Ja	ENERCON ENERCON ENERCON REpower REpower ENERCON		1.800 1.800 1.500 1.500 1.800	77,0 70,0	98,0 98,0 98,0 111,5 111,5 86,0	USER USER USER USER USER USER	leistungsoptimiert inkl. Zuschläge	104.9	Nein Nein Nein Nein Nein Nein Nein Nein	Nein Nein Nein Nein Nein Nein

Berechnungsergebnisse

Beurteilungspegel

Schall- Nr.	Immissionsort Name	GK (Besse Ost	I) Zone: 2 Nord	7	Anforde	-			rungen er	
	Hamo	OSL	NOIG	_	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt
	ID A MARK			[m]	[dB(A)]	[m]	[dB(A)]			
	IP A Wirfuserbach 1, Wirfus	2.585.285	5.564.515	302	45,4	300	31.8	Ja	Ja	Ja
	IP B Wirfuserbach 2, Wirfus	2.585.508	5 564 307	204			0.,0			100
						300	29,5	Ja	Ja	Ja
	IP C Wirfuserbach, Wirfus	2.585.879				300	27,0	Ja	Ja	Ja
	IP D Villa Margaretha, Wirfus	2.586.254	5.564.151	276	45.4	300	25.3	Ja	Ja	Ja
	IP E Haupstraße 23, Wirfus	2.586.135	5 562 416	240	S1224 1		,-			
						600	25,8	Ja	Ja	Ja
	IP F Illericher Str. 22, Wirfus	2.585.847	5.563.261	340	40,4	600	27,0	Ja	Ja	Ja

Abstände (m)

Schall-Immissionsort

			3010113	OI E		
WEA	IP E	IP A	IP B	IP C	IP D	IP F
WEA 09 (166)	2635	1829	2011	2344	2712	2392
WEA 10 (167)	2292	1317	1519	1882	2259	2094
WEA 11 (168)	3211	2496	2673	2993	3354	2942
WEA 12 (169)	2906	2268	2428	2727	3081	2631
WEA 13 (170)	3586	2487	2722	3118	3497	3386
WEA 14 (171)	3190	2052	2290	2690	3068	3007
WEA 15 (172)	2487	1624	1812	2155	2526	2258
WEA 18 (184)	3880	2743	2984	3386	3764	3687

Wirfus Gemeinde

Beschreibung: Anhang 1

Berechnung der Schallimmissionen durch 8 beantragte WEA außerhalb der Vorrangfläche Wirfus.

Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 09:59 / 1

izensierter Anwender

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Genehmigt Gehört zur Verfügung vom

Berechnet

30.06.2005 17:39/2.4.0.67

1 2, SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A1 Vorbelastung Alternative 1

Kreisverwaltung Cochem-Zell

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr:

die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Abar: Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	_ [m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 09 (166)		1.838	28,5	Ja	20,47			76,29					84.05	1.09
WEA 10 (167)		1.331	58,3	Ja	28,16			73,49					79.31	0.44
WEA 11 (168)		2.505	30,5	Nein	18,20			78,98			0.00	_,	88.54	
WEA 12 (169)		2.278	33,6	Nein	19.54			78.15			, ,		87.28	.,
WEA 13 (170)		2.495	53,5	Ja	19,30			78,94			-,	100 MARINE	87.75	1.06
WEA 14 (171)		2.062	64,7	Ja	22,32			77,29	0.0				84.93	0.86
WEA 15 (172)		1.636	43,4	Ja	24,76			75,28			1000	-1	82,27	0.88
WEA 18 (184)	2.743	2.751	55,0	Nein	16,96			79.79			0.00		89.82	1.13

Summe 31,84

29,47

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

WEA				2 2										
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 09 (166)		2.020	23,2	Nein	18,69	102,6	3,01	77,11			0.00		85.75	
WEA 10 (167)			53,0		24,84	104,9	3,01	74,71			0,00		82,42	
WEA 11 (168)			25,6	Ņein	17,21	104,9	3,01	79,57	5,10	4,80	0,00		89,47	
WEA 12 (169)		2.438	30,7	Nein	18,58	104,9	3,01	78,74	4,63	4,80	0,00	0,00	88,18	1,15
WEA 13 (170) WEA 14 (171)			49,4	Nein	17,25	105,1	3,01	79,72	5,19	4,80	0,00	0,00	89,71	1,14
WEA 15 (171)		2.300	61,2	Ja	20,64			78,23	4,37	3,89	0,00	0,00	86,49	0,98
WEA 18 (172)		1.824	37,9	Nein	22,43	104,9	N. S. S. S. S. S. S. S.			4,80	0,00	0,00	84,49	1,00
VVLA 10 (104)	2.984	2.992	53,5	Nein	15,70	104,9	3,01	80,52	5,68	4,80	0,00	0,00	91,00	1,20

Schall-Immissionsort: IP C Wirfuserbach, Wirfus

Nr.	Abstand	Schallweg	Mittlere Höl	ne Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 09 (166)	2.344	2.353		5,7 Nein	16,62	102,6	3,01	78,43		4,80			87.70		
WEA 10 (167)	1.882	1.895	52	2,3 Nein	22,05	104,9	3,01	76,55	3,60	4,80	0,00		84.95	0.91	
WEA 11 (168)		3.001	29	,4 Nein	15,55	104,9	3,01	80,55	5,70	4,80	0,00	0.00	91.05	S10 10 10 10	
WEA 12 (169)		2.737	38	3,4 Nein	16,92	104,9	3,01	79,75	5,20	4,80	0.00	0.00	89.75		
WEA 13 (170)	3.118	3.126	47	,1 Nein	15,22	105,1	3,01	80,90	5,94	4.80	0.00		91.64	- 1 -	
WEA 14 (171)		2.699	57	,2 Nein	17,42	105,1	3,01	79.62	5,13	4.80	0.00		89.55	-,	
WEA 15 (172)	2.155	2.166	. 38	,9 Nein	20,13	104,9	3,01	77,71	4,11				86.63	1,16	
WEA 18 (184)	3.386	3.393	49	,3 Nein	13,75	104,9	3,01	81,61	6,45	4,80	0.00		92.86	1.30	

Wirfus Gemeinde Anh

Beschreibung: Anhang 1

Berechnung der Schallimmissionen durch 8 beantragte WEA außerhalb der Vorrangfläche Wirfus.

Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 09:59 / 2

izensierter Anwender

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259 Genehmigt Gehört zur Verfügung vom

Berechnet

30.06.2005 17:39/2.4.0.67

1 2. SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A1 Vorbelastung Alternative 1

Kreisverwaltung Cochem-Zeil

Summe 27,05

Schall-Immissionsort: IP D Villa Margaretha, Wirfus WEA

ı	Nr.		Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet	
ı	14/54 00 (150)	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	WEA 09 (166)		2.720	28,8	Nein	14,56	102.6	3.01	79.69			0,00		89.66		
ı	WEA 10 (167)		2.270	55,6	Ja	20,43			20, 2000					86.39	.,	
ı	WEA 11 (168)		3.362	31,4	Nein	13.80			81,53					92.72	.,	
ı	WEA 12 (169)		3.090	38,2	Nein	15,11			80.80			0.00	1000	91.47	.,	
ı	WEA 13 (170)	3.497	3.504	50,5	Ja	13.92	and the second s		81,89			0.00	-,	, , , , ,	1,33	
	WEA 14 (171)	3.068	3.077	60,8	Ja	16.14			80.76			0.00		92,86	1,33	
	WEA 15 (172)	2.526	2.536	42.0		17.93	C 27500 A 7050		79.08					90,73	1,24	
ł	WEA 18 (184)	3.764	3.771	52,8	Ja	12,52				,				88,70	1,28	
П			2	02,0	Ja	12,52	104,9	3,01	82,53	7,17	4,32	0,00	0,00	94,02	1,37	

Summe 25,33

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

WEA														
Nr.		Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
14/54 00 (400)	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 09 (166)		2.639	45,1	Ja	15,58	102,6	3,01	79,43	-	4,21		570		•
WEA 10 (167) WEA 11 (168)								78,23					86,45	-,
WEA 12 (169)		3.216 2.911	48,8	Ja	15,01			81,15					91,54	1,36
WEA 13 (170)		3.590	54,0 56.5		16,64			80,28				,	89,98	
WEA 14 (171)		3.195	65.4	Ja Ja	13,57			82,10					93,19	
WEA 15 (172)		2.492	55.4	Ja Ja	15,58 18,94			81,09			. ,		91,26	
WEA 18 (184)		3.883	57,7	Ja	12,07		1000	78,93 82,78	.,		-,		87,70	1,27
, , , , ,		5.000	01,1	Ja	12,07	104,9	3,01	02,78	1,38	4,29	0,00	0,00	94,46	1,39

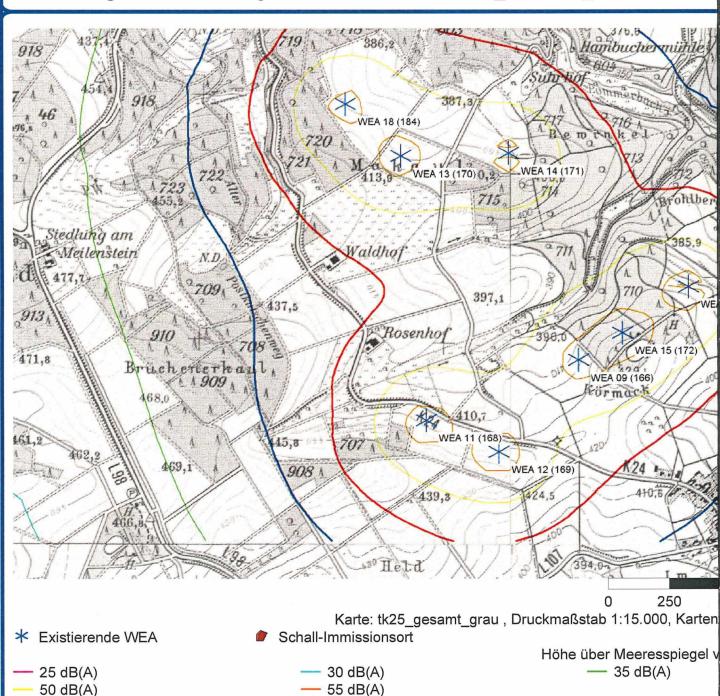
Summe 25,75

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus WEA

Nr.	Abstand	Schallweg		Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
14/EA 00 (400)	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 09 (166)			41,9	Ja	16,96	102,6	3.01	78.59					87.35	
WEA 10 (167)		2.100	58,3	Ja	21,61	S		77,44	,		0.00		85.28	- 1
WEA 11 (168)	2.942	2.947	44.2	Ja	16,34			80.39			0.00	-,	, , , , , , , , , , , , , , , , , , , ,	-,
WEA 12 (169)	2.631	2.637	50.2	Ja	,								90,27	.,
WEA 13 (170)	3.386	3.391	50.5	Ja	14.46				5,01			20	88,58	-,
WEA 14 (171)		3.012	58.1		1.00.15			81,61			0,00	-,	92,34	1,31
WEA 15 (172)			- 200	Ja	16,44	200		80,58	100.00	4,14	0,00	0,00	90,44	1,23
		2.264	51,9	Ja	20,30	104,9	3,01	78,10	4,30	4,01	0,00	0,00	86,41	1.19
WEA 18 (184)	3.687	3.690	50,9	Ja	12,87	104,9	3,01	82,34	7,01	4,33	0,00	0.00	93.68	1.35

Summe 27,00

Beschreibung:


Wirfus Gemeinde

Anhang 1

Berechnung der Schallimmissionen durch 8 beantragte WEA außerhalb der Vorrang Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsc

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A1 Vorbelastung Alternative 1 Datei: TK25_GESAMT_GRAU.BMI

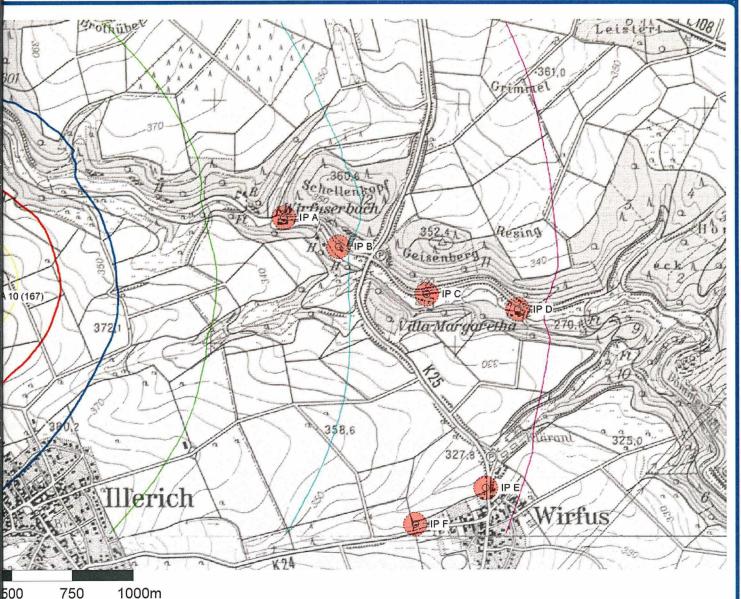
Ausdruck/Seite

01.07.2005 12:54 / 1

Lizensierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259


Ganehmigt Gehön zur Vorfügung vom

1 2. SEP. 2005

Berechnet:

30.06.2005 17:39/2.4.0.67

Kreisverwaltung Cochem-Cell

fläche Wirfus.

einlichkeit von 90%.

1000m

zentrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

on aktivem Höhenlinien-Objekt

- 40 dB(A)

45 dB(A)

05.07.2005 09:59 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

Genehmigt DE-49078 Osnabrück +49 541 6687 259 Gehört zur Verfügung vom

30.06.2005 22:54/2.4.0.67

1 2. SEP. 2005

DECIBEL - Hauptergebnis

Wirfus Gemeinde

Berechnung: A2 Zusatzbelastung Alternative 1, Vollleistung

WEA im Vollleistungsbetrieb.

Berechnete Immissionswerte als obere

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle

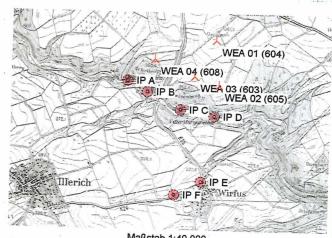
Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

Kreisverwaltung Cochem-Zell

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Anhang 2


von 90%.

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1:40.000 Schall-Immissionsort

WEA

2 4	GK (Besse				WEA-7	Γvp										
	Ost	Nord	Z	Beschreibung		Hersteller	Тур	Leistung	Rotord	Höbe	Krain	Schall Kreis- Quelle	werte			
			[m]					Loiotaing	rtotora.	none	radius	radius	Name	LwA,ref	Einzel-	Oktav-
WEA 01 (604)	2.586.242	5.564.996	350	GAMESA G80/200	Ja	GAMESA	G80/2000 ENP	[kW]	[m]	[m]	[m]	[m]		[dD/A)]	töne	Bänder
VVLA 02 (003)	2.300.293	5 564 494	3/13	CAMECA COOME		GAMESA	G80/2000 ENP	2.000	80,0 80.0	100,0	40,0	70,0 USER	leistungsoptimiert inkl. Zuschläge	[dB(A)] 106.0	Nein	Nein
WEA 04 (608)	2.585.581	5.564.585	340	GAMESA G80/200 GAMESA G80/200	Ja	GAMESA	G80/2000 ENP	2.000	80.0	100,0	40,0	70,0 USER	leistungsoptimiert inkl. Zuschläge	106.0		Nein
					Ja	GAMESA	G80/2000 ENP	2.000	80,0	100,0		70.0 USER	leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	106,0		Nein
Berechi	nunge	arach	ni	000			*					THE GOLIN	ioistangsopulment inkl. Zuschlage	106,0	Nein	Nein

Beurteilungspegel

Name	GK (Besse Ost	Nord	Z [m]	Anforder Schall [dB(A)]	rungen Abstand [m]	Beurteilungspegel Von WEA [dB(A)]	Anforde Schall	rungen er Abstand	füllt? Gesamt
IP C Wirruserbach, Wirfus IP D Villa Margaretha, Wirfus IP E Haupstraße 23, Wirfus	2.585.285 2.585.508 2.585.879 2.586.254 2.586.135 2.585.847	5.564.397 5.564.208 5.564.151 5.563.416	294 285 276 340	45,4 45,4 45,4 45,4		44,0	Ja Ja Ja Nein Ja Ja	Ja Ja Ja Ja Ja	Ja Ja Ja Nein Ja Ja

Abstände (m)

	WEA			
Schall-Immissionsort	WEA 03 (603)	WEA 04 (608)	WEA 01 (604)	WFA 02 (605)
" "	740	387	1071	1008
IP B IP C	547	374	947	791
IP D	404 492	631	868	503
IPE	1174	910 1457	845	345
IP F	1335	1526	1583 1779	1089 1311

Wirfus Gemeinde

Anhang 2

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle

WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

05.07.2005 10:00 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmi Gehört zur Verfügung

30.06.2005 22:54/2.4.0.67

1 2 SEP 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A2 Zusatzbelastung Alternative 1, Vollleistung

Kreisverwaltung Cochem Zell

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

die Dämpfung aufgrund von Luftabsorption die Dämpfung aufgrund des Bodeneffekts

Abar:

die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus WFA

WEA 01 (604) WEA 02 (605) WEA 03 (603) WEA 04 (608)	1.071 1.008 740	1.082 1.017	[m] 37,5	Nein Ja Ja	Beurteilungspegel [dB(A)] 30,43 32,46 36,02 42,66	LwA,ref [dB(A)] 106,0 106,0 106,0	[dB] 3,01 3,01 3,00	71,15 68,52	1,93 1,43	[dB] 4,80 3,47 3.04	[dB] 0,00 0,00 0.00	0,00 0,00	[dB] 78,54	0,00
--	-----------------------	----------------	-------------	------------------	--	---	------------------------------	----------------	--------------	------------------------------	------------------------------	--------------	---------------	------

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

Schall-Immissionsort: IP C Wirfuserbach, Wirfus

WEA														
Nr. WEA 01 (604) WEA 02 (605) WEA 03 (603) WEA 04 (608) Summe 45.	868 503 404 631	Schallweg [m] 884 526 430 649	Mittlere Höhe [m] 34,0 43,5 31,4 31,3	Sichtbar Nein Ja Ja Nein	Beurteilungspegel [dB(A)] 32,59 40,69 42,27 35,72	LwA,ref [dB(A)] 106,0 106,0 106,0 106,0	[dB] 3,00 2,99 2,99	65,42 63,68	1,00 0,82	[dB] 4,80 1,89 2,22	[dB] 0,00 0,00 0,00	0,00 0,00	[dB] 76,41 68,31	

Schall-Immissionsort: IP D Villa Margaretha, Wirfus

05.07.2005 10:00 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück

+49 541 6687 259 30.06.2005 22:54/2.4.0.67

Genehmig Gehört zur Verfügung von

DECIBEL - Detaillierte Ergebnisse

Berechnung: A2 Zusatzbelastung Alternative 1, Vollleistung

WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

Kreisverwaltung Cochem-7

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

Anhang 2

von 90%.

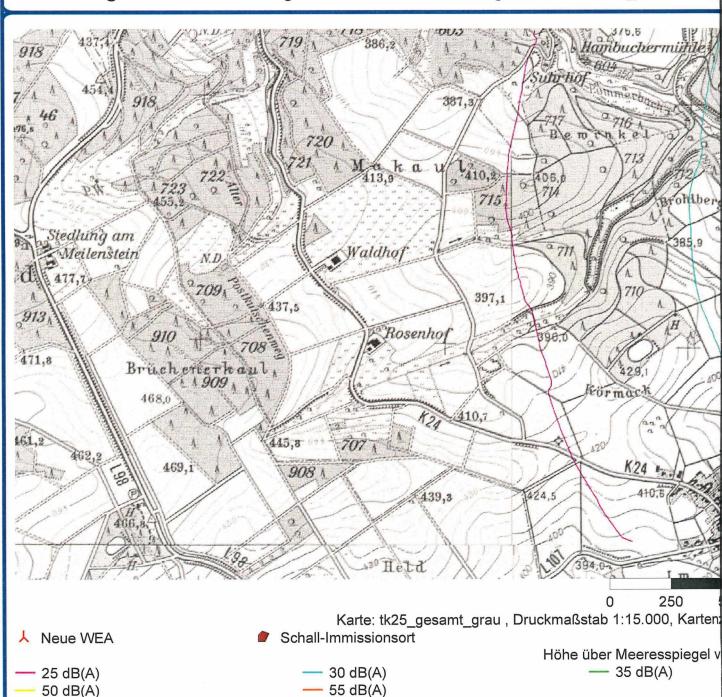
WEA

Wirfus Gemeinde

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus WEA

Beschreibung:

Wirfus Gemeinde


Anhang 2

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorran Vollleistungsbetrieb.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsch

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A2 Zusatzbelastung Alternative 1, Vollleistung Datei: TK25_GESAMT_

Ausdruck/Seite

30.06.2005 22:55 / 1

Lizensierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

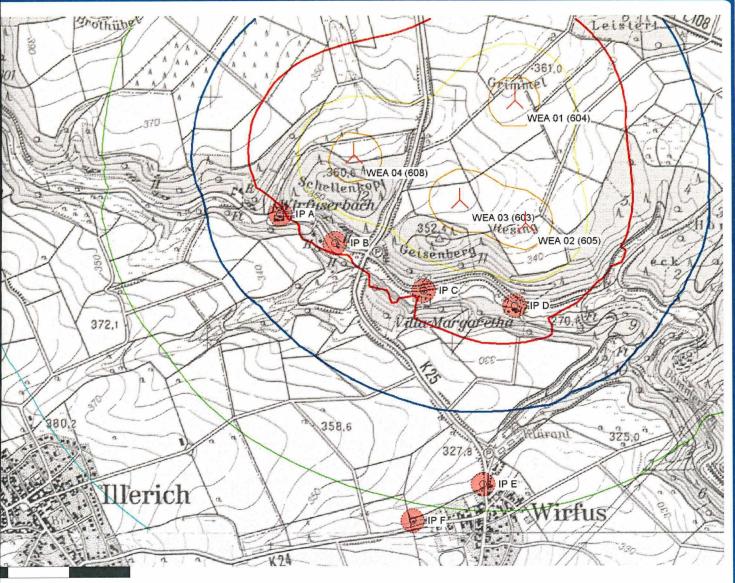
Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Gehört zur Verfügung vom

Berechnet:

30.06.2005 22:54/2.4.0.67

1 2. SEP. 2005


Genehmigt

Kreisverwaltung Cochem-Zell

GRAU.BMI

gfläche Wirfus. Alle WEA im

einlichkeit von 90%.

00 750 1000m

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

on aktivem Höhenlinien-Objekt

- 40 dB(A)

- 45 dB(A)

Wirfus Gemeinde

Beschreibung: Anhang 3

von 90%

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

WindPRO version 2.4.0.67 Dez 2004 Ausdruck/Seite 05.07.2005 10:00 / 1

01.07.2005 11:25/2.4.0.67

zensierter Anwender.

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Genehmig Gehört zur Verfügung von

DECIBEL - Hauptergebnis

Berechnung: A3 Gesamtbelastung Alternative 1, Vollleistung

1 2, JL1, 2003

Kreisverwaltung Cochem-Z

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(A)
Kur- und Feriengebiet: 35 dB(A)

WEA 18 (184)

WEA 1 WEA 14 (171)

WEA 10 (167)

WEA 15 (172)

WEA 12 (169)

WEA 12 (169)

MEA 12 (169)

WEA 13 (172)

WEA 14 (171)

WEA 15 (172)

WEA 15 (172)

WEA 17 (168)

WEA 17 (168)

Maßstab 1:50.000

* Existierende WEA

WEA

	GK (Besse Ost	l) Zone: 2 Nord		Beschreibung	WEA-1 Aktuell	Гур Hersteller	Tvp	l eistung	Potord	LIXLA	Vi-		Schall				
WEA 02 (605) WEA 04 (608) WEA 09 (166) WEA 10 (167) WEA 11 (168) WEA 12 (169) WEA 13 (170) WEA 14 (171) WEA 15 (172) WEA 18 (184)	2.586.293 2.586.022 2.585.581 2.583.551 2.583.997 2.582.934 2.583.232 2.582.811 2.583.251 2.583.730 2.582.580	5.564.494 5.564.585 5.564.764 5.563.934 5.563.676 5.563.552 5.564.762 5.564.780 5.564.048 5.564.970	343 340 343 414 404 417 426 398 398 423 400	GAMESA G80/2000 GAMESA G80/2000 GAMESA G80/2000 GAMESA G80/2000 ENERCON E-40/6 ENERCON E-66-18 ENERCON E-66-18 REPOWER MD 77 E REPOWER MD 77 E ENERCON E-66-18 ENERCON E-66-18 ENERCON E-66-18	Ja Ja Ja Ja .Ja .Ja .Ja .Ja .Ja	GAMESA GAMESA GAMESA ENERCON ENERCON ENERCON ENERCON REpower REPOWER	G80/2000 ENP G80/2000 ENP G80/2000 ENP G80/2000 ENP E-66/18.70 ENP E-66/18.70 ENP MD 77 ENP MD 77 ENP E-66/18.70 ENP E-66/18.70 ENP E-66/18.70 ENP	1.800 1.800 1.500 1.500 1.800	[m] 80,0 80,0 80,0 80,0 44,0 70,0 70,0 77,0 77,0 77,0			70,0 L 70,0 L 70,0 L L L L	USER USER USER USER USER USER USER USER	leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	106,0 106,0 106,0 102,6 104,9 104,9 105,1 105,1	Nein Nein Nein Nein Nein Nein Nein Nein	Bänder Nein Nein Nein Nein Nein Nein Nein Nei
WEA 13 (170) WEA 14 (171) WEA 15 (172)	2.583.232 2.582.811 2.583.251 2.583.730 2.582.580	5.563.552 5.564.762 5.564.780 5.564.048 5.564.970	426 398 398 423 400	ENERCON E-66-18 REpower MD 77 E REpower MD 77 E	Ja Ja Ja Ja	ENERCON REpower REpower ENERCON	E-66/18.70 ENP MD 77 ENP MD 77 ENP E-66/18.70 ENP	1.800 1.500 1.500 1.800	70,0 77,0 77,0 70,0	98,0 111,5 111,5 86,0		l L	JSER JSER JSER JSER JSER JSER	leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	104,9 104,9 105,1 105,1	Nein Nein Nein Nein Nein	Nein Nein Nein Nein Nein

Berechnungsergebnisse

Beurteilungspegel

Nr.	Hame	GK (Besse Ost	l) Zone: 2 Nord	Z [m]	Anforder Schall [dB(A)]	rungen Abstand [m]	Von WEA		rungen er Abstand	füllt? Gesamt
	IP B Wirruserbach 2, Wirfus IP C Wirfuserbach, Wirfus IP D Villa Margaretha, Wirfus IP E Haupstraße 23, Wirfus	2.585.285 2.585.508 2.585.879 2.586.254 2.586.135 2.585.847	5.564.397 5.564.208 5.564.151 5.563.416	302 294 285 276 340	45,4 45,4 45,4 45,4 40,4	300 300 300 300 600 600	45,3	Ja Ja Ja Nein Ja Ja	Ja Ja Ja Ja Ja	Ja Ja Ja Nein Ja Ja

Abstände (m)

Schall-Immissionsort						
WEA	IP E	IP A	IP B	IP C	IP D	IP F
WEA 01 (604)		1071	947	868	845	1779
WEA 02 (605)		1008	791	503	345	1311
WEA 03 (603)		740	547	404		1335
WEA 04 (608)	1457	387	374	631		1526
WEA 09 (166)	2635	1829	2011	2344	2712	2392
WEA 10 (167)	2292	1317	1519	1882	2259	2094
WEA 11 (168)	3211	2496	2673	2993	3354	2942
WEA 12 (169)	2906	2268	2428	2727	3081	2631
WEA 13 (170)	3586	2487	2722	3118	3497	3386
WEA 14 (171)	3190	2052	2290	2690	3068	3007

Wirfus Gemeinde

Anhang 3

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

WindPRO version 2.4.0.67 Dez 2004

05.07.2005 10:00 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

01.07.2005 11:25/2.4.0.67

Genehmi Gehört zur Verfügung

DECIBEL - Hauptergebnis

Berechnung: A3 Gesamtbelastung Alternative 1, Vollleistung

...Fortsetzung von voriger Seite

 Schall-Immissionsort

 WEA
 IPE
 IPA
 IPB
 IPC
 IPD
 IPF

 WEA 15 (172)
 2487
 1624
 1812
 2155
 2526
 2258

 WEA 18 (184)
 3880
 2743
 2984
 3386
 3764
 3687

Kreisverwaltung Cochen

Wirfus Gemeinde

Beschreibung: Anhang 3

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbergichsgranze mit sie zu 1

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%

05.07.2005 10:01 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

Kreisverwaltung Cochem-Zell

DE-49078 Osnabrück +49 541 6687 259

D1.07.2005 11:25/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Alternative 1, Vollleistung

Annahmen

hmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet 1 2, SEP. 2005

(wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: die Dämpfung aufgrund von Luftabsorption die Dämpfung aufgrund des Bodeneffekts

Abar:

die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus

1	Nr.	Abstand [m]	Schallweg [m]		Sichtbar,	Beurteilungspegel	LwA,ref		Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
L	WEA 01 (604)	1.071	1.081	[m] 36,6	Nein	[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	WEA 02 (605)	1.008	1.017	39,2	Ja	30,43 32.46			71,68				0,00	78,54		
	WEA 03 (603)	740	752	38,1	Ja	36,02			71,15		3,47			,	0,00	
	WEA 04 (608)	387	410	29,0	Ja	42.66			68,52 63,26	- 1				72,99	0,00	
	WEA 09 (166)	1.829	1.838	28,5	Ja	20.47			76,29					66,33	8,43.5	
	WEA 10 (167) WEA 11 (168)	1.317	1.331	58,4	Ja	28,17			73,49					84,05 79.31	-,	
	WEA 12 (169)	2.496 2.268	2.505	30,5	Nein	18,20			78,98					88.54	0,44 1,17	
	WEA 13 (170)	2.487	2.278 2.495	33,6	Nein	19,54			78,15					87,28	1.09	
	NEA 14 (171)	2.052	2.493	53,2 64,7	Ja	19,29			78,94	4,74	4,07	0,00		87.75	1.06	
١٠	NEA 15 (172)	1.624	1.636	43.4	Ja Ja	22,32 24.76			77,29	3,92		0,00	0,00	84,93	0,86	
١	VEA 18 (184)	2.743	2.751	55,1	Nein	24,76 16,96			75,28		3,89	0,00	0,00		0,88	
					. 10111	10,30	104,9	3,01	79,79	5,23	4.80	0.00	0.00	89 82	1 13	

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

ı	WEA															
I	Nr.				Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Agr	Abar	∧ mico	^	01	
	WEA 01 (604) WEA 02 (605) WEA 03 (603) WEA 04 (608)		[m] 960 803 565 401	[m] 36,3 35,4 35,8 28,7	Nein Ja Ja Ja	[dB(A)]	[dB(A)] 106,0 106,0 106,0	[dB] 3,01 3,00 3,00	[dB] 70,65 69,10 66,04	[dB] 1,82 1,53 1,07	[dB] 4,80 3,27 2,58	[dB] 0,00 0,00 0,00	[dB] 0,00 0,00 0,00	73,89 69,69	Cmet [dB] 0,00 0,00 0,00	
The second secon	WEA 09 (166) WEA 10 (167) WEA 11 (168) WEA 12 (169) WEA 13 (170)	2.011 1.519 2.673 2.428 2.722	2.020 1.533 2.682 2.438 2.730	23,5 53,3 25,8 30,8 49,1	Nein Nein Nein Nein Nein Nein	42,90 18,69 24,84 17,21 18,58 17,25	102,6 104,9 104,9 104,9	3,01 3,01 3,01 3,01	63,06 77,11 74,71 79,57 78,74 79,72	3,84 2,91 5,10 4,63	4,80 4,80 4,80 4,80	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	66,08 85,75 82,42 89,47 88,18	0,00 1,17 0,64 1,23 1,15	
	WEA 14 (171) WEA 15 (172) WEA 18 (184)	2.290 1.812 2.984	2.300 1.824 2.992	61,2 38,2 53,6	Ja Nein Nein	20,64 22,43 15,70		3,01 3,01	79,72 78,23 76,22 80,52	4,37 3,47	3,89	0,00	0,00	89,71 86,49 84,49 91,00	1,14 0,98 1,00 1,20	

Summe 45,27

Summe

Schall-Immissionsort: IP C Wirfuserbach, Wirfus WEA

Nr. WEA 01 (604) WEA 02 (605) Fortsetzung au	[m] 868 503	[m] 884 526	Mittlere Höhe [m] 33,4 43,6	Sichtbar Nein Ja	Beurteilungspegel [dB(A)] 32,60 40,69	LwA,ref [dB(A)] 106,0 106,0	[dB] 3,00	[dB] 69,93	[dB] 1,68	[dB] 4,80	[dB] 0.00	Amisc [dB] 0,00 0,00	A [dB] 76,41 68,30	-,
---	-------------------	-------------------	--------------------------------------	------------------------	--	--------------------------------------	--------------	---------------	--------------	--------------	--------------	-------------------------------	-----------------------------	----

Wirfus Gemeinde

Beschreibung: Anhang 3

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:01 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmi Gehört zur Verfügung

01.07.2005 11:25/2.4.0.67

19 050 0005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Alternative 1, Vollleistung

Kreisverwaltung Cochem-Z

											15 17	PICVAL	MOITIN	na Coc
Fortsetzung v	on voriger	Seite				2		Section Section			IXI	310461	vallu	ng Coc
WEA	-													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	D-	A -1"			Ut-			
The second secon	[m]	[m]	[m]		[dB(A)]		- The State of the	Adiv				Amisc	Α	Cmet
WEA 03 (603)	404	430		Ja		[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 04 (608)	631	649	31,1	Nein	,			63,68		2,22		0,00	66,71	0.00
WEA 09 (166)	2.344	2.353	26,1	Nein	00,72			67,25		4,80	0,00	0,00	73,28	0.00
WEA 10 (167)	1.882	1.895	52,5	Nein	.0,02			78,43	,	4,80		0,00	87,70	1.29
WEA 11 (168)	2.993	3.001	29,6	Nein	,00			76,55		4,80		0,00	84,95	0.91
WEA 12 (169)	2.727	2.737	38,5	Nein	15,55	104,9			5,70	4,80	0,00	0,00	91,05	1.31
WEA 13 (170)	3.118	3.126	47,0	Nein	16,92			79,75	5,20	4,80	0,00	0,00	89,75	1.24
WEA 14 (171)		2.699	57,5		15,22	105,1		80,90	5,94	4,80	0,00		91,64	1.25
WEA 15 (172)	2.155	2.166	39,3	Nein	17,42	105,1			5,13	4,80	0,00		89,55	1.13
WEA 18 (184)	3.386	3.393		Nein	20,13	104,9			4,11	4,80	0.00		86.63	1,16
30 (101)	0.000	3.393	49,6	Nein	13,75	104,9	3,01	81,61	6,45	4,80	0,00		92,86	1,30
Summe 45,	40									M (5)	_,	2,00	02,00	1,00

Schall-Immissionsort: IP D Villa Margaretha, Wirfus

ı	WEA														
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	۸ مان	A 4					
ı		[m]	[m]	[m]				Section Section	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	WEA 01 (604)	845	863	ATT	Maria	[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	WEA 02 (605)	345	100000000000000000000000000000000000000	30,5	Nein	32,85	106,0	3,00	69,72	1.64	4,80		0.00		
			381	35,3	Ja	44,14			62,61		1,50				0,00
	WEA 03 (603)		517	38,2	Ja	40,54			65,27					64,84	
ŀ	WEA 04 (608)	910	924	33,6	Nein	32,13				-,	2,20			68,45	0,00
ı	WEA 09 (166)	2.712	2.720	28,7					70,32		4,80	0,00	0,00	76.87	0.00
ľ	WEA 10 (167)		2.270		Nein	14,56	102,6	3,01	79,69	5,17	4.80	0.00		89.66	1.39
ı	WEA 11 (168)			55,9	Ja	20,43	104.9	3.01	78,12					86,39	
ı			3.362	31,6	Nein	13,80			81,53	.,		-,			1,09
ı	WEA 12 (169)		3.090	38,3	Nein	15,11				100		-,		92,72	1,39
ı	WEA 13 (170)	3.497	3.504	50,3	Ja	197. 200 Million Late			80,80	5,87	4,80	0,00	0,00	91,47	1.33
ı	WEA 14 (171)	3.068	3.077			13,92			81,89	6,66	4,31	0.00	0.00	92,86	1.33
ı	WEA 15 (172)	2.526		61,0		16,14	105,1	3,01	80,76	5,85	4 12	0.00		90.73	1.24
ı			2.536	42,1	Nein	17,93	104,9			4,82		0.00			
ı	WEA 18 (184)	3.764	3.771	53,0	Ja	12,53	104,9	Carlotte Control	A District Control					88,70	1,28
ı	_					,50	104,9	3,01	82,53	7,17	4,32	0,00	0,00	94,02	1,37

Summe 46,14

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

	WEA															
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichthan	Beurteilungspegel	146	_								
		[m]	[m]	[m]	Cicitada		VILLEY BURNEY		Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
	WEA 01 (604)	1.583	1.587			[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	WEA 02 (605)			69,9	Ja	27,02	106,0	3,01	75.01	3.02	3,29					
			1.094	69,7	Ja	32,48			71,78		2,60			,	-,	
ı	WEA 03 (603)		1.178	67,0	Ja	31,30			72,42	,				76,45	-,	è
ı	WEA 04 (608)	1.457	1.461	63.7	Ja	28,09				_,_	2,84			77,50	0,21	
١	WEA 09 (166)	2.635	2.639	45,1	Ja	15.58			74,29	,	3,30	0,00	0,00	80,36	0,56	
ı	WEA 10 (167)	2.292	2.298	63,0					79,43		4,21	0,00	0,00	88,66	1.37	
ı	WEA 11 (168)	3.211	3.216		Ja	20,36	104,9	3,01	78,23	4,37	3,86	0,00	0.00	86,45	1.10	
ı	WEA 12 (169)	2.906	We 200 and 100	48,8	Ja	15,01	104,9	3,01	81,15	6,11	4.28	0.00		91,54	1,36	
ı			2.911	54,0	Ja	16,64	104.9	3.01	80,28			0.00				
ı	WEA 13 (170)	3.586	3.590	56,3	Ja	13.57			82,10	S				89,98	1,29	
ı	WEA 14 (171)	3.190	3.195	65,4	Ja	15,58						-,		93,19	1,35	
ı	WEA 15 (172)	2.487	2.492	55,3	Ja	18.94			81,09	6,07	00.000	0,00	0,00	91,26	1,27	
ı	WEA 18 (184)	3.880	3.883	57,5					78,93	4,73	4,04	0,00	0,00	87,70	1.27	
ı	, , ,		3.000	57,5	Ja	12,07	104,9	3,01	82,78	7,38	4,29	0,00	0.00	94,46	1.39	
ш	_											0.7			.,	

Summe 36,67

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus

WEA														
Nr.	Abstand [m]	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
WEA 01 (604)		[m] 1.783	[m] 67.2	Ja	[dB(A)]			[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02 (605)		1.315	66,2	Ja	25,27 29,67	106,0 106,0	3,01	76,02	3,39	3,51	0,00		82,92	
WEA 03 (603) WEA 04 (608)		1.339	60,9	Ja	29,27	106,0	3,01		2,54				78,94 79,31	-,
WEA 09 (166)		1.529 2.397	59,2 41,9	Ja Ja	27,32			74,69	2,91	3,47	0,00	0,00	81,06	-,
WEA 10 (167)	2.094	2.100	58,2	Ja	16,96 21,61			78,59 77,44				-,	87,35	
Fortsetzung auf	folgender	Seite			- 75 ;	104,0	0,01	11,44	3,33	3,00	0,00	0,00	85,29	1,02

Wirfus Gemeinde Anhang 3

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

05.07.2005 10:01 / 3

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Genehmig Gehört zur Verfügung von

01.07.2005 11:25/2.4.0.67

1 2. SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A3 Gesamtbelastung Alternative 1, Vollleistung

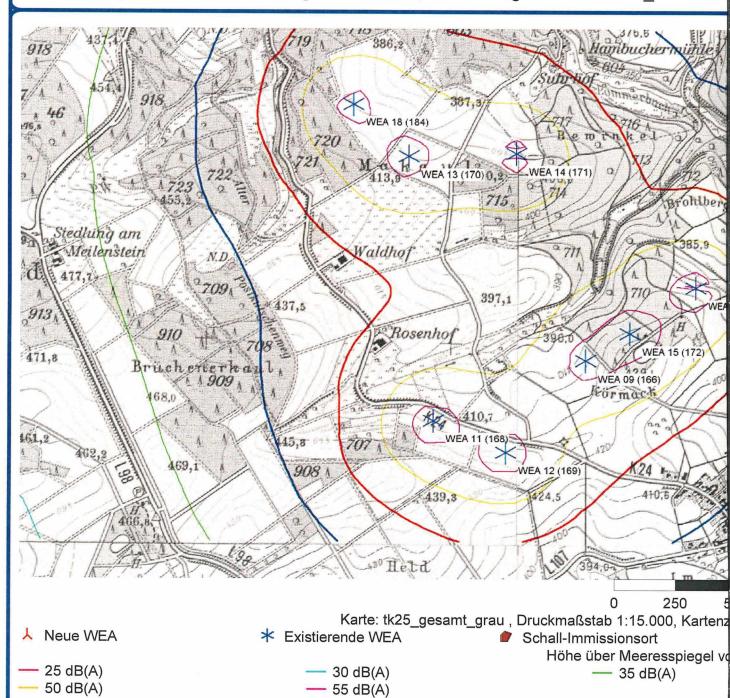
Kreisverwaltung Cochem-Ze

WEA 11 (168) WEA 12 (169)	Abstand [m] 2.942	Schallweg [m]	[m] 44,2	Ja	Beurteilungspegel [dB(A)] 16,34	[dB(A)] 104,9	[dB] 3,01			[dB]	[dB]	Amisc [dB]	A [dB] 90,27	Cmet [dB] 1,30	
WEA 13 (170) WEA 14 (171) WEA 15 (172) WEA 18 (184)	3.386 3.007 2.258	3.391 3.012 2.264 3.690	50,2 50,4 57,9 51,9 50,7	Ja Ja Ja Ja	18,11 14,46 16,44 20,30 12,87	105,1 105,1 104,9	3,01 3,01 3,01	79,42 81,61 80,58 78,10 82,34	5,01 6,44 5,72 4,30	4,15 4,29 4,14 4,01	0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	88,58 92,34 90,44 86,41 93,68	1,22 1,31 1,23 1,19	

Projekt:

Beschreibung:

Wirfus Gemeinde


Anhang 3

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G WEA im Vollleistungsbetrieb.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsc

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A3 Gesamtbelastung Alternative 1, Vollleistung Datei: TK25_GESAMT

Ausdruck/Seite

01.07.2005 11:30 / 1

Lizensierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

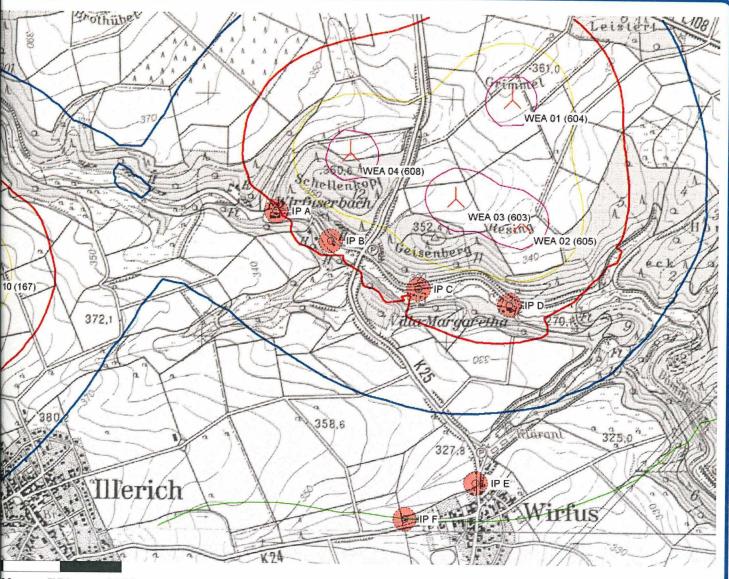
Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

Genehmig Gehört zur Verfügung vor

1 2. SEP. 2005

Berechnet:


01.07.2005 11:25/2.4.0.67

Kreisverwaltung Cochem

GRAU.BMI

einlichkeit von 90%.

0 innerhalb der Vorrangfläche Wirfus. Alle

00 750 1000m

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

n aktivem Höhenlinien-Objekt

- 40 dB(A)

-- 45 dB(A)

05.07.2005 10:02 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück

+49 541 6687 259

Genehmig 04.07.2005 22:34/2.4.0.67 Gehört zur Verfügung von

DECIBEL - Hauptergebnis

Wirfus Gemeinde

Berechnung: A4 Zusatzbelastung Alternative 1, WEA02 reduziert

WEA02 schallreduziert.

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus.

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

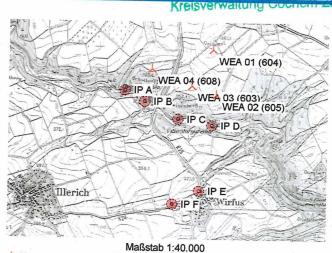
Berechnete Immissionswerte als obere

1 2, SEP. 2005

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Anhang 4


von 90%.

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Schall-Immissionsort

WEA

GK (Bessel) Zo Ost N	ne: 2 lord	Z Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.	Höhe		Schall Kreis- Quelle		LwA.ref	Einzel-	Oktav-
WEA 01 (604) 2.586.242 5.56 WEA 02 (605) 2.586.293 5.56 WEA 03 (603) 2.586.022 5.56 WEA 04 (608) 2.585.581 5.56	54.996 3 54.494 3 54.585 3 54.764 3	343 GAMESA G80/200 340 GAMESA G80/200 343 GAMESA G80/200	Ja Ja	GAMESA GAMESA	G80/2000 ENP G80/2000 ENP G80/2000 ENP G80/2000 ENP	2.000	[m] 80,0 80,0 80,0 80,0	[m] 100,0 100,0 100,0 100,0	[m] 40,0 40,0 40,0	70,0 USER 70,0 USER	leistungsoptimiert inkl. Zuschläge schallreduziert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	[dB(A)] 106,0 104,5 106.0	Nein Nein Nein Nein	Nein Nein Nein Nein Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immission Nr. Name	e	GK (Besse Ost	Nord	Z [m]	Anforder Schall [dB(A)]	rungen Abstand [m]	Beurteilungspegel Von WEA [dB(A)]			füllt? Gesamt
IP B Wirfu IP C Wirfu IP D Villa I IP E Haup	straße 23, Wirfus	2.585.285 2.585.508 2.585.879 2.586.254 2.586.135 2.585.847	5.564.397 5.564.208 5.564.151 5.563.416	294 285 276 340	45,4 45,4 45,4 40,4	300 300 300 300 600 600	43,9 45,0 44,9 45,2	Ja Ja Ja Ja Ja	Ja Ja Ja Ja Ja	Ja Ja Ja Ja Ja

Abstände (m)

14	-	
V		А

Schall-Immissionsort	MEA 02 (602)	MEA 04 (000)		
Schall-Immissionsort	WEA 03 (603)	VVEA 04 (608)	WEA 01 (604)	WEA 02 (605)
IPA	740	387	1071	1008
IP B	547	374	947	791
IP C	404	631	868	503
IP D	492	910	845	345
IP.E	1174	1457	1583	1089
IP F	1335			
IF.F	1335	1526	1779	1311

Wirfus Gemeinde

Anhang 4

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus.

WEA02 schallreduziert.

Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

05.07.2005 10:02 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmigt Gehört zur Verfügung vom

04.07.2005 22:34/2.4.0.67 SEP 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A4 Zusatzbelastung Alternative 1, WEA02 reduziert

Kreisverwaltung Cochem-Zell

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA.ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar: die Dämpfung aufgrund des Bodeneffekts

Amisc:

die Dämpfung aufgrund von Abschirmung die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus

ı	WEA				
1	Nr.	Abstand	Schallweg	Mittlere Höhe	Sic
ı	MEA 01 (604)	[m]	[m]	[m]	

ı			Containweg	Milliere Horie	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abor	Amisc	^	0	
ı		[m]	[m]	[m]		[dB(A)]							Amisc	A	Cmet	
ı	WEA 01 (604)	1.071	1,000				[dB(A)]	[aB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı			1.082	37,4	Nein	30.43	106,0	3 01	71 69	2 06	4 00	0.00				
ı	WEA 02 (605)	1.008	1.017	39,2	lo		100,0	0,01	11,00	2,00	4,00	0,00	0,00	78,54	0,04	
	WEA 03 (603)	740			Ja	30,96	104,5	3,01	71,15	1.93	3.47	0.00	0.00	76 55	0.00	
		740	752	38,1	Ja	36.02	106.0	3 00	60 50	4 40	0.04	0,00	0,00			
ı	WEA 04 (608)	387	410	20.0		,	106,0	3,00	00,52	1,43	3,04	0,00	0,00	72.99	0.00	
	(000)	007	410	29,0	Ja	42,66	106,0	2.98	63 26	0.78	2 20	0.00	0.00	66.22	-,	
ı							,	-,00	00,20	0,70	2,23	0,00	0,00	66,33	0,00	
	Cumma 40	0.4														

45,03

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

п	***															
ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	De	۸ شاه ۱							
ı		lmi	[m]	[m]		[dB(A)]			0.00 (800900)	Aatm			Amisc	Α	Cmet	
ı	WEA 01 (604)	•	960	37.0	Nein	31,73	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	WEA 02 (605)		803	35,4	Ja	33,61	106,0		0.00				-,	77,27	0,00	
ı	WEA 03 (603)		565	35.8	Ja	39.31	104,5 106,0		and the second second second	.,			-,	73,89	0,00	
	WEA 04 (608)	374	401	28,7	Ja	42.90					2,58	0,00	0,00	69,69	0,00	
	Summa 45	00		77		12,00	106,0	2,50	03,06	0,76	2,26	0,00	0,00	66,08	0,00	
	Summe 45	03														

Schall-Immissionsort: IP C Wirfuserbach, Wirfus WEA

WEA 01 (604) WEA 02 (605) WEA 03 (603) WEA 04 (608)	631	[m]	Mittlere Höhe [m] 34,0 43,6 31,4 31,1	Sichtbar Nein Ja Ja Nein	Beurteilungspegel [dB(A)] 32,59 39,19 42,27 35,72	LwA,ref [dB(A)] 106,0 104,5 106,0 106,0	[dB] 3,00 2,99 2,99	65,42 63,68	1,00 0,82	[dB] 4,80 1,89 2,22	[dB] 0,00 0,00 0,00	0,00	A [dB] 76,41 68,30 66,71 73,28	0,00	
Summe 44	.87														

Schall-Immissionsort: IP D Villa Margaretha, Wirfus WEA

Nr.		Schallweg		Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	۸	Cmet
WEA 01 (604)	[m] 845	[m]	[m]		[dB(A)]			[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02 (605)	345	863 381	30,9 35.3	Nein	32,84	106,0	3,00							0,00
WEA 03 (603)	492	517	38.2	Ja Ja	42,63 40,54	104,5			(- (- (- (- (- (- (- (- (- (-					-,
WEA 04 (608)	910	924	33.6	Nein	32.13	106,0 106,0			-,			-,	,	-,
			•		02,10	100,0	3,01	10,32	1,76	4,80	0,00	0,00	76,87	0,00

Wirfus Gemeinde Anhang 4

Berechnung der Schallimmissionen durch 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus.

WEA02 schallreduziert.

Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:02 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Genehmigt Gehört zur Verfügung vom

04.07.2005 22:34/2.4.0.67

1 2. SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A4 Zusatzbelastung Alternative 1, WEA02 reduziert

Kreisverwaltung Cochem-Zell

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

V	V	EΑ

WEA 01 (604) WEA 02 (605) WEA 03 (603) WEA 04 (608)	1.583 1.089 1.174	Schallweg [m] 1.588 1.094 1.178 1.461	Mittlere Höhe [m] 70,5 69,7 66,9 63,4		Beurteilungspegel [dB(A)] 27,03 30,98 31,29 28,08	[dB(A)] 106,0 104,5 106,0	[dB] 3,01 3,01 3,01	[dB] 75,01 71,78 72,42	[dB] 3,02 2,08 2,24	[dB] 3,27 2,60 2.84	[dB] 0,00 0,00 0.00	0,00 0,00	[dB] 81,30 76,46 77,50	0,21	
Summo 25	74	1.401	03,4	Ja	28,08	106,0	3,01	74,29	2,77	3,31	0,00	A	80,37	0,56	

Summe 35,74

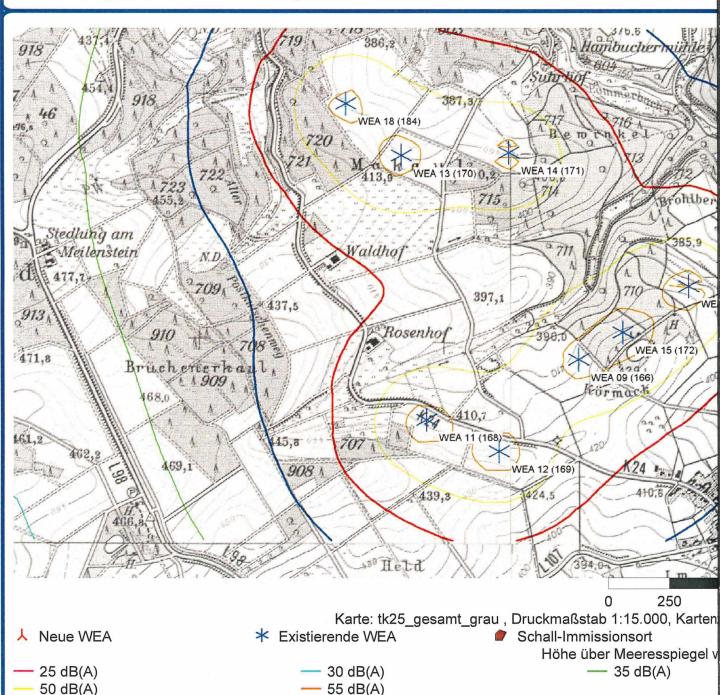
Schall-Immissionsort: IP F Illericher Str. 22, Wirfus

w	
	-

Summe 33,76 Projekt:

Beschreibung:

Wirfus Gemeinde


Anhang 5

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G schallreduziert.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsc

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A5 Gesamtbelastung Alternative 1, WEA02 reduziert Datei: TK25_GE

Ausdruck/Seite

30.06.2005 18:04 / 1

Lizensierter Anwender:

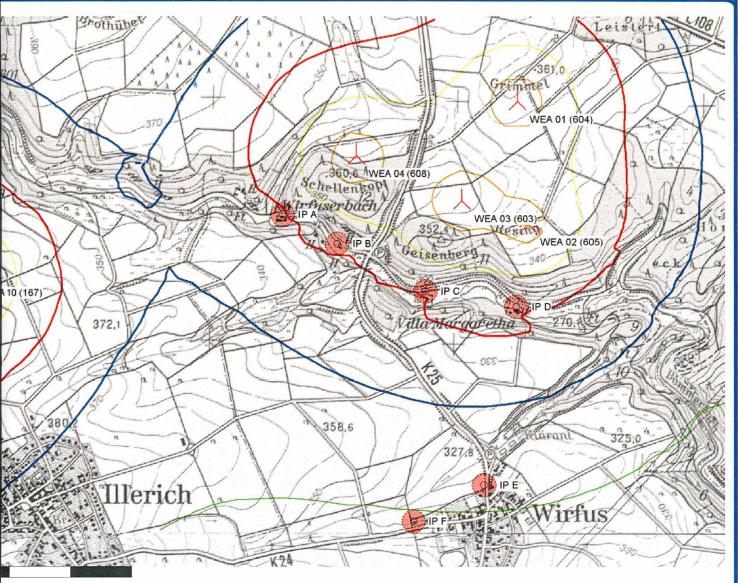
ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Genehmig Gehört zur Verfügung Ven

Berechnet:

30.06.2005 17:59/2.4.0.67


1 2, SEP. 2005

Kreisverwaltung Cochem-Zell

SAMT_GRAU.BMI

heinlichkeit von 90%.

80 innerhalb der Vorrangfläche Wirfus. WEA02

500 750

zentrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

on aktivem Höhenlinien-Objekt

- 40 dB(A)

45 dB(A)

Wirfus Gemeinde

Anhang 5

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. WEA02 schallreduziert. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

WindPRO version 2.4.0.67 Dez 2004

Ausdruck/Seite 05.07.2005 10:03 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

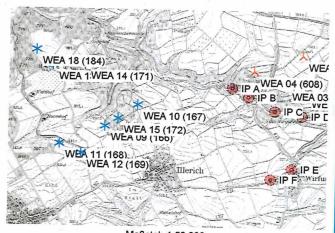
Genehmigt Gehört zur Verfügung vom 30.06.2005 17:59/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: A5 Gesamtbelastung Alternative 1, WEA02 reduziert

Kreisverwaltung Cochem-Zell

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA Schall-Immissionsort

Maßstab 1:50.000 * Existierende WEA

WEA

	GK (Besse Ost	Nord	[m]	Beschreibung			Тур	Leistung			Kreis- radius	Kreis- Quelle	lwerte Name	LwA,ref	Einzel- töne	Oktav- Bänder
WEA 03 (603) WEA 04 (608) WEA 09 (166) WEA 10 (167) WEA 11 (168) WEA 12 (169) WEA 13 (170) WEA 14 (171) WEA 15 (172)	2.586.293 2.586.022 2.585.581 2.583.551 2.583.997 2.582.934 2.583.232 2.582.811 2.583.251 2.583.730	5.564.494 5.564.585 5.564.764 5.563.934 5.564.243 5.563.676 5.563.552 5.564.762 5.564.780 5.564.048	343 340 343 414 404 417 426 398 398 423	GAMESA G80/2000 GAMESA G80/2000 GAMESA G80/2000 GAMESA G80/2000 ENERCON E-40/6 ENERCON E-66-18 ENERCON E-66-18 ENERCON E-66-18 REPOWER MD 77 E ERPOWER MD 77 E ENERCON E-66-18 ENERCON E-66-18	Ja Ja Ja Ja Ja Ja Ja Ja Ja	GAMESA GAMESA GAMESA ENERCON ENERCON ENERCON ENERCON REPOWER REPOWER ENERCON	E-66/18.70 ENP	2.000 600 1.800 1.800 1.800 1.500 1.500 1.800	70,0 70,0 77,0 77,0 70,0	[m] 100,0 100,0 100,0 100,0 78,0 98,0 98,0 111,5 111,5 86,0	[m] 40,0 40,0 40,0 40,0	70,0 USER 70,0 USER USER USER USER USER USER USER USER	schallreduziert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	104,5 106,0 106,0 102,6 104,9 104,9 105,1	Nein Nein Nein Nein Nein Nein Nein Nein	Nein Nein Nein Nein Nein
Darask							_ 00/10./0 LIN	1.000	70,0	114,0		USER	leistungsoptimiert inkl. Zuschläge	104,9		Nein

Berechnungsergebnisse

Beurteilungspegel

Schall Nr.	-Immissionsort Name	GK (Besse Ost	l) Zone: 2 Nord	Z	Anforder Schall	ungen Abstand	Beurteilungspegel Von WEA		rungen er	füllt? Gesamt
	IP A Wirfuserbach 1, Wirfus IP B Wirfuserbach 2, Wirfus IP C Wirfuserbach, Wirfus IP D Villa Margaretha, Wirfus IP E Haupstraße 23, Wirfus IP F Illericher Str. 22, Wirfus	2.585.285 2.585.508 2.585.879 2.586.254 2.586.135 2.585.847	5.564.397 5.564.208 5.564.151 5.563.416	294 285 276 340	45,4 45,4 45,4 40,4	[m] 300 300 300 300 600	[dB(A)] 44,2 45,2 44,9	Ja Ja Ja Ja Ja Ja	Ja Ja Ja Ja Ja Ja Ja	Ja Ja Ja Ja Ja Ja

Abstände (m)

Cahal	I I !!	
Schai	l-Immissi	nnenr

		ı-ımmı:	ssions	ort		
WEA		IP A	IP B	IP C	IP D	IP F
WEA 01 (604)	1583	1071	947	868	845	1779
WEA 02 (605)	1089	1008	791	503		1311
WEA 03 (603)	1174	740	547	404		1335
WEA 04 (608)	1457	387	374	631		1526
WEA 09 (166)	2635	1829	2011	2344	2712	2392
WEA 10 (167)	2292	1317	1519	1882	2259	2094
WEA 11 (168)	3211	2496	2673	2993	3354	2942
WEA 12 (169)	2906	2268	2428	2727	3081	2631
WEA 13 (170)	3586	2487	2722	3118	3497	3386
WEA 14 (171)	3190	2052	2290	2690	3068	3007

Fortsetzung auf folgender Seite.

Wirfus Gemeinde

Anhang 5

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. WEA02 schallreduziert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

WindPRO version 2.4.0.67 Dez 2004

05.07.2005 10:03 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

Genehmigt Gehört zur Verfügung vom

30.06.2005 17:59/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: A5 Gesamtbelastung Alternative 1, WEA02 reduziert

Kreisverwaltung Cochem-Zell

.. Fortsetzung von voriger Seite

Wirfus Gemeinde

Anhang 5

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. WEA02 schallreduziert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

05.07.2005 10:04 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

30.06.2005 17:59/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: A5 Gesamtbelastung Alternative 1, WEA02 reduziert

Annahmen

Gehört zur Verfügung von Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega) 1 2. SEP. 2005

LWA,ref:

Schalleistungspegel WKA

Kreisverwaltung Cochem-Zell

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv: Aatm: die Dämpfung aufgrund geometrischer Ausbreitung

Agr:

die Dämpfung aufgrund von Luftabsorption die Dämpfung aufgrund des Bodeneffekts

Abar: Amisc: die Dämpfung aufgrund von Abschirmung die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus WEA

ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	Luch rof	р.								
ı		Litti	[m]	[m]					Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı	WEA 01 (604)	1.071	1.082		Nein	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	WEA 02 (605)	1.008	1.017	0,,0		30,43	106,0	3,01	71,68	2.06	4,80	0.00	0.00		0.04	
ı	WEA 03 (603)		2007020 5000	39,2	Ja	30,96	104.5	3.01	71,15		3,47			,		
ı			752	38,1	Ja	36,02			68,52					76,54	-,	
۱	WEA 04 (608)		410	29,0	Ja	42,66					3,04	-,		72,99		
١	WEA 09 (166)	1.829	1.838	28,5	Ja	20.47			63,26				0,00	66,33	0.00	
	WEA 10 (167)	1.317	1.331	58,3					76,29		4,27	0,00	0.00	84,05	1.09	
	WEA 11 (168)	2.496	2.505		Ja	28,16	104,9	3,01	73,49	2,53	3.29	0.00		79.31	0.44	
	WEA 12 (169)			30,5	Nein	18,20	104,9	3.01	78 98	4,76					100 4 10 10	
ı		2.268	2.278	33,6	Nein	19.54	104,9							88,54	1,17	
ı	WEA 13 (170)	2.487	2.495	53,5	Ja	19.30				,			0,00	87,28	1,09	
ı	WEA 14 (171)	2.052	2.062	64,7	Ja				78,94	4,74		0,00	0,00	87,75	1.06	
ı	WEA 15 (172)	1.624	1.636			22,32	105,1		77,29	3,92	3,72	0.00	0.00	84,93	0.86	
1	WEA 18 (184)	2.743		43,4	Ja	24,76	104,9	3,01	75,28	3,11				82,27	-,	
ı	112 (104)	2.145	2.751	55,0	Nein	16,96	104,9		79.79		2 12020	5.55			0,88	
	Summe 44	20					.,,•	5,51	. 0,73	5,25	4,00	0,00	0,00	89,82	1,13	

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

AAEW															
Nr.	Abstand [m]	Schallweg [m]	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
WEA 01 (604) WEA 02 (605)	947	960	[m] 37,0	Nein	[dB(A)] 31,73	[dB(A)] 106,0	[dB] 3.01	[dB] 70,65	[dB]	[dB] 4,80	[dB]	[dB]	[dB]	[dB]	
WEA 03 (603)	547	803 565	35,1 36,6	Ja Ja	33,60 39,36	104,5	3,00	69,10 66,04	1,53	3,28	0,00	0,00	,	0,00 0,00	
WEA 04 (608) WEA 09 (166)	374 2.011	401 2.020	28,7 23,5	Ja Nein	42,90 18.69	106,0	2,98	63,06	0,76		0,00		69,64	0,00	
WEA 10 (167) WEA 11 (168)	1.519 2.673	1.533 2.682	53,2	Nein	24,84	104,9	3,01	77,11 74,71					85,75 82,42	1,17 0.64	
WEA 12 (169) WEA 13 (170)	2.428 2.722	2.438	25,8 31,0	Nein Nein	17,21 18,58			79,57 78,74	5,10 4,63		0,00	0,00	89,47 88,18	1,23	
WEA 14 (171)	2.290	2.730 2.300	49,4 61,2	Nein Ja	17,25 20,64	105,1 105,1	3,01	79,72 78,23	5,19	4,80	0,00	0,00	89,71	1,15 1,14	
WEA 15 (172) WEA 18 (184)	1.812 2.984	1.824 2.992	38,2 53,5	Nein Nein	22,43 15,70	104,9	3,01	76,22	4,37 3,47	4,80		0,00	86,49 84,49	0,98 1,00	
•			33,0	.40111	13,70	104,9	3,01	80,52	5,68	4,80	0,00	0,00	91,00	1,20	

Summe 45,16

Schall-Immissionsort: IP C Wirfuserbach, Wirfus WEA

Nr.	/	Abstand	Schallweg	Mittlere Höhe	Sichthan	Beurteilungspegel	1	_		4					
		[m]	[m]	[m]	Cicitbai						Agr	Abar	Amisc	Α	Cmet
WEA 0	1 (604)	868	884	34.0	NI=:-	[dB(A)]			[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 0	2 (605)	503	526		Nein	32,59	106,0	3,00	69,93	1,68	4,80	0.00	0.00	76.41	
				43,5	Ja	39,19	104,5	2,99	65,42	1,00	1.89	0.00	0.00	68.31	-,
Fortsetz	ung auf	folgender	Seite									-,00	5,00	00,01	0,00

Wirfus Gemeinde

Anhang 5

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus. WEA02 schallreduziert. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:04 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmigt Gehört zur Verfügung vom 30.06.2005 17:59/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: A5 Gesamtbelastung Alternative 1, WEA02 reduziert

Kreisverwaltung Cochem-Zell

Ortocizung v	on vonger	Selle												
WEA											· 101			
Nr.		Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abor	Amisc		0
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]						Α	Cmet
WEA 03 (603)	404	430		Ja				[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 04 (608)	631	649	0.,.		,			63,68		2,22	0,00	0,00	66,71	0.00
WEA 09 (166)			0.,0		,	106,0	3,00	67,25	1.23	4.80	0.00	0.00	73,28	0.00
		2.353	25,7	Nein	16,62			78,43	N. 100 C.		0.00		87.70	
WEA 10 (167)		1.895	52,3	Nein	22,05			76,55						1,29
WEA 11 (168)	2.993	3.001	29,4		,				5.45.5		-,		84,95	0,91
WEA 12 (169)		2.737			,	104,9	- A	,		4,80	0,00	0,00	91,05	1.31
WEA 13 (170)			38,4	Nein	16,92	104,9	3,01	79,75	5,20	4.80	0.00	0.00	89,75	1.24
		3.126	47,4	Nein	15,22	105,1	3.01	80,90			0,00		91,64	200
WEA 14 (171)		2.699	57.5	Nein	17,42	105,1	10.000	79,62						1,25
WEA 15 (172)	2.155	2.166	38,9	Nein	20.13				5,13				89,55	1,13
WEA 18 (184)	3.386	3.393				104,9			4,11	4,80	0,00	0,00	86,63	1.16
(104)	0.000	3.393	49,6	Nein	13,75	104,9	3,01	81,61	6,45	4.80	0,00	0.00	92,86	1,30
Summo 44	04										-,	0,00	02,00	1,00

Summe 44.94

Schall-Immissionsort: IP D Villa Margaretha, Wirfus WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Do	Λ di	A -4			2		_
	[m]	[m]	[m]	0.0.1.00	[dB(A)]			Adiv	Aatm	-		Amisc	Α	Cmet
WEA 01 (604)	845	863	30,9	Nein		[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02 (605)		381						69,72		4,80	0,00	0,00	76,16	0.00
WEA 03 (603)			35,3	Ja	42,63	104,5	2,98	62,61	0,72	1,50	0.00	0.00	64,84	0.00
		•	38,2	Ja	40,54	106,0	2,99	65,27	0.98	2.20	0.00		68,45	-,
WEA 04 (608)		924	33,7	Nein	32,13			70,32				-,	76.87	
WEA 09 (166)		2.720	28,8	Nein	14,56			79,69			0.00			0,00
WEA 10 (167)	2.259	2.270	55,6	Ja	20,43			78,12				-,	89,66	.,
WEA 11 (168)	3.354	3.362	31,4	Nein	13.80							V 100 100 100 100 100 100 100 100 100 10	86,39	
WEA 12 (169)	3.081	3.090	38,2	Nein	15,11	104,9	3,01	81,53					92,72	1,39
WEA 13 (170)	3.497	3.504	50,7					80,80			0,00	0,00	91,47	1,33
WEA 14 (171)	3.068	3.077		Ja	13,92			81,89		4,31	0,00	0,00	92,86	1.33
WEA 15 (172)	2.526		61,0	Ja	16,14	105,1	3,01	80,76	5,85	4,12	0.00	0.00	90,73	1.24
WEA 18 (184)		2.536	42,0	Nein	17,93	104,9	3,01	79.08	4,82				88,70	1.28
VVLA 10 (104)	3.764	3.771	53,0	Ja	12,53	104,9	carfron o	82,53			0.00		94,02	
					•		-,	02,00	,,.,	7,02	0,00	0,00	94,02	1,37

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

WEA														
Nr.			Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
MEA 04 (004)	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 01 (604)		1.588	70,6	Ja	27.03	106,0	3.01			3,27				
WEA 02 (605)	1.089	1.094	69.7	Ja	30,98									-,
WEA 03 (603)	1.174	1.178	66,9	Ja	223-000 Br 200-000			71,78	_,	2,60		0,00	76,46	0,07
WEA 04 (608)		1.461			31,29			72,42		2,84	0,00	0,00	77,50	0.21
WEA 09 (166)		200,000	64,0		28,09	106,0	3,01	74,29	2.77	3.29	0.00	0.00	80.36	
		2.639	45,1	Ja	15,58	102.6	3.01	79,43			0.00		88.66	-,
WEA 10 (167)	2.292	2.298	63,2	Ja	20,36			78,23						
WEA 11 (168)	3.211	3.216	48,8	Ja	15,01						,	200	86,45	1,10
WEA 12 (169)	2.906	2.911	54,0			104,9		. ,			0,00	0,00	91,54	1,36
WEA 13 (170)	3.586		Language Commission	Ja	16,64	104,9	3,01	80,28	5,53	4,17	0,00	0.00	89.98	1.29
		3.590	56,5	Ja	13,57	105,1	3.01	82,10	6,82	4 26	0.00	0.00	93.19	1.35
WEA 14 (171)	3.190	3.195	65,4	Ja	15,58			81,09	6,07					
WEA 15 (172)	2.487	2.492	55.4	Ja	18.94			78,93					91,26	1,27
WEA 18 (184)	3.880	3.883	57,7	Ja			100000000000000000000000000000000000000	12- 13- No. 12- 12- 12- 12- 12- 12- 12- 12- 12- 12-	4,73				87,70	1,27
,		0.000	51,1	Ja	12,07	104,9	3,01	82,78	7,38	4,29	0,00	0,00	94,46	1,39

Summe

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus

ı	WEA															
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Agr	Abor	A-min-		0	
ı		[m]	[m]	[m]		[dB(A)]					-		Amisc		Cmet	
ı	WEA 01 (604)						[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	•
ı			1.783	67,8	Ja	25,28	106.0	3.01	76,02	3 39	3 40	0.00	0.00	82.91	0 00	
	WEA 02 (605)	1.311	1.315	66,1	Ja	28,17									-,	
	WEA 03 (603)	1.335		25000			104,5	3,01	73,38	2,50	3,07	0,00	0,00	78,94	0.40	
			1.339	60,9	Ja	29,27	106.0	3.01	73,53	2 54	3 23	0.00	0.00	79.31		
	WEA 04 (608)	1.526	1.529	58,8	Ja	27.31									0,43	
	WEA 09 (166)					The second second	106,0	3,01	74,69	2,91	3,48	0,00	0,00	81.07	0.62	
			2.397	41,9	Ja	16.96	102 6	3.01	78.59	4,55	1 20	0.00	0.00	87.35		
	WEA 10 (167)	2.094	2.100	58,3	Ja		Commence of Commence	www.							., .	
	transfer of the state of the st			30,3	Ja	21,61	104,9	3,01	77,44	3,99	3,85	0.00	0.00	85,28	1.02	
	Fortsetzung auf	folgender	Seite									041602-020	-,	,	.,02	

05.07.2005 10:04 / 3

ENP Erneuerbare Energien-Rrojektentwicklungsgesell. mbH
Katharinenstraße 51
DE-49078 Osnabrück
+49 541 6687 259
Gehört zur Verfügung von

30.06.2005 17:59/2.4.0.67

1 2. SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Anhang 5

von 90%.

Wirfus Gemeinde

Berechnung: A5 Gesamtbelastung Alternative 1, WEA02 reduziert

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 4 WEA Gamesa G80 innerhalb der

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

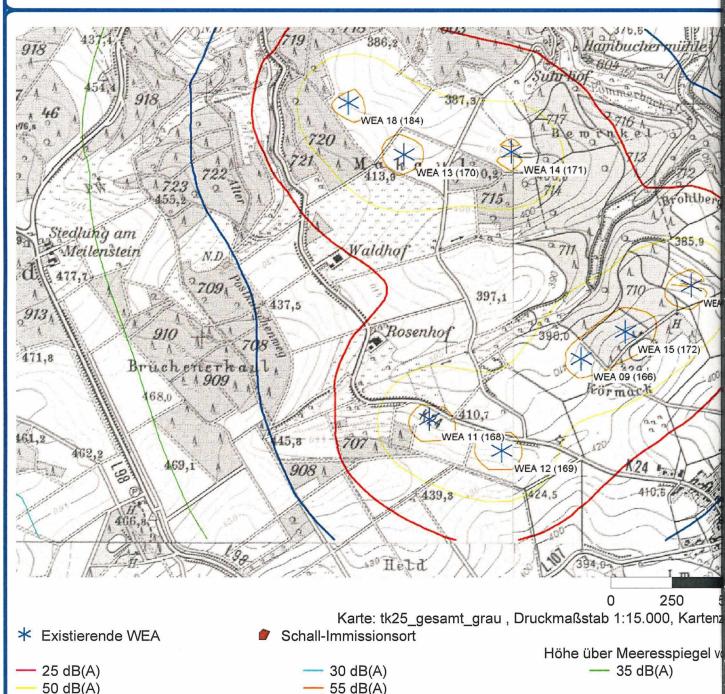
Vorrangfläche Wirfus. WEA02 schallreduziert. Berechnete Immissionswerte als obere

Kreisverwaltung Cochem-Ze

Projekt:

Beschreibung:

Wirfus Gemeinde


Anhang 6

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 2 WEA Vestas V80 im Vollleistungsbetrieb.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsch

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A6 Vorbelastung Alternative 2 Datei: TK25_GESAMT_GRAU.BMI

Ausdruck/Seite

01.07.2005 18:38 / 1

innerhalb der Vorrangfläche Wirfus, alle WEA

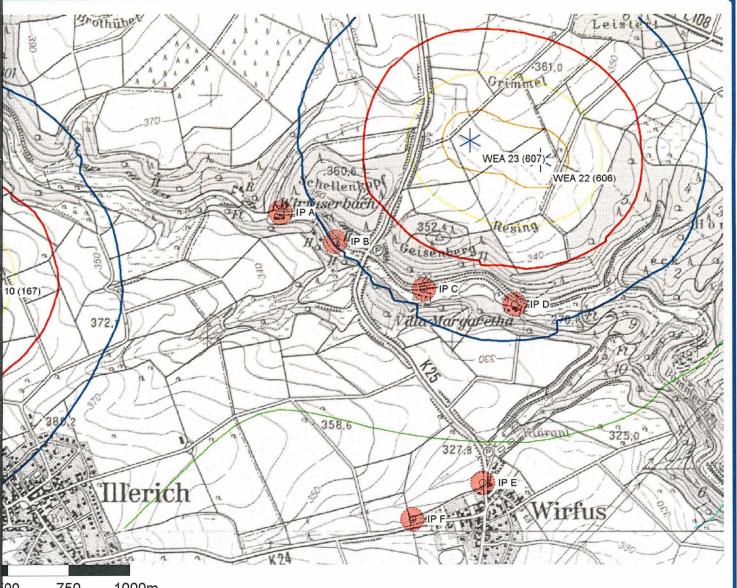
einlichkeit von 90%.

Lizensierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259


Berechnet:

01.07.2005 13:45/2.4.0.67

Genehmigt Gehört zur Verfügung vom

1 2, SEP. 2005

Kreisverwaltung Cochem-Zell

00 750 1000m

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

n aktivem Höhenlinien-Objekt

40 dB(A)

-- 45 dB(A)

Wirfus Gemeinde

Anhang 6

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 2 WEA Vestas V80 innerhalb der Vorrangfläche Wirfus, alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:04 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

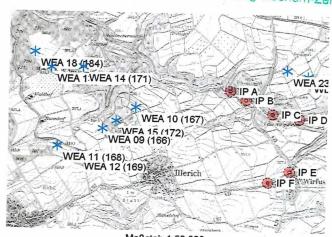
DE-49078 Osnabrück +49 541 6687 259

Genehmigt Berechnet 01.07.2005 13:45/2.4.0.67 Gehört zur Verfügung vom

DECIBEL - Hauptergebnis

Berechnung: A6 Vorbelastung Alternative 2

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

* Existierende WEA

Maßstab 1:50.000 Schall-Immissionsort

WEA

-	GK (Besse Ost	Nord	Z	Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.	Höhe			werte Name	LwA,ref	Einzel-	Oktav-
WEA 10 (16) WEA 11 (16) WEA 12 (16) WEA 13 (17) WEA 14 (17) WEA 15 (172) WEA 18 (184) WEA 22 (606)) 2.583.997) 2.582.934) 2.583.232) 2.583.251) 2.583.251) 2.583.730) 2.582.580) 2.586.350) 2.586.060	5.564.243 5.563.676 5.563.552 5.564.762 5.564.048 5.564.970 5.564.750 5.564.825	404 417 426 398 398 423 400 349 345	ENERCON E-40/6. ENERCON E-66-1. ENERCON E-66-1. ENERCON E-66-1. REpower MD 77 E. REpower MD 77 E. ENERCON E-66-1. ENERCON E-66-1. ENERCON E-66-1. VESTAS V80-2.0M.	. Ja . Ja . Ja . Ja . Ja . Ja	ENERCON ENERCON ENERCON REpower REpower ENERCON ENERCON VESTAS	E-40/6.44 ENP E-66/18.70 ENF E-66/18.70 ENF E-66/18.70 ENF MD 77 ENP MD 77 ENP E-66/18.70 ENF V80-2.0MW ENI V80-2.0MW ENI	1.800 1.800 1.800 1.500 1.500 1.800 1.800 2.000	[m] 44,0 70,0 70,0 70,0 77,0 77,0 70,0 70,0	[m] 78,0 98,0 98,0 98,0 111,5 111,5 86,0 114,0 100,0	70,0	USER USER USER USER USER USER USER USER	leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge	104,9 104,9 105,1 105,1 104,9 104,9 106,6	Nein Nein Nein Nein Nein Nein Nein Nein	Nein

ecnnungsergebnisse

Beurteilungspegel

Schall Nr.	-Immissionsort Name	GK (Besse Ost		_	Anforde		Beurteilungspegel	Anforde	rungen er	füllt?
		OSI	Nord	Ζ,	Schall	Abstand	Von WEA		Abstand	
	IP A Wirfuserbach 1, Wirfus	2 595 205	E EC4 E4E	[m]	[dB(A)]	[m]	[dB(A)]			
	IP B Wirfuserbach 2, Wirfus	2.585.285 2.585.508				300	0,,0	Ja	Ja	Ja
	IP C Wirfuserbach, Wirfus	2.585.879	5.564.397	294	, .	300	0.,0	Ja	Ja	Ja
	IP D Villa Margaretha, Wirfus	2.586.254				300	. 00,0	Ja	Ja	Ja
	IP E Haupstraße 23, Wirfus	2.586.135			, .	300		Ja	Ja	Ja
	IP F Illericher Str. 22, Wirfus	2.585.847			, .	600	00, 1	Ja	Ja	Ja
		2.000.047	3.303.201	340	40,4	600	32,2	Ja	Ja	Ja

Abstände (m)

Schal	 	

WEA	IP E	IP A	IP B	IP C	IP D	IP F
VVEA 09 (166)	2635	1829	2011	2344	2712	2392
WEA 10 (167)	2292	1317	1519	1882	2259	2094
WEA 11 (168)	3211	2496	2673	2993	3354	2942
WEA 12 (169)	2906	2268	2428	2727	3081	2631
WEA 13 (170)	3586	2487	2722	3118	3497	3386
WEA 14 (171)	3190	2052	2290	2690	3068	3007
WEA 15 (172)	2487	1624	1812	2155	2526	2259
WEA 18 (184)	3880	2743	2984	3386	3764	3697
WEA 22 (606)	1351	1090	913	718	606	1572
WEA 23 (607)	1411	835	608	643	701	1572
(001)		000	030	043	101	15/8

Wirfus Gemeinde

Anhang 6

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 2 WEA Vestas V80 innerhalb der Vorrangfläche Wirfus, alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

von 90%.

05.07.2005 10:05 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Berechnet: 01.07.2005 13:45/2.4.0.67 e n e h m i g t

DECIBEL - Detaillierte Ergebnisse

Berechnung: A6 Vorbelastung Alternative 2

1 2. SEP. 2005

Annahmen

Kreisverwaltung Cochem-Zell

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar: die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus WEA

Nr. WEA 09 (166)	[m]	[m]	[m]	Sichtbar	Beurteilungspegel [dB(A)]	LwA,ref [dB(A)]	Dc [dB]	Adiv [dB]	Aatm [dB]	Agr [dB]	Abar [dB]	Amisc	A [dB]	Cmet [dB]
WEA 10 (167)		1.838	28,8	Ja	20,47	102,6	3,01					0.00	84.04	1.09
WEA 11 (168)		1.331	58,6	Ja		104,9	3,01	73,49					79.30	
WEA 12 (169)		2.505 2.278	30,7	Nein	18,20			78,98	4,76				88,54	-, -
WEA 13 (170)		2.495	33,7 53,2	Nein	19,54			78,15		4,80	0,00		87,28	
WEA 14 (171)		2.062	64.7	Ja Ja	19,29		-,	78,94	-1-		-,		87,75	1,06
WEA 15 (172)	1.624	1.636	43,7	Ja	22,32 24,76			77,29	-,		0,00	0,00	84,93	0,86
WEA 18 (184)	2.743	2.751	55.1	Nein	16.96		220 000 00	75,28	-, -, -		-,		82,27	0,88
WEA 22 (606)	1.090	1.100	36,4	Nein	30.82	104,9				1000000	- 1		89,82	1,13
WEA 23 (607)	835	846	32,9	Nein	33,65			71,83	-,	4,80			78,71	0,07
					00,00	106,6	3,00	69,55	1,61	4,80	0,00	0,00	75.95	0.00

Summe

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

WEA															
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Λ dis.	A =4					E	
	[m]	[m]	[m]					Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
WEA 09 (166)		2.020		Nata	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 10 (167)			23,5		. 0,00	102,6	3,01	77,11	3.84	4,80	0.00	0.00	85.75		
		1.533	53,3	Nein	24,84			74,71	200	4,80			82,42	.,	
WEA 11 (168)		2.682	25,8	Nein	17,21			79,57	_,_,						
WEA 12 (169)	2.428	2.438	31,0	Nein	18,58					4,80	,		89,47	1,23	
WEA 13 (170)	2.722	2.730	49,2	Nein				78,74	,,	4,80		0,00	88,18	1,15	
WEA 14 (171)		2.300			17,25	105,1	3,01	79,72	5,19	4,80	0,00	0.00	89.71	1.14	
WEA 15 (172)			61,3	Ja	20,64	105,1	3,01	78,23	4,37	3.89	0.00		86,49		
	1.812	1.824	38,2	Nein	22,43	104.9	3.01	76,22							
WEA 18 (184)	2.984	2.992	53.6	Nein	15,70	104,9	50.		-,		-,		84,49	1,00	
WEA 22 (606)	913	925	36.2	Nein	32,73							0,00	91,00	1,20	
WEA 23 (607)	698	713	34,3			106,6			1,76	4,80	0,00	0,00	76,88	0.00	
()		713	34,3	Nein	35,38	106,6	3,00	68,06	1,36	4,80	0,00	0,00	74.22	0.00	

Schall-Immissionsort: IP C Wirfuserbach, Wirfus

NEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abor	A:		•
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]					Amisc	0.00	Cmet
WEA 09 (166)	2.344	2.353	26.2	Nein	16,62			[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 10 (167)	1.882	1.895	52,5					78,43		4,80	0,00	0,00	87,70	1,29
WEA 11 (168)		3.001		Nein	22,05	104,9	3,01	76,55	3,60	4,80	0,00	0.00	84,95	0.91
WEA 12 (169)			29,7	Nein	15,55	104,9	3,01	80,55	5.70	4.80	0.00	0.00	91.05	1.31
		2.737	38,5	Nein	16,92	104.9	3.01	79,75			0.00		89.75	1.24
WEA 13 (170)		3.126	47,1	Nein	15.22			80,90	-,		0.00			
WEA 14 (171)	2.690	2.699	57.6	Nein	17,42							-1	91,64	1,25
Fortootium a suf		• "	0.,0	140111	17,42	105, 1	3,01	79,62	5,13	4,80	0,00	0,00	89,55	1,13
Fortsetzung auf	тоіgender	Seite								1				

Wirfus Gemeinde

Anhang 6

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 2 WEA Vestas V80 innerhalb der Vorrangfläche Wirfus, alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:05 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

Genehmigt 01.07.2005 13:45/2.4.0.67Gehört zur Verfügung vom

DECIBEL - Detaillierte Ergebnisse

Berechnung: A6 Vorbelastung Alternative 2

WEA	on vonger	Seite						-		N	GISVE	A Medic	ing L	Acher
Nr. WEA 15 (172) WEA 18 (184) WEA 22 (606) WEA 23 (607) Summe 38,	2.155 3.386 718 643	Schallweg [m] 2.166 3.393 736 662	[m] 39,3	Sichtbar Nein Nein Nein Nein	Beurteilungspegel [dB(A)] 20,13 13,75 35,07 36,13	LwA,ref [dB(A)] 104,9 104,9 106,6 106,6	[dB] 3,01 3,01 3,00	81,61 68,33	6,45 1,40	[dB] 4,80 4,80 4,80	[dB] 0,00 0,00 0,00	0,00	A [dB] 86,63 92,86 74,53 73,47	1,30

Schall-Immissionsort: IP D Villa Margaretha, Wirfus

Nr. WEA 09 (166) WEA 10 (167) WEA 11 (168) WEA 12 (169) WEA 13 (170) WEA 14 (171)	[m] 2.712 2.259 3.354 3.081	[m] 2.720 2.270 3.362 3.090 3.504	Mittlere Höhe [m] 29,0 55,9 31,6 38,3 50,4	Sichtbar Nein Ja Nein Nein Ja	Beurteilungspegel [dB(A)] 14,56 20,43 13,80 15,11 13,92	[dB(A)] 102,6 104,9 104,9 104,9	[dB] 3,01 3,01 3,01 3,01	Adiv [dB] 79,69 78,12 81,53 80,80 81,89	[dB] 5,17 4,31 6,39 5,87	3,96 4,80 4,80	[dB] 0,00 0,00 0,00 0,00	0,00 0,00 0,00	A [dB] 89,66 86,39 92,72 91,47		
WEA 15 (172) WEA 18 (184) WEA 22 (606) WEA 23 (607)	2.526 3.764 606 701	3.077 2.536 3.771 629 720	61,0 42,1 53,0 31,1 31,1	Ja Nein Ja Nein Nein	16,14 17,93 12,53 36,63 35,29	104,9 104,9	3,01 3,01 3,00	80,76 79,08 82,53 66,98 68,15	4,82 7,17 1,20	4,80 4,32 4,80	0,00	0,00 0,00 0,00 0,00	92,86 90,73 88,70 94,02 72,97 74,31	1,33 1,24 1,28 1,37 0,00 0.00	
Summe 39.	20											,	,5 .	5,50	

Schall-Immissionsort: IP E Haupstraße 23, Wirfus WEA

WEA 09 (166) WEA 10 (167) WEA 11 (168) WEA 12 (169) WEA 13 (170) WEA 14 (171) WEA 15 (172) WEA 18 (184) WEA 22 (606) WEA 23 (607)	2.635 2.292 3.211 2.906 3.586 3.190 2.487 3.880 1.351 1.411	Schallweg [m] 2.639 2.298 3.216 2.911 3.590 3.195 2.492 3.883 1.355 1.414	Mittlere Höhe [m] 45,1 63,2 48,8 54,0 56,4 65,4 55,3 57,5 68,9 68,3	Sichtbar Ja	Beurteilungspegel [dB(A)] 15,58 20,36 15,01 16,64 13,57 15,58 18,94 12,07 29,90 29,26	[dB(A)] 102,6 104,9 104,9 105,1 105,1 104,9 104,9	[dB] 3,01 3,01 3,01 3,01 3,01 3,01 3,01 3,01	[dB] 79,43 78,23 81,15 80,28 82,10 81,09 78,93 82,78 73,64	4,37 6,11 5,53 6,82 6,07	[dB] 4,21 3,86 4,28 4,17 4,26 4,10 4,04 4,29 3,05	[dB] 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	0,00 0,00 0,00 0,00 0,00 0,00 0,00	A [dB] 88,66 86,45 91,54 89,98 93,19 91,26 87,70 94,46 79,26 79,84	1,36
Summe 33,	42								,		.,	0,00	73,04	0,51

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus

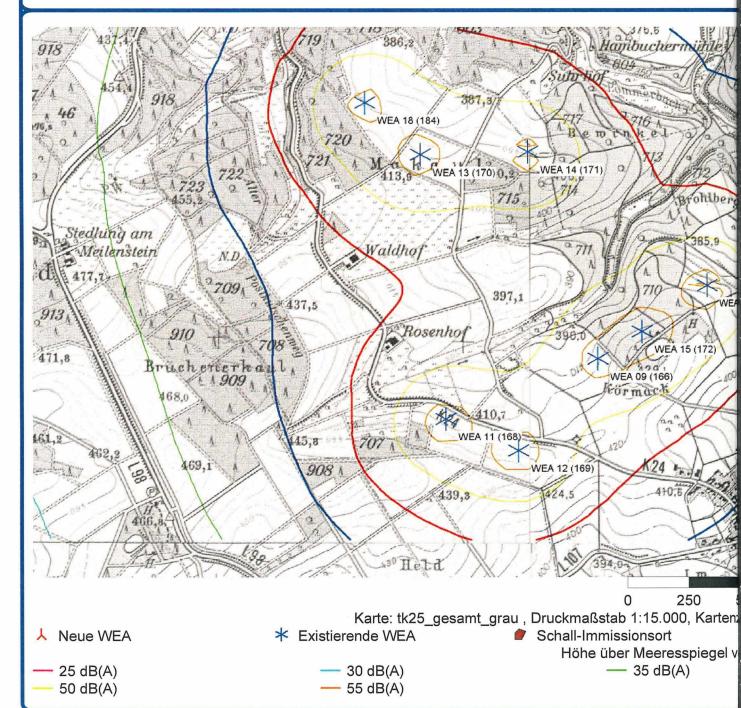
W.														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichthan	Beurteilungspegel									
	[m]	[m]	[m]	Olchibai				Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
WEA 09 (166)		2.397	41,9	Ja	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 10 (167)		2.100	58.3	Ja	16,96 21.61	102,6			,	4,20		0,00		
WEA 11 (168)		2.947	44,2	Ja	16.34	104,9	3,01	77,44		3,85		0,00	85,28	
WEA 12 (169)		2.637	50.2	Ja	18,11			80,39		4,29		0,00	90,27	1.30
WEA 13 (170)		3.391	50,4	Ja	14,46			79,42			0,00	0,00	88,58	1,22
WEA 14 (171)		3.012	58,0	Ja	16.44			81,61				0,00	92,34	1,31
WEA 15 (172)	2.258	2.264	51,9	Ja	20,30			80,58				0,00	90,44	1,23
WEA 18 (184)	3.687	3.690	50,7	Ja	12,87			78,10	,				86,41	1,19
WEA 22 (606)	1.572	1.575	67,0	Ja	27.67			82,34	. ,				93,68	1,35
WEA 23 (607)	1.578	1.582	62,1	Ja	27.50	106,6		74,95	100				81,28	0,66
Summe 32	17				,00	100,0	3,01	74,98	3,00	3,45	0,00	0,00	81,44	0,67

Summe

Projekt:

Beschreibung:

Wirfus Gemeinde


Anhang 7

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 6 WEA innerhalb de Vollleistungsbetrieb.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsch

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A7 Gesamtbelastung Alternative 2, Vollleistung Datei: TK25_GESAMT

Ausdruck/Seite

02.07.2005 09:51 / 1

Lizensierter Anwender:

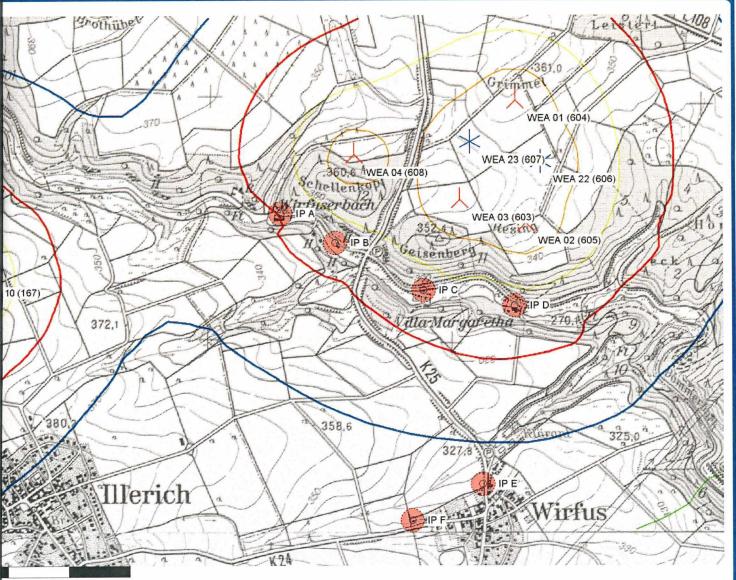
ENP Erneuerbare Energien Projektentwicklungsgesell. mb Katharinenstraße 51 DE-49078 Osnabrück

Gehört zur Verfügung vom

+49 541 6687 259

1 2. SEP. 2005

Berechnet:


02.07.2005 09:50/2.4.0.67

Kreisverwaltung Cochem-Zell

GRAU.BMI

einlichkeit von 90%.

r Vorrangfläche Wirfus. Alle WEA im

1000m 00 750

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

n aktivem Höhenlinien-Objekt

- 40 dB(A)

45 dB(A)

pro@emd.dk

Wirfus Gemeinde

Anhang 7

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 6 WEA innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:05 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmigt

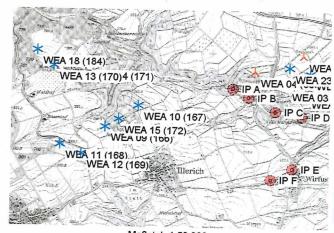
02.07.2005 09:50/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: A7 Gesamtbelastung Alternative 2, Vollleistung

Kreisverwaltung Cochem-Ze

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA Schall-Immissionsort

Maßstab 1:50.000 * Existierende WEA

WEA

	GK (Besse	l) Zone: 2			WEA-T	Vp										
160	Ost	Nord	Z			Hersteller	Typ	Laistuna					Illwerte			
		4		3			136	Leistung	Rotora.	Hone		Kreis- Quel	le Name	LwA.ref	Einzel-	Oktav-
WEA 01 (604	2 595 242	F FC4 000	[m]					[kW]	[m]	[m]	radius [m]					Bänder
WEA 02 (605	2.500.242	5.564.996	359	GAMESA G80/2000 GAMESA G80/2000	.Ja	GAMESA	G80/2000 ENP	2.000	80.0	100.0	40.0	[m] 70,0 USE	P. loietunessetississet state	[dB(A)]		
WEA 03 (603	2.586.022	5.564.494	343	GAMESA G80/2000 GAMESA G80/2000	Ja .	GAMESA	G80/2000 ENP	2.000	80.0	100,0	40.0			106,0		
WEA 04 (608	2 585 581	5.564.764	340	GAMESA G80/2000	.Ja	GAMESA	G80/2000 ENP	2.000	80,0	100.0	40.0	70,0 USE	R leistungsoptimiert inkl. Zuschläge R leistungsoptimiert inkl. Zuschläge			
WEA 09 (166	2.583.551	5 563 934	414	ENERCON E-40/6			G80/2000 ENP	2.000	80,0	100.0	40.0	70.0 USE	R leistungsoptimiert inkl. Zuschläge	106,0	1000	
WEA 10 (167	2.583.997	5 564 243	404	ENERCON E-66-18			E-40/6.44 ENP	600	44,0	78.0		USEF	R leistungsoptimiert inkl. Zuschläge		1000	
WEA 11 (168	2.582.934	5 563 676	417	ENERCON E-66-18			E-66/18.70 ENP	1.800	70,0	98,0		USER	R leistungsoptimiert inkl. Zuschläge	102,6		
WEA 12 (169	2.583.232	5 563 552	426	ENERCON E-66-18		ENERCON	E-66/18.70 ENP	1.800	70,0	98,0		USER	. isistangoopuninen inki. Zuschlage	104,9	Nein	
WEA 13 (170	2.582.811	5.564.762	398	REpower MD 77 E	Ja		E-66/18.70 ENP	1.800	70,0	98,0			R leistungsoptimiert inkl. Zuschläge	104,9	Nein	
VVEA 14 (1/1	2.583.251	5 564 780	308	PEROWAL MD 77 F	1-		MD 77 ENP		77,0	111,5		USEF	leistungsoptimiert inkl. Zuschläge		Nein	Nein
VVEA 15 (1/2	2.583.730	5.564 048	423	ENERCON E CC 10	1-		MD 77 ENP		77,0	111,5		USER	leistungsoptimiert inkl. Zuschläge	105,1 105,1	Nein	Nein
VVEA 10 (184)	2.582.580	5.564.970	400	ENERCON E.CC 10	la					86,0		USER	leistungsoptimiert inkl. Zuschläge	104,9	Nein	Nein
VVEA 22 (606)	2.586.350	5.564.750	349	VESTAS VROL2 OM	la		E-66/18.70 ENP			114,0		USER	leistungsoptimiert inkl. Zuschläge		Nein	Nein
WEA 23 (607)	2.586.060	5.564.825	345	VESTAS V80-2.0M						100,0	70,0	USER	leistungsoptimiert inkl. Zuschläge	104,9 106,6	Nein	Nein
					va	VESTAS	V80-2.0MW ENP	2.000	0,08	100,0	70,0	USER	leistungsoptimiert inkl. Zuschläge	106,6	Nein Nein	Nein
Poroch													o ,	100,0	146111	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort Nr. Name	GK (Besse Ost	l) Zone: 2 Nord	Z	Anforder Schall	Abstand	Von WEA	or interpretation and and	rungen er Abstand	
IP A Wirfuserbach 1, Wirfus IP B Wirfuserbach 2, Wirfus IP C Wirfuserbach, Wirfus IP D Villa Margaretha, Wirfus IP E Haupstraße 23, Wirfus IP F Illericher Str. 22, Wirfus	2.585.285 2.585.508 2.585.879 2.586.254 2.586.135 2.585.847	5.564.397 5.564.208 5.564.151 5.563.416	294 285 276 340	45,4 45,4 45,4 40.4	[m] 300 300 300 300 600 600	[dB(A)] 44,8 45,9 46,2 46,9 38,1 36,3	Ja Nein Nein Nein Ja Ja	Ja Ja Ja Ja Ja	Ja Nein Nein Nein Ja Ja

Abstände (m)

Schall-Immissionsort

WEA			IP B	IP C	IP D	IP F
WEA 01 (604)	1583	1071	947	868	845	1779
WEA 02 (605)	1089	1008	791	503		1311
WEA 03 (603)	1174	740	547	404		1335
WEA 04 (608)	1457	387	374	631		1526
WEA 09 (166)	2635	1829	2011	2344	2712	2392
WEA 10 (167)	2292	1317	1519	1882	2259	2094
WEA 11 (168)	3211	2496	2673	2993	3354	2042
WEA 12 (169)	2906	2268	2428	2727	3081	2631
WEA 13 (170)	3586	2487	2722	3118	3497	3386

Fortsetzung auf folgender Seite.

Wirfus Gemeinde

Anhang 7

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 6 WEA innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

von 90%.

05.07.2005 10:05 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

02.07.2005 09:50/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: A7 Gesamtbelastung Alternative 2, Vollleistung

..Fortsetzung von voriger Seite

Schall-Immissionsort

WFA IPE IPA IPB IPC IPD IPF WEA 14 (171) 3190 2052 2290 2690 3068 3007 WEA 15 (172) 2487 1624 1812 2155 2526 2258 WEA 18 (184) 3880 2743 2984 3386 3764 3687 WEA 22 (606) 1351 1090 913 718 606 1572 WEA 23 (607) 1411 835 698 643 701 1578 Gehört zur Verfügung

1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Wirfus Gemeinde

Anhang 7

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 6 WEA innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

05.07.2005 10:06 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

02.07.2005 09:50/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: A7 Gesamtbelastung Alternative 2, Vollleistung

Annahmen

Gehört zur Verfügung von

Kreisverwaltung Cochem-Ze

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet 1 2, SEP. 2005 (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar:

die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus

WEA														
Nr.	Abstand [m]	Schallweg [m]		Sichtbar	Beurteilungspegel	LwA,ref		Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
WEA 01 (604) WEA 02 (605)	1.071	1.082	[m] 37,3	Nein	[dB(A)] 30,43	[dB(A)] 106,0		[dB] 71,68	[dB] 2.06	[dB]	[dB] 0.00	[dB]	[dB]	[dB]
WEA 03 (603)	1.008 740	1.017 752	39,2 38,1	Ja Ja	32,46 36,02	106,0	3,01	71,15	1,93	3,47	0,00		76,55	0,04 0,00
WEA 04 (608) WEA 09 (166)	387 1.829	410 1.838	29,0 28,8	Ja Ja	42,66	106,0	2,98	68,52 63,26	0,78		0,00	100	72,99 66,33	0,00
WEA 10 (167) WEA 11 (168)	1.317 2.496	1.331	58,6	Ja	20,47 28,17			76,29 73,49	3,49 2,53				84,04 79,30	1,09 0.44
WEA 12 (169) WEA 13 (170)	2.268	2.278	30,7 33,7	Nein Nein	18,20 19,54			78,98 78,15	4,76		0,00	0,00	88,54 87,28	1,17
WEA 14 (171)	2.487 2.052	2.495 2.062	53,2 64,7	Ja Ja	19,29 22,32	105,1 105,1	3,01	78,94	4,74	4,07	0,00	0,00	87,75	1,09 1,06
WEA 15 (172) WEA 18 (184)	1.624 2.743	1.636 2.751	43,7 55,0	Ja Nein	24,76 16,96	104,9	3,01	75,28	San San San San San	3,88	0,00 0,00	0,00		0,86 0,88
WEA 22 (606) WEA 23 (607)	1.090 835	1.100 846	36,3 33,2	Nein Nein	30,82	106,6	3,01	79,79 71,83		4,80 4,80	0,00 0,00	0,00 0,00	89,82 78,71	1,13 0.07
Summo 44	00	0.0	33,2	Nelli	33,65	106,6	3,00	69,55	1,61	4,80	0,00	0,00	75,95	0,00

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

WEA															
Nr.		Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Λ main n			
145-4-4-4-4-4	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		-			Α	Cmet	
WEA 01 (604)	947	960	37,0	Nein		106.0			[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 02 (605)	791	803	35,4	Ja	35,11		-,	70,65		4,80		0,00	77,27	0,00	
WEA 03 (603)	547	565	35,8			106,0				3,27	0,00	0,00	73,89	0.00	
WEA 04 (608)	374	401		Ja	39,31			66,04	1,07	2,58	0.00	0.00	69.69	0.00	
WEA 09 (166)	2.011	2.020	28,7	Ja	42,90	106,0	2,98	63,06	0,76	2.26	0.00		66,08	0.00	
WEA 10 (167)	1.519		23,5	Nein	18,69	102,6	3,01	77,11		4,80			85.75	1,17	
WEA 11 (168)		1.533	53,3	Nein	24,84	104,9	3.01	74,71			0.00		82.42		
	2.673	2.682	25,8	Nein	17,21			79,57	-	4.80	0.00			0,64	
WEA 12 (169)	2.428	2.438	30,8	Nein	18.58	104,9		78.74					89,47	1,23	
WEA 13 (170)	2.722	2.730	49,2	Nein	17,25					4,80	0,00		88,18	1,15	
WEA 14 (171)	2.290	2.300	61,3	Ja	20,64			79,72		4,80	0,00	0,00	89,71	1,14	
WEA 15 (172)	1.812	1.824	38,2	Nein		•	The second	78,23	4,37		0,00	0,00	86,49	0,98	
WEA 18 (184)	2.984	2.992	53,5		22,43			76,22	3,47	4,80	0,00	0,00	84,49	1.00	
WEA 22 (606)	913	925		Nein	15,70			80,52	5,68	4,80	0,00	0.00	91.00	1.20	
WEA 23 (607)	698		36,2	Nein	32,73	106,6	3,01	70,32	1,76	4.80	0.00		76.88	0.00	
112 (20 (007)	090	713	34,3	Nein	35,38	106,6	3,00	68.06			0.00		74,22	0.00	
									,	.,50	0,00	0,00	17,22	0,00	

Summe 45.91

Wirfus Gemeinde

Anhang 7

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 6 WEA innerhalb der Vorrangfläche Wirfus. Alle WEA im Vollleistungsbetrieb. Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:06 / 2

02.07.2005 09:50/2.4.0.67

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Genehmig Gehört zur Verfügung von

DECIBEL - Detaillierte Ergebnisse

Berechnung: A7 Gesamtbelastung Alternative 2, Vollleistung

Schall-Immissionsort: IP C Wirfuserbach, Wirfus WEA

Nr.				Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	∧mico.	^	0
WEA 01 (604) WEA 02 (605) WEA 03 (603) WEA 04 (608)	503 404 631	[m] 884 526 430 649	[m] 34,0 43,6 31,4 31,1	Nein Ja Ja Nein	[dB(A)] 32,59 40,69 42,27 35,72	[dB(A)] 106,0 106,0 106,0	[dB] 3,00 2,99 2,99	Adiv [dB] 69,93 65,42 63,68 67,25	1,00 0,82	[dB] 4,80 1,89 2,22	[dB] 0,00 0,00 0,00	[dB] 0,00 0,00 0,00	68,30 66,71	Cmet [dB] 0,00 0,00 0,00
WEA 09 (166) WEA 10 (167) WEA 11 (168) WEA 12 (169) WEA 13 (170) WEA 14 (171) WEA 15 (172) WEA 18 (184) WEA 22 (606)	2.344 1.882 2.993 2.727 3.118 2.690 2.155 3.386 718	2.353 1.895 3.001 2.737 3.126 2.699 2.166 3.393 736	26,1 52,5 29,6 38,5 47,1 57,6 39,3 49,6 33,2	Nein Nein Nein Nein Nein Nein Nein Nein	16,62 22,05 15,55 16,92 15,22 17,42 20,13 13,75 35,07	102,6 104,9	3,01 3,01 3,01 3,01 3,01 3,01 3,01 3,01	78,43 76,55 80,55 79,75 80,90 79,62 77,71 81,61	4,47 3,60 5,70 5,20 5,94 5,13 4,11 6,45	4,80 4,80 4,80 4,80 4,80 4,80 4,80 4,80	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	73,28 87,70 84,95 91,05 89,75 91,64 89,55 86,63 92,86	0,00 1,29 0,91 1,31 1,24 1,25 1,13 1,16 1,30
WEA 23 (607) Summe 46,3	643	662	31,7	Nein	36,13	106,6				4,80 4,80	0,00		74,53 73,47	0,00 0,00

Schall-Immissionsort: IP D Villa Margaretha, Wirfus

ı	WEA										190					
	Nr.	Abstand [m]	Schallweg [m]	Mittlere Höhe [m]	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
	WEA 01 (604) WEA 02 (605)	845	863	30,9	Nein	[dB(A)] 32,84	[dB(A)] 106.0	[dB]	[dB] 69,72	[dB] 1,64	[dB] 4.80	[dB] 0.00	[dB]	[dB]	[dB]	
	WEA 03 (603)	345 492	381 517	35,3 38,2	Ja Ja	44,14 40,54	106,0	2,98	62,61	0,72	1,50	0,00	0,00 0,00	76,16 64,84	0,00	
	WEA 04 (608) WEA 09 (166)	910 2.712	924 2.720	33,6	Nein	32,13			65,27 70,32		2,20 4,80			68,45 76,87	0,00	
	WEA 10 (167)	2.259	2.270	28,7 55,9	Nein Ja	14,56 20,43			79,69 78,12	5,17	4,80 3,96	0,00	0,00	89,66	1,39	
	WEA 11 (168) WEA 12 (169)	3.354 3.081	3.362 3.090	31,6 38.3	Nein Nein	13,80 15,11	104,9	3,01	81,53	6,39	4,80	0,00 0,00		86,39 92,72	1,09 1,39	
	WEA 13 (170) WEA 14 (171)	3.497 3.068	3.504 3.077	50,4	Ja	13,92	104,9 105,1		80,80	5,87 6,66		0,00		91,47 92,86	1,33	e.
	WEA 15 (172)	2.526	2.536	61,0 42,1	Ja Nein	16,14 17,93	105,1 104,9			5,85 4,82	4,12	0,00	0,00	90,73	1,24	
	WEA 18 (184) WEA 22 (606)	3.764 606	3.771 629	53,0 31,1	Ja Nein	12,53 36,63	104,9	3,01	82,53	7,17	4,32	0,00 0,00	0,00	88,70 94,02	1,28 1,37	
	WEA 23 (607)	701	720	31,1	Nein	35,29	106,6 106,6		66,98 68,15		4,80 4,80	0,00	0,00		0,00	
	^	Account to										0.000	-,	,	0,00	

Summe

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

WEA	×		• .	,					180					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichthan	Beurteilungspegel		_					(4)		
	[m]	[m]	[m]	Olcilibai		LwA,ref	100 (100 (100 (100 (100 (100 (100 (100	Adiv		Agr	Abar	Amisc	Α	Cmet
WEA 01 (604)	1.583	1.588	70.5	Ja	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02 (605)	1.089	1.094	69,7		27,03	106,0				3,27	0,00	0,00	81.30	
WEA 03 (603)	1.174	1.178	67,0	Ja Ja	32,48			71,78		2,60	0,00	0,00	76,45	
WEA 04 (608)	1.457	1.461	63,8	-	31,30			72,42		2,84		0,00	77,50	0.21
WEA 09 (166)	2.635	2.639	45,1	Ja Ja	28,09			74,29		3,30	0,00	0,00	80,36	0.56
WEA 10 (167)	2.292	2.298	63,0	Ja	15,58			79,43		4,21	0,00	0,00	88,66	1,37
WEA 11 (168)	3.211	3.216	48,8	Ja	20,36			78,23		3,86	0,00	0,00	86,45	
WEA 12 (169)	2.906	2.911	54,0	Ja	15,01			81,15	6,11	4,28	0,00	0,00	91,54	1,36
WEA 13 (170)	3.586	3.590	56,3	Ja	16,64	104,9		,	5,53		0,00	0,00	89,98	1,29
WEA 14 (171)	3.190	3.195	65,4		13,57		-,	,	6,82	4,26	0,00	0,00	93,19	1,35
WEA 15 (172)	2.487	2.492	55,3	Ja	15,58	and the second		81,09	6,07	4,10	0,00	0,00	91,26	1,27
WEA 18 (184)	3.880	3.883	57,5	Ja	18,94		200	78,93	4,73	4,04	0,00	0,00	87,70	1.27
WEA 22 (606)	1.351	1.355	68,9	Ja	12,07	104,9		82,78	7,38	4,29	0,00	0,00	94,46	1.39
WEA 23 (607)	1.411	1.414	68,3	Ja	29,90	106,6		73,64	2,57	3,05	0,00		79.26	0,45
		7.414	00,3	Ja	29,26	106,6	3,01	74,01	2,69	3,14	0,00	0,00	79,84	0.51
C.,,,,,,,,	4.0												18000	

Summe 38,10

05.07.2005 10:06 / 3

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

Genehmigt Gehört zur Verfügung vom

02.07.2005 09:50/2.4.0.67

1 2. SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Wirfus Gemeinde

Berechnung: A7 Gesamtbelastung Alternative 2, Vollleistung

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 6 WEA innerhalb der Vorrangfläche

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

Wirfus. Alle WEA im Vollleistungsbetrieb.

Berechnete Immissionswerte als obere

Kreisverwaltung Cochem-Zel

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus

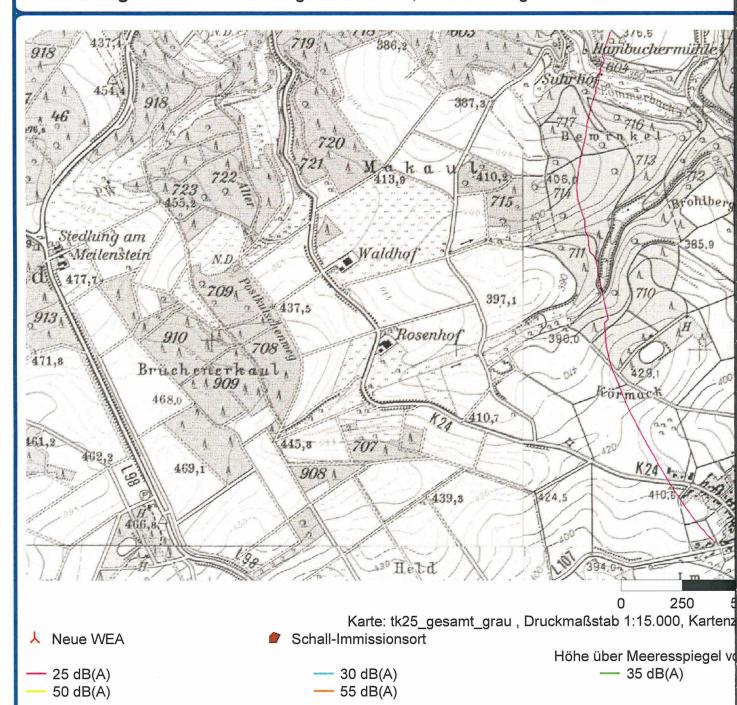
Anhang 7

von 90%.

WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	^~-	۸h	A '		
	[iii]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]			Agr			Α	Cmet
WEA 01 (604)		1.783	67,9	Ja	25,29		•	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 02 (605)	1.311	1.315	66,2	Ja		106,0	- 1	76,02	,	-,	0,00	0,00	82,90	0,82
WEA 03 (603)	1.335	1.339	60,9		29,67	106,0				3,07	0,00	0,00	78.94	0.40
WEA 04 (608)	1.526	1.529		Ja	29,27	106,0			2,54	3,23	0,00	0.00	79.31	0.43
WEA 09 (166)	2.392	2.397	59,2	Ja	27,32	106,0	3,01	74,69	2,91	3,47	0.00		81.06	
WEA 10 (167)	2.094		41,9	Ja	16,96	102,6	3,01	78,59	4,55				87.35	-,
		2.100	58,2	Ja	21,61			77,44	3,99					1,31
WEA 11 (168)		2.947	44,2	. Ja	16,34			80,39	5,60		-,		85,29	1,02
WEA 12 (169)	2.631	2.637	50,2	Ja	18,11			79.42			0,00		90,27	1,30
WEA 13 (170)	3.386	3.391	50,4	Ja	14,46				5,01		0,00	0,00	88,58	1,22
WEA 14 (171)	3.007	3.012	57,9	Ja	16,44			81,61	6,44		0,00	0,00	92,34	1,31
WEA 15 (172)	2.258	2.264	51,9	7,70		1 min		80,58	5,72	4,14	0,00	0,00	90,44	1.23
WEA 18 (184)	3.687	3.690		Ja	20,30		3,01	78,10	4,30	4,01	0.00	0,00		1,19
WEA 22 (606)	1.572		50,7	Ja	12,87	104,9	3,01	82,34	7.01	4.33	0.00		93,68	1,35
WEA 23 (607)		1.575	67,0	Ja	27,67	106,6	3.01	74,95		3,34	0.00		81,28	2.0
VVLA 23 (607)	1.578	1.582	62,1	Ja	27,50		3,01	74,98		3,45	0.00			0,66
C				98	,	,.	0,01	74,50	3,00	3,45	0,00	0,00	81,44	0,67

Summe 36,33 Projekt:

Beschreibung:


Wirfus Gemeinde

Anhang 8

Berechnung der Schallimmissionen durch 3 WEA Gamesa G80 innerhalb der Vorran Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsch

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A8 Zusatzbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 red

Ausdruck/Seite

Berechnet:

02.07.2005 11:15 / 1

Lizensierter Anwender:

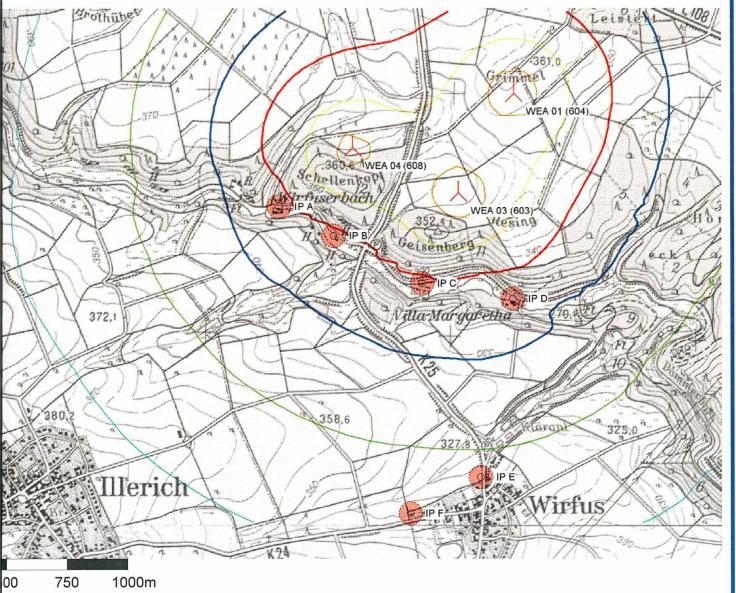
ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Katharinenstraße 51 DE-49078 Osnabrück

02.07.2005 11:14/2.4.0.67

+49 541 6687 259

Genehmigt Gehört zur Verfügung vom


1 2. SEP. 2005

Kreisverwaltung C

Datei: TK25 GESAMT GRAU.BMI uziert

gfläche Wirfus. WEA04 schallreduziert.

einlichkeit von 90%.

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

n aktivem Höhenlinien-Objekt

- 40 dB(A)

45 dB(A)

05.07.2005 10:07 / 1 Berechnung der Schallimmissionen durch 3 WEA

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück

Genehmigt

+49 541 6687 259

04.07.2005 17:17/2.4.0.67

Gehört zur Verfügung von

1.2. SEP. 2005

DECIBEL - Hauptergebnis

Wirfus Gemeinde

Berechnung: A8 Zusatzbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert Kreisverwaltung Cochem-Zi

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

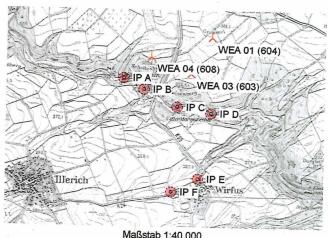
Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Anhang 8

von 90%.

WEA04 schallreduziert.

Gamesa G80 innerhalb der Vorrangfläche Wirfus.


Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

Berechnete Immissionswerte als obere

Windgeschw. in 10 m Höhe: 10,0 m/s Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WFA

Maßstab 1:40.000 Schall-Immissionsort

WEA

5. *	GK (Besse Ost	Nord		Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.	Höhe	Kreis-	Kreis-	Schall Quelle	Manage	lw∆ ref	Einzel	Oktav-
WEA 01 (604)	2.586.242	5.564.996	[m] 357	GAMESA G80/200	Ja	GAMESA	G80/2000 ENP	[kW]	[m] 80.0	[m] 100.0	radius [m] 40,0	[m]			[dB(A)]		Bänder
WEA 04 (608)	2.585.581	5.564.764	340 343	GAMESA G80/200 GAMESA G80/200	Ja	GAMESA	G80/2000 ENP G80/2000 ENP	2.000	80,0 80,0	100,0	40,0	70,0	USER	leistungsoptimiert inkl. Zuschläge leistungsoptimiert inkl. Zuschläge schallreduziert inkl. Zuschläge	106,0		
Roroch	n								33.585	,.	40,0	70,0	OSER	schalifeduziert inkl. Zuschläge	104,5	Nein	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall Nr.	-Immissionsort Name	GK (Besse Ost	I) Zone: 2 Nord	7	Anforder Schall		Beurteilungspegel		rungen er	
	IP A Wirfuserbach 1, Wirfus	2.585.285	5.564.515	[m] 302	[dB(A)] 45.4	Abstand [m] 300	Von WEA [dB(A)] 42.6	Schall	-	Gesamt
	IP B Wirfuserbach 2, Wirfus IP C Wirfuserbach, Wirfus IP D Villa Margaretha, Wirfus	2.585.508 2.585.879 2.586.254	5.564.208	285	45.4	300 300	43,8 43,3	Ja Ja	Ja Ja Ja	Ja Ja Ja
	IP E Haupstraße 23, Wirfus	2.586.135 2.585.847	5.563.416	340	40.4	300 600 600	, •	Ja Ja Ja	Ja Ja Ja	Ja Ja Ja

Abstände (m)

	WEA		
Schall-Immissionsort	WEA 03 (603)	WEA 04 (608)	WEA 01 (604)
IPA	740	387	1071
IP B	547	374	947
IP C	404	631	868
IP D	492	910	845
IPE		1457	1583
IP F	1335	1526	1779

Wirfus Gemeinde

Anhang 8

Berechnung der Schallimmissionen durch 3 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus.

WEA04 schallreduziert.

Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:07 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

04.07.2005 17:17/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: A8 Zusatzbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

Gehört zur Verfügung

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmetisverwaltung Cochem-Zell (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

die Dämpfung aufgrund von Luftabsorption die Dämpfung aufgrund des Bodeneffekts

Abar:

die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus WEA

Summe 42,59

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

Nr. WEA 01 (604) WEA 03 (603) WEA 04 (608)	[m] 947 547	[m] 960 565	[m] 36,3	Nein	Beurteilungspegel [dB(A)] 31,73 39,31 41,40	[dB(A)] 106,0 106,0	[dB] 3,01 3,00	[dB] 70,65 66,04	1,82 1,07	[dB] 4,80 2,58	[dB] 0,00 0.00	0.00	[dB] 77,27 69,69	-,	
	.77	401	28,7	Ja	41,40	104,5				2,26	0,00	0,00	66,08	-,	

Schall-Immissionsort: IP C Wirfuserbach, Wirfus

WEA

Nr. WEA 01 (604) WEA 03 (603) WEA 04 (608) Summe 43.	868 404 631	Schallweg [m] 884 430 649	Mittlere Höhe [m] 33,4 31,4 31,1	Sichtbar Nein Ja Nein	Beurteilungspegel [dB(A)] 32,60 42,27 34,22	LwA,ref [dB(A)] 106,0 106,0 104,5	[dB] 3,00 2,99	[dB] 69,93 63,68	[dB] 1,68 0,82	[dB] 4,80 2,22	[dB] 0,00 0,00	0,00	A [dB] 76,41 66,71 73,28	0,00	
--	-------------------	---------------------------------------	--	--------------------------------	---	---	----------------------	------------------------	----------------------	----------------------	----------------------	------	--------------------------------------	------	--

Schall-Immissionsort: IP D Villa Margaretha, Wirfus

WEA

WEA 01 (604) WEA 03 (603) WEA 04 (608)	845 492	[m] 863	Mittlere Höhe [m] 30,5 38,2 33,5	Sichtbar Nein Ja Nein	Beurteilungspegel [dB(A)] 32,85 40,54 30,63	[dB] 3,00 2,99	[dB] 69,72 65,27	0,98	[dB] 4,80 2,20	[dB] 0,00 0,00	0.00	[dB]	Cmet [dB] 0,00 0,00 0,00	
Summe 41	,59													

05.07.2005 10:07 / 2

Wirfus Gemeinde

Summe

Anhang 8

Berechnung der Schallimmissionen durch 3 WEA Gamesa G80 innerhalb der Vorrangfläche Wirfus.

WEA04 schallreduziert.

Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

04.07.2005 17:17/2.4.0.67

Genehmia Gehört zur Verfügung vo

Kreisverwaltung Cochem-Ze

DECIBEL - Detaillierte Ergebnisse

Berechnung: A8 Zusatzbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

12. SEP. 2005

0,67

0,21

0.56

Schall-Immissionsort: IP E Haupstraße 23, Wirfus WEA

Abstand Schallweg Mittlere Höhe Sichtbar Beurteilungspegel LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] Cmet [m] [m] [dB(A)][dB(A)] [dB] [dB] [dB] [dB] [dB] WEA 01 (604) 1.583 1.587 [dB] [dB] [dB] 69,8 Ja 27,02 106,0 3,01 75,01 3,02 3,29 0.00 WEA 03 (603) 1.174 0,00 81,32 1.178 66,9 Ja 31,29 106,0 3,01 72,42 2,24 2,84 0,00 WEA 04 (608) 0,00 77,50 1.457 1.461 63,7 Ja 26.59 104,5 3,01 74,29 2,77 3,30 0,00 0,00 80,36

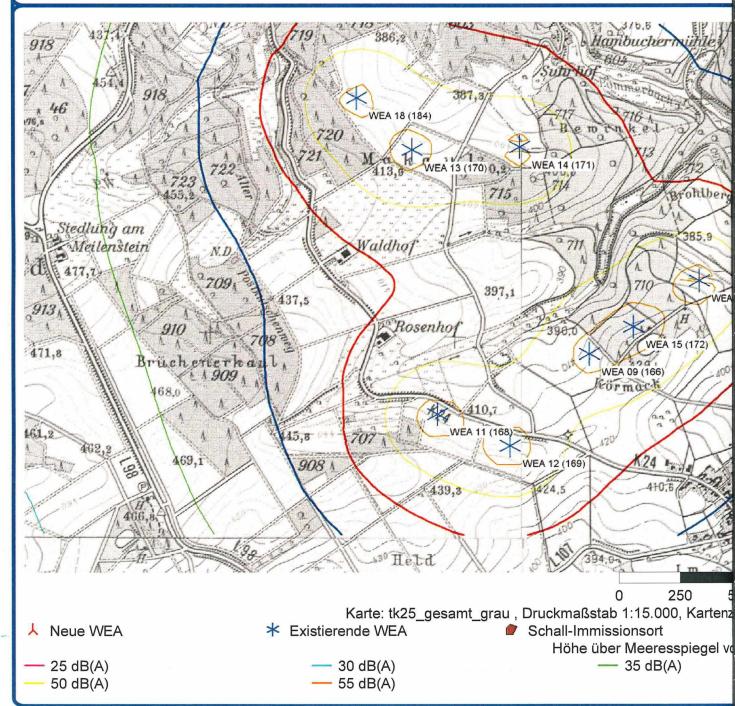
Schall-Immissionsort: IP F Illericher Str. 22, Wirfus WEA

Abstand Schallweg Mittlere Höhe Sichtbar Beurteilungspegel Nr. LwA,ref Dc Adiv Aatm Agr Abar Amisc Cmet [m] [m] [m] [dB(A)] [dB] 106,0 3,01 [dB(A)]WEA 01 (604) [dB] [dB] [dB] [dB] [dB] [dB] 1.779 [dB] 1.783 67,2 .la 25,27 76,02 3,39 3,51 0,00 0,00 82,92 WEA 03 (603) 1.335 1.339 0,82 60,9 Ja 29,27 106,0 3,01 WEA 04 (608) 73,53 2,54 3,23 0,00 79,31 0,00 1.526 1.529 0,43 59,2 Ja 25,82 104,5 3,01 74,69 2,91 3,47 0,00 0,00 81,06 0,62 Summe 31.94

Projekt:

Beschreibung:

Wirfus Gemeinde


Anhang 9

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb de schallreduziert.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsch

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 re

Ausdruck/Seite

04.07.2005 17:28 / 1

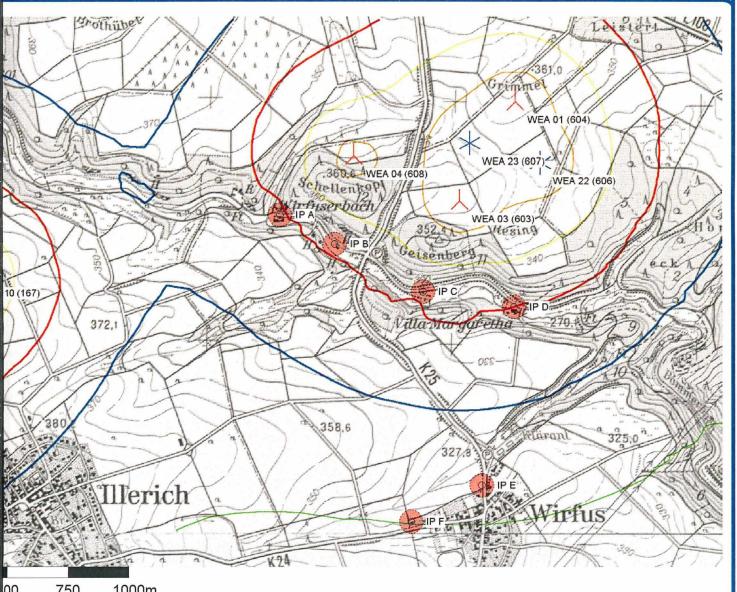
Lizensierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

04.07.2005 17:20/2.4.0.67


Genehmigt Gehört zur Verfügung vom 1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

duziert Datei: TK25 GESAMT GRAU.BMI

r Vorrangfläche Wirfus. WEA04

einlichkeit von 90%.

750 1000m

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

n aktivem Höhenlinien-Objekt

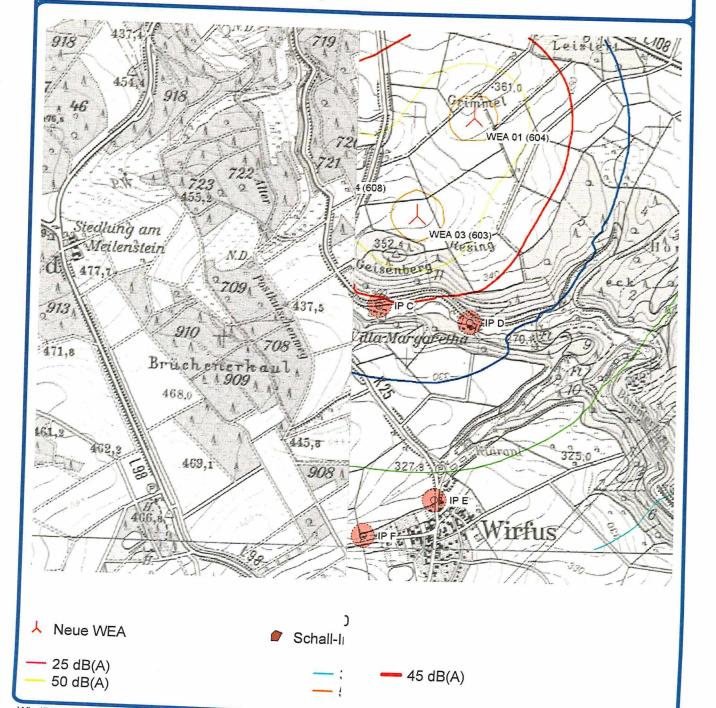
- 40 dB(A)

45 dB(A)

Beschreibung: Wirfus Gemeinde Anhang 8 1:15 / 1 Berechnung der Schalli-Berechnete Immissionsbare Energien Projektentwicklungsgesell. mb aße 51 snabrück

Genehmigt Gehört zur Verfügung vom

1:14/2.4.0.67


7 259

1 2. SEP. 2005

Kreisverwaltung

DECIBEL - Karte: TK25_GESA

Berechnung: A8 Zusatzbelastung Alte

05.07.2005 10:08 / 1

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb der Vorrangfläche

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmigt Gehört zur Verfügung vom

04.07.2005 17:20/2.4.0.67

12 SEP. 2005

DECIBEL - Hauptergebnis

Wirfus Gemeinde

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit

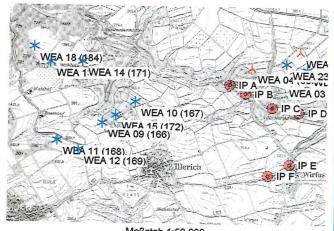
Kreisverwaltung Cochen-Zell

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Anhang 9


von 90%,

Wirfus. WEA04 schallreduziert.

Berechnete Immissionswerte als obere

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA Schall-Immissionsort

Maßstab 1:50.000 * Existierende WEA

WEA

	GK (Bessel) : Ost	Zone: 2 Nord	z		WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.		Kreis-	Kreis-			LwA,ref	Einzel-	Oktav-
WEA 03 (603 WEA 09 (166 WEA 10 (167 WEA 11 (168 WEA 12 (169 WEA 13 (170 WEA 14 (171 WEA 18 (184 WEA 22 (606 WEA 23 (607	3) 2.586.025 1 5. 3) 2.585.581 5. 3) 2.585.581 5. 5) 2.583.591 5. 5) 2.582.934 5. 5) 2.582.232 5. 5) 2.583.232 5. 5) 2.583.230 5. 5) 2.586.350 5. 1 2.586.350 5. 1 2.586.060 5.	.564.996 .564.585 .564.764 .563.934 .563.676 .563.552 .564.762 .564.780 .564.048 .564.970 .564.750	340 343 414 404 417 426 398 398 423 400 349 345	GAMESA G80/2000 GAMESA G80/2000 GAMESA G80/2000 GAMESA G80/2000 ENERCON E-6406 ENERCON E-66-18 ENERCON E-66-18 REPOWER MD 77 E ENERCON E-66-18 ENERCON E-66-18 ENERCON E-66-18 ENERCON E-66-18 ENERCON E-66-18 ENERCON E-66-18 VESTAS V80-2.0M VESTAS V80-2.0M	Ja Ja Ja Ja Ja Ja Ja Ja Ja	GAMESA GAMESA ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON ENERCON VESTAS	G80/2000 ENP G80/2000 ENP G80/2000 ENP E-40/6.44 ENP E-66/18.70 ENP E-66/18.70 ENP MD 77 ENP MD 77 ENP MD 77 ENP E-66/18.70 ENP E-66/18.70 ENP E-66/18.70 ENP V80-2.0MW ENP	1.500 1.800 1.800 2.000	70,0 77,0 77,0 70,0 70,0	[m] 100,0 100,0 100,0 78,0 98,0 98,0 111,5 111,5 86,0 114,0 100,0	radius [m] 40,0 40,0 40,0 70,0	[m] 70,0 70,0 70,0	USER USER USER USER USER USER USER USER		[dB(A)] 106,0 106,0 104,5 102,6 104,9	Nein Nein Nein Nein Nein Nein Nein Nein	Bänder Nein Nein
Dorock		I-	•											• ,	.00,0	HOIII	IACIII

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort	GK (Bessel) Zone: 2 Anforderungen									
Nr. Name	Ost	Nord	7			Beurteilungspegel	3-11-011-011			
*	OSC	Nord	[m]	Schall	Abstand	Von WEA	Schall	Abstand	Gesamt	
IP A Wirfuserbach 1, Wirfus	2 505 205	F F04 F4F		[dB(A)]	[m]	[dB(A)]				
	2.585.285				300	43,7	Ja	Ja	Ja	
IP B Wirfuserbach 2, Wirfus		5.564.397			300	44.8	Ja	Ja	Ja	
IP C Wirfuserbach, Wirfus		5.564.208			300	44.6	Ja	Ja	Ja Ja	
IP D Villa Margaretha, Wirfus	2.586.254	5.564.151	276	45.4	300	43.6		70,000		
IP E Haupstraße 23, Wirfus	2.586.135				600		Ja	Ja	Ja	
IP F Illericher Str. 22, Wirfus	2.585.847			, .		36,5	Ja	Ja	Ja	
monorior our EE, villas	2.303.047	5.565.261	340	40,4	600	35,1	Ja	Ja	Ja	

Abstände (m)

all	-Im	mi	SS	io	ns	ort

WEA		IP A	IP B	IP.C	IP D	IP F
WEA 01 (604)	1583	1071	947	868	845	1779
WEA 03 (603)	1174	740	547	404	492	1335
WEA 04 (608)	1457	387	374	631	910	1526
WEA 09 (166)	2635	1829	2011	2344	2712	2392
WEA 10 (167)	2292	1317	1519	1882	2259	2094
WEA 11 (168)	3211	2496	2673	2993	3354	2942
WEA 12 (169)	2906	2268	2428	2727	3081	2631
WEA 13 (170)	3586	2487	2722	3118	3497	3386
WEA 14 (171)	3190	2052	2290	2690	3068	3007
WEA 15 (172)	2487	1624	1812	2155	2526	2258

Fortsetzung auf folgender Seite.

WindPRO version 2.4.0.67 Dez 2004

Wirfus Gemeinde Anhang 9

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb der Vorrangfläche

Wirfus. WEA04 schallreduziert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

05.07.2005 10:08 / 2

Genehmig 04.07.2005 17:20/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

1 2. SEP. 2005

..Fortsetzung von voriger Seite

Schall-Immissionsort

IPE IPA IPB IPC IPD IPF WEA WEA 18 (184) 3880 2743 2984 3386 3764 3687 WEA 22 (606) 1351 1090 WEA 23 (607) 1411 835 913 718 606 1572 698 643 701 1578 Kreisverwaltung Cochem-Ze

WindPRO version 2.4.0.67 Dez 2004

Wirfus Gemeinde

Anhang 9

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb der Vorrangfläche

Wirfus. WEA04 schallreduziert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%

05.07.2005 10:09 / 1

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH

Katharinenstraße 51 DE-49078 Osnabrück +49 541 6687 259

04.07.2005 17:20/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

2. SEP. 2005

Annahmen

Kreisverwaltung Cochem Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar: die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: IP A Wirfuserbach 1, Wirfus

	WILM														
	Nr.			Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	^	0
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]			A	Cmet
	WEA 01 (604)	1.071	1.081	36,6	Nein		106.0			-	•	[dB]	[dB]	[dB]	[dB]
ı	WEA 03 (603)	740	752	38,1	Ja	36,02		-1-			200	0,00	0,00		0,04
ı	WEA 04 (608)	387	410	29,0	Ja				68,52	- 1	3,04		0,00	72,99	0,00
ı	WEA 09 (166)	1.829	1.838			41,16			63,26	0,78	2,29	0,00	0,00	66,33	0.00
ı	WEA 10 (167)	1.317	1.331	28,8	Ja	20,47	102,6	3,01	76,29	3,49	4,26	0,00	0.00	84,04	1.09
ı	WEA 11 (168)	2.496		58,6	Ja	28,17	104,9	3,01	73,49	2,53	3,28	0.00		79.30	0.44
ı	WEA 12 (169)		2.505	30,7	Nein	18,20	104,9	3.01	78.98		4,80			88,54	1.17
ı		2.268	2.278	33,7	Nein	19,54			78,15		4.80	-,		87,28	
ı	WEA 13 (170)	2.487	2.495	53,2	Ja	19.29			78,94			-,			1,09
	WEA 14 (171)	2.052	2.062	64,7	Ja	22,32			77.29	.,		0,00		87,75	1,06
	WEA 15 (172)	1.624	1.636	43,7	Ja	24.76				3,92	•	,		84,93	0,86
ı	WEA 18 (184)	2.743	2.751	55,1	Nein	16,96			75,28	3,11				82,27	0,88
ı	WEA 22 (606)	1.090	1.100	36,3	Nein				79,79	(9.5)	4,80	0,00	0,00	89,82	1,13
ı	WEA 23 (607)	835	846			30,82	106,6			2,09	4,80	0,00	0,00	78,71	0.07
ľ	==== (001)	000	040	33,0	Nein	33,65	106,6	3,00	69,55	1,61	4,80	0,00	0.00	75.95	0.00
	_														-,

43.66

Schall-Immissionsort: IP B Wirfuserbach 2, Wirfus

The second secon				,										
WEA														
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Do	۸ ما:، .	A 4					
	[m]	[m]	[m]	0.0.10001	[dB(A)]	and the second second second second second		Adiv				Amisc	Α	Cmet
WEA 01 (604)	947	960	36,3	Nain		[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 03 (603)	547	565		Nein		106,0	3,01	70,65	1,82	4,80	0,00	0.00	77.27	0.00
WEA 04 (608)		10.0.5	35,8	Ja	39,31	106,0	3,00	66,04	1.07	2,58	0.00	0.00	,	0.00
		401	28,7	Ja	41,40	104.5	2.98	63,06		2,26			66.08	
WEA 09 (166)		2.020	23,4	Nein	18.69			77.11		4,80			,	-,
WEA 10 (167)	1.519	1.533	53,2	Nein	24.84			74,71					85,75	1,17
WEA 11 (168)	2.673	2.682	25,7	Nein	17.21				Samuel Street	4,80			82,42	0,64
WEA 12 (169)	2.428	2.438	30,8	Nein	2000			79,57		4,80	0,00	0,00	89,47	1,23
WEA 13 (170)	2.722	2.730	49,2		18,58			78,74	4,63	4,80	0,00	0,00	88,18	1,15
WEA 14 (171)	2.290	2.300	The second secon	Nein	17,25			79,72	5,19	4,80	0,00	0.00	89.71	1.14
WEA 15 (172)			61,2	Ja	20,64	105,1	3,01	78,23	4,37	3.89	0.00	0.00	86,49	0.98
	1.812	1.824	38,1	Nein	22,43	104,9	3.01	76,22	120	4.80	0.00		84,49	1.00
WEA 18 (184)	2.984	2.992	53,6	Nein	15,70	104,9	200	80,52		4.80	0.00			
WEA 22 (606)	913	925	36,2	Nein	32,73		-	70.32		.,	-,		91,00	1,20
WEA 23 (607)	698	713	34,3	Nein	35.38					4,80	0,00		76,88	0,00
			0 1,0	. aciii	55,56	100,0	3,00	68,06	1,36	4.80	0.00	0.00	74 22	0.00

Summe

Wirfus Gemeinde

Anhang 9

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb der Vorrangfläche

Wirfus. WEA04 schallreduziert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

05.07.2005 10:09 / 2

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Genehmi Gehört zur Verfügung

04.07.2005 17:20/2.4.0.67

SEP. 2005

DECIBEL - Detaillierte Ergebnisse

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

m-Zell Kreisverwaltung Coche

Schall-Immissionsort: IP C Wirfuserbach, Wirfus

ı	Nr.	Abstand	Schollwoo	Middless 1186	0: 1	_										
ı		- Imi	Scrialiweg	wittiere Hone	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı	1A/E 4 04 (00 t)	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]		0.15		
ı	WEA 01 (604)	868	884	33,4	Nein	32,60	106,0						[dB]	[dB]	[dB]	
ı	WEA 03 (603)		430	31,4	Ja	42,27					4,80		0,00	76,41	0,00	
ı	WEA 04 (608)	631	649	31,1	Nein	The second secon			63,68			0,00	0,00	66,71	0,00	
ı	WEA 09 (166)	2.344	2.353			34,22			67,25		4,80	0,00	0.00	73,28	0.00	
ı	WEA 10 (167)	1.882		26,1	Nein	16,62	102,6	3,01	78,43	4,47	4.80	0.00		87.70		
ı		424	1.895	52,5	Nein	22,05	104.9	3.01	76,55				1000	84.95	.,	
ı	WEA 11 (168)	2.993	3.001	29,6	Nein	15.55			80.55					,	-,-	
ı	WEA 12 (169)	2.727	2.737	38,6	Nein	16,92								91,05	., .	
ı	WEA 13 (170)	3.118	3.126	47,0	Nein				79,75	5,20			0,00	89,75	1,24	
ı	WEA 14 (171)	2.690	2.699	57,5		15,22			80,90	5,94	4,80	0,00	0,00	91,64	1.25	
ı	WEA 15 (172)	2.155	2.166		Nein	17,42	105,1	3,01	79,62	5,13	4.80	0.00	0.00	89,55	1,13	
ı	WEA 18 (184)			39,3	Nein	20,13	104,9	3.01	77.71	4.11	4.80	0.00		86,63	1.16	
ı		3.386	3.393	49,6	Nein	13,75	104,9			6,45						
ı	WEA 22 (606)	718	736	33,2	Nein	35.07	106,6			organization and the second		-,		92,86	1,30	
ı	WEA 23 (607)	643	662	31,7	Nein	36,13				1,40	J. S. S. D.	0,00		74,53	0,00	
ı				01,1	·veiii	30,13	106,6	3,00	67,41	1,26	4,80	0,00	0,00	73,47	0,00	
ı	Summo 44	CE														

Schall-Immissionsort: IP D Villa Margaretha, Wirfus WEA

WEA														
Nr.			Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amina		
	[m]	[m]	[m]		[dB(A)]				and Control of				Α	Cmet
WEA 01 (604)	845	863	30,5	Nein		[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
WEA 03 (603)					32,85	106,0	3,00	69,72	1,64	4,80	0.00	0.00	76.16	0.00
	0.00	517	38,2	Ja	40,54	106.0	2.99	65,27		2,20		va. 1512.000	-1	
WEA 04 (608)	910	924	33,6	Nein	30,63	104,5			Total Committee				,	0,00
WEA 09 (166)	2.712	2.720	28.7	Nein	14,56					.,	-,		76,87	0,00
WEA 10 (167)	2.259	2.270	55,9		The second second			79,69		4,80	0,00	0,00	89,66	1,39
WEA 11 (168)	3.354		,	. Ja	20,43	104,9	3,01	78,12	4,31	3,96	0.00	0.00	86,39	1.09
		3.362	31,6	Nein	13,80	104,9	3.01	81,53	6,39	4 80	0.00		92,72	
WEA 12 (169)	3.081	3.090	38,4	Nein	15,11	104,9	100000000000000000000000000000000000000		5,87		-,			1,39
WEA 13 (170)	3.497	3.504	50,3	Ja	13,92								91,47	1,33
WEA 14 (171)	3.068	3.077	61,0		N. St. Account			81,89			0,00	0,00	92,86	1,33
WEA 15 (172)	2.526	2.536		Ja	16,14	105,1	3,01	80,76	5,85	4,12	0.00	0.00	90.73	1.24
			42,1	Nein	17,93	104,9	3.01	79.08	4,82	4 80	0.00		88.70	100
WEA 18 (184)	3.764	3.771	53,0	Ja	12,53	104,9	100 m	82,53	7,17		100			1,28
WEA 22 (606)	606	629	31,1	Nein	36,63	1			and the same of		-,		94,02	1,37
WEA 23 (607)	701	720	31,1	Nein		106,6			1,20	4,80	0,00	0,00	72,97	0.00
(/		720	31,1	ivein	35,29	106,6	3,00	68,15	1,37	4,80	0,00	0,00	74.31	0.00

Schall-Immissionsort: IP E Haupstraße 23, Wirfus

			(A)										
			Sichtbar				Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		(57) (58)	15					[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
		500.00			106,0	3,01	75,01	3,02	3,29	0,00	0.00	-	0.67
	1/200 80000=0	and the second second			106,0	3,01	72,42	2,24	2,84	0,00			0.21
	387.337.3				104,5	3,01	74,29	2,77	3.30	0.00		,	0.56
					102,6	3,01	79,43	5,01	4.21	,		,	1.37
		9		20,36	104,9	3,01	78,23	4,37	3.86				1,10
100000000000000000000000000000000000000			Ja	15,01	104,9	3,01	81,15	6.11	4.28				1,36
			Ja	16,64	104,9	3,01	80.28						1,29
		56,3	Ja	13,57	105.1								1,25
		65,4	Ja	15,58									1,27
	2.492	55,6	Ja	18,94						100 00000			100
	3.883	57,5	Ja					200				,	1,27
1.351	1.355	68,9	Ja										1,39
1.411	1.414	68,3	Ja	29,26	106,6	CONT. (1990)				0,00	10000		0,45 0,51
	[m] 1.583 1.174 1.457 2.635 2.292 3.211 2.906 3.586 3.190 2.487 3.880 1.351	[m] [m] 1.583 1.587 1.174 1.178 1.457 1.461 2.635 2.639 2.292 2.298 3.211 2.906 2.911 3.586 3.590 3.190 3.195 2.487 2.492 3.880 3.883 1.351 1.355	[m] [m] [m] [m] 1.583 1.587 69,9 1.174 1.178 67,0 1.457 1.461 63,7 2.635 2.639 45,3 2.292 2.298 63,1 3.211 3.216 48,8 2.906 2.911 54,1 3.586 3.590 56,3 3.190 3.195 65,4 2.487 2.492 55,6 3.880 3.883 57,5 1.351 1.355 68,9	Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] [m] 1.583 1.587 69,9 Ja 1.174 1.178 67,0 Ja 1.457 1.461 63,7 Ja 2.635 2.639 45,3 Ja 2.292 2.298 63,1 Ja 3.211 3.216 48,8 Ja 2.906 2.911 54,1 Ja 3.586 3.590 56,3 Ja 3.190 3.195 65,4 Ja 2.487 2.492 55,6 Ja 3.880 3.883 57,5 Ja 1.355 68,9 Ja	Abstand Schallweg Mittlere Höhe Sichtbar Beurteilungspegel [m] [m] [m] [m] [m] [dB(A)] 1.583 1.587 69,9 Ja 27,02 1.174 1.178 67,0 Ja 31,30 1.457 1.461 63,7 Ja 26,59 2.635 2.639 45,3 Ja 15,58 2.292 2.298 63,1 Ja 20,36 3.211 3.216 48,8 Ja 15,01 2.906 2.911 54,1 Ja 16,64 3.586 3.590 56,3 Ja 13,57 3.190 3.195 65,4 Ja 15,58 2.487 2.492 55,6 Ja 18,94 3.880 3.883 57,5 Ja 12,07 1.351 1.355 68,9 Ja 29,90	Abstand Schallweg Mittlere Höhe Sichtbar Beurteilungspegel LwA,ref [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] 1.583 1.587 69,9 Ja 27,02 106,0 1.457 1.461 63,7 Ja 26,59 104,5 2.635 2.639 45,3 Ja 15,58 102,6 2.292 2.298 63,1 Ja 20,36 104,9 3.211 3.216 48,8 Ja 15,01 104,9 2.906 2.911 54,1 Ja 16,64 104,9 3.586 3.590 56,3 Ja 13,57 105,1 3.190 3.195 65,4 Ja 15,58 105,1 2.487 2.492 55,6 Ja 18,94 104,9 3.880 3.883 57,5 Ja 12,07 104,9 1.351 1.355 68,9 Ja 29,90 106,6	Abstand Schallweg Mittlere Höhe Sichtbar Beurteilungspegel LwA,ref Dc [m] [m] [m] [m] [m] [dB(A)] [dB(Abstand Schallweg [m] [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] 1.583 1.587 69,9 Ja 27,02 106,0 3,01 75,01 1.174 1.178 67,0 Ja 31,30 106,0 3,01 72,42 1.457 1.461 63,7 Ja 26,59 104,5 3,01 74,29 2.292 2.298 63,1 Ja 20,36 104,9 3,01 78,23 3.211 3.216 48,8 Ja 15,01 104,9 3,01 81,15 2.906 2.911 54,1 Ja 16,64 104,9 3,01 81,15 3.586 3.590 56,3 Ja 13,57 105,1 3,01 82,10 3.190 3.195 65,4 Ja 15,58 105,1 3,01 81,09 2.487 2.492 55,6 Ja 18,94 104,9 3,01 78,93 3.880 3.883 57,5 Ja 12,07 104,9 3,01 82,78 1.351 1.355 68,9 Ja 29,90 106,6 3,01 73,64	Abstand Schallweg [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg [m] [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	[m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg [m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB

Summe 36,54

Wirfus Gemeinde

Anhang 9

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb der Vorrangfläche

Wirfus. WEA04 schallreduziert. Berechnete Immissionswerte als obere

Vertrauensbereichsgrenze mit einer Wahrscheinlichkeit von 90%.

WindPRO version 2.4.0.67 Dez 2004

05.07.2005 10:09 / 3

ENP Erneuerbare Energien Projektentwicklungsgesell. mbH Katharinenstraße 51

DE-49078 Osnabrück +49 541 6687 259

Berechnet Genehmigt 04.07.2005 17:20/2.4.0.67 Gehört zur Verfügung vom

Kreisverwaltung

DECIBEL - Detaillierte Ergebnisse

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 reduziert

1 2. SEP. 2005

Schall-Immissionsort: IP F Illericher Str. 22, Wirfus

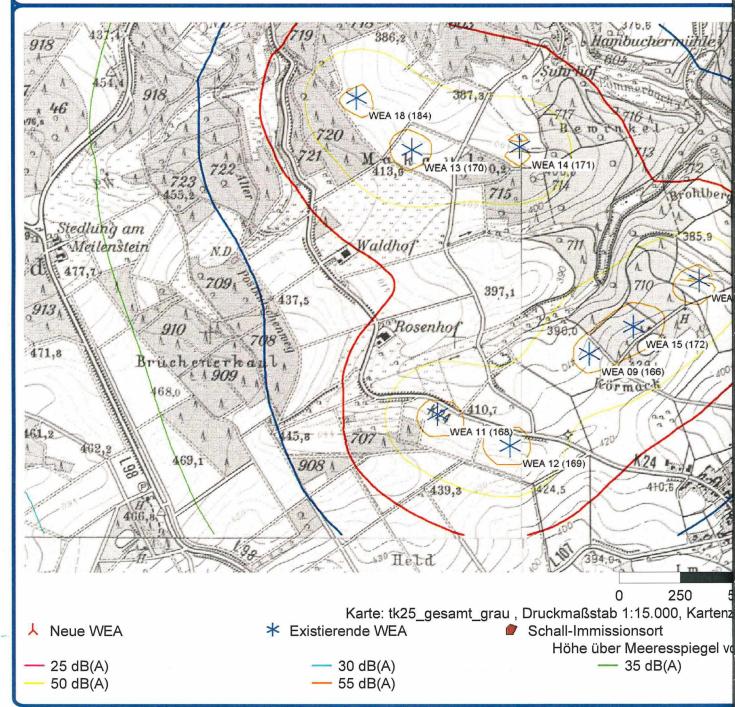
WEA

Nr.		Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Λdi.,	A = +==	۸		•			
	[m]	[m]	[m]					Adiv		Agr	Abar	Amisc	Α	Cmet	
WEA 01 (604)	1.779	1.783			[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
WEA 03 (603)			67,2	Ja	25,27	106,0	3.01	76,02	3 30	3,51				-	*
	1.335	1.339	60,9	Ja	29,27									0,82	
WEA 04 (608)	1.526	1.529	59,2	Ja				73,53		3,23	0,00	0,00	79,31	0.43	
WEA 09 (166)	2.392	2.397			25,82	104,5	3,01	74,69	2,91	3.47	0.00	0.00	81,07	0.62	
			41,9	Ja	16,96	102.6	3.01	78,59	4,55	1 20				0.000	
WEA 10 (167)	2.094	2.100	58.2	Ja	21,61								87,35	1,31	
WEA 11 (168)	2.942	2.947	44,2	Ja	The state of the s			77,44			0,00	0,00	85,29	1.02	
WEA 12 (169)	2.631	2.637			16,34	104,9	3,01	80,39	5,60	4.29	0.00	0.00	90.27	1.30	
			50,3	Ja	18,11	104.9	3.01	79,42	5,01	1 15					
WEA 13 (170)	3.386	3.391	50,4	Ja	14,46	105,1							88,58	1,22	
WEA 14 (171)	3.007	3.012	57,9	Ja	St. 1300 St. 2000 St.		man and the second		6,44			0,00	92,34	1.31	
WEA 15 (172)	2.258	2.264		100	16,44	105,1	3,01	80,58	5,72	4.14	0.00	0.00	90,44	1.23	
			51,9	Ja	20,30	104.9	3.01	78,10	4,30	4.01	0.00				
WEA 18 (184)	3.687	3.690	50,6	Ja	12,87	104,9	-20		-,		_,	1.510	86,41	1,19	
WEA 22 (606)	1.572	1.575	67,0	Ja				82,34	7,01	4,33	0,00	0,00	93,68	1,35	
WEA 23 (607)	1.578	1.582			27,67	106,6	3,01	74,95	2,99	3,34	0.00	0.00	81,28	0.66	
0 (001)	1.576	1.562	62,1	Ja	27,50	106.6	3.01	74,98	3,00						
						-1-	-,	,00	0,00	0,40	0,00	0,00	81,44	0.67	

Summe 35,07 Projekt:

Beschreibung:

Wirfus Gemeinde


Anhang 9

Berechnung der Schallimmissionen durch 8 WEA außerhalb und 5 WEA innerhalb de schallreduziert.

Berechnete Immissionswerte als obere Vertrauensbereichsgrenze mit einer Wahrsch

DECIBEL - Karte: TK25_GESAMT_GRAU.BMI

Berechnung: A9 Gesamtbelastung Alternative 2, WEA02 ausgeschaltet und WEA04 re

WindPRO version 2.4.0.67 Dez 2004

Ausdruck/Seite

04.07.2005 17:28 / 1

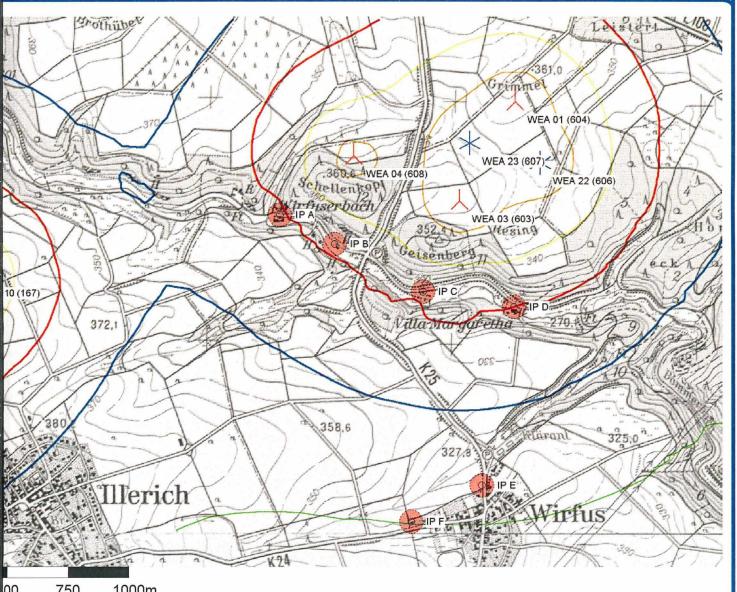
Lizensierter Anwender:

ENP Erneuerbare Energien Projektentwicklungsgesell. mb

Katharinenstraße 51 DE-49078 Osnabrück

+49 541 6687 259

04.07.2005 17:20/2.4.0.67


Genehmigt Gehört zur Verfügung vom 1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

duziert Datei: TK25 GESAMT GRAU.BMI

r Vorrangfläche Wirfus. WEA04

einlichkeit von 90%.

750 1000m

entrum GK (Bessel) Zone: 2 Ost: 2.584.181 Nord: 5.564.250

n aktivem Höhenlinien-Objekt

- 40 dB(A)

45 dB(A)

105,95 dB(A)

Vollleistungsbetrieb

Messung 1 Messung 2 Messung 3	103,5 dB(A) DEWI-S-AM-136-04 104,4 dB(A) WT-3126-04 103,6 dB(A) WT-3364-04
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	103,83 dB(A) 0,49 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,66 dB(A)
1,28*Sigma ges	2,12 dB(A)
Emissionswert für oberen Vertrauensbereich 90%	

Genehmigt Gehört zur Verfügung vom 12. SEP. 2005

Kreisverwaltung Cochem-Zell

Schallreduktion

(Mittelwert+1,28*Sigma ges)

Messung 1 Messung 1	102,0 dB(A) WT-3274-04 101,9 dB(A) DEWI-S-AM-135-04
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	101,95 dB(A) 1,22 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	2,00 dB(A)
1,28*Sigma ges	2,56 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	104,51 dB(A)

89

Auszug aus dem Prüfbericht

Gehört zur Verfügung

1 2. SEP. 2005

Stammblatt "Geräusche". entsprechend den "Technischen Richtlinien

für Windenergieanlagen. Teil 1: Bestimmung der Schallemissionswerte Kreisverwaltung Cochem-

Rev. 15 vom 01. January 2004 (Herausgeber: Fördergesellschaft Windenergie e. V.. Stresemannplatz 4. 24103 Kiel)

Auszug aus dem Prüfbericht DEWI S AM 136 / 04 – of 2004/06/29 zur Schallemission der Windenergieanlage vom Typ **GAMESA G 80** control type G80 V42 (G8Xv1_xxV)

Anlagentyp:	GAMESA G80	Technische Daten (Herstellera	ngaben)
Anlagenhersteller:	GAMESA Eólica Sociedad Unipersonal S.A Calle A Nave 8B E-31013 Pamplona	Nennleistung (Generator): Nennwindgeschwindigkeit: Rotordurchmesser:	2000 kW 10.9 80 m
WEA-Standort L	ve: <i>WINDTEST</i> WT 3206/04 a Plana (Zaragoza) / Spain	Nabenhöhe über Grund: Turmbauart:	60 m Stahlrohr, konisch
Seriennummer 4 ^c Ergänzende Daten zum Ro	otor (Herstellerangaben)	Leistungsregelung:	Aktive Pitchregelung
Rotorblatthersteller:	GAMESA Eólica Sociedad	Erg. Daten zu Getriebe und Ger	nerator (Herstellerangaben)
	Unipersonal S.A	Getriebehersteller:	Hansen
Typenbezeichnung Blatt:	G-39 P	Typenbezeichung Getriebe:	Hansen 2MW
Blatteinstellung:	Optitip	Generatorhersteller:	Ingeteam
Rotorblattanzahl	3	Typenbezeichung Generator:	Ingecon-W 2000 kW
Rotordrehzahlbereich:	16.7 – 9.0- 18.9. min ⁻¹	Generatordrehzahl / - bereich:	1680 / 900-1900 min ⁻¹

													7 000-15	oo miii	
			4.7		erenzpı	ınkt		So	hallemi	ssions-F	Paramete	er	Ben	nerkung	en
	*	g	Windgeso in 10	m Höhe		Elektri Wirklei				- 90	5.0				
Schalleis Pegel L _{WA-P}	stungs-	٠.	7 8	ms ⁻¹ ms ⁻¹ ms ⁻¹ nnleistun	g	749 I 1131 1536 1900	kW kW		10 10	0.2 dB(A 1.6 dB(A 2.7 dB(A 3.5 dB(A	() ()		Meas. ur Meas. ur Meas. ur Meas. ur	ncert. 0.7 ncert. 0.8	dB(A)
Tonzusc den Nah K _{TN (1254}	bereich		7 1	ms ⁻¹ ms ⁻¹ ms ⁻¹ nnleistun	g	749 k 1131 l 1536 l 1900 l	kW kW			0 dB 0 dB 0 dB 0 dB	# n	8		500 9	n, ~
			a -	ca sa			s . "						9 2	v v	
		10		Terz-Sc	halleist	unasped	el Refer	enznun	kt v = 6	2 mo-1 :-	dD(A)			B	
Frequenz		25	31.5	40	50	63	80	100	125	160	200	050	045		
LWA. P	52.4	52.4	67.7	69.6	71.5	75.1	76.4	78.7	81.9	83.3	84.9	250	315	400	500
Frequenz		800		1250	1600	2000	2500	3150	4000	5000	6300	86.7	89.2	90.9	90.1
LWA. P	89.9	89.9	88.5	87.7	86.5	84.5	82.9	81.4	79.6	77.3	73.5	8000 68.4	10000	12500	16000
									. 5.0		7 0.0	00.4	66.2	62.5	47.1

			24	Terz-Sch	nalleistu	naspea	el Refer	enznunk	t v10 = 7	7 mc 1 i	a dD/A\				
Frequenz	20	25	31.5	40	50	63	80	100	125						
LWA. P	45.6	45.6	68.3	70.1	70.3	79.8	75.8	78.1		160	200	250	315	400	500
Frequenz	630	800	1000	1250	1600				83.3	83.2	86.8	89.5	89.3	91.6	91.0
LWA. P	91.6	91.5	90.0			2000	2500	3150	4000	5000	6300	8000	10000	12500	16000
	01.0	01.0	90.0	89.1	88.5	85.7	84.0	82.7	81.1	79.6	76.1	70.9	66.8	64.8	63.1

Seite 1 von 2 Ergebniszusammenfassung der Geräuschemissionsmessung nach Genehmigt Gehört zur Verfügenvom

WINDTEST

1 2. SEP.

Kaiser-Wilhelm-Koog GmbH Kreisverwaltung Cochem-Zell

FGW-Richtlinie Rev. 15 an einer Windenergieanlage des Typs G80 2 MW, control setting: G8Xv1_xxV

zug aus dem Bericht:	WT 3125/04	Standort bzw. Messort: Anlagennummer:	Carrasquillo 4357
Auftraggeber:	Gamesa Eólica S.A. Poligono Agustinos Calle A, S/N 31013 Pamplona-Navarra Spanien	Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14b 25709 Kaiser-Wilhelm-Koog
Auftragsdatum:	2002-11-27	Auftragsnummer:	Deutschland 6020 02 01938 06

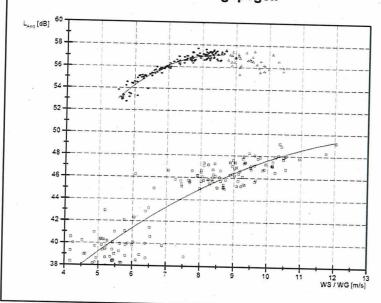
Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Er umfasst insgesamt 2 Seiten.

Technische Daten der WEA:	Tec	hnische	Daten	der	WEA:
---------------------------	-----	---------	-------	-----	------

l echnische Daten der WEA:
Anlagenbezeichnung:G80 2 MW, control setting: G8Xv1_xx
l lieisteller
WEA-Seriennummer: Garriesa Eolica S.A. Nennleistung: 4357
Nennleistung: 2000 kW Nabenhöhe über Grund 78 m
Leistungsregelung: 78 m
konisches Rohr
Rotorblatthersteller:
Rotorblattseriennummern:V39A25198, V39A25199,
V39A25209
Rotordurchmesser:
Kotorplatteinstellwinkel Optition / F 00 Optition
Anzani dei Kolorbiatter
1 toto member 2 am oder - bereich: 9 - 18,9 min
Getriebehersteller:
Getriebetypenbezeichnung: Hanson 2 MMA/
Getriebeseriennummer:
Generatorhersteller: Ingeteam
Generatortypenbezeichnung:
Ingecon-W 2000 kW
Generatorseriennummer:
Generatordrenzani oder -bereich: 1680/ 900-1900 min-1
Generatornennleistung:
Diese Angaben ersetzen nicht die entsprechende Herstellerbescheinigung.

Messgeometrie:	
	0 m

Messbedingungen:	
Messdatum: 21 WG in 10m Höhe, 1-min Mittel WG _{10m} : 22	003-11-26/29
vviilarichtung:	14/214/
Wirkleistungsbereich, 1-min Mittel P_{wei} : 22 Luftdruck p_{Luft} :	906 hDa
Lufttemperatur T _{Luft} :	5 °C


Leistungskurve:

Aus Bericht: WT 3207/04

Prüfer: WINDTEST Kaiser-Wilhelm-Koog GmbH Messzeitraum: 2003-10-13 - 2004-02-29

WG [m/s]	Leistung [kW]	WG [m/s]	Leistung [kW]	WG [m/s]	Leistung [kW]
2,51	11,2	8,00	723,6	13,39	1989.0
3,04	28,7	8,46	881,8	13,81	1982.0
3,50	49,6	8,99	1016,0	14,70	2007,0
3,97	84,8	9,51	1203,0		2007,0
4,52	128,9	10,00	1346.0		
5,00	174,7	10,50	1498,0		
5,50	238,9	11,03	1734,0		
5,98	305,8	11,51	1773.0		
6,50	398,4	11,98	1893.0		
7,00	496,2	12,36	1947.0		
7,50	605,3	12,97	1979,0		

Bestimmung der Schallleistungspegel:

WG _{10m} [m/s]	6	7	8	8,65 ¹⁾	10
P _{W el}	836	1263	1740	1900	-
[kW]					
L _{Aeq}	54,3	56,1	57,0	57.1	
[dB]	01,0	30,1	37,0	57,1	-
. L _n	41,4	43,3	45,0	45.0	
[dB]	71,7	40,0	45,0	45,9	-
L _{Aeq,c}	54,0	55,9	56,8	56,8	
[dB]	0.,0	00,0	30,0	50,8	-
L _{WA}	101,6	103,5	104,4	104,4	
[dB]	101,0	100,5	104,4	104,4	-
Uc					
[dB]	0,9	0,7	0,7	0,9	-
Die der	95%ige	n Nennle	eistung	entsprech	nende

WG in 10 m Höhe beträgt 8,65 m/s.

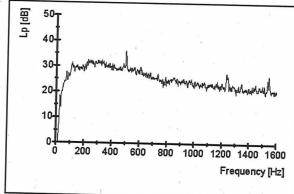
WINDTEST

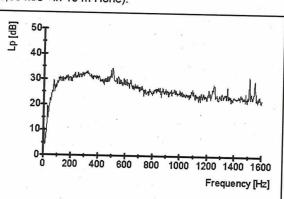
Ergebniszusammenfassung der Geräuschemissionsmessung nach FGW-Richtlinie Rev. 15 an einer Windenergieanlage des Typs G80 2 MW, control setting: G8Xv1_xxV

Kaiser-Wilhelm-Koog Cabb nehmigt Auszug aus dem Bericht WT-8125/04 Verfügung vom

1 2. SEP. 2005

Impulshaltigkeit nach FGW-Richtlinie / DIN 45645 T1 für Referenzbedingungen:


WG in 10 m Höhe [m/s]	6,0	7,0	8,0	8,65 ¹⁾	Kreisverwaltung Cochem-Ze			
K _{IN} [dB]	. 0	0	0	0	10,0			
		N		1	•			


Terz- und Oktavanalyse für L_{WA,P (max)} (bei 8,65 m/s in 10 m Höhe):

Terz Freq. [Hz]	50	63	80	100	125	160	200	250	245			
L _{WA,P} (max) [dB(A)]	77,5	80,2	83,8	86,6	89,0	90,0	90,8	92,9	315 93,7	400 93,4	500 95,1	630 93,1
Oktav Freq. [Hz]		63	7-179	1 77	125	1160		250			500	
L _{WA,P} (max) [dB(A)]		86,0		9 5	93,5	9		97,4			98,7	
Terz Freq. [Hz]	800	1000	1250	1600	2000	2500	3150	4000	5000	2000		."
L _{WA,P} (max) [dB(A)]	91,8	92,3	93,4	93,3	91,4	91,1	89,9	86,7	82,8	77,4	8000 70,5	10000 61,2
Oktav Freq. [Hz]		1000			2000	1 -1 -1334	16G-CD	4000			2000	
L _{WA,P} (max) [dB(A)]	*	97,3			96,8			92,1	H H		78,3	

Tonhaltigkeit nach FGW-Richtlinie / EDIN 45681:

Repräsentative FFT - Spektren (links 7 m/s und rechts 8,65 m/s¹⁾ in 10 m Höhe):

WG in 10 m Höhe [m/s]	6,0	7.0	8.0	8,65 ¹⁾	
K _{TN} [dB] (f [Hz])	0 (-)	0 (-)	0,0	0,05	10,0
2 2 2 2	• ()	0 (-)	0 (-)	0 (-)	- (-)

Bemerkungen:

Die der 95%igen Nennleistung entsprechende WG in 10 m Höhe beträgt 8,65 m/s.

Abweichungen zur FGW:

Keine.

Bearbeiter:

R.J. Brown (M.Sc.)

Geprüft:

Dipl.-Ing. J. Neubert Leiter Gruppe Akustik

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgetührten Prüfwerfahren.

Genebigt Gehört zur Verenng vom

Ergebniszusammenfassung der Geräuschemissionsmessung nach FGW-Richtlinie Rev. 15 an einer Windenergieanlage des Typs

WINDTEST Kaiser-Wilhelm-Koog GmbH 2. SEP. 2005

G80-2 MW, Modus G8Xv1_xxV

Auszug aus dem Berich	nt: WT 3323/04	4
-----------------------	----------------	---

uszug aus dem Bericht:	_	Standort bzw. Messort: Anlagennummer:	Windpark Carrasquillo WEA Nr.N38 S/N 4356
Auftraggeber:	Gamesa Eólica S.A. Poligono Agustinos Calle A, S/N 31013 Pamplona-Navarra Spanien	Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog GmbH Sommerdeich 14b 25709 Kaiser-Wilhelm-Koog
Auftragsdatum:	2002-03-23	Auftragsnummer:	Deutschland 6020 04 02440 06

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Er umfasst insgesamt 2 Seiten.

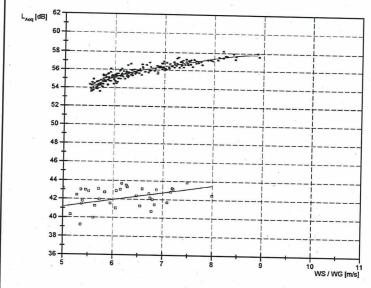
Technische Daten der WEA:
Anlagenbezeichnung: G80-2 MW, Modus G8Xv1_xxV Hersteller: Gamesa Eólica S.A. WEA-Seriennummer: WEA Nr.N38 S/N 4356 Nennleistung:
Nabenhöhe über Grund
Rotorblatthersteller: Gamesa Eólica, S.A. Rotorblatttyp: G39P Rotorblattseriennummern: N/A Rotordurchmesser: 80 m Rotorblatteinstellwinkel Optitip grad Anzahl der Rotorblätter: 3 Rotornenndrehzahl oder -bereich: 9 - 18,9 min ⁻¹
Getriebehersteller:
Generatorhersteller:Ingeteam Generatortypenbezeichnung:
Generatorseriennummer: Ingecon-W 2000 kW Generatorseriennummer: INDAR 3820 Generatordrehzahl oder -bereich: 1680/900-1900 min ⁻¹ Generatornennleistung: 2000 kW
Diese Angaben ersetzen nicht die entsprechende Herstellerbescheinigung.

Messgeometrie:

Messentfernung	Ro:	85 m
Mikrofonhöhe	h ₄ :	0 m
Rotationsebene -	→ Turm-Mittelpkt.	d:4.44 m

Messbedingungen:

Messdatum:
Luπdruck <i>p_{Luff}</i> :
Lufttemperatur T _{Luft} :
18,7 %


Leistungskurve:

Aus Bericht: WT 3365/04

Prüfer: WINDTEST Kaiser-Wilhelm-Koog GmbH Messzeitraum: 2003-10-13 bis 2004-05-06

WG [m/s]	Leistung [kW]	WG [m/s]	Leistung [kW]	WG [m/s]	Leistung [kW]
3,02	26,0	8,49	884,8	13,81	1982
3,51	50,0	9,00	1028	14,70	2007
3,99	81,7	9,50	1173		
4,52	124,7	10,01	1325		
5,01	176,7	10,49	1443		
5,51	235,7	10,95	1657		
6,00	309,9	11,48	1759		
6,50	393,7	11,97	1885		
7,00	482,7	12,40	1927	15	
7,48	589,8	12,96	1982		
8,00	723,3	13,39	1989		

Bestimmung der Schallleistungspegel:

-						
	WG _{10m} [m/s]	6	7	8	9 ¹⁾	10
	P _{Wel} [kW]	774	1177	1621	1900	-
	L _{WA} [dB]	100,9	102,2	103,1	103,6	-
	U _c [dB]	0,8	0,7	0,7	-,	-

1) Die der 95%igen Nennleistung entsprechende WG in 10 m Höhe beträgt 8,9 m/s.

			3 ^r	octave	-sound	power le	vel refe	orongo m	ai-4					*	
Frequenz	20	25	31,5	40	50	63	80	100)			
LWA, P	62.1	72.0	71.3	72.8	76.8	78.2		100	125	160	200	250	315	400	500
Frequenz	630	800	1000	1250	1600		81.3	85.9	87.6	87.0	89.0	90.7	91.9	91.4	91.8
LWA, P	91.3	90.1	89.7	89.7		2000	2500	3150	4000	5000	6300	8000	10000	12500	16000
		55.1	00.1	09.7	89.1	88.2	87.2	85.4	83.4	79.5	74.6	68.1	63.7	61.4	53.3

F			3rd	octave-	sound	ower le	vel. refe	rence n	oint v10	= 0 ma	4 in 4D/	41			
Frequenz	20	25	31,5	40	50	63	80	100							
LWA, P	60.0	71.3	70.8	71.6	76.3	77.0	80.9		125	160	200	250	315	400	500
Frequenz	630	800	1000	1250		0000		83.7	85.5	87.3	88.7	90.6	92.0	91.7	91.9
LWA, P	91.3	90.2	89.7		1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000
	01.0	30.2	09.7	90.0	90.0	88.7	87.8	85.9	84.0	80.4	76.2	71.1	67.8	65.4	61.0

			3rd oc	tave-so	und pow	er level.	referen	ce noin	1 95 % A	lonnisis	4	ID/A			
Frequenz	20		31,5	40	50	63	80	100	125						
LWA, P	58.9	70.2	69.7	70.5	75.2	76.8	79.8	82.6	84.4	160	200	250	315	400	500
Frequenz	630	800	1000	1250	1600	2000	2500	3150		86.2	87.6	89.5	90.9	90.6	90.8
LWA, P	90.2	89.1	88.6	88.9	88.9	87.6	86.7		4000	5000	6300	8000	10000	12500	16000
					00.0	07.0	00.7	84.8	82.9	79.3	75.1	70.0	66.7	64.3	59.9

Diese Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Measured by:

Deutsches Windenergie-Institut GmbH Ebertstraße 96 D- 26382 Wilhemshaven

Konformity stamp

Genehmigt Gehört zur Verfügung vom

1 2. SEP. 2005

date:

31.03.2004

Dipl.-Ing. Helmut Herold

Dipl.-Ing. Juan Carlos Cano

Kreisverwaltung Cochem-Zell

1 2. SEP. 20

WINDTEST Kaiser-Wilhelm-Koogs annual tung Cochem-Zell

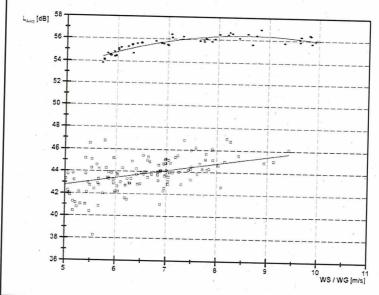
FGW-Richtlinie Rev. 15 an einer Windenergieanlage des Typs G80 G8Xv1_xx

zug aus dem Bericht:	WT 3273/04	Standort bzw. Messort: Anlagennummer:	Windpark Carrasquillo WEA Nr.N38 S/N 4356		
Auftraggeber:	Gamesa Eólica S.A. Poligono Agustinos Calle A, S/N 31013 Pamplona-Navarra Spanien	Auftragnehmer:	WINDTEST Kaiser-Wilhelm-Koog Gmbl- Sommerdeich 14b 25709 Kaiser-Wilhelm-Koog		
Auftragsdatum:	2002-03-23	Auftragsnummer:	Deutschland 6020 04 02440 06		

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Er umfasst insgesamt 2 Seiten.

ı	wessgeometrie:	
	Messentfernung R_0 :	
I	Rotationsebene → Turm-Mittelpkt. d:4,44 m	i

Technische Daten der WEA: Anlagenbezeichnung:
Getriebehersteller:
Generatorhersteller: Ingeteam Generatortypenbezeichnung:
Generatorseriennummer: INDAR 3820 Generatordrehzahl oder -bereich: 1680/900-1900 min ⁻¹ Generatornennleistung: 2000 kW
Diese Angaben ersetzen nicht die entsprechende Herstellerbescheinigung.

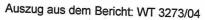

Messbedingungen:	
Messdatum: 200)4-04-02
WG in 10m Höhe, 1-min Mittel WG _{10m} :3,5 - Windrichtung:	10 5 m/c
vvirkieistungspereich, 1-min Mittel Purat 250 - 3	אא מחחס
Luftdruck p _{Luft}	906 hPa
Lufttemperatur T _{Luft}	.2-10 °C

Aus Bericht: WT 2987/04 Prüfer: WINDTEST Kaiser-Wilhelm-Koog GmbH Messzeitraum: 2003-07-04 - 2003-11-18

Leistungskurve:

WG [m/s]	Leistung [kW]	WG [m/s]	Leistung [kW]	WG [m/s]	Leistung [kW]
2,46	8,5	7,98	641,0	13,58	1931.0
3,00	24,9	8,49	784,5		1001,0
3,51	44,0	8,99	899,8		
3,97	74,3	9,49	1055,0		
4,54	115,9	9,97	1148.0		
5,01	164,5	10,50	1351,0		
5,51	210,0	11,03	1432.0		
5,99	272,0	11,45	1556.0		
6,52	354,3	12,02	1686,0		
6,99	444,5	12,44	1769.0		
7,49	538,7	13,06	1842.0	9	

Bestimmung der Schallleistungspegel:



WG _{10m} [m/s]	6	7	8	9	10 ¹⁾
P _{Wel}	690	1059	1408	1728	1900
L _{Aeq} [dB]	54,8	55,8	56,3	56,3	56,0
L _n [dB]	43,4	44,1	44,8	45,4	46,0
L _{Aeq,c} [dB]	54,4	55,5	56,0	56,0	55,5
L _{WA} [dB]	100,5	101,5	102,0	102,0	101,6
U _c [dB]	0,7	0,8	0,7	0,9	0,8
) Die der	95%ige	n Nenni	eistung	entspred	chende

WG in 10 m Höhe beträgt 9,86 m/s.

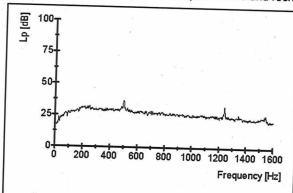
WINDTEST

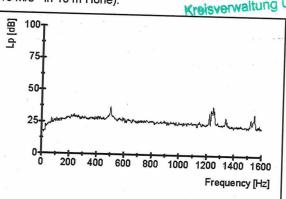
Ergebniszusammenfassung der Geräuschemissionsmessung nach FGW-Richtlinie Rev. 15 an einer Windenergieanlage des Typs G80 G8Xv1_xx

Impulshaltigkeit nach FGW-Richtlinie / DIN 45645 T1 für Referenzbedingungen:

WG in 10 m Höhe [m/s]	60	10. — Branchistoria		990111			
	6,0	7,0	8,0	9,0	10.0 ¹⁾		
K _{IN} [dB]	0	0	0	0	10,0		
				U	0		

Terz- und Oktavanalyse für L_{WA,P (max)} (bei 8,00 m/s in 10 m Höhe):


				(max) (, .	0 1111/3	111 10 1	II HOII	<i>₽):</i>			
Terz Freq. [Hz]	50	63	80	100	125	160	200	250	315	100		
L _{WA,P} (max) [dB(A)]	76,0	78,2	81,1	82,6	84,2	86,0	88,8	89,9	90,0	91,2	93,5	91,2
Oktav Freq. [Hz]	, so	63	W- 0	99	125	T-Line		250	47. W.			
L _{WA,P} (max)				-	.20			250			500	
[dB(A)]		83,7			89,3			94,4	1		96,9	
Terz Freq. [Hz]	800	1000	1250	1600	2000	2500	3150	4000	5000			
L _{WA,P} (max)	91,4	91,2	00.4	00.5	L. II (back-10-5-7-1		3130	4000	5000	6300	8000	10000
[dB(A)]	31,4	91,2	92,1	90,5	88,3	86,7	84,7	81,6	77,5	71,8	66,8	63,1
Oktav Freq. [Hz]	1.5	1000		47-15 W.A	2000	25 32 80		4000				
L _{WA,P} (max)		- 00 1			2000			4000			8000	
[dB(A)]		96,4		93,6 87,0				87,0			73.4	h


Genört zur Verfügung vom 1 2. SEP. 2005

Tonhaltigkeit nach FGW-Richtlinie / EDIN 45681:

Repräsentative FFT - Spektren (links 8 m/s und rechts 10 m/s¹⁾ in 10 m Höhe):

Kreisverwaltung Cochem-Zell

WG in 10 m Höhe [m/s]	60	A THEOREM .			
	6,0	7,0	8,0	9.0	10,0 ¹⁾
K _{TN} [dB] (f [Hz])	0 (-)	0 (-)	0 (-)		
		- ()	0 (-)	0 (-)	1 (1248)

Bemerkungen:

bzw. die der 95%igen Nennleistung entsprechende WG in 10 m Höhe (9,86 m/s), falls diese < 10 m/s.

Abweichungen zur FGW:

Keine.

Bearbeiter:

Geprüft:

Dipl.-Ing. J. Neubert Leiter Gruppe Akustik

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Auszug aus dem Prüfbericht

1 2. SEP. 2005

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien Kreisverwaltung Cochem-Ze für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel)

Auszug aus dem Prüfbericht DEWI S AM 135 / 04 – of 2004/03/31 zur Schallemission der Windenergieanlage vom Typ GAMESA G 80 control type G80 V42

Anlagentyp:	GAMESA G80	Technische Daten (Herstellera	ngahan)
Anlagenhersteller:	GAMESA Eólica Sociedad Unipersonal S.A	Nennleistung (Generator):	2000 kW
	Calle A Nave 8B E-31013 Pamplona	Nennwindgeschwindigkeit:	•
D. 7.0		Rotordurchmesser:	80 m
MEA OF	ve: <i>WINDTEST</i> WT 2988/03	Nabenhöhe über Grund:	60 m
o	a Plana (Zaragoza) / Spain	Turmbauart:	Stahlrohr, konisch
	137	Leistungsregelung:	Aktive Pitchregelung
Ergänzende Daten zum Re	otor (Herstellerangaben)	Erg. Daten zu Getriebe und Ger	
Rotorblatthersteller:	GAMESA Eólica Sociedad Unipersonal S.A	Getriebehersteller:	Hansen
Typenbezeichnung Blatt:	G-39 P	Typenbezeichung Getriebe:	Hansen 2MW
Blatteinstellung:	Optitip	Generatorhersteller:	Ingeteam
Rotorblattanzahl	3	Typenbezeichung Generator:	Ingecon-W 2000 kW
Rotordrehzahlbereich:	16.7 – 9.0- 18.9. min ⁻¹	Generatordrehzahl / - bereich:	1680 / 900-1900 min ⁻¹

1				D-1	·										
4			<u> </u>		erenzpu	ınkt		So	hallemi	ssions-F	Paramete	er	Ber	nerkung	en
*			Windgeso in 10	ardisierte chwindig m Höhe ms ⁻¹	keit	Elektri	Stung		a				-Isoliert	er Dämp as Gene	fer am
Schalleist Pegel L _{WA,P}	ungs-	,	7 8	ms ⁻¹ ms ⁻¹ ms ⁻¹	ıq	693 F 1049 1412 1723	kW kW kW	1	10 10 10	3.1 dB(A) 0.6 dB(A) 1.8 dB(A) 1.9 dB(A)	() () ()	е,	Meas. ui Meas. ui Meas. ui	ncert. 0.6 ncert. 0.7	dB(A) dB(A) dB(A)
Tonzuschl den Nahbe K _{TN (140 Hz)}	ereich		6 i 7 i 8 i	ms ⁻¹ ms ⁻¹ ms ⁻¹ ms ⁻¹		693 k 1049 l 1412 l 1723 l	kW kW kW		10	0.8 dB(A 0 dB 0 dB 0 dB 0 dB	.) .e	*	Meas. ur	ncert. 0.8	dB(A)
Tonzuschl den Nahbe K _{TN (1238 Hz}	ereich	2	6 r 7 r 8 r	ms ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹	~	693 k 1049 k 1412 k 1723 k 1900 k	W kW kW			0 dB 0 dB 0 dB 0 dB 0 dB 0 dB					*
				Terz-Sc	halleist	ungspec	el Refer	enzpun	kt v40 = 6		dR(A)				
requenz	20	25	31,5	40	50	63	80	100	125	160	200	250	215	100	
WA, P	64.6	70.3		72.1	69.0	69.9	75.3	78.3	81.2	82.8	85.1	87.4	315 89.1	400	500
requenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	88.5	88.8

- * * * *	00.0	1 00.2	1 84.6	1 87.1	86.1	I 85.1	84.3	00 5	00 =					12000	10000
			00	01.1	00.1	00.1	04.3	82.5	80.5	76.4	68.7	68.5	65.5	62.9	63.4
												180			
Erosus	00			Terz-Scl	nalleistu	ngspeg	el Refere	enzpunk	t v10 = 7	7 ms-1 ir	dB(A)				
Frequenz	20	25	31,5	40	50	63	80	100	125	160	200	250	215	400	500
LWA, P	59.2	70.5	70.4	72.5	75.6	77.3	80.0	82.8	86.6	85.9			315	400	500
Frequenz	630	800	1000	1250	1600	2000	2500				87.5	90.1	91.0	90.5	90.5
LWA, P	90.0	88.9	88.4	88.1				3150	4000	5000	6300	8000	10000	12500	16000
	00.0	00.0	00.4	00.1	87.5	86.8	85.9	84.2	82.1	78.3	73.4	66.9	62.4	60.5	54.0

3150

86.2

4000 5000 6300 8000 10000 12500 16000

F			3 ^r	octave	-sound	power le	vel. refe	erence p	oint v.	= 2 mc ⁻¹	in dD/A				
Frequenz	20	25	31,5	40	50	63	80	100	125						
LWA, P	62.1	72.0	71.3	72.8	76.8	78.2	81.3	85.9		160	200	250	315	400	500
Frequenz	630	800	1000	1250	1600	2000	2500		87.6	87.0	89.0	90.7	91.9	91.4	91.8
LWA, P	91.3	90.1	89.7	89.7	89.1	88.2		3150	4000	5000	6300	8000	10000	12500	16000
			55.7	55.7	03.1	00.2	87.2	85.4	83.4	79.5	74.6	68.1	63.7	61.4	53.3

			3rd	octave	sound i	ower le	vel refe	ronco n	oint v10	- 0	4				
requenz	20	25	31,5	40	50	63	00	1011Ce p			1 in dB(A)			
LWA, P	60.0	71.3	70.8				80	100	125	160	200	250	315	400	500
	00.000		70.8	71.6	76.3	77.9	80.9	83.7	85.5	87.3	88.7	90.6			
requenz	630	800	1000	1250	1600	2000	2500					90.6	92.0	91.7	91.9
LWA, P	91.3	90.2	89.7					3150	4000	5000	6300	8000	10000	12500	1600
, .	01.0	30.2	09.7	90.0	90.0	88.7	87.8	85.9	84.0	80.4	76.2	71.1	67.8	65.4	61.0

			3rd oc	tave-sou	and pow	er level.	referen	ce noin	1 95 % N	lonnia:	A	15/41			
Frequenz	20	25	31,5	40	50	63	80	100	125						
LWA, P	58.9	70.2	69.7	70.5	75.2	76.8	79.8	82.6		160	200	250	315	400	500
Frequenz	630	800	1000	1250	1600	2000			84.4	86.2	87.6	89.5	90.9	90.6	90.8
LWA, P	90.2	89.1	88.6	88.9	88.9		2500	3150	4000	5000	6300	8000	10000	12500	16000
		00.1	00.0	00.9	00.9	87.6	86.7	84.8	82.9	79.3	75.1	70.0	66.7	64.3	59.9

Diese Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Measured by:

Deutsches Windenergie-Institut GmbH Ebertstraße 96 D- 26382 Wilhemshaven

Konformity stamp

date: 31.03.2004

Dipl.-Ing. Helmut Herold

Dipl.-Ing. Juan Carlos Cano

Genehmigt Gehört zur Verfügung vom 1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Schallvermessungen Repower MD77

Genehmigt Gehört zur Verfügung vom

1.2. SEP. 2005

Kreisverwaltung Cochem-Zell

Messung 1 Messung 2 Messung 3		103,3 dB(A) Windtest SE02011B2 103,3 dB(A) WICO 039SE202 102,3 dB(A) KCE 27053-1.001

Mittelwert	102,97 dB(A)
Standardabweichung bzw. Sigma P	0,58 dB(A)
Sigma R	0,50 dB(A)
Sigma Prog	1,50 dB(A)
Sigma ges	1,68 dB(A)
1,28*Sigma ges	2,15 dB(A)

Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges) 105,12 dB(A)

Summary of test report 27053-2.001

page 5 of 6

Determination of the sound emission parameters on the basis of several single measurements

The evaluation of at least three tests according to the "Technische Richtlinien für Windenergieanlagen" /1/ offers the opportunity to specify the sound emission values of a type of unit according to /2/ in order to improve the reliability of acoustical planning.

Unit data	and appearance according to 72/ in order	procession and acoustic	ai piarining .
Manifacturer	REpower Systems AG	Unit label Rated power Hub height Rotor diameter	REpower MD77 1500 kW 100.0 m
Serial number	1 st test	2 nd test	3 rd test
situation Tested hub height	70.075 Linnich near Heinsberg 85 m	70.036 Schenkenberg 02	70.227 Lindewitt/Blye
Testing organization Test report date Type of gear unit Type of generator Type of rotor blade	WINDTEST Grevenbroich GmbH SE02011B2 07/08/2002 Eickhoff. G45260X/A CPNHZ-197 Loher. JFRA-580 LM 37.3	85 m WIND CONSULT WICO 039SE202 02/10/2002 Eickhoff. G45260X/A CPNHZ-197 Loher. JFRA-580 LM 37.3	61.5 m KÖTTER Consulting Engineers 27053-1.001 06/05/2003 Eickhoff. G45260X/A CPNHZ-197 Loher. JFRA-580
1 st test: Sound of 2 nd and 3 rd test: Sound of	emission parameter (test report per emission parameter (test report per		LM 37.3P //03/2002) //05/2002)
Wind speed	Sound nower level I		Standard

Wind speed				wer level L	WA:		mean	Standard	K
in 10 m height	1 st tes	st 1)	2"	test 1)	3"	test .	Lwa	deviation	according to /2
6 m/s 7 m/s 8 m/s 8.1 m/s ⁴⁾	101.1 c 102.8 c 103.3 c	iB(A) iB(A) iB(A)	103 103 103	9.6 dB(A) 9.2 dB(A) 9.2 dB(A) 9.3 dB(A)	100. 101. 102. 102.	1 dB(A) 8 dB(A) 5 dB(A) 3 dB(A)	100.3 dB(A) 102.0 dB(A) 103.0 dB(A) 103.0 dB(A)	0.8 dB 0.8 dB 0.4 dB 0.6 dB	σ _R = 0.5 dB 1.7 dB 1.8 dB 1.3 dB
	Tor 1 st tes	nal adjus	tment a	t tested hul	height K	C _{TN} : test ³⁾	2200	0.0 0.5	1.5 dB
6 m/s 7 m/s 8 m/s 8.1 m/s ⁴⁾	0 dB 0 dB 0 dB 0 dB	- Hz - Hz - Hz - Hz	0 dB 0 dB 1 dB 1 dB	- Hz - Hz 148 Hz 148 Hz	0 dB 0 dB 1 dB 2 dB	- Hz - Hz 163 Hz 164 Hz			
	1 st tes	t ²⁾		ijustment k test ²⁾	12.00	est 3)			
6 m/s 7 m/s 8 m/s 8.1 m/s ⁴⁾	0 dE 0 dE 0 dE	B B B	e u	0 dB 0 dB 0 dB 0 dB	0	dB dB dB dB	is a		

			ocana p	CAACI IGA		V) TOT rete	rence no	int v. (m	02n of 2	tanta 1 4)		
frequency	third-oct	63	80	100	125	160	200					
Lwa	76.5	80.8	85.4	07 1				250	315	400	500	630
				87.1	88.5	93.2	90.1	91.3	92.6	92.6	91.3	92.0
frequency	800	1000	1250	1600	2000	2500	3150	4000	5000		12.00	
Lwa	91.7	91.2	90.5	89.5	20.0			4000	5000	6300	8000	1000
	-	01.2	30.5	69.5	88.3	87.3	86.2	84.9	82.1	80.4	78.3	72.8

frequency	- (octave band s	ound power l	evel in dB(A)	for reference	point v. (me:	n of 2 tootal 4)
	63	125	250	500	1000			
Lwa	87.1	95.2	96.2			2000	4000	8000
so engoifications	F.11 . 1 . 1		96.2	96.8	95.9	93.2	89.5	82 9

do not replace the test reports mentioned above (particularly for noise immission predictions).

Notes:

1) sound power level for converted hub height 2) valid for tested WEC with hub height of $h_N = 85$ m 3) valid for tested WEC with hub height of $h_N = 61.5$ m

corresponding to 95 % of rated power

Issued by:

KÖTTER Consulting Engineers

Bonfatiusstrasse 400

48432 Rheine

Date:

08/05/2003

Bonifatiusstraße 400 · 48432 Rheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

Schallvermessungen Enercon E40

Gehört zu	e h	m i	g t
		2005	

Krelsverwaltung Cochem-Zell

Messung 1 Messung 2 Messung 3	100,7 dB(A) WICO 207SE899 100,1 dB(A) WICO 287SEA01/01 100,8 dB(A) Windtest 1740/01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	100,53 dB(A) 0,38 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,63 dB(A)
1,28*Sigma ges	2,08 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	102,61 dB(A)

1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergleanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 207SE899 zur Schallemission der Windenergieanlage vom Typ E-40/6.44

Allgemeine Angaben	* #*	Technische Daten (Herstellera	
Anlagenhersteller:	ENERCON GMBH	Nennleistung (Generator): Rotordurchmesser:	600 kW
Seriennummer: WEA-Standort (ca.):	44155 RW: 2588140 HW: 5947430	Nabenhöhe über Grund: Turmbauart:	44.00 m 46 m Stahlrohrturm
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Leistungsregelung: Erg. Daten zu Getriebe und Ge	Pitch/Stall/Aktiv-Stall
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl Rotordrehzahlbereich:	Enercon GmbH E-40/6.44 variabel 3	Getriebehersteller: Typenbezeichung Getriebe: Generatorhersteller: Typenbezeichung Generator:	entfällt entfällt Enercon GmbH E-40/6,44
Prüfbericht zur Leistungski	18 - 34.5 U/min	Generatornenndrehzahl:	18 - 34.5 U/min

				14 S	8
9	Referenz	punkt		llemissions- arameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		a dilletel	100
Schalleistungs- Pegel L _{WA,P}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW	98 99 100	,8 dB(A) ,9 dB(A) ,8 dB(A) ,4 dB(A)	. ,
Tonzuschlag für den Nahbereich K _{TN}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW	0 dB 2 dB 0 dB 0 dB 0 dB	bei 352 Hz bei 354 Hz bei 304 Hz bei 302 Hz bei 192 Hz bei 192 Hz	
lmpulszuschlag für den Nahbereich K _{in}	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 10 ms ⁻¹	156 kW 266 kW 376 kW 481 kW 539 kW		0 dB 0 dB 0 dB 0 dB 0 dB	

Terz-Schalleistungspegel Referenzpunkt v₁₀ = 8 ms⁻¹ in dB(A) Frequenz 16 50 63 80 100 125 160 200 20 31,5 40 55,5 59,2 62,8 66,5 69,7 250 315 400 500
 62,8
 66,5
 69,7
 73,2
 76,3
 79,0
 81,9
 83,6
 84,8
 85,0
 86,7
 87,6
 88,2
 88,9

 1000
 1250
 1600
 2000
 2500
 3150
 4000
 5000
 6300
 8000
 10000
 12500
 16000
 20000

 90,4
 89,9
 88,8
 87,1
 84,5
 81,7
 78,9
 76,1
 71,8
 67,3
 61,5
 55,8
 53,0
 48,2
 Frequenz 630 800

			Т	erz-Sci	nalleist	ungspe	gel Ref	oronzo	umbe	- 40	-1 -	01,0	01,0	33,6	53,0	48,2
Frequenz	16	20	25	31.5	40	50	63				_	IB(A)				
L _{WA, P}	62,3	65,6	68.5		74.1	76.0		80	100	125	160	200	250	315	400	500
Frequenz	630	800	_	, .			,.	80,3	83,1	84,7	85,6	86,5	87,7	88.3	89.5	90.2
Lwa.P	90.7	91.1			PO F	2000	2500	3150	4000	5000	6300	8000	10000	12500		20000
Dieser Ausz	THO SILE	dem Dr	Official	4 = 14 =	09,5	87,3	84,7	81,9	79,5	76,6	72.7	68.9	10000	50.2	54.7	40.5

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 01.03.2000. Die Angaben ersetzen Bemerkungen: kaine Bemerkungen: keine

Gemessen durch:

WIND-consult GmbH

Datum:

27.03.2000

Unterschrift

DAP-P-02.756-00-94-28

Nach DIN EN 45001 durch die DAP Deutsches Akkreditierungssystem Prüfun Die Akkreditierung gilt für die in der Urkunde aufgefü n GmbH akkreditio

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Tell 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e. V., Flotowstr. 41 - 43, D-22083 Hamburg)

Auszug aus dem Prüfbericht WICO 287SEA01/01 zur Schallemission der Windenergieanlage vom Typ ENI

Aligemeine Angaben		Technische Deter (Harristell					
Anlagenhersteller: Seriennummer: WEA-Standort (ca.):	ENERCON GmbH Dreekamp 5 D-26605 Aurich 44979 RW 3418170, HW 5883430	Technische Daten (Hersteiler Nennielstung (Generator): Rotordurchmesser: Nabenhöhe über Grund: Turmbauart:	600 kW 44 m 78 m Stahirohrturm				
Ergänzende Daten zum Ro	otor (Herstellerangaben)	Lelstungsregelung: Pitch/Stall/Aktiv-Stall Erg. Daten zu Getriebe und Generator (Herstellerangaber					
Rotorbiatthersteller: Tvpenbezelchnung Blatt: Blatteinstellwinkel: Rotorbiattanzahl Rotordrehzahlbereich: Prüfbericht zur Leistungsk	ENERCON GmbH E-40/6.44 variabel 3 18 – 34,5 U/min	Getriebehersteller: Typenbezeichung Getriebe: Generatorhersteller: Typenbezeichung Generator: Generatornenndrehzahl:	entfällt entfällt ENERCON GmbH				

		.*.					enzpunkt					nission: meter	B-	Bemerkungen			
			Si ge	100000	digkeit i Höhe	Vind- in 10	Elektrische Wirkleistung			×	- 414		=	1			
Schalleist Pegel L _{WAP}	ungs-	8	6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,9 ms ⁻¹ 6 ms ⁻¹					212 kW 96,9 dB(A) 343 kW 98,5 dB(A) 484 kW 99,6 dB(A) 570 kW 100,1 dB(A)					(1)				
Tonzuschi den Nahb K _{TN}			2	7 ms ⁻¹ 343 kW 8 ms ⁻¹ 484 kW 8,9 ms ⁻¹ 570 kW					00	dB b dB b dB b	pei - Hz pei - Hz pei - Hz				,		
Impulszus für den Na K _{IN}		6 ms ⁻¹ 212 kW 0 dB						10	(1)								
is .				Terz-S	challel	stungs	pegel R	Referen	zpunkt	V. = 2	ms ⁻¹ in				(1)		
-WA.P	16 55,5	20 59.5	25 62,9	31,5	40	50	63	80	100	125	160	200	250	315	400	500	
requenz	630	800	1000	65,7 1250	67,3 1600	70,6	72,8 2500	74,5 3150	77,3 4000	78,7	80,9	83,7	84,6	87,3	88,9	90,8	
-WA, P	89,5	90,5	91,2	89,1	87,7	85,4	83,4	82,2	81,4	5000 79,1	6300 76,6	8000 73.4	10000 70,3	12500 62,6	16000 53,1	20000	
				Terz-Sc	hallels	tunasp	egel Re	ferenz	nunkt v				70,0	02,0	33,1	45,9	
requenz	16	20	25	31,5	40	50	63	80	100	125	ms in	dB(A)	250	045	/		
VA, P	54,5	57,9	61,3	64,7	66,7	69,6	72,7	76.4	76,7	75.8	81.8		250	315	400	500	
equenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	85,0	85,2	87,9	89,4	90,9	
VA, P	89,7	90,8	91,7	89,7	88,5	86.4	84.4	83.4	82,6	80,2	77.7	8000 74,1	10000	12500	16000	20000	

er Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 12.11.2001. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

(1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermesse-nen WEA bei v₁₀= 8,9 ms⁻¹ in 10 m ü.G..

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 05.12.2001

Dipl.-Ing. R.Haevernick Dipl.-Ing. W.Wilke

1.2 SEP. 2005

Bemerkung:

Der Schalleistungspegel für die 10 m/s Windklasse ändert sich nicht, da die errechneten Windgeschwindigkeiten oberhalb der 95% - Grenze liegen, d.h. die Anlage It. gültiger Leistungskurve dann bereits im Nennleistungsbereich liegt. Die in der Tabelle 7 aufgeführten Werte gelten nur für die baugleiche Anlagen des vermessenen Typs.

5 Zusammenfassung und Bewertung

Im Auftrag der Enercon GmbH, 26605 Aurich, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA Enercon E40/6.44 mit einer Nabenhöhe von $h_N = 65 \, \text{m}$ nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichlich des Schallleistungspegels ist die DIN 61400-11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 T1 /3/ Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die Enercon E40/6.44 die in Tabelle 7 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich..

Tabelle 7: Schalleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

6	7	8	9	10 ¹
96,4	98,3	99,6	100,7	100,8
0	0	0	0	0
0	0	0	0	0
	6 96,4 0			

¹ bzw. die der 95%igen Nennleistung (570 kW) entsprechenden WG von 9,2 m/s in 10 m Höhe

Bezüglich des Schallleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge festgestellt worden von:

$$s_{tot} = 1,5 dB.$$

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, daß das Gutachten gemäß dem Stand der Technik unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

Schallvermessungen Enercon E66

Messung 1 Messung 2 Messung 3	103,0 dB(A) KCE 26207-1.001 103,0 dB(A) KCE 26716-1.001 102,7 dB(A) Windtest 1618/00
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	102,90 dB(A) 0,17 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,59 dB(A)
1,28*Sigma ges	2,04 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	104,94 dB(A)

104,94 dB(A)

Genehmigt Gehört zur Verfügung vom 1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Genehmigt Gehört zur Verfügung vom

1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01.Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e.V. Flotowstraße 41-43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 26207-1.001

zur Schallemission der Windenergieanlage vom Typ Enercon E-66/18.70 in Hückeswagen

Allgemeine Angaben

Technische Daten (Herstellerangaben) Nennleistung (Generator):

Anlagenhersteller:

Enercon GmbH

70494

1800 kW

Seriennummer:

Rotordurchmesser:

Leistungsregelung:

70,4 m

WEA-Standort (ca.):

42499 Hückeswagen GK RW 25.92.350

GK HW 56.67.312

Nabenhöhe über Grund: 86 m Turmbauart:

kon. Rohr + Sockel Blattverstellung

Ergänzende Daten zum Rotor (Herstellerangaben) Rotorblatthersteller:

Enercon

Erg. Daten zu Getriebe und Generator (Herstellerang.) Getriebehersteller:

entfällt

Rotorblattyp:

Enercon Variabel

Typenbezeichnung Getriebe: Generatorhersteller:

entfällt Enercon

Blatteinstellwinkel: Rotorblattanzahl:

Rotordrehzahlbereich:

3

Typenbezeichnung Generator:

E-66/18.70, Ringbauweise

8-22 U/min

Generatordrehzahlbereich:

8-22 U/min

Prüfbericht zur Leistungskurve: Leistungskurvenmessung DEWI-PV 0002-05-F, Deutsches Windenergie-Institut GmbH

	Referen	zpunkt		igic-institut Giliph				
* * .	Standardisierte Windgeschwindigkeit in 10 m Höhe	Schallemissions- Parameter	Bemerkungen					
g = 1	8 ms ⁻¹	101,4 dB(A)	,					
Schalleistungs-Pegel L _{WA,P}	9 ms ⁻¹	103,0 dB(A)						
L Carrier Carr	·			* "				
n n				-				
	0 1							
	8 ms ⁻¹	0 dB	W.					
Tonzuschlag für den	9 ms ⁻¹	0 dB						
Nahbereich K _{TN}		<u></u>	*	0				
			× 2					
	8 ms ⁻¹	0 dB						
Impulszuschlag für den	9 ms ⁻¹	0 dB	H (4)					
Nahbereich K _{IN}			-					
. 20	<u> </u>		8	" · · · · · · · · · · · · · · · · · · ·				
ř.			, *					
Terz-Schalleistungspegel R Frequenz 16 20 2	oforonzaunid 0.0	-1						
Frequenz 16 20 2	5 24.5 40 = 9,0 ms	s in dB(A) entspreche	nd 95% der Nennleistung	, hier 1710kW				

Frequenz	16	gopege	I Kele	renzpu	TIKL V ₁₀	= 9,0 r	ns in	dB(A)	entspre	chend	95% de	er Nenr	nleistund	hier 17	10kW	
requenz	10	20	25	31,5	40	50	63	80	100	125	160	200				
L _{WA,P}	59,4	62.1	67.6	71.1	74.8	78,4	88.4	92.4		(3,35)			250	315	400	500
Frequenz	630	800	1000			,			87,4	89,3	93,5	89,9	90,2	91,5	91.1	90.4
				1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20.00
L _{WA,P}	91,4	90,8	91,9	91,3	89,9	88.9	84.9	81,5	78.4	75.0					16000	20000
							,		, -	75,2	71,0	66,8	70,6	69,3	66,1	68,8
Terz-Schal	Terz-Schalleistungspegel Referenzpunkt v ₁₀ = 8.0 ms ⁻¹ in dB(A)															

Terz-Scha	alleistun	gspeg	el Refe	renznu	nkt van	= 8 O n	ne ⁻¹ in	dD/A)							30,1	00,0
Frequenz	16	20	25	31,5	40	50	63	80	_	405						
L _{WA.P}	55.4	61.5	67.3						100	125	160	200	250	315	400	500
		,		70,8	74,2	78,3	81,2	83,6	85,6	87,8	90,5	88.7	89.0	90.4	89.9	89.3
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000				- /-
L _{WA,P}	90,5	90.0	91.1	90,7	89,7	88,2	85.2					1 1 1 2 0 2	10000	12500	16000	20000
			0.,.	00,7	03,1	00,2	05,2	81,4	77,8	74,6	69,6	64,9	68.1	66.7	63.4	66.2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung . Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Der Abstand zwischen eingeschalteter und ausgeschalteter Windenergieanlage betrug während der Messung <5 dB(A) zwischen WEA an und Hintergrundgeräusch, witterungsbedingt konnten für v_{10} = 6 m/s und 7 m/s keine

Minutenmittelwerte erfasst werden.

Gemessen durch:

KÖTTER Consulting Engineers

- Rheine -

Datum:

04.03.2003

Bonifatiusstraße 400 · 48432 Rheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43 C.V. And Schally Unterschrift

Genehmigt Gehört zur Verfügung vom 1 2. SEP. 2005

Kreisverwaltung Cochem-Zell

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 13 vom 01. Januar 2000 (Herausgeber: Fördergesellschaft Windenergie e.V. Flotowstraße 41-43, D-22083 Hamburg)

Auszug aus dem Prüfbericht 25716-1.001

zur Schallemission der Windenergieanlage vom Typ Enercon E-66/18.70 im Windpark Wilsum Allgemeine Angaben

Technische Daten (Herstellerangaben) Anlagenhersteller: Enercon GmbH Nennleistung (Generator): 1800 kW Rotordurchmesser: 70,4 m Seriennummer: 70350 Nabenhöhe über Grund: 98m WEA-Standort (ca.):

49849 Wilsum Turmbauart: GK RW 25.60.880.

kon. Rohr + Sockel

Leistungsregelung: GK HW 59.23.400 Blattverstellung Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator (Herstellerang.)

Rotorblatthersteller: Enercon Getriebehersteller: Rotorblattyp: entfällt Enercon Typenbezeichnung Getriebe: entfällt Blatteinstellwinkel: Variabel Generatorhersteller: Rotorblattanzahl: 3

Enercon Typenbezeichnung Generator:

E-66/18.70, Ringbauweise

Rotordrehzahlbereich: 10-22 U/min Generatordrehzahl: 10-22 U/min Prüfbericht zur Leistungskurve: Leistungskurvenmessung DEWI-PV 0002-05-E, De

5.6		2 00 E, Bedisches Winderleigie-inst	itut GmbH				
Referenz	punkt	*					
Standardisierte Windgeschwindigkeit in 10 m Höhe	Schallemissions- Parameter	Bemerkungen					
6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 9,15 ms ⁻¹	97,2 dB(A) 99,7 dB(A) 101,6 dB(A) 102,9 dB(A)						
6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹	0 dB 0 dB 0 dB 0 dB						
6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 9 ms ⁻¹ 9,15 ms ⁻¹	0 dB 0 dB 0 dB 0 dB						
	Standardisierte Windgeschwindigkeit in 10 m Höhe 6 ms-1 7 ms-1 8 ms-1 9 ms-1 9,15 ms-1 6 ms-1 7 ms-1 8 ms-1 9 ms-1	Referenzpunkt Standardisierte Windgeschwindigkeit in 10 m Höhe Schallemissions- Parameter 6 ms ⁻¹ 97,2 dB(A) 7 ms ⁻¹ 99,7 dB(A) 8 ms ⁻¹ 101,6 dB(A) 9 ms ⁻¹ 102,9 dB(A) 9,15 ms ⁻¹ 0 dB 7 ms ⁻¹ 0 dB 8 ms ⁻¹ 0 dB 9 ms ⁻¹ 0 dB 9 ms ⁻¹ 0 dB 6 ms ⁻¹ 0 dB 7 ms ⁻¹ 0 dB 6 ms ⁻¹ 0 dB 7 ms ⁻¹ 0 dB 8 ms ⁻¹ 0 dB 9 ms ⁻¹ 0 dB	Standardisierte Windgeschwindigkeit in 10 m Höhe Schallemissions-Parameter Bemerkunge 6 ms ⁻¹ 97,2 dB(A) 99,7 dB(A)				

Terz-Scha	lleistur	gspeg	el Refe	renzpu	nkt v ₁₀	= 8 ms	-1 in dF	R(A)								
Frequenz	16	20	25	31,5	40	50	63	80	100	125	100			-		
L _{WAP}	60,9	66.4	70.3	73	75,9						160	200	250	315	400	500
Frequenz	-			-		79,3	81,9	85,2	84,1	85	90	85,8	87.9	90.3	90	89.6
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	,-			
L _{WA,P}	91,9	92	92,8	91.2	89.5	87,2	84.8	100 100 100 100					10000	12500	16000	20000
			02,0	01,2	03,3	07,2	04,0	82,1	80,4	77,2	72,6	68,6	66,2	64,5	63.4	

								, .	00,1	11,2	12,0	00,0	00,2	64,5	63,4	
Terz-Scha Frequenz	lleistur	ngspeg	el Refe	renzpu	nkt v ₁₀	= 9.15	ms ⁻¹ ir	dR(A)	onten	roohon	4 OE0/	d N-		Sec. 20	2 5 6 70/21	
Frequenz	16	20	25	31.5	40	50	63	I GD(A)	, entop	rechen	u 95%	der Ne	nnleistu	ng (1710	kW)	
L _{WA.P}	62.3		74 7	0.,0	70	30	03	80	100	125	160	200	250	315	400	500
	02,3	67,8	71,7	74,4	77,3	80,7	83,3	86.6	85.5	86.4	91.4	87.2	89.3	91.7		
Frequenz	630	800	.1000	1250	1600	2000	2500	2450	202.00	-			09,3	91,7	91,4	91,0
Lancas	00.0	00.4	0.000			2000	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000
L _{WA,P}	93,3	93,4	94,2	92,6	90,9	88.6	86.2	83.5	81.8	78.6	74.0	70.0	07.0		15.0918 GUE	20000
D:								00,0	01,0	70,0	74,0	70,0	67,6	65,9	64,8	

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung . Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Gemessen durch: KÖTTER Consulting Engineer

- Rheine -

Datum: 04.03.2003 Bonifatiusstraße 400 · 48432 Rheine Tel. 0 59 71 - 97 10.0 · Fax 0 59 71 - 97 10.43

V. Amo Schally

Unterschrift

Dieser Auszug aus dem Prüfbericht enthält 1 Seite.

nach Technischer Richtlinie /1/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schalleistungspegels ist die DIN 61400-11 /2/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die EDIN 45681 /4/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 T1 /3/ Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die E66/18.70 die in Tabelle 8 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich.

Tabelle 8: Schalleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

WG in 10 m Höhe [m/s]	6	7	8	9	10 ¹
Schalleistungspegel L _{WA,P} [dB]	-		100,5	102.1	102.7
bewerteter Impulshaltigkeitszuschlag [dB]	-	0	0	0	0
Tonhaltigkeitszuschlag [dB]	-	-	0	0	0
have die de OFOC			U	U	U

¹ bzw. die der 95%igen Nennleistung entsprechende WG

Bezüglich des Schalleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge festgestellt worden von:

$$s_{tot} = 1,5 dB.$$

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

Schallleistungspegel Vestas V80

Genehmigt Gehört zur Verfügung vom 12. SEP. 2005

Kreisverwaltung Cochem-Zell

Messung Messung Messung	105,30 dB(A) WT 2483/02 103,90 dB(A) WT 2602/03 103,90 dB(A) WICO 319SE902/01
Mittelwert Standardabweichung bzw. Sigma P Sigma R Sigma Prog	104,37 dB(A) 0,81 dB(A) 0,50 dB(A) 1,50 dB(A)
Sigma ges	1,78 dB(A)
1,28*Sigma ges	2,27 dB(A)
Emissionswert für oberen Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	106,64 dB(A)

Schallreduktion

101,0 dB(A) Hersteller Garantie

Vertrauensbereich 90% (Mittelwert+1,28*Sigma ges)	103,56 dB(A)
Emissionswert für oberen	
1,28*Sigma ges	2,56 dB(A)
Sigma ges	2,00 dB(A)
Sigma R Sigma Prog	1,50 dB(A) 0,50 dB(A)
Mittelwert Standardabweichung bzw. Sigma P	101,00 dB(A) 1,22 dB(A)

Auszug aus dem Prüfbericht WICO 085SE203

Seite 6 von 6

ng Cochem-

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten		10.46			AND THE RESERVED			ianangosicilei i	eit zu ernonen.
Hersteller	Vestas Otto-Ha	hn-Str				Nennie Naben	enbezeichnur eistung höhe lurchmesser	2000 kW 100 m	0 – 2.0MW, 105,1 dB Kreisverwalt
			1.Messung*		2.Messui		F II W consum	80 m	THE RESERVE OF THE PARTY OF THE
Seriennummer Standort vermessene Nab		11900 Sörup			12745 Almdor		1	4096 genberg	*
Meßinstitut			67 m	60 m			00 m	*	
Prüfbericht	2 J		INDTEST KWI WT 2438/02	WINDTEST KWK WT 2602/03			D-consult 19SE902/01		
Meßdatum Getriebe		2	22/23.01.2001 GFV440	5	20.01.200 EH802N21-BN	5 50	15.0	1.2003	
Generator Rotorblatt			SB 500LKB 2,0 Vestas 39 m	00	FLSB-500LB	4-B3	Gen-3-FSL	1-BN-100.66 B-500LB 4-B3	
Schallemissionsp							as 39 m		
Wind- geschwindigkeit			Schalleistun L _{WA,P}	gspe	gel	E	nergetischer	Standard-	l K
in 10m Höhe	1. Me:	ssung	2. Messi		3. Messung		Mittelwert	Abweichung	nach /2/
6 m/s		dB(A)		IB(A)			L _w	s	$\sigma_R = 0.5 \text{ dB}$
7 m/s	105,0	dB(A)	104,1 d	IB(A)	103,7 dB(A 104,2 dB(A		104,2 dB(A)	0,7 dB(/	,
8 m/s		dB(A)	104,3 d	IB(Δ)	104,2 dB(A	2 2	104,5 dB(A)		
8,8 m/s	105,3	dB(A)	103,9 d	IB(A)	103,9 dB(A		104,7 dB(A) 104,4 dB(A)	0,7 dB(A 0,8 dB(A	,, ,
* .			Tonzusch KTN :		2	Er	nergetischer Mittelwert	Standard- Abweichung	Kai
6 m/s				2			ΔL	s	
7 m/s	0 dB	Hz	k. A.		0 dB Hz		-10,0 dB	_	-
8 m/s	0 dB	Hz	0 dB	Hz	0 dB Hz	1 .	-6,5 dB	-	
8,8 m/s	1 dB 2 dB	600 Hz 650 Hz	0 dB 0 dB	Hz	0 dB Hz		-2,1 dB		_
8	2 00	000112	Impulszusc	Hz hlag	0 dB Hz	En	-0,8 dB ergetischer	± n	
6 m/s	0 0	ів Т	KIN:			- 1	Mittelwert	Şi.	
7 m/s		iB	0 di	- 1	0 dB		0 dB		
8 m/s		iB	0 dE		0 dB		0 dB	*	
8,8 m/s		iB	0 dE	_	0 dB 0 dB		0 dB		
			U UE	ا د	u aB	- 1	0 dB		1

C	ktav-Schall	eistungspeg	el (energetis	ches Mittel a	us 3 Messun	gen) Referen	zpunkt v ₄₀ = 1	8 ms ⁻¹ in dB/	۸)
Frequenz	31,5	63	125	250	500	1000			
L _{WA, P}	76,8	85.3	92,6	97,8			2000	4000	8000
		55/6	32,0	97,0	99,5	98,3	96,3	91,2	76.7

OI	ktav-Schalle	eistungspege	el (energetisc	hes Mittel au	ıs 3 Messung	jen) Referenz	punkt v = 8	8 me ⁻¹ in dD	(A)
Frequenz	31,5	63	125	250	500	1000			
L _{WA, P}	77,4	85,8	92,6				2000	4000	8000
Dio Annahaa		00,0	92,0	97,6	99,3	98,1	95,7	89.9	74.9

Die Angaben ersetzen nicht den o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen). Bemerkungen: *

Die Schalleistungspegel sind auf die Nabenhöhe von h_N= 100 m entsprechend den Prüfberichtsauszügen umgerechnet worden.

Es wird darauf hingewiesen, daß die Werte für die Tonhaltigkeit <u>nicht</u> ausschließlich bei der Nabenhöhe h_N = 100 m bestimmt wurden und so nicht unmittelbar auf umgerechnete Nabenhöhen übertragbar sind.

Ausgestellt durch: WIND-consult GmbH

Reuterstraße 9 D-18211 Bargeshagen

Datum: 04.03.2003

Unterschrift

Dipl.-Ing. R. Haevernick

Unterschrift Dipl.-Ing. W. Wilke

Immissionsaufpunkte (Nachweis Gebiets- und Flächenausweisungen

Bebauungsplan, wenn Vorhanden, ansonsten Elächennutzungsplan Außenbereich Außenbereich Außenbereich Wohnbauffächen Wohnbauffächen	
ebauurgspan we Mandem ansons lachennutzungspi Außenbereich Außenbereich Außenbereich Außenbereich Wohnbauffachen	Cochem, 19:05.2004 Hat vorgelegen Verbandsgemeindeverwaltupg and the
	04 everwaltu
Ausweisung na Baulwyo WA WA	19:05:20 legen gemeind
X-30-2-2-2-3-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Cochem, 19:05:2004 Hat vorgelegen Verbandsgemeindeve
(Munissions Nachte 45 dB(A) 45 dB(A) 45 dB(A) 40 dB(A) 40 dB(A)	
5.564.515 5.564.397 5.564.208 5.564.161 5.564.161 5.563.261	irken IIII
Rechtswert 2.585.286 2.585.508 2.585.879 2.586.254 2.586.135 2.586.135 2.585.847	n zu verme
2 2 2 2 2 5 5 6 6 2 5 5 6 6 6 6 6 6 6 6	m Lagepla
Gernatikung, Rechtswert Wirtus 2.585.285 Wirtus 2.585.879 Wirtus 2.586.254 Wirtus 2.586.254 Wirtus 2.586.135 Wirtus 2.586.135	nd Schattenprognosen vorzusehen und im Ort und Datum: Alleicherte
	osen vorzu
	attemprogn
The second secon	II. Unid Soft
StrakerHausnummer Huc Hurstuck Wirtuserbach 2 Wirtuserbach 2 Wirtuserbach (Hemichsmühl) Villa Magaretha (Michelsmühl) Haubistr 23 Wirtus	i den Scha
Stratester Wirth Wirth (Heimi Villa N (Mich Hauptstr	id analog t
	ulpunkte si
Wirfus Wirfus Wirfus Wirfus Wirfus Wirfus	missionsa im: B
	Wichtig: Die immissionsaufpunkte sind analog in den Schäll- und Schältenprögnösen vorzüsehen und im Lagepian zu vermerken IIII Ort und Datum: Bulbratt, 24.05.04. Ort und Datum: Musebutt.
	T West
A STATE OF THE STA	

Ort und Datum: 2014 abritish Ort und Datum. CSWabrath, LY.OS. 09 Interschrift Bauherrin/Bauherr

Coohem-Land

6-62BV-CL0254/2004 Neubau yon 2 Windenergieanlagen

Wirfus Gemarkung:

Wirfus

Bauherr:

ENP Emeuerbare Energien Projektentwicklungsgesellschaft mbH

Abstände WKA zu ten Immissionsaufpunkten Lageplan Mallstab 1:5000 mit Darstellung der

Anhang:

Bauvorhaben: Aktenzeichen:

(für Genehmigungsverfahren nach BlmSchG) Anlage B

_	
tive	
erna	
- Alt	
- bu	
astı	
rbe	rdo
e Vo	choho
end	ninin
htig	Panahr
ksic	ngen der G
rüc	under
q n	Eintrac
N	

Fintragunda	Einfraging and Top accoming		2		- DA											Stand-18 02 2004	000000
- IIIII addiida	nei Generimgungsbe	enorde						Standortd	afen und	- A Guiomonia							4007.70
əpu		Jə							י- מופון	i i i i	lagendaten	-					
Kreis Verbandsgemei	əbniəməÐ	emmunnepsinA	əmmunnəgsinA əllətzgartnA səb	Сетаћипд	Flur	Flurstück	Rechtswert	Носһмец	z	Bemerkungen	nlagenhersteller	qvjuəbsluA	enhöhe in Meter	ordurchmesser in Meter	WX ni gnutsiəlr	(A) 8b ni sw	uls- und Ton- gkeit in dB (A)
135 K	Illerich	166		Illerich	-	2	2502554	, 0000			ıΑ		Nab	Rot	nəV		dml jitlsh
135 K	lllerich	167		Illerich	4	2 %	758307	5563934	414 B	\neg	Enercon	E 40/6.44	78	44	900		
135 K	Illerich	168		Illerich		7 2	7582034	5504243	404 B	\neg	Enercon	E 66/18.70	86	70	1800	+-	
	Illerich	169		Illerich	=	108 109	2583232	5563667	41/B	\neg	Enercon	E 66/18.70	98	70	1800		-
	Illerich	170		Illerich	15	3.4	2500252	2202322	420 B	\neg	Enercon	E 66/18.70	86	20	1800		
135 K	Illerich	171		Illerich	15	22 23	2583254	2304/02	398 B	\neg	Repower	Re MD 77	111,5	77	1500	+-	
135 K	Illerich	172	 	Illerich	4	111	2503231	3304760	398 B		Repower	Re MD 77	111,5	77	1500	+	
135 K	Illerich	184		llerich	14	200	2503730	2204048	423 B	\neg	Enercon	E66/18.70	86	\perp	1800	 -	
135 TK	Brieden	330		Brieden	: \$	72	2580200	556970	400 B	-Antrag	Enercon	E 66/18.70	114		1800		
135 TK	Brieden	331		Brieden	10 70/1	11	25003592	990543+	788 817		Vestas	√ 80	105		2000		
135 TK	Kail	332		Kail	101	10 47/1 15	2699904	9962966	786 BIV		Vestas	V 90	105		2000	. -	
5 1		10 T			2	2	1000007	9902900	903 BIV		Vestas	√ 80	405		2000		
														<u></u>		-	
																	
			÷											+-			
Hat vorgelegen			-												 		T
,	,	* 1							5	Ort und Datum		0	Ort und Datum	Jatum (Dynasha	Sura	>
11. F.OS Datum	Stempel u. Untelschrift	hrift							1.6	1, A COLE (7		1	15.07	30		
htia: Die vo	raegebenen Anlagen	- munic	"n (Cnolle						'n	Unterschrift Betreiber	treiber	5	Inferschrift Entwinder	Tit Ente	7		
	December 1 and 1 a	-	allede) III	4) sind u.a. ana	log in c	len Schall- L	ind Schaffeng	Prognosen zu	verwende	ope I mi bun u	A more			III CIIIW	dilsveri	asser	

enen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!

0	denergieanlagen (Zusafzbelastung) Genergieanlagen (Zusafzbelastung) Cusafzbelastung) 5564996 359 Bim-Antrag Gamesa G80 100 80 2000 604 Wirfus 129:30/1 2586242 5564994 343 Bim-Antrag Gamesa 608 608 100 80 2000 605 Wirfus 14 4 258581 5564764 340 Bim-Antrag Gamesa G80 100 80 2000 608 Wirfus 2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung S64764 340 Bim-Antrag Gamesa G80 100 80 2000
BIM-CL 0116/2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung Wirfus	
BIM-CL 0116/2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung	100 80 Camesa G80 100 80
BIM-CL 0116/2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung	608 Wirfus 14 4 2585581 5564764 340 Bim April 680 100 80
Wirfus 608 Wirfus 14 4 2585581 5564764 340 Bim-Antrag Gamesa G80 100 80 2000 BIM-CL 0116/2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung Wirfus Wirfus Total Betrieb ohne V80 Anlagen als Vorbelastung Total Betrieb ohne V80 Anlagen als Varbelastung Total Betrieb ohne V80 Anlagen als Varbelastung Total B	603a Wirfus 1 2445 46 2586022 52015 1 2445 46 2586022 52015 100 80
Nirfus 603a Wilfus 1 4445,46 2586022 5564585 343 Bim-Antrag Gamesa G80 100 80 2000 Nirfus 608 Wilfus 14 4 2585581 5564764 340 Bim-Antrag Gamesa G80 100 80 2000 BIM-CL 0116/2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung Wirfus Bim-Antrag Gamesa G80 100 80 2000	605 Wirfus 120.30/4 258525 529 Bim-Antrag Gamesa G80 100 80
Nirfus 605 Wilfus 1 29:30/1 2586293 5564494 343 Bim-Antrag Gamesa G80 100 80 200 Nirfus 603a Wilfus 1 29:30/1 2586293 5564494 343 Bim-Antrag Gamesa G80 100 80 200 Nirfus 608 Wilfus 14 4 2585581 5564764 340 Bim-Antrag Gamesa G80 100 80 200 Nirfus BIM-CL 0116/2005 Alternative 1- Betrieb ohne V80 Anlagen als Vorbelastung Avirfus Avirfus Gamesa G80 100 80 2200	20/4 1 2686343

(für Genehmigungsverfahren nach BlmSchG) Anlage B

/e 2	
ternativ	
Ā	
- 6	
htigende Vorbelastun	
/ord	Shördo
de	nache
gen	Eintradungen der Genehminingeh
hti	Annah
csic	der
üc	ngen
ber	tradu
3	

.02.20		ls- und Ton- keit in dB (A)	gilleri	
Stand:18.02.2004		(A) 8b ni s	77	P. Ox. 05.
		eistung in KW	600 1800 1500 1500 1500 1800 1800 1800 2000 2000 2000	Ort und Datum Ort und Datum Ort und Datum Ort und Datum Outerschriff Entitle
		rdurchmesser in Meter	80 80 80 80 80 80 80 80 80 80 80 80 80 8	und Datum
		 nətəM ni əhöhn	Nab 98 98 98 98 98 98 98 98 98 98 98 98 98	Ort und Datum
Standortdaten und allgemeine Antagene		Anlagentyp	E 40/6.44 E 66/18.70 E 66/18.70 E 66/18.70 Re MD 77 V 90 V 90 V 90 V 80	
	agendaten	lagenhersteller) J
	I allgemeine An	зешецкпидеи	n-Antrag n-Antrag n-Antrag n-Antrag n-Antrag n-Antrag n-Antrag	Ort und Datum A Collection Unterschrift Betreiber
	aten und	Z	414 Bin 404 Bin 417 Bin 426 Bir 398 Bir 423 Bir 400 Bir 288 BIV 288 BIV 288 BIV 380 BIV 360 BIV 370 BIV 370 BIV	0 35
	Standorto	Носһwеп	5563934 5564243 5564243 5563676 5563662 5564762 5564048 5564970 5564970 5564750 5564750	
		Бесhtswert	2583551 2583997 2582934 2582811 2583251 2583251 2583250 2589292 25896001 2588307 2586350	
		Fluratück	61 108,109 3,4 22,23 771,45 22,23 22,23 22,23	
	- -	Flur	11	
		Сетагкипд	Illerich Illerich Illerich Illerich Illerich Illerich Illerich Illerich Rrieden Kail Wirfus	
	-	nammunagsinA sabliətsgstinA səb		Sylvas
Eintragungen der Genehmigungsbehörde		Anlagennummer	166 168 169 170 171 172 184 330 334 334 335 606	hrift
		əbniəməÐ	Illerich Illerich Illerich Illerich Illerich Illerich Illerich Brieden Brieden Kail Wirfus	Hat vorgelegen M. 7.05 Datum Stempel u. Unterschrift Wichtig: Die vorgegebenen Anlagennummen i Spalte 1 v. 200
danuden d	əp	oniemegebnsdreV	スススススススは抹珠200	elegen O S
Eintré		Kreis	135 135 135 135 135 135 135 135 135 135	Hat vorgelegen M. 7.05 Datum Wichtig: Die vo

ie vorgegebenen Anlagennummern (Spalte 4) sind u.a. analog in den Schall- und Schattenprognosen zu verwenden und im Lageplan zu vermerken !!!!

oncoording Entwur sverasser	100 80 2000 100 80 2000 100 80 2000 100 80 2000	nehmigt t zur Verfügung vom t z. SEP. 2005 erwatung Cochem-Zell
rgieanlagen (Zusatzbelastung)	2 5564996 359 Bim-Antrag Gamesa G80 3 5564494 343 Bim-Antrag Gamesa G80 2 5564585 340 Bim-Antrag Gamesa G80 1 5564764 340 Bim-Antrag Gamesa G80	Anlagen als Vorbelastung
n (Zusatzbelastung)	Wirfus 1 29;30/1 2586242 Wirfus 1 29;30/1 2586293 Wirfus 1 4/45,46 2586022 Wirfus 14 4 2585581	BIM-CL 0116/2005 Alternative 2- Betrieb mit V80 An Wirfus Wirfus ENP-Erneuerbare Energien
gte Windene	135 CL Wirfus 603 135 CL Wirfus 603a 135 CL Wirfus 603a	Vorhaben: Ort: Wirfus Gemarkung: Wirfus Wirfus Betreiber:

WindPRO version 2.4.0.67 Dez 2004 Wirfus Gemeinde Karte mit Abständen der Immissionsorte zur jeweils Ausdruck/Seite

27.04.2005 13:39 / 1
Lizensleiter Anwender.

ENP Erneuerbare Energien Projektenfwicklungsgesell. mbH
Katharinenstraße 51
DE-49078 Osnabrück
+49 541 6687 259 nächsten WEA 27.04.2005 13:33/2.4.0.67 Cochem-Zell BASIS - Karte: TK25_GESAMT_GRAU.BMI Datei: TK25_GESAMT_GRAU.BMI WEA 01 (604) WEA 23 (607) WEA 04 (608) WEA 22 (606) WEA 03 (603) WEA 02 (605) Geise 1089m 358,6

* Existierende WEA Schall-Immissionsord Gebiet WindPRO - entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, Email: windpro@emd.dk

250

Karte: tk25_gesamt_grau , Druckmaßstab 1:12.000, Kartenzentrum GK (Bessel) Zone: 2 Ost: 2.586.000 Nord: 5.564.300