

# Immissionsschutz-Gutachten

Schallimmissionsprognose für den Betrieb von fünf geplanten Windenergieanlagen in Lieg

Dieser Bericht ersetzt den Bericht Nr. 14 0614 18R vom 27. Sept. 2018 vollständig.

Auftraggeber

Wind Works Development GmbH

Mühlenstraße 51

45473 Mülheim a. d. Ruhr

Schallimmissionsprognose

Nr. 114 0614 18R-1

vom 29. Apr. 2019

Projektleiter

M.Eng. Justus Engelen

**Umfang** 

Textteil

39 Seiten

Anhang

107 Seiten

Ausfertigung

PDF-Dokument

Eine auszugsweise Vervielfälligung des Berichtes bedarf der schriftlichen Zustimmung der uppenkamp + partner Sachverständige für Immissionsschutz GmbH.





# **Inhalt Textteil**

| Zusamn                                            | nenfassung                                                                                                                                                                                                                                                                                                                                                   | 6                          |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1                                                 | Grundlagen                                                                                                                                                                                                                                                                                                                                                   |                            |
| 2                                                 | Veranlassung und Aufgabenstellung                                                                                                                                                                                                                                                                                                                            |                            |
| <b>3</b> 3.1 3.2 3.3                              | Grundlage für die Ermittlung und Beurteilung der Immissionen  TA Lärm  LAI-Hinweise zum Schallimmissionsschutz bei Windkraftanlagen  Länderspezifische Vorgaben: 12-dB-Abschneidekriterium                                                                                                                                                                   | 10<br>10                   |
| <b>4</b><br>4.1<br>4.2                            | Ermittlung der Immissionen Untersuchte Immissionsorte Beschreibung des Berechnungsverfahrens                                                                                                                                                                                                                                                                 | 15                         |
| 5.1<br>5.2<br>5.2.1<br>5.2.2<br>5.2.3             | Allgemeines                                                                                                                                                                                                                                                                                                                                                  | 19<br>19<br>19<br>19<br>21 |
| 5.3<br>5.3.1<br>5.3.2<br>5.3.3<br>5.4             | dB-Abschneidekriteriums  Bestehende Windenergieanlagen (Vorbelastung) Rahmendaten zum genehmigten Betrieb der bestehenden Windenergieanlagen Untersuchungen zum 12-dB-Abschneidekriterium hinsichtlich der Vorbelastung Zu berücksichtigende Bestandsanlagen nach Anwendung des 12-dB-Abschneidekriteriums Sonstige gewerbliche Vorbelastungen zur Nachtzeit | 22                         |
| 6.1<br>6.1.1<br>6.1.2<br>6.2<br>6.3<br>6.4<br>6.5 | Untersuchungsergebnisse  Untersuchungen zum 12-dB-Abschneidekriterium  Untersuchungen hinsichtlich der Vorbelastung  Untersuchungen hinsichtlich der Zusatzbelastung  Vorbelastung durch bestehende Windenergieanlagen  Vorbelastung durch sonstiges Gewerbe  Zusatzbelastung durch die geplanten Windenergieanlagen  Gesamtbelastung                        | <b>29 29 29 30 32 33</b>   |
| 7                                                 | Beurteilung und Diskussion der Untersuchungsergebnisse                                                                                                                                                                                                                                                                                                       |                            |
| 8                                                 | Angaben zur Qualität der Prognose                                                                                                                                                                                                                                                                                                                            |                            |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



# **Inhalt Anhang**

| Α | Anlage A der SGD Nord                           |
|---|-------------------------------------------------|
| В | Anlagen B der SGD Nord                          |
| С | 3-fach-Vermessung Vestas V126-3.3MW Mode        |
| D | 1-fach-Vermessung Nordex N131/3000 Mode (       |
| E | 3-fach-Vermessung Nordex N117/2400 2.400 k      |
| F | Immissionsorte                                  |
| G | Übersichten B-Pläne, FNP, Gewerbegebiete        |
| Н | Tabellarisches Emissionskataster inkl. Spektren |
| 1 | Grafisches Emissionskataster                    |
| J | Dokumentation der Immissionsberechnung          |
| K | Immissionspläne                                 |
| L | Angaben zur VB (IO-01 bis IO-05)                |
| м | Konformitätserklärung MAPANDGIS                 |

# **Abbildungsverzeichnis**

15

Lage der im Rahmen der Schallimmissionsprognose betrachteten Immissionsorte Abbildung 1:

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Inhalt Seite 3 von 39



# **Tabellenverzeichnis**

| Tabelle 1:  | Immissionsrichtwerte in Abhängigkeit der Gebietsnutzung für en               |      |
|-------------|------------------------------------------------------------------------------|------|
|             | Beurteilungszeitraum Nacht; Immissionsorte außerhalb von Gebäuden            | 10   |
| Tabelle 2:  | Beurteilungszeitraum der Nachtzeit nach TA Lärm                              | 11   |
| Tabelle 3:  | Untersuchte Immissionsorte im Rahmen der Schallimmissionsprognose mit Angabe |      |
|             | der jeweiligen Gebietsnutzung und der Immissionsrichtwerte nach TA Lärm bzw. |      |
|             | Orientierungswerte nach DIN 18005-1 Bbl. 1 für die Nachtzeit                 | 16   |
| Tabelle 4:  | Nicht-akustische Daten der Windenergieanlagen der Zusatzbelastung            | 19   |
| Tabelle 5:  | Akustische Daten der Windenergieanlagen der Zusatzbelastung                  | 20   |
| Tabelle 6:  | Zu berücksichtigende Windenergieanlagen der Zusatzbelastung                  | 21   |
| Tabelle 7:  | Nicht-akustische Daten der Windenergieanlagen der Zusatzbelastung            | 22   |
| Tabelle 8:  | Akustische Daten der Windenergieanlagen der Vorbelastung im Rahmen der       |      |
|             | Untersuchungen zum 12-dB-Abschneidekriterium                                 | 23   |
| Tabelle 9:  | Zu berücksichtigende Windenergieanlagen der Vorbelastung                     | 24   |
| Tabelle 10: | Ermittlung des Oktavspektrums für die Vorbelastungsanlagen vom Typ Nordex N- |      |
|             | 131                                                                          | 25   |
| Tabelle 11: | Ermittlung des Oktavspektrums für die Vorbelastungsanlagen vom Typ Nordex N- |      |
|             | 131                                                                          | 25   |
| Tabelle 12: | Akustische Daten der Windenergieanlagen der Vorbelastung                     | 25   |
| Tabelle 13: | Sonstige gewerbliche Vorbelastungen zur Nachtzeit                            | 26   |
| Tabelle 14: | Teilbeurteilungspegel der Untersuchung zum 12-dB-Abschneidekriterium         | 1-01 |
|             | hinsichtlich der Vorbelastung                                                | 29   |
| Tabelle 15: | Teilbeurteilungspegel der Untersuchung zum 12-dB-Abschneidekriterium         |      |
|             | hinsichtlich der Zusatzbelastung                                             | 30   |
| Tabelle 16: | Werte der oberen Vertrauensbereichsgrenze der Teilbeurteilungspegel WEA zur  |      |
|             | Nachtzeit                                                                    | 32   |
| Tabelle 17: | Werte der oberen Vertrauensbereichsgrenze der Vorbelastung durch sonstiges   |      |
|             | Gewerbe zur Nachtzeit                                                        | 33   |
| Tabelle 18: | Werte der oberen Vertrauensbereichsgrenze der Zusatzbelastung zur Nachtzeit  | 34   |
| Tabelle 19: | Werte der oberen Vertrauensbereichsgrenze der Vor-, Zusatz- und              |      |
|             | Gesamtbelastung zur Nachtzeit                                                | 35   |
|             |                                                                              |      |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Textteil - Inhalt Seite 4 von 39



# Revisionsverzeichnis

| Berichts-Nr.   | Datum          | Änderung(en)                                                                                                                                                               |
|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 0614 18R    | 27. Sept. 2018 | - Originalbericht                                                                                                                                                          |
| 14 0614 18R -1 | 29. Apr. 2019  | - Einarbeitung der Stellungnahmen der SGD Nord vom 10.01.2019 und 29.03.2019                                                                                               |
|                | 2              | <ul> <li>Anpassung der vorgaben zum 12-dB-Abschneidekriterium:</li> <li>Gültigkeit auch für die Zusatzbelastung (Vereinheitlichung der<br/>Kapitel 5.2 und 5.3)</li> </ul> |
|                |                | <ul> <li>Erläuterungen zum verwendeten Softwaresystem MAPANDGIS der Kramer Schalltechnik GmbH</li> </ul>                                                                   |
|                |                | - Einfügen des L <sub>e,max</sub> in dB(A)                                                                                                                                 |
|                |                | <ul> <li>Erhöhung des fikltiven Schallleistungspegels der<br/>Vorbelastungsanlagen auf 112 dB(A)</li> </ul>                                                                |
|                |                | <ul> <li>Berücksichtigung der Windenergieanlagen RH 357 im Rahmen der Vorbelastung</li> </ul>                                                                              |
|                |                | - Korrektur des Spektrums aus Bericht WICO N117/2400                                                                                                                       |
|                |                | <ul> <li>Reduzierung der gewerblichen Vorbelastungsuntersuchungen<br/>auf die durch die verbleibende Zusatzbelastung<br/>beaufschlagten Immissionsorte</li> </ul>          |
|                |                | <ul> <li>Berücksichtigung der erläuternden Schreiben hinsichtlich der<br/>Immissionsorte IO-01 bis IO-05</li> </ul>                                                        |
|                |                | <ul> <li>Erhöhung der Beaufschlagung der Immissionsorte in der<br/>Gemeinde Lieg durch die Vorbelastung auf 1 dB über dem<br/>jeweiligen Immissionsrichtwert</li> </ul>    |
|                |                | <ul> <li>Erläuterungen zur Prognosesicherheit der gewerblichen<br/>Vorbelastung</li> </ul>                                                                                 |
|                |                | <ul> <li>Aktualisierung der Beurteilung und Diskussion der<br/>Untersuchungsergebnisse sowie der Zusammenfassung und des<br/>Anhangs</li> </ul>                            |
|                |                | <ul> <li>Bestätigungen der Aktualität der Anlagen A und B der SGD<br/>Nord</li> </ul>                                                                                      |

Gutachten-Nr.: 114 0614 18R-1

Projekt:



### Zusammenfassung

Gegenstand des vorliegenden schalltechnischen Gutachtens ist die vom Auftraggeber geplante Errichtung und Inbetriebnahme von fünf Windenergieanlagen in der Gemarkung Lieg, Flur 9 (Flst. 2 und 3), Flur 11 (Flst. 7) sowie Flur 12 (Flst. 47). Antragsteller ist die Investlnvent 26. Windpark GmbH & Co. KG, Johann-Krane-Weg 6, 48149 Münster. Der vorgesehene Anlagenstandort der geplanten Windenergieanlagen befindet sich westlich bzw. nordwestlich der Gemeinde Lieg. Die geplanten Windenergieanlagen vom Typ Vestas V126-3.3MW haben eine Nennleistung von jeweils 3.300 kW, eine Nabenhöhe von 149 m und einen Rotordurchmesser von 126 m. Für die Genehmigung der geplanten Windenergieanlagen ist für den immissionskritischen Nachtzeitraum der Nachweis erforderlich, dass der Betrieb der Anlagen die schalltechnischen Anforderungen der [TA Lärm] einhält. Hierzu wurde eine Schallimmissionsprognose Berechnungen erfolgten unter Anwendung von [DIN ISO 9613-2 Interim] [LAI WEA Schall 2016] und den länderspezifischen Vorgaben hinsichtlich 12-dB-Abschneidekriteriums ([SGD Nord 2018\_1], [SGD Nord 2018\_2], [SGD Nord 2019\_2]).

# Die Untersuchungen haben Folgendes ergeben:

- Die geltenden Immissionsrichtwerte werden in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten durch die Zusatzbelastung der geplanten Windenergieanlagen im Betriebsmodus Mode 0 mit 3.300 kW unterschritten. Die Unterschreitungen betragen mindestens 1,7 dB.
- Die Anwendung der länderspezifischen Regelungen zum 12-dB-Abschneidekriterium im Rahmen der Vor- und Zusatzbelastungsermittlung zeigen, dass eine durch Windenergieanlagen verursachte Vorbelastung in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten nicht zu berücksichtigen ist. Jede bestehende Windenergieanlage (Einzelanlage) unterschreitet den Immissionsrichtwert in der ungünstigsten vollen Nachtstunde an allen untersuchten Immissionsorten um mehr als 12 dB. Die geplante WEA 03 erfüllt das Abschneidekriterium an allen Immissionsorten, die übrigen geplanten Windenergieanlagen erfüllen das Abschneidekriterium an einzelnen Immissionsorten.
- Unter Berücksichtigung der teils durch sonstige gewerbliche Betriebe (potenziell) verursachte Vorbelastung werden die geltenden Immissionsrichtwerte in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten durch die Gesamtbelastung an allen untersuchten Immissionsorten unterschritten. Die Unterschreitungen betragen mindestens 1,7 dB. Die Anforderungen der [TA Lärm] Ziffer 3.2.1 Abs. 3 sind somit erfüllt.
- Der Betrieb der geplanten fünf Windenergieanlagen vom Typ Vestas V126-3.3MW mit einer Nennleistung von 3.300 kW, einer Nabenhöhe von 149 m und einem Rotordurchmesser von 126 m ist somit im offenen Betriebsmodus Mode 0 zur Nachtzeit aus schalltechnischer Sicht realisierbar.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Kurzfassung Seite 6 von 39



### 1 Grundlagen

| [BlmSchG]                | Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftver-<br>unreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge,<br>Bundes-Immissionsschutzgesetz in der Fassung der Bekanntmachung vom<br>17. Mai 2013 (BGBI. I S. 1274), das zuletzt durch Artikel 3 des Gesetzes vom<br>29. Mai 2017 (BGBI. I S. 1298) geändert worden ist |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [DIN 1333]               | Zahlenangaben. 1992-02                                                                                                                                                                                                                                                                                                                               |
| [DIN ISO 9613-2]         | Akustik - Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2:<br>Allgemeines Berechnungsverfahren. 1999-09                                                                                                                                                                                                                                   |
| [DIN ISO 9613-2 Interim] | Dokumentation zur Schallausbreitung – Interimsverfahren zur Prognose der<br>Geräuschimmissionen von Windkraftanlagen, 2015-05.1                                                                                                                                                                                                                      |
| [DIN 4109-1]             | Schallschutz im Hochbau - Teil 1: Mindestanforderungen. 2018-01                                                                                                                                                                                                                                                                                      |
| [DIN 18005-1 Bbl. 1]     | Schallschutz im Städtebau – Berechnungsverfahren - Schalltechnische<br>Orientierungswerte für die städtebauliche Planung. 1987-05                                                                                                                                                                                                                    |
| [DIN 18005-2]            | Schallschutz im Städtebau - Lärmkarten - Kartenmäßige Darstellung von Schallimmissionen. 1991-09                                                                                                                                                                                                                                                     |
| [DNV-GL V126-3.3MW]      | Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V126-3.3MW IEC3A 50Hz (Mode 0) aus mehreren Einzelmessungen für die Nabenhöhen 137 m und 149 m über Grund, DNV-GL, Berichtsnummer GLGH-4286 15 13417 293-A-0001-A vom15.09.2015                                                                                                        |
| [FGW TR1 Rev. 18]        | Technische Richtlinien für Windenergieanlagen - Teil 1: Bestimmung der<br>Schallemissionswerte, Fördergesellschaft Windenergie e. V., Revision 18.<br>01.02.2008                                                                                                                                                                                     |
| [IG I 7 - 501-1/2]       | Korrektur redaktioneller Fehler beim Vollzug der Technischen Anleitung zum Schutz gegen Lärm – TA Lärm, Schreiben des BMUB/Dr. Hilger an die obersten Immissionsschutzbehörden der Länder sowie das Bundesministerium für Verkehr und digitale Infrastruktur und das Eisenbahn-Bundesamt. 07.07.2017                                                 |
| [LAI WEA Schall 2016]    | Hinweise zum Schallimmissionsschutz bei Windkraftanlagen (WKA),<br>Überarbeiteter Entwurf vom 17.03.2016 mit Änderungen PhysE vom<br>23.06.2016, Stand 30.06.2016.                                                                                                                                                                                   |
| [SGD Nord 2018_1]        | Telefonische Information des Herrn Thomas Schäfer gegenüber der uppenkamp + partner Sachverständige für Immissionsschutz GmbH (Herr Engelen) u. a. zum 12-dB-Abschneidekriterium vom 18.07.2018                                                                                                                                                      |

Gutachten-Nr.: 114 0614 18R-1



| [SGD Nord 2018_2] | E-Mail | des | Herrn | Thomas | Schafer | an | die | uppenkamp | + | parmer |
|-------------------|--------|-----|-------|--------|---------|----|-----|-----------|---|--------|
|                   |        |     |       |        |         |    |     |           |   |        |

Sachverständige für Immissionsschutz GmbH (Herr Engelen) hinsichtlich der

Anwendung des 12-dB-Abschneidekriteriums vom 21.08.2018

SGD Nord (Herr Thomas Schäfer) Az. Stellungnahme der [SGD Nord 2019\_1]

23/01/5.1/2017/0386/Sfr/DI vom 10.01.2019

SGD Nord (Herr Schäfer) Az. Stellunanahme der Thomas [SGD Nord 2019\_2]

23/01/5.1/2017/0386/Sfr/DI vom 29.03.2019

Bestätigungsschreiben zur Ergebniszusammenfassung aus mehreren [Stn Vestas STE]

Einzelmessungen inkl. Serration Trailing Edges, Vestas Deutschland GmbH.

8. März 2017

Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutz-[TA Lärm]

> gesetz (Technische Anleitung zum Schutz gegen Lärm – TA Lärm) vom 26. August 1998 (GMBI Nr. 26/1998 S. 503), zuletzt geändert durch Bekanntmachung des BMUB vom 1. Juni 2017 (BAnz AT 08.06.2017 B5), in Kraft getreten am 9. Juni 2017, redaktionell korrigiert durch Schreiben des

BMUB vom 07.07.2017 (IG I 7 - 501-1/2)

Windenergiehandbuch, Agatz, M., 2017-12 (14. Ausgabe) [Windenergiehandbuch]

Zusammenfassung mehrerer Schallleistungspegels einer Windenergie-[WICO N117/2400]

> anlage (WEA) des Typs Nordex N117/2400 nach FGW TR 1, Rev. 18/1/und 61400-14 /3/ der WIND-consult Ingenieurgesellschaft für

umweltschonende Energiewandlung mbH vom 18.11.2014

Auszug aus dem Prüfbericht SE16014B2 zur Schallemissionsmessung gemäß [Windtest N131/3000]

> FGW TR 1 an der Nordex Windenergieanlage des Typs N131/3000 Ser.-Nr.: 84099 am Standort Hollich, Betriebsmodus (Mode 0) der windtest

Grevenbroich GmbH vom 16.06.2016

Hinweis: Die im gegenständlichen Bericht dokumentierte Untersuchung wurde auf Basis bzw. unter Berücksichtigung der im oben stehenden Grundlagenverzeichnis genannten Regelwerke durchgeführt. Die Ergebnisse sind somit – wenn nicht anders gekennzeichnet – entlang den entsprechenden Anforderungen ermittelt.

Weitere verwendete Unterlagen (Stand, zur Verfügung gestellt durch):

- Kartengrundlagen (@GeoBasis-DE / LVermGeoRP<2019>, dl-de/by-2-0, www.lvermgeo.rlp.de),
- digitales Höhenmodell (Datenlizenz Deutschland Namensnennung Version 2.0).

Ein Ortstermin wurde durch die uppenkamp + partner Sachverständige für Immissionsschutz GmbH am 4. Sept. 2018 durchgeführt.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Grundlagen Seite 8 von 39



### 2 Veranlassung und Aufgabenstellung

Gegenstand des vorliegenden schalltechnischen Gutachtens ist die vom Auftraggeber geplante Errichtung und Inbetriebnahme von fünf Windenergieanlagen in der Gemarkung Lieg, Flur 9 (Flst. 2 und 3), Flur 11 (Flst. 7) sowie Flur 12 (Flst. 47). Antragsteller ist die Investlnvent 26. Windpark GmbH & Co. KG, Johann-Krane-Weg 6, 48149 Münster. Der vorgesehene Anlagenstandort der geplanten Windenergieanlagen befindet sich westlich bzw. nordwestlich der Gemeinde Lieg. Die geplanten Windenergieanlagen vom Typ Vestas V126-3.3MW haben eine Nennleistung von jeweils 3.300 kW, eine Nabenhöhe von 149 m und einen Rotordurchmesser von 126 m.

In der Umgebung des vorgesehenen Anlagenstandortes sind schutzbedürftige Nutzungen vorhanden (siehe Anhang A). Neben Immissionsorten im Außenbereich sind Immissionsorte in den Gemeinden Lieg, Lütz, Treis-Karden und Pommern Gegenstand der Untersuchung. Nach dem [BlmSchG] sind genehmigungsbedürftige und nicht genehmigungsbedürftige Anlagen so zu errichten und zu betreiben, dass schädliche Umwelteinwirkungen nicht hervorgerufen werden können bzw. verhindert werden, wenn sie nach dem Stand der Technik vermeidbar sind. Kriterien zur Ermittlung von Geräuschimmissionen und Beurteilung, dass die von den geplanten Windenergieanlagen ausgehenden Geräusche keine schädlichen Umwelteinwirkungen hervorrufen können, sind in der [TA Lärm] und den [LAI WEA Schall 2016] definiert. Darüber hinaus werden die länderspezifische Vorgaben zum sog. 12-dB-Abschneidekriterium ([SGD Nord 2018\_1], [SGD Nord 2018\_2]) hinsichtlich der durch weitere Windenergieanlagen südwestlich, südlich und südöstlich der Gemeinde Lieg verursachten Vorbelastung (siehe Anhang B) sowie der geplanten Zusatzbelastung gemäß [SGD Nord 2019\_2] beachtet.

Für die Genehmigung der geplanten Windenergieanlagen ist für den immissionskritischen Nachtzeitraum der Nachweis erforderlich, dass der Betrieb der Anlagen die schalltechnischen Anforderungen der [TA Lärm] einhält. Hierzu wird eine Schallimmissionsprognose erstellt, in der die anlagenverursachte Zusatzbelastung der geplanten Windenergieanlagen gemeinsam mit der Geräuschvorbelastung umliegender Emittenten, die der [TA Lärm] zuzuordnen sind, untersucht wird. Die Berechnungen erfolgen unter Anwendung des [DIN ISO 9613-2 Interim] sowie den [LAI WEA Schall 2016] punktuell für die maßgeblichen Immissionsorte gemäß [TA Lärm] sowie flächenhaft gemäß [DIN 18005-2] für das gesamte Beurteilungsgebiet (siehe Hinweis im Anhang K). Die Schallausbreitungsberechnung anderer Vorbelastungsquellen (nicht Windenergieanlagen) erfolgt weiterhin [DIN ISO 9613-2]. gemäß Gegenständlich werden gewerbliche Vorbelastungen im Norden und Süden von Lieg, im südwestlichen Bereich von Lütz, sowie im Bereich der betrachteten Immissionsorte in Treis-Karden beurteilt.

Die Planungsgrundlagen, getroffene Annahmen und Voraussetzungen sowie die Ermittlung der Vorbelastung durch weitere, der [TA Lärm] zuzuordnenden Anlagen werden in der Langfassung des vorliegenden Berichts erläutert.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 9 von 39



### Grundlage für die Ermittlung und Beurteilung der Immissionen 3

#### TA Lärm 3.1

Zur Beurteilung von Anlagen, die als genehmigungsbedürftige und nicht genehmigungsbedürftige Anlagen den Anforderungen des zweiten Teils des [BImSchG] unterliegen, ist die [TA Lärm] heranzuziehen. Die [TA Lärm] beschreibt das Verfahren zur Ermittlung der Geräuschbelastungen und stellt die Grundlage für die Beurteilung der Immissionen dar.

Da die gegenständliche Immissionsprognose ausschließlich den immissionskritischeren Nachtzeitraum betrachtet, sind sämtliche nachfolgenden Angaben auf diesen Zeitraum reduziert.

### **Immissionsrichtwerte**

In der [TA Lärm] werden Immissionsrichtwerte genannt, bei deren Einhaltung im Regelfall ausgeschlossen werden kann, dass schädliche Umwelteinwirkungen im Einwirkungsbereich gewerblicher oder industrieller Anlagen vorliegen. Die Immissionsrichtwerte gelten akzeptorbezogen. Dies bedeutet, dass die energetische Summe der Immissionsbeiträge aller relevant einwirkenden Anlagen, für die die [TA Lärm] gilt, den Immissionsrichtwert nicht überschreiten soll. In Abhängigkeit der Nutzung des Gebietes, in dem die schutzbedürftigen Nutzungen liegen, gelten die in Tabelle 1 zusammengefassten Immissionsrichtwerte.

Immissionsrichtwerte in Abhängigkeit der Gebietsnutzung für en Beurteilungszeitraum Nacht; Tabelle 1:

| Gebietsnutzung                                             | Immissionsrichtwerte (IRW) in dB(A) |
|------------------------------------------------------------|-------------------------------------|
| " english to the property of the                           | Beurteilungszeitraum Nacht          |
| Kurgebiete, Krankenhäuser und Pflegeanstalten              | 35                                  |
| Reine Wohngebiete (WR)                                     | 35                                  |
| Allgemeine Wohngebiete (WA),<br>Kleinsiedlungsgebiete (WS) | 40                                  |
| Mischgebiete (MI), Dorfgebiete (MD), Kerngebiete (MK)      | 45                                  |
| Urbane Gebiete (MU)                                        | 45                                  |
| Gewerbegebiete (GE)                                        | 50                                  |
| Industriegebiete (GI)                                      | 70                                  |

Weiterhin dürfen gemäß [TA Lärm] einzelne kurzzeitige Geräuschspitzen die Immissionsrichtwerte in der Nacht (IRW<sub>Nmax</sub>) um nicht mehr als 20 dB(A) überschreiten. Mit dem Betrieb von Windenergieanlagen sind keine kurzzeitigen Geräuschspitzen in Verbindung zu bringen. Auf eine Beurteilung wird daher verzichtet.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 10 von 39



Anmerkung: Die Art der bezeichneten Gebiete und Einrichtungen ergibt sich aus den Festlegungen in den Bebauungsplänen. Sonstige in Bebauungsplänen festgesetzte Flächen für Gebiete und Einrichtungen sowie Gebiete und Einrichtungen, für die keine Festsetzungen bestehen, sind entsprechend der Schutzbedürftigkeit zu beurteilen.

In Tabelle 2 wird der für Immissionsrichtwerte relevante Beurteilungszeitraum aufgeführt.

Tabelle 2: Beurteilungszeitraum der Nachtzeit nach TA Lärm

| Bezeichnung | Beurteilungszeitraum | Beurteilungszeit                                                                     |
|-------------|----------------------|--------------------------------------------------------------------------------------|
| Nacht       | 22:00 bis 6:00 Uhr   | volle Nachtstunde mit dem<br>höchsten Beurteilungspegel<br>(z. B. 5:00 bis 6:00 Uhr) |

### **Immissionsorte**

Die maßgeblichen Immissionsorte befinden sich gemäß [TA Lärm] bei bebauten Flächen 0,5 m außerhalb vor der Mitte des geöffneten Fensters des vom Geräusch am stärksten betroffenen schutzbedürftigen Raumes [DIN 4109-1]. Bei unbebauten oder bebauten Flächen, die keine Gebäude mit schutzbedürftigen Räumen enthalten, befinden sie sich an dem am stärksten betroffenen Rand der Fläche, wo nach dem Bau- und Planungsrecht Gebäude mit schutzbedürftigen Räumen erstellt werden dürfen.

### Vor-, Zusatz- und Gesamtbelastung

Die o. a. Immissionsrichtwerte sind akzeptorbezogen. Das heißt, dass zur Beurteilung der Gesamtbelastung neben den von der zu beurteilenden Anlage verursachten Immissionen (Zusatzbelastung) auch eine evtl. vorliegende Vorbelastung durch Anlagen, für die die [TA Lärm] gilt, heranzuziehen ist.

Die Definition gemäß der [TA Lärm] lautet folgendermaßen:

Vorbelastung: Geräuschimmissionen von allen Anlagen, für die die TA Lärm gilt,

ohne die Betriebsgeräusche der zu beurteilenden Anlage,

Zusatzbelastung: Immissionsbeitrag durch die zu beurteilende Anlage,

Gesamtbelastung: Immissionen aller Anlagen, für die die TA Lärm gilt.

Gutachten-Nr.: 114 0614 18R-1 Projekt:



### Irrelevanzregelungen

Nach [TA Lärm] Ziffer 3.2.1 Abs. 3 wird die Irrelevanz unter Berücksichtigung der Gesamtbelastung beurteilt. Die Genehmigung für die zu beurteilende Anlage soll demnach auch dann nicht versagt werden, wenn die Immissionsrichtwerte um nicht mehr als 1 dB überschritten werden. Die Zusatzbelastung muss dabei den Immissionsrichtwert einhalten, der aber aufgrund der Berücksichtigung der Vorbelastung um max. 1 dB überschritten wird. Vorgaben hinsichtlich des Verhältnisses von Vor- zu Zusatzbelastung werden in [TA Lärm] Ziffer 3.2.1 Abs. 3 nicht formuliert.

Gemäß [TA Lärm] Ziffer 3.2.1 Abs. 2 ist auch eine Beurteilung der Irrelevanz alleine anhand der Zusatzbelastung möglich. Die Genehmigung für die zu beurteilenden Anlagen darf auch bei einer Überschreitung der Immissionsrichtwerte aufgrund der Vorbelastung aus Gründen des Lärmschutzes nicht versagt werden, wenn der von der Anlage verursachte Immissionsbeitrag als nicht relevant anzusehen ist. In der Regel ist diese Irrelevanz gegeben, wenn die von der zu beurteilenden Anlage ausgehende Zusatzbelastung die Immissionsrichtwerte am maßgeblichen Immissionsort um mindestens 6 dB unterschreitet.

Beide genannten Kriterien stehen in engem physikalischen Zusammenhang, müssen jedoch nicht additiv erfüllt sein, um eine Anlage als irrelevant einzustufen. Beide Regelungen sind unabhängig voneinander zu verstehen, so dass es ausreichend ist, wenn eines der beiden Kriterien erfüllt ist.

Weitere Erläuterungen zu den Irrelevanzkriterien der [TA Lärm] liefert das [Windenergiehandbuch]:

"Grundsätzlich ist zu den Irrelevanzregelungen klarzustellen, dass es hierbei nicht um die Forderung geht, dass die betrachtete Anlage keinerlei rechnerischen Beitrag zur Gesamtimmission leistet, sondern dass sie keinen kausalen Beitrag zu schädlichen Umwelteinwirkungen bringt, denn ein nicht kausaler, gerinafügiger Beitrag zur Gesamtimmission stellt keine Verletzung der Schutzpflicht nach § 5 Abs. 1 Nr. 1 BlmSchG dar<sup>1</sup>. Immissionsbeitrage, die zwar den rechnerischen Wert der Gesamtbelastung, nicht aber die Erheblichkeit einer bestehenden Umwelteinwirkung verändern, sind im Sinne des BIMSchG nicht relevant2."

BR-Drs. 254/98, OVG Lüneburg 12 LA157/08, VGH Hessen 9 A 103/11, VGH München 22 CS 12.2110, Jarass Rn 16 zu § 5 BlmSchG.

Landmann/Rohmer Rn 14 zu Nr. 3 der TA Lärm, VGH Hessen 9 A 103/11



Dieser kausale Beitrag ist als Maßstab für die Einordnung als Regelfall i. S. d. [TA Lärm] anzusehen. Hierzu führt das [Windenergiehandbuch] aus:

"Eine Versagung einer nicht kausalen, irrelevanten Zusatzbelastung kann rechtlich nicht mit der bestehenden hohen Vorbelastung begründet werden und wäre auch physikalisch nicht zielführend, da die Zusatzbelastung nicht ursächlich für den Verstoß gegen die Anforderungen der TA Lärm ist und somit ihre Versagung auch keine Verbesserung des bestehenden Situation erbringen kann."

### 3.2 LAI-Hinweise zum Schallimmissionsschutz bei Windkraftanlagen

Bei der Entscheidung über die Genehmigung von Windenergieanlagen ist auf Grundlage der [TA Lärm] zu prüfen, ob die Anforderungen des Immissionsschutzrechts in Bezug auf Geräusche eingehalten werden. Die [LAI WEA Schall 2016] konkretisieren die Anforderungen der [TA Lärm] an die Durchführung von Immissionsprognosen im Rahmen der Errichtung und des Betriebs von Windenergieanlagen.

### **Prognosemodell**

Neben der Anpassung des Prognosemodells auf [DIN ISO 9613-2 Interim] werden insbesondere Vorgaben zur Ermittlung der Eingangsdaten bzw. zur Ermittlung der Qualität der Immissionsprognose beschrieben.

### Unsicherheiten und Eingangsdaten

Im Rahmen der Immissionsprognose sind die Unsicherheit der Emissionsdaten sowie die Unsicherheit des Prognosemodells  $\sigma_{Prog}$  zu berücksichtigen. Erstere geht in den Unsicherheiten der Typvermessung  $\sigma_R$  in dB sowie der Serienstreuung  $\sigma_{P}$  in dB auf. Gemäß [LAI WEA Schall 2016] sind folgende Werte zu berücksichtigen:

Unsicherheit der Typvermessung  $\sigma_R = 0.5 \text{ dB}$ 

falls eine normkonform nach FGW TR1 Rev. 18 durchgeführte Typvermessung

vorliegt.

Unsicherheit der Serienstreuung  $\sigma_P = s \text{ in dB}$ 

falls eine Mehrfachvermessung (mindestens 3-fach) mit zusammenfassenden

Bericht für den entsprechenden Betriebsmodus vorliegt, ist die

Standardabweichung s in dB der Messwerte anzusetzen.

 $\sigma_P = 1.2$  in dB

falls keine Mehrfachvermessung vorliegt, ist der o. g. Ersatzwert zu wählen.

Unsicherheit des Prognosemodells  $\sigma_{Proa} = 1.0 dB$ 

 $\sigma_{\text{ges}} = \sqrt{\sigma_{\text{R}}^2 + \sigma_{\text{P}}^2 + \sigma_{\text{Prog}}^2}$ Gesamtunsicherheit

 $\Delta L=1,28 \cdot \sigma_{ges}$ Obere Vertrauensbereichsgrenze

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg Textteil - Langfassung Seite 13 von 39



Als Eingangsdaten für die Immissionsprognose sind der jeweilige Schallleistungspegel und das entsprechend zugehörige Oktavspektrum zu berücksichtigen. Der sog. Sicherheitszuschlag zur Ermittlung der oberen Vertrauensbereichsgrenze wird bereits emissionsseitig i. V. m. dem Schallleistungspegel der Windenergieanlagen berücksichtigt.

### **Tonhaltigkeit**

Windenergieanlagen die im Nahbereich Tonhaltigkeiten verursachen, die mit  $K_{TN} > 2$  dB zu bewerten sind, entsprechen i. d. R. nicht dem Stand der Technik. Ausnahmen sind in [LAI WEA Schall 2016] formuliert. Wird die Tonhaltigkeit einer Windenergieanlage auf Basis von [FGW TR1 Rev. 18] mit  $K_{TN}$  < 2 dB bewertet, ist im Immissionsbereich bei Entfernungen über 300 m kein Tonzuschlag K<sub>T</sub> zu berücksichtigen. Bei K<sub>TN</sub> = 2 dB ist eine Immissionsmessung zur Klärung erforderlich.

### Impulshaltigkeit und Infraschall

Gemäß [LAI WEA Schall 2016] ist die Geräuschcharakteristik moderner Windenergieanlagen weder tonnoch impulshaltig. Weiterhin ist die Infraschallerzeugung auch im Nahbereich deutlich unterhalb der Wahrnehmungsschwelle des Menschen.

### Rundungsregeln

Beurteilungspegel sind gemäß [LAI WEA Schall 2016] nach den Rundungsregeln der [DIN 1333] Ziffer 4.5.1 als ganzzahlige Werte anzugeben.

### Länderspezifische Vorgaben: 12-dB-Abschneidekriterium 3.3

Mit der Einführung der [LAI WEA Schall 2016] bzw. des [DIN ISO 9613-2 Interim] ist in Rheinland-Pfalz entsprechend den Angaben der SGD Nord [SGD Nord 2018\_1] ein Abschneidekriterium definiert worden. Dieses beinhaltet, dass eine windenergieanlagenverursachten Vorbelastung, die den Immissionsrichtwert an den untersuchten Immissionsorten um mindestens 12 dB unterschreitet, nicht in die Beurteilung einfließt. Gemäß [SGD Nord 2018\_2] ist das Kriterium auf jede Einzelanlage, losgelöst vom Anlagenbegriff des [BlmSchG], anzuwenden. Weiterhin ist gemäß [SGD Nord 2019\_2] auch jede Einzelanlage der Zusatzbelastung entsprechend zu behandeln. Jede Einzelanlage der Zusatzbelastung ist somit nicht Bestandteil der Beurteilung, sofern ihr Immissionsanteil den Immissionsrichtwert um mindestens 12 dB an den untersuchten Immissionsorten unterschreitet.

Gutachten-Nr.: 114 0614 18R-1



## 4 Ermittlung der Immissionen

# 4.1 Untersuchte Immissionsorte

Auf der Grundlage eines am 4. Sept. 2018 durchgeführten Ortstermins werden im Rahmen der schalltechnischen Untersuchung die dargestellten Immissionsorte betrachtet (Abbildung 1):



Abbildung 1: Lage der im Rahmen der Schallimmissionsprognose betrachteten Immissionsorte

Detailgrafiken der Immissionsorte können dem Anhang F entnommen werden.

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



Die Gebietsnutzung wird entsprechend der mit der Verbandsgemeindeverwaltung Cochem abgestimmten Anlage A (siehe Anhang A) angesetzt. Hierfür gelten die angegebenen Immissionsrichtwerte nach [TA Lärm] bzw. Orientierungswerte nach [DIN 18005-1 Bbl. 1] für die Nachtzeit (Tabelle 3):

Untersuchte Immissionsorte im Rahmen der Schallimmissionsprognose mit Angabe der jeweiligen Tabelle 3: Gebietsnutzung und der Immissionsrichtwerte nach TA Lärm bzw. Orientierungswerte nach DIN 18005-1 Bbl. 1 für die Nachtzeit

| DIN 18005-1 Bbl. 1 für die Nachtz<br>Immissionsort<br>IP-Nr./Bezeichnung, Geschoss, Fassade |         | TM Zone<br>g:25832) | Ausweisung nach<br>BauNVO               | Immissions-<br>richtwerte |  |
|---------------------------------------------------------------------------------------------|---------|---------------------|-----------------------------------------|---------------------------|--|
|                                                                                             |         |                     | (Gebietsnutzung)                        | (IRW)<br>in dB(A)         |  |
|                                                                                             | Ost     | Nord                |                                         | Nacht                     |  |
| IO-01/ Gotteshäuserhof 2, 1.OG, SW                                                          | 380.820 | 5.557.387           | Außenbereich                            | 45                        |  |
| 10-02/ Gotteshäuserhof 1, 1.OG, SW                                                          | 380.883 | 5.557.305           | Außenbereich                            | 45                        |  |
| IO-03/ Auf dem Stich 2, 1.OG, SW                                                            | 381.184 | 5.556.039           | Außenbereich                            | 45                        |  |
| IO-04/ Auf dem Stich 1 , 1.OG, SW                                                           | 381.130 | 5.555.974           | Außenbereich                            | 45                        |  |
| IO-05/ Auf dem Stich 4 , 1.OG, SW                                                           | 381.468 | 5.555.968           | Außenbereich                            | 45                        |  |
| 10-06/ Hauptstraße 2, 1.OG, SW                                                              | 381.798 | 5.555.732           | G                                       | 50                        |  |
| 10-07/ Hauptstraße 4, 1.OG, NW                                                              | 381.769 | 5.555.672           | G                                       | 50                        |  |
| IO-08/ Hauptstraße 1, 2.OG, SW                                                              | 381.733 | 5.555.671           | М                                       | 45                        |  |
| IO-09/ Im Hiltchen 6, 1.OG, SW                                                              | 381.572 | 5.555.532           | MD                                      | 45                        |  |
| IO-10/ In der Kaltem 1, 1.OG, SW                                                            | 381.701 | 5.555.255           | MD                                      | 45                        |  |
| IO-11/ Hauptstraße 52, 1.OG, SW                                                             | 381.754 | 5.555.229           | М                                       | 45                        |  |
| IO-12/ Schulstraße 7, 1.OG, NW                                                              | 381.954 | 5.555.231           | WA                                      | 40                        |  |
| IO-13/ Wochenendhaus, 1.OG, NO                                                              | 378.377 | 5.554.597           | Außenbereich                            | 45                        |  |
| IO-14/ Beurenhof 2, 1.OG, NO                                                                | 377.617 | 5.554.948           | Außenbereich                            | 45                        |  |
| IO-15/ Beurenkern, 1.OG, SO                                                                 | 377.811 | 5.556.620           | Außenbereich                            | 45                        |  |
| 10-16/ Dünnbachstraße 5, 1.OG, SO                                                           | 378.473 | 5.558.278           | Außenbereich                            | 45                        |  |
| IO-17/ Bruttinger Straße 1, 1.OG, O                                                         | 378.339 | 5.558.707           | WA                                      | 40                        |  |
| IO-18/ Campingplatz, EG                                                                     | 378.059 | 5.558.963           | SO Campingplatz                         | 40(1)                     |  |
| IO-19/ Am Plenzer 18 (Seniorenresidenz), 2.OG, SW                                           | 378.814 | 5.559.148           | Gemeinbedarfsfläche<br>Seniorenwohnheim | 35                        |  |
| 10-20/ Obere Welsbach Straße 1, 1.0G                                                        | 379.111 | 5.559.523           | WA                                      | 40                        |  |
| IO-21/ Hornhäuserhof 1, 1.OG, \$                                                            | 380.580 | 5.558.741           | Außenbereich                            | 45                        |  |
| IO-22/ Maximinstraße 12, 1.OG                                                               | 382.620 | 5.557.399           | WA                                      | 40                        |  |

(1) Orientierungswert gemäß DIN 18005 1 Bbl. 1

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 16 von 39



Werden die Anforderungen der [TA Lärm] an den untersuchten Immissionsorten eingehalten, impliziert dies – basierend auf der Wahl der untersuchten Immissionsorte – die Einhaltung der Anforderungen an allen anderen Wohnnutzungen.

# 4.2 Beschreibung des Berechnungsverfahrens

Die Berechnung der Geräuschimmissionen der Windenergieanlagen der Vor- und Zusatzbelastung erfolgt gemäß [DIN ISO 9613-2 Interim]. Hierzu wird das qualitätsgesicherte Programmsystem MAPANDGIS der Kramer Software GmbH, St. Augustin, in seiner aktuellen Softwareversion (1.2.0.0) inkl. vollständiger Abbildung des [DIN ISO 9613-2 Interim] verwendet<sup>3</sup>.

Der äquivalente Dauerschalldruckpegel  $L_{AT}(DW)$  in dB(A) wird wie folgt berechnet:

 $L_{AT}(DW) = L_W + D_C - A$  in dB(A).

Hierbei ist:

Lat(DW) der A-bewertete Mitwindpegel am Immissionsort, Lw der Schallleistungspegel der Geräuschquelle,

 $D_c$  die Richtwirkungskorrektur,  $D_c = 0$  dB,

A die Oktavbanddämpfung A<sub>div</sub> + A<sub>atm</sub> + A<sub>gr</sub> + A<sub>bar</sub>,
A<sub>div</sub> die Dämpfung aufgrund geometrischer Ausbreitung,
A<sub>atm</sub> die Dämpfung aufgrund von Luftabsorption,

 $A_{gr}$  die Dämpfung aufgrund des Bodeneffektes,  $A_{gr}$  = -3 dB, die Dämpfung aufgrund von Abschirmung,  $A_{bar}$  = 0 dB.

Die Setzung des  $A_{gr}$  zu -3 dB stellt gegenüber der [DIN ISO 9613-2] die wesentliche Modifikation des [DIN ISO 9613-2 Interim] dar. Sie berücksichtigt, dass es bei Windenergieanlagen als hochliegende Quelle zu lediglich einer Bodenreflexion kommt. Weiterhin implizieren die Berechnungen gemäß [DIN ISO 9613-2 Interim] die Setzung des  $C_{met} = 0$  dB.

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 17 von 39

Das Interimsverfahren stellt grundsätzlich nur eine Anleitung zur Nutzung bzw. zur Manipulation der relevanten Parameter des (allgemeinen) Berechnungsverfahrens der DIN ISO 9613-2 dar. Dies führt dazu, dass i. d. R. jedes Softwareprodukt, welches das (allgemeine) Berechnungsverfahren der DIN ISO 9613-2 i. V. m. der qualitätssichernden ISO/TR 17534-3 (Acoustics — Software for the calculation of sound outdoors - Part 3: Recommendations for quality assured implementation of ISO 9613-2 in software according to ISO 17534-1) abbildet (s. Konformitätserklärung Anhang M), auch das Interimsverfahren abbilden kann. Lediglich die flächenhafte Darstellung bzw. die Generierung von Isophonenlinien war – wie im Falle der genutzten Software MAPANDGIS in der Version 1.1.4.0 im Originalbericht (siehe Revisionsverzeichnis) - nicht unbedingt möglich, da nur das Ausschalten von Parametergruppen und nicht einzelner Parameter (Agr in dB) möglich ist. Seit der hier genutzten Version 1.2.0.0 ist nun auch dies möglich.



Die Ausbreitungsberechnungen sind gemäß [TA Lärm] grundsätzlich unter Berücksichtigung der abschirmenden bzw. reflektierenden Wirkung von Gebäuden oder ähnlichen Objekten im Bereich der untersuchten Immissionsorte durchzuführen. Weiterhin wird die topografische Struktur mittels eines digitalen Geländemodells berücksichtigt. Während Schallreflexionen einen erhöhten Beurteilungspegel am Immissionsort zur Folge haben können, wirken abschirmende Objekte pegelmindernd. Die Gebäudegeometrie wird hierzu entsprechend des am 4. Sept. 2018 durchgeführten Ortstermins vollständig in das Berechnungsmodell eingepflegt, um so den Einfluss von Reflexionen zu berücksichtigen. Die Berechnungen werden mit zwei Reflexionen durchgeführt. Auf die abschirmende Wirkung der digitalisierten Gebäude sowie der topografischen Struktur wird im Rahmen eines konservativen Ansatzes hingegen vollständig verzichtet (Abar = 0 dB).

Die Berechnung der Geräuschimmissionen weiterer Vorbelastungsemittenten (Kap. 5.4) die der [TA Lärm] zuzuordnen sind, erfolgt entlang der [DIN ISO 9613-2] mittels der o.g. Software. Die Dämpfung aufgrund des Bodeneffektes wird hierbei mit dem alternativen Berechnungsverfahren der [DIN ISO 9613-2] oktavunabhängig4 berechnet. Die Abschirmung sowie die Reflexion durch Gebäude sowie die Abschirmung durch natürliche und künstliche Geländeverformungen werden – soweit vorhanden – berücksichtigt. Der Faktor C₀ wird mit 2 dB berücksichtigt.

4 Formeln (10,11) der DIN ISO 9613-2

Gutachten-Nr.: 114 0614 18R-1

Proiekt:



### 5 Beschreibung der Emissionsansätze

#### 5.1 **Allgemeines**

Die zu berücksichtigenden Geräuschemissionen resultieren einerseits aus den geplanten Windenergieanlagen, andererseits aus der Vorbelastung der bestehenden Windenergieanlagen sowie ggf. weiteren gewerblichen Nutzungen.

#### 5.2 Geplante Windenergieanlagen (Zusatzbelastung)

### 5.2.1 Rahmendaten zum Betrieb der geplanten Windenergieanlagen

Der Auftraggeber plant die Errichtung und Inbetriebnahme von fünf Windenergieanlagen vom Typ Vestas V126-3.3MW (Tabelle 4):

Tabelle 4: Nicht-akustische Daten der Windenergiegnlagen der Zusatzbelastung

| Anlagenbezeichnung |                   | eichnung ETR\$89 UTM Zone 32N (epsg:25832) |           | Naben-<br>höhe | Rotordurch-<br>messer | Nenn-<br>leistung | Bemer-<br>kungen      |
|--------------------|-------------------|--------------------------------------------|-----------|----------------|-----------------------|-------------------|-----------------------|
| Nr.                | Тур               | Ost                                        | Nord      | in m           | in m                  | in kW             |                       |
| WEA 01             | Vestas V126-3.3MW | 380.694                                    | 5.556.450 | 149            | 126                   | 3.300             |                       |
| WEA 02             | Vestas V126-3.3MW | 380.206                                    | 5.556.165 | 149            | 126                   | 3.300             | Rotor-<br>blätter mit |
| WEA 03             | Vestas V126-3.3MW | 379.711                                    | 5.556.005 | 149            | 126                   | 3.300             | Serration             |
| WEA 04             | Vestas V126-3.3MW | 379.775                                    | 5.555.715 | 149            | 126                   | 3.300             | Trailing<br>Edges     |
| WEA 05             | Vestas V126-3.3MW | 380.256                                    | 5.555.526 | 149            | 126                   | 3.300             | Lages                 |

Die akustischen Parameter werden auf Basis der im Anhang C gezeigten Ergebniszusammenfassung von drei Messungen des Anlagentyps VESTAS V126-3.3MW im Mode 0 [DNV-GL V126-3.3MW] berücksichtigt. Zugehörig ist die ebenfalls im Anhang C abgelegte Bestätigung der Vestas Deutschland GmbH [Stn Vestas STE], dass die vermessenen Windenergieanlagen über mit Serration Trailing Edges ausgestattete Rotorblätter verfügen.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 19 von 39



| Tabelle 5: | Akustischa D | aten der Winde | nergieanlagen | der Zusatzbelastuna  |
|------------|--------------|----------------|---------------|----------------------|
| Idhelle 7. | AKHSTISCHALI | aren der winde | nerdiedhidden | der / usan/belasione |

| Anlagen | Schallleistungspegel in dB(A) |                           |          |           |           |           |          |          |          | Unsicherheiten<br>in dB |       |                    | SZ  |     |                 |     |
|---------|-------------------------------|---------------------------|----------|-----------|-----------|-----------|----------|----------|----------|-------------------------|-------|--------------------|-----|-----|-----------------|-----|
|         | ř                             | ī                         |          | í         | Okt       | avspel    | ktrum L  | W,Okt    | 1 8      |                         |       |                    | 05  |     |                 | dB  |
| Nr.     | Тур                           | Gepl.<br>Betrieb<br>Nacht | 63<br>Hz | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz                | Lw    | L <sub>e,max</sub> | σr  | s   | $\sigma_{prog}$ |     |
| WEA 01  | V126-3.3MW                    | Mode 0                    | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2                    | 105,2 | 106,1              | 0,7 | 0,2 | 1,0             | 1,6 |
| WEA 02  | V126-3.3MW                    | Mode 0                    | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2                    | 105,2 | 106,1              | 0,7 | 0,2 | 1,0             | 1,6 |
| WEA 03  | V126-3.3MW                    | Mode 0                    | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2                    | 105,2 | 106,1              | 0,7 | 0,2 | 1,0             | 1,6 |
| WEA 04  | V126-3.3MW                    | Mode 0                    | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2                    | 105,2 | 106,1              | 0,7 | 0,2 | 1,0             | 1,6 |
| WEA 05  | V126-3.3MW                    | Mode 0                    | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2                    | 105,2 | 106,1              | 0,7 | 0,2 | 1,0             | 1,6 |

Der Le,max in dB(A) wird gemäß [LAI WEA Schall 2016] wie folgt berechnet:

$$L_{e,max} = \overline{L}_W + 1,28 \cdot \sqrt{\sigma_R^2 + \sigma_P^2} \qquad \text{ in dB(A)}.$$

Hierbei ist:

maximal zulässiger Emissionspegel, L<sub>e,max</sub>

deklarierter (mittlerer) Schallleistungspegel,  $\bar{L}_W$ 

Messunsicherheit,  $\sigma_R$ OΡ Serienstreuung.

Für die Ermittlung der oberen Vertrauensbereichsgrenze der Geräuschimmissionen im Nachtzeitraum wird dann der o.g. Schallleistungspegel von LwA = 105,2 dB(A) zzgl. des sog. Sicherheitszuschlags von 1,6 dB herangezogen.

Das Oktavspektrum sowie der Einzahlwert der Schallleistung resultieren direkt aus [DNV-GL V126-3.3MW] (Anhang C). Sie geben den Maximalwert der Schallleistung wieder, der bezogen auf eine Nabenhöhe von 149 m im BIN 7 auftritt. Die Unsicherheit der Vermessung  $\sigma_R$  in dB wird entsprechend dem Mittelwert der Unsicherheiten im BIN 7 aus [DNV-GL V126-3.3MW] mit 0,7 dB angesetzt. Die Unsicherheit der Serienstreuung  $\sigma_P$  in dB – in diesem Fall ausgedrückt durch die Standardabweichung der Messwerte s in dB - resultieren ebenfalls direkt aus [DNV-GL V126-3.3MW] (Anhang C).

Entsprechend [DNV-GL V126-3.3MW] (Anhang C) implizieren die Berechnungen, dass die Geräusche der geplanten Windenergieanlagen entsprechend [LAI WEA Schall 2016] weder relevant Ton- noch Impulshaltig sind. Im vorliegenden Fall berücksichtigt die Immissionsprognose  $K_{TN} = 0$  dB und  $K_{TN} = 0$  dB.

Gutachten-Nr.: 114 0614 18R-1

Projekt:



### 5.2.2 Untersuchungen zum 12-dB-Abschneidekriterium hinsichtlich der Zusatzbelastung

Um zu ermitteln, welche Windenergieanlagen der Zusatzbelastung (Tabelle 4 bzw. Anhang B) aufgrund des 12-dB-Abschneidekriteriums keine weitere Berücksichtigung im Rahmen der gegenständlichen Immissionsprognose erfahren, wird wie folgt verfahren:

Jede in Kapitel 5.2.1 dokumentierte Windenergieanlage wird mit dem dort genannten Schallleistungspegel von LwA = 105,2 dB(A) zzgl. des sog. Sicherheitszuschlags von 1,6 dB in den Berechnungen zur Ermittlung der oberen Vertrauensbereichsgrenze berücksichtigt.

Die Berechnungsergebnisse – ermittelt unter Berücksichtigung des im Kapitel 4.2 beschriebenen Interimsverfahrens [DIN ISO 9613-2 Interim] - können dem Abschnitt 6.1.2 sowie dem Anhang J entnommen werden.

### 5.2.3 Zu berücksichtigende Anlagen der geplanten Zusatzbelastung nach Anwendung des 12-dB-Abschneidekriteriums

Unter Berücksichtigung der Untersuchungen zum 12-dB-Abschneidekriterium aus den Kapiteln 5.2.2 und 6.1.2 sind hinsichtlich der Zusatzbelastung die folgenden Windenergieanlagen zu berücksichtigen:

Tabelle 6. Zu berücksichtigende Windenergieanlagen der Zusatzbelastung

| Anlageni | bezeichnung       | 200     | M Zone 32N<br>:25832) | Naben-<br>höhe | Rotordurch-<br>messer | Nenn-<br>leistung | Bemer-<br>kungen      |
|----------|-------------------|---------|-----------------------|----------------|-----------------------|-------------------|-----------------------|
| Nr.      | Тур               | Ost     | Nord                  | in m           | in m                  | in kW             |                       |
| WEA 01   | Vestas V126-3.3MW | 380.694 | 5.556.450             | 149            | 126                   | 3.300             | Rotor-                |
| WEA 02   | Vestas V126-3.3MW | 380.206 | 5.556.165             | 149            | 126                   | 3.300             | blätter mit           |
| WEA 04   | Vestas V126-3.3MW | 379.775 | 5.555.715             | 149            | 126                   | 3.300             | Serration<br>Trailing |
| WEA 05   | Vestas V126-3.3MW | 380.256 | 5.555.526             | 149            | 126                   | 3.300             | Edges                 |

Die akustischen Parameter sind in Kapitel 5.2.1 genannt.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 21 von 39



# 5.3 Bestehende Windenergieanlagen (Vorbelastung)

# 5.3.1 Rahmendaten zum genehmigten Betrieb der bestehenden Windenergieanlagen

Die gegenständliche Immissionsprognose berücksichtigt im Rahmen der Ermittlung der Vorbelastung die in der Anlage B (siehe Anhang B) genannten bestehenden Windenergieanlagen südwestlich, südlich und südöstlich der Gemeinde Lieg (Tabelle 7):

Tabelle 7: Nicht-akustische Daten der Windenergieanlagen der Zusatzbelastung

| Anlagen | bezeichnung       |         | 7 Zone 32N<br>25832) | Naben-<br>höhe | Rotordurch-<br>messer | Nennleistung |
|---------|-------------------|---------|----------------------|----------------|-----------------------|--------------|
| Nr.     | Тур               | Ost     | Nord                 | in m           | in m                  | in kW        |
| RH 369  | Nordex N-117      | 385.523 | 5.551.202            | 140,6          | 117                   | 2.400        |
| RH 370  | Nordex N-117      | 385.428 | 5.551.623            | 140,6          | 117                   | 2.400        |
| RH 371  | Nordex N-117      | 385.528 | 5.552.075            | 140,6          | 117                   | 2.400        |
| RH 374  | Enercon E-115     | 388.597 | 5.553.518            | 149,1          | 115                   | 3.000        |
| RH 375  | Enercon E-115     | 388.901 | 5.553.544            | 149,1          | 115                   | 3.000        |
| RH 354  | Nordex N-131      | 383.232 | 5.552.826            | 134            | 131                   | 3.000        |
| RH 75   | Vestas V-44       | 389.257 | 5.552.243            | 63             | 44                    | 600          |
| RH 76   | Enercon E-82      | 389.415 | 5.552.602            | 138,4          | 82                    | 2.300        |
| RH 77   | Enercon E-82      | 389.093 | 5.552.785            | 138,4          | 82                    | 2.300        |
| RH 78   | Enercon E-82      | 388.836 | 5.552.950            | 138,4          | 82                    | 2.300        |
| RH 79   | Enercon E-82      | 388.684 | 5.553.146            | 138,4          | 82                    | 2.300        |
| WEA T   | Enercon E-82      | 389.128 | 5.552.393            | 98             | 82                    | 2.300        |
| RH 133  | Vestas V90-2000   | 386.023 | 5.550.257            | 105            | 90                    | 2.000        |
| RH 134  | Vestas V90-2000   | 386.227 | 5.550.062            | 105            | 90                    | 2.000        |
| RH 135  | Vestas V90-2000   | 386.258 | 5.549.780            | 105            | 90                    | 2.000        |
| RH 355  | Nordex N-117-2400 | 379.480 | 5.553.326            | 140,6          | 116,8                 | 2.400        |
| RH 356  | Nordex N-117-2400 | 379.995 | 5.553.242            | 140,6          | 116,8                 | 2.400        |
| RH 357  | Nordex N-117-2400 | 380.019 | 5.552.826            | 140,6          | 116,8                 | 2.400        |
| RH 358  | Nordex N-117-2400 | 380.324 | 5.552.644            | 140,6          | 116,8                 | 2.400        |
| RH 359  | Nordex N-117-2400 | 379.855 | 5.552.259            | 140,6          | 116,8                 | 2.400        |
| RH 360  | Nordex N-117-2400 | 380.207 | 5.552.091            | 140,6          | 116,8                 | 2.400        |
| RH 361  | Nordex N-117-2400 | 380.683 | 5.552.122            | 140,6          | 116,8                 | 2.400        |
| RH 362  | Nordex N-117-2400 | 380.212 | 5.551.403            | 140,6          | 116,8                 | 2.400        |
| RH 363  | Nordex N-117-2400 | 383.394 | 5.550.939            | 140,6          | 116,8                 | 2.400        |
| RH 364  | Nordex N-117-2400 | 382.761 | 5.550.429            | 140,6          | 116,8                 | 2.400        |
| RH 366  | Nordex N-117-2400 | 382.148 | 5.549.725            | 140,6          | 116,8                 | 2.400        |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



Wie den Anlagen B (siehe Anhang B) zu entnehmen ist, variieren die – hier zunächst nicht näher aufgeführten<sup>5</sup> - Schallleistungspegel LwA in dB(A) der zur Nachtzeit relevanten Betriebsmodi zwischen 100,4 dB(A) und 106 dB(A). Zuschläge für Impuls- und/oder Tonhaltigkeit sind nicht zu vergeben.

#### 5.3.2 Untersuchungen zum 12-dB-Abschneidekriterium hinsichtlich der Vorbelastung

Um zu ermitteln, welche Windenergieanlagen der Vorbelastung (Tabelle 7 bzw. Anhang B) aufgrund des 12-dB-Abschneidekriteriums keine weitere Berücksichtigung im Rahmen der gegenständlichen Immissionsprognose erfahren und daher genehmigungsseitig nicht näher hinsichtlich Schallleistungspegel und Sicherheitszuschlägen untersucht werden müssen, wird wie folgt verfahren:

Jede in Kapitel 5.3.1 dokumentierte Windenergieanlage wird mit einem konservativ gewählten, fiktiven Emissionswert von  $L_{WA} = 112$  dB(A) in die Berechnungen eingestellt. Dieser übersteigt dabei sämtliche in Anhang B genannten Schallleistungspegel inkl. eines (fiktiven) Sicherheitszuschlages von bis zu 4 dB.

Der Emissionswert wird dabei mit einem ebenfalls konservativ gewählten, weil mit relativ großen Anteilen im niederfrequenten Bereich ausgestattetem, Oktavspektrum näher beschrieben (Tabelle 8):

Tabelle 8: Akustische Daten der Windenergieanlagen der Vorbelastung im Rahmen der Untersuchungen zum

| 12-ub-Abschileidekillelid             | III                              |           |           |           |          |          |          |          |     |  |  |  |
|---------------------------------------|----------------------------------|-----------|-----------|-----------|----------|----------|----------|----------|-----|--|--|--|
| Anlagenbezeichnung                    | Emissionswert in dB(A)           |           |           |           |          |          |          |          |     |  |  |  |
|                                       | Oktavspektrum L <sub>w,Okt</sub> |           |           |           |          |          |          |          |     |  |  |  |
|                                       | 63<br>Hz                         | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Lwa |  |  |  |
| alle WEA der Vorbelastung (Tabelle 7) | 94,1                             | 99,9      | 104,3     | 106,5     | 106,8    | 103,4    | 96,4     | 82,0     | 112 |  |  |  |

auf einen Emissionswert von  $L_{WA} = 112 \text{ dB(A)}$  normierte Frequenzspektrum [DNV-GL V126-3.3MW] und wurde in der gegenständlichen Untersuchung anstelle des Referenzspektrums aus [LAI WEA Schall 2016] gewählt, um durch die höheren Anteile im niederfrequenten Bereich des Spektrums eine konservative Ausbreitungssituation zu generieren.

Die Berechnungsergebnisse – ermittelt unter Berücksichtigung des im Kapitel 4.2 beschriebenen Interimsverfahrens [DIN ISO 9613-2 Interim] - können dem Abschnitt 6.1.1 sowie dem Anhang J entnommen werden.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Erläuterungen hierzu können dem Kapitel 5.3.2 entnommen werden.



#### des berücksichtigende Bestandsanlagen nach Anwendung 5.3.3 Zυ 12-dB-Abschneidekriteriums

Unter Berücksichtigung der Untersuchungen zum 12-dB-Abschneidekriterium aus den Kapiteln 5.3.2 und 6.1.1 sind im Rahmen der Vorbelastungsuntersuchungen die folgenden Windenergieanlagen zu berücksichtigen

7u berücksichtigende Windenergiegnlagen der Vorbelastung Tabelle 9.

| Anlagenbezeichnung |                   |         | M Zone 32N<br>:25832) | Naben-<br>höhe | Rotordurch-<br>messer | Nenn-<br>leistung | Bemer-<br>kungen |
|--------------------|-------------------|---------|-----------------------|----------------|-----------------------|-------------------|------------------|
| Nr.                | Тур               | Ost     | Nord                  | in m           | in m                  | in kW             |                  |
| RH 354             | Nordex N-131      | 383.232 | 5.552.826             | 134            | 131                   | 3.000             | -                |
| RH 355             | Nordex N-117-2400 | 379.480 | 5.553.326             | 140,6          | 116,8                 | 2.400             | -                |
| RH 356             | Nordex N-117-2400 | 379.995 | 5.553.242             | 140,6          | 116,8                 | 2.400             | =                |
| RH 357             | Nordex N-117-2400 | 380.019 | 5.552.826             | 140,6          | 116,8                 | 2.400             | -                |
| RH 358             | Nordex N-117-2400 | 380.324 | 5.552.644             | 140,6          | 116,8                 | 2.400             | -                |

Die akustischen Parameter werden hinsichtlich der Schallleistungspegel auf Basis der im Anhang B gezeigten und durch die entsprechende Genehmigungsbehörde (hier: Kreisverwaltung Rhein-hunsrück-Kreis) bestätigten Anlage B berücksichtigt. Die Anlage B beinhaltet die genehmigungsseitig zu berücksichtigenden Schallleistungspegel der Windenergieanlagen.

Da die Anwendung des [DIN ISO 9613-2 Interim] über den Einzahlwert der Schallleistung hinaus auch das Oktavspektrum des Schallleistungspegels benötigt, wird dieses auf Basis von entsprechenden Messberichten bzw. deren Zusammenfassung – jeweils vom Anlagenhersteller zur Verfügung gestellt – herangezogen. Diese Vorgehensweise wird durch [LAI WEA Schall 2016] bzw. [Windenergiehandbuch] gegenüber dem Heranziehen des Referenzspektrums aus [LAI WEA Schall 2016] als bevorzugte Variante angesehen.

Das Oktavspektrum der Windenergieanlage vom Typ Nordex N-131 (RH 354) basiert auf dem im Anhang D gezeigten [Windtest N131/3000]. Die Auswahl des BIN 7 ist durch die gegenüber den anderen BINs erhöhten niederfrequenten Anteile begründet. Im zweiten Schritt erfolgt die Normierung auf den in der Anlage B (siehe Anhang B) als Genehmigungsbestandteil festgeschriebenen Schallleistungspegel von 104,5 dB(A) (Tabelle 10).

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 24 von 39



Tabelle 10: Ermittluna des Oktavspektrums für die Vorbelastunasanlagen vom Typ Nordex N-131

| Bezeichnung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Emissionswert in dB(A)           |           |           |           |          |          |          |          |       |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------|-----------|-----------|----------|----------|----------|----------|-------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Oktavspektrum L <sub>W,Okt</sub> |           |           |           |          |          |          |          |       |  |  |  |  |
| The care of the ca | 63<br>Hz                         | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Lwa   |  |  |  |  |
| [Windtest N131/3000] BIN 7, NH 134 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85,89                            | 91,74     | 96,24     | 98,31     | 97,66    | 95,06    | 86,17    | 74,86    | 103,5 |  |  |  |  |
| Normiert auf 104,5 dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86,9                             | 92,7      | 97,2      | 99,3      | 98,7     | 96,1     | 87,2     | 75,9     | 104,5 |  |  |  |  |

Das Oktavspektrum der Windenergieanlagen vom Typ Nordex N-117-2400 (RH 355, RH 356, RH 358) basiert auf dem in Anhang E gezeigten [WICO N117/2400]. Im zweiten Schritt erfolgt die Normierung auf den in der Anlage B (siehe Anhang B) als Genehmigungsbestandteil festgeschriebenen Schallleistungspegel von 105,0 dB(A) (Tabelle 11):

Tabelle 11: Frmittlung des Oktavspektrums für die Vorhelastungsgnlagen vom Tvp Nordex N-131

| Bezeichnung               | Emissionswert in dB(A) |           |           |           |          |          |          |          |                   |  |  |  |
|---------------------------|------------------------|-----------|-----------|-----------|----------|----------|----------|----------|-------------------|--|--|--|
|                           | Oktavspektrum Lw,okt   |           |           |           |          |          |          |          |                   |  |  |  |
|                           | 63<br>Hz               | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Lw                |  |  |  |
| [WICO N117/2400] NH 141 m | 85,0                   | 90,6      | 93,9      | 96,5      | 98,8     | 98,1     | 93,5     | 81,8     | 104,0<br>(103,95) |  |  |  |
| Normiert auf 105,0 dB(A)  | 86,05                  | 91,65     | 94,95     | 97,55     | 99,85    | 99,15    | 94,55    | 82,85    | 105,0             |  |  |  |

Wie in Kapitel 3.3 erläutert, reduziert sich bei der Anwendung des [DIN ISO 9613-2 Interim] im Rahmen der Ermittlung des sog. Sicherheitszuschlages gemäß [LAI WEA Schall 2016] der Unsicherheitsanteil  $\sigma_{Prog}$  von 1,5 dB auf 1,0 dB. In der gegenständlichen Prognose wird der sog. Sicherheitszuschlag jedoch weiterhin mit 2,5 dB bzw. den unten gezeigten Unsicherheitsanteilen (u. a.  $\sigma_{Prog} = 1,5$  dB) berücksichtigt. Dies resultiert in einer konservativen Abschätzung der Vorbelastung, da das [DIN ISO 9613-2 Interim] eine geringere Unsicherheit des Prognosemodells impliziert.

Tabelle 12: Akustische Daten der Windenergiegnlagen der Vorhelastung

| Anlagen | bezeichnung |                  | Schallleistungspegel in dB(A) |           |           |           |          |          |          |       |          |     | Unsicherheiten<br>in dB |                   |     |  |  |
|---------|-------------|------------------|-------------------------------|-----------|-----------|-----------|----------|----------|----------|-------|----------|-----|-------------------------|-------------------|-----|--|--|
|         |             |                  |                               |           | Okl       | avspel    |          |          | in ab    |       | in<br>dB |     |                         |                   |     |  |  |
| Nr.     | Тур         | Betrieb<br>Nacht | 63<br>Hz                      | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8 kHz | Lw       | σR  | σp                      | σ <sub>Prog</sub> |     |  |  |
| RH 354  | N-131       | 3.000 kW         | 86,9                          | 92,7      | 97,2      | 99,3      | 98,7     | 96,1     | 87,2     | 75,9  | 104,5    | 0,5 | 1,2                     | 1,5               | 2,5 |  |  |
| RH 355  | N-117-2400  | 2.400 kW         | 86,1                          | 91,7      | 95,0      | 97,6      | 99,9     | 99,2     | 94,6     | 82,9  | 105,0    | 0,5 | 1,2                     | 1,5               | 2,5 |  |  |
| RH 356  | N-117-2400  | 2.400 kW         | 86,1                          | 91,7      | 95,0      | 97,6      | 99,9     | 99,2     | 94,6     | 82,9  | 105,0    | 0,5 | 1,2                     | 1,5               | 2,5 |  |  |
| RH 357  | N-117-2400  | 2.400 kW         | 86,1                          | 91,7      | 95,0      | 97,6      | 99,9     | 99,2     | 94,6     | 82,9  | 105,0    | 0,5 | 1,2                     | 1,5               | 2,5 |  |  |
| RH 358  | N-117-2400  | 2.400 kW         | 86,1                          | 91,7      | 95,0      | 97,6      | 99,9     | 99,2     | 94,6     | 82,9  | 105,0    | 0,5 | 1,2                     | 1,5               | 2,5 |  |  |

Gutachten-Nr.: 114 0614 18R-1

Projekt:



Für die Ermittlung der oberen Vertrauensbereichsgrenze der Geräuschimmissionen im Nachtzeitraum werden dann die o.g. Schallleistungspegel zzgl. des sog. Sicherheitszuschlags von 2,5 dB herangezogen.

Entsprechend der Anlage B (Anhang B) implizieren die Berechnungen, dass die Geräusche der geplanten Windenergieanlagen weder relevant Ton- noch Impulshaltig sind. Im vorliegenden Fall berücksichtigt die Immissionsprognose  $K_{TN} = 0$  dB und  $K_{IN} = 0$  dB.

#### 5.4 Sonstige gewerbliche Vorbelastungen zur Nachtzeit

Neben den bestehenden Windenergieanlagen sind sonstige gewerbliche Vorbelastungen in den untersuchten Immissionsbereichen zur Nachtzeit zu berücksichtigen.

Die Untersuchung beschränkt sich dabei auf Immissionsorte, die gemäß der gegenständlichen Untersuchung (Kapitel 6.1.2 und 6.4) durch eine Zusatzbelastung beaufschlagt werden. Die nachfolgende tabellarische Einordnung (Tabelle 13) strukturiert diese auf Basis der untersuchten Immissionsorte:

Sonstige gewerbliche Vorbelastungen zur Nachtzeit Tabelle 13:

| Immissionsort<br>IP-Nr. | Sonstige gewerbliche Vorbelastungen zur Nachtzeit                                                                                                                                                                                       |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10-01                   | keine (siehe Anhang L)                                                                                                                                                                                                                  |
| 10-02                   |                                                                                                                                                                                                                                         |
| 10-03                   | Wie durch den Ortsbürgermeister der Ortsgemeinde Lieg nach Rücksprache mit dem Einwohner-                                                                                                                                               |
| 10-04                   | meldeamt der Verbandgemeindeverwaltung Cochem (Hr. Zilles) bzw. den Bürgermeister von Treis-<br>Karden (Hr. Thönnes) bestätigt, handelt es sich hier um reine Wohnstätten ohne bestehende Miet-                                         |
| IO-05                   | verhältnisse bzw. die Nutzung schutzbedürftiger Räume durch Dritte. Auch ist eine wechselseitige lärmtechnische Belastung unter Berücksichtigung der o. g. Informationen nicht zu berücksichtigen, da keine Betriebsstätten existieren. |

Gutachten-Nr.: 114 0614 18R-1

Projekt:



| Immissionsort<br>IP-Nr. | Sonstige gewerbliche Vorbelastungen zur Nachtzeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IO-08                   | Gewerbegebiet, Schreinerei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | In den Garten 23. MD  Gew_Lteg_N  Gew_Lteg_N  In den Garten 23. MD  Schrercee                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | Momentan sind im planungsrechtlich abgesicherten Gewerbegebiet (ohne Geräuschkontingentierung) eine Freiflächen-PV-Anlage sowie eine Halle mit weiterer PV angesiedelt. Bei der Schreinerei wird der ausschließliche Tagbetrieb berücksichtigt.                                                                                                                                                                                                                                                                              |
|                         | Eine schalltechnisch relevante gewerbliche Vorbelastung ist aktuell somit an den untersuchten Immissionsorten nicht zu erkennen. Die Ansiedlung eben solcher schalltechnisch relevanter Betriebe anstelle der PV-Anlage im Gewerbegebiet bedarf unabhängig der gegenständlichen Untersuchung einer schalltechnischen Beurteilung, in wie weit die Anforderungen der TA Lärm eingehalten werden.                                                                                                                              |
|                         | Aufgrund des bestehenden Planungsrechts (Ausweisung als Gewerbegebiet) wird im Rahmen einer konservativen Einschätzung davon ausgegangen, dass der Immissionsrichtwert an der nächstgelegenen Wohnnutzung (In den Gärten 23, MD) durch das Gewerbegebiet mit einem Beurteilungspegel von 46 dB(A) um 1 dB überschritten wird. Die entsprechende Emission (Flächenschallquelle) wird im Rahmen einer iterativen Berechnung ermittelt und die entsprechenden Einwirkungen bei den untersuchten Immissionsorten berücksichtigt. |
| D-09                    | keine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Gutachten-Nr.: 114061418R-1

Projekt: Schallimmissionsprognose WEA Lieg



| Immissionsort<br>IP-Nr. | Sonstige gewerbliche Vorbelastungen zur Nachtzeit                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IO-11<br>IO-12          | Gewerbegebiet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | Gen Tied ?  Hanhtstraße 23 W  Gen Tied ?  Gen Tied ?  Gen Tied ?                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         | Momentan sind im planungsrechtlich abgesicherten Gewerbegebiet (ohne Geräuschkontingentierung) eine Freiflächen-PV-Anlage sowie eine Halle mit weiterer PV angesiedelt.                                                                                                                                                                                                                                                                                                                                                   |
|                         | Eine schalltechnisch relevante gewerbliche Vorbelastung ist im Status Quo somit an den untersuchten Immissionsorten nicht zu erkennen. Die Ansiedlung eben solcher schalltechnisch relevanter Betriebe anstelle der PV-Anlage im Gewerbegebiet bedarf unabhängig der gegenständlichen Untersuchung einer schalltechnischen Beurteilung, in wie weit die Anforderungen der TA Lärm eingehalten werden.                                                                                                                     |
|                         | Aufgrund des bestehenden Planungsrechts (Ausweisung als Gewerbegebiet) wird im Rahmen einer konservativen Einschätzung davon ausgegangen, dass der Immissionsrichtwert an der nächstgelegenen Wohnnutzung (Hauptstraße 53, M) durch das Gewerbegebiet mit einem Beurteilungspegel von 46 dB(A) um 1 dB überschritten wird. Die entsprechende Emission (Flächenschallquelle) wird im Rahmen einer iterativen Berechnung ermittelt und die entsprechenden Einwirkungen bei den untersuchten Immissionsorten berücksichtigt. |

Gutachten-Nr.: 114 0614 18R-1 Textteil - Langfassung Projekt: Schallimmissionsprognose WEA Lieg Seite 28 von 39



### 6 Untersuchungsergebnisse

#### 6.1 Untersuchungen zum 12-dB-Abschneidekriterium

#### 6.1.1 Untersuchungen hinsichtlich der Vorbelastung

Die prognostizierten Geräuscheinwirkungen, verursacht durch die mit einem Emissionswert von LwA = 112 dB(A) belegten Windenergieanlagen der Vorbelastung (vgl. Tabelle 7 sowie Anhang B), sind mit folgenden Teilbeurteilungspegeln L<sub>O,N,VB-WEA-ASK</sub> in dB(A) für die jeweilige Einzelanlage und den Beurteilungszeitraum Nacht wie folgt anzugeben (Tabelle 14):

Tabelle 14: Teilbeurteilungspegel der Untersuchung zum 12-dB-Abschneidekriterium hinsichtlich der Vorbelastung

| IP-Nr. | IRW <sub>N</sub> in dB(A) |        | Lo,n,vb-wea-ask in dB(A) |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |       |       |       |       |       |      |
|--------|---------------------------|--------|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|------|
|        |                           | RH 133 | RH 134                   | RH 135 | RH 354 | RH 355 | RH 356 | RH 357 | RH 358 | RH 359 | RH 360 | RH 361 | RH 362 | RH 363 | RH 364 | RH 366 | RH 369 | RH 370 | RH 371 | RH 374 | RH 375 | RH 75 | RH 76 | RH 77 | RH 78 | RH 79 | WEAT |
| 10-01  | 45                        | 13,5   | 13,0                     | 12,6   | 21,2   | 23,7   | 23,9   | 22,6   | 22,2   | 21,0   | 20,7   | 20,9   | 19,0   | 17,0   | 16,4   | 15,3   | 15,3   | 16,1   | 16,6   | 14,4   | 14,0   | 11,8  | 12,6  | 13,2  | 13,6  | 14,0  | 12,1 |
| 10-02  | 45                        | 13,7   | 13,2                     | 12,8   | 21,4   | 23,9   | 24,1   | 22,8   | 22,4   | 21,2   | 20,9   | 21,1   | 19,2   | 17,2   | 16,6   | 15,5   | 15,5   | 16,3   | 16,9   | 13,9   | 13,4   | 12,0  | 12,0  | 12,6  | 13,1  | 13,5  | 12,3 |
| 10-03  | 45                        | 15,8   | 15,2                     | 14,8   | 25,3   | 27,5   | 28,2   | 26,7   | 26,4   | 24,6   | 24,4   | 24,8   | 22,3   | 20,1   | 19,4   | 18,1   | 17,9   | 18,7   | 19,3   | 15,6   | 15,0   | 13,3  | 13,3  | 13,9  | 14,5  | 15,2  | 13,6 |
| 10-04  | 45                        | 15,8   | 15,3                     | 14,8   | 25,4   | 27,9   | 28,6   | 27,0   | 26,7   | 24,9   | 24,6   | 25,0   | 22,5   | 20,2   | 19,6   | 18,3   | 17,9   | 18,8   | 19,3   | 15,2   | 14,7   | 13,3  | 13,3  | 13,9  | 14,4  | 14,8  | 13,6 |
| 10-05  | 45                        | 16,2   | 15,7                     | 15,2   | 26,0   | 27,1   | 28,0   | 26,5   | 26,3   | 24,5   | 24,4   | 24,9   | 22,3   | 20,6   | 19,8   | 18,4   | 18,4   | 19,3   | 19,9   | 15,8   | 15,2   | 13,8  | 13,8  | 14,4  | 15,0  | 15,4  | 14,1 |
| 10-06  | 50                        | 17,6   | 17,0                     | 16,6   | 27,4   | 27,0   | 28,1   | 26,7   | 26,7   | 24,7   | 24,8   | 25,5   | 22,8   | 21,4   | 21,2   | 19,4   | 19,8   | 20,7   | 21,3   | 16,5   | 16,0   | 15,1  | 15,1  | 15,7  | 16,2  | 16,6  | 15,4 |
| 10-07  | 50                        | 17,1   | 16,5                     | 16,0   | 27,6   | 27,2   | 28,3   | 27,0   | 26,9   | 24,9   | 24,9   | 25,6   | 22,9   | 21,9   | 21,0   | 19,6   | 19,4   | 20,4   | 21,0   | 17,3   | 16,0   | 16,6  | 16,6  | 17,2  | 17,8  | 16,9  | 16,9 |
| 10-08  | 45                        | 17,0   | 16,5                     | 16,0   | 27,5   | 27,3   | 28,4   | 27,1   | 27,0   | 25,0   | 25,0   | 25,6   | 22,9   | 21,5   | 20,7   | 19,1   | 19,4   | 20,3   | 21,0   | 16,4   | 15,9   | 14,4  | 14,4  | 15,1  | 15,6  | 16,0  | 14,8 |
| 10-09  | 45                        | 17,0   | 16,5                     | 16,0   | 27,7   | 28,2   | 29,3   | 27,9   | 27,8   | 25,7   | 25,6   | 26,3   | 23,5   | 21,7   | 20,9   | 19,4   | 19,4   | 20,3   | 20,9   | 16,2   | 15,7   | 14,3  | 14,2  | 14,9  | 15,4  | 15,8  | 14,6 |
| 10-10  | 45                        | 17,7   | 17,1                     | 16,6   | 28,9   | 28,6   | 30,0   | 28,6   | 28,6   | 26,3   | 26,4   | 27,2   | 24,2   | 22,6   | 21,7   | 20,1   | 20,1   | 21,0   | 21,6   | 16,6   | 16,0   | 14,7  | 14,6  | 15,3  | 15,8  | 16,7  | 15,0 |
| 10-11  | 45                        | 17,8   | 17,2                     | 16,7   | 29,2   | 28,5   | 29,9   | 28,5   | 28,6   | 26,3   | 26,4   | 27,2   | 24,2   | 22,7   | 21,8   | 20,2   | 20,2   | 21,2   | 21,8   | 16,7   | 16,2   | 14,8  | 15,4  | 16,0  | 16,6  | 16,9  | 15,1 |
| 10-12  | 40                        | 18,1   | 17,5                     | 17,0   | 29,6   | 28,2   | 29,8   | 28,0   | 28,1   | 25,9   | 26,0   | 26,9   | 23,9   | 22,9   | 21,9   | 20,6   | 20,6   | 21,9   | 22,5   | 17,6   | 16,5   | 15,7  | 15,6  | 16,3  | 16,9  | 17,3  | 16,0 |
| 10-13  | 45                        | 13,5   | 13,1                     | 12,8   | 21,1   | 35,4   | 32,7   | 31,1   | 29,4   | 29,4   | 27,9   | 26,8   | 25,7   | 18,5   | 18,9   | 18,7   | 15,1   | 15,6   | 15,7   | 11,2   | 10,8   | 10,1  | 10,0  | 10,4  | 10,8  | 11,1  | 10,3 |
| 10-14  | 45                        | 12,3   | 11,9                     | 11,7   | 19,1   | 31,8   | 28,9   | 28,6   | 27,2   | 27,8   | 26,3   | 25,2   | 23,3   | 17,0   | 18,3   | 18,3   | 13,7   | 14,1   | 14,2   | 10,2   | 9,8    | 9,1   | 9,0   | 9,4   | 9,8   | 10,0  | 9,3  |
| IO-15  | 45                        | 11,1   | 10,7                     | 10,4   | 17,6   | 25,7   | 24,5   | 23,4   | 22,4   | 22,1   | 21,2   | 20,7   | 19,7   | 15,0   | 15,0   | 14,7   | 12,5   | 13,0   | 13,3   | 9,9    | 9,6    | 8,6   | 8,6   | 9,1   | 9,4   | 9,7   | 8,9  |
| 10-16  | 45                        | 10,2   | 9,8                      | 9,5    | 16,4   | 21,4   | 20,9   | 19,8   | 19,2   | 18,6   | 18,0   | 17,8   | 16,6   | 13,5   | 13,3   | 12,7   | 11,7   | 12,2   | 12,6   | 10,0   | 9,6    | 8,5   | 8,5   | 9,0   | 9,4   | 9,7   | 8,7  |
| 10-17  | 40                        | 9,7    | 9,3                      | 9,0    | 15,5   | 20,2   | 19,7   | 18,7   | 18,1   | 17,6   | 17,1   | 16,8   | 15,8   | 12,8   | 12,6   | 12,0   | 11,1   | 11,6   | 12,0   | 9,6    | 9,3    | 8,1   | 8,2   | 8,6   | 9,0   | 9,3   | 8,3  |
| IO-18  | 40                        | 9,2    | 8,8                      | 8,6    | 14,9   | 19,5   | 18,9   | 18,0   | 17,4   | 16,9   | 16,4   | 16,2   | 15,2   | 12,2   | 12,0   | 11,5   | 10,6   | 11,1   | 11,4   | 9,1    | 8,8    | 7,7   | 7,7   | 8,2   | 8,5   | 8,8   | 7,9  |
| 10-19  | 35                        | 10,5   | 10,1                     | 9,8    | 16,3   | 19,3   | 19,0   | 18,0   | 17,5   | 16,9   | 16,4   | 16,3   | 15,1   | 12,5   | 12,3   | 11,6   | 11,9   | 12,4   | 12,8   | 9,9    | 9,5    | 8,3   | 8,4   | 8,8   | 9,2   | 9,5   | 8,5  |
| 10-20  | 40                        | 9,5    | 9,2                      | 8,8    | 15,2   | 18,5   | 18,2   | 17,3   | 16,9   | 16,2   | 15,8   | 15,7   | 14,6   | 12,3   | 11,9   | 11,3   | 10,9   | 11,5   | 11,9   | 9,9    | 9,6    | 8,4   | 8,4   | 8,9   | 9,3   | 9,6   | 8,6  |
| 10-21  | 45                        | 11,5   | 11,1                     | 10,8   | 17,9   | 20,2   | 20,2   | 19,2   | 18,8   | 17,9   | 17,6   | 17,6   | 16,1   | 14,4   | 13,9   | 13,0   | 13,2   | 13,8   | 14,4   | 12,3   | 11,9   | 10,5  | 10,6  | 11,1  | 11,5  | 11,9  | 10,7 |
| 10-22  | 40                        | 15,1   | 14,6                     | 14,1   | 22,7   | 21,2   | 21,8   | 20,9   | 20,8   | 19,4   | 19,4   | 19,9   | 18,0   | 17,9   | 16,9   | 15,5   | 17,2   | 18,1   | 18,9   | 16,6   | 16,1   | 14,2  | 14,3  | 15,0  | 15,6  | 16,0  | 14,5 |

Gutachten-Nr.: 114 0614 18R-1 Projekt:



Die Untersuchungsergebnisse zeigen, dass das 12-dB-Abschneidekriterium an sechs Stellen nicht greift. So verursacht die Windenergieanlage RH 354 am IO-12 einen Beurteilungspegel  $L_{r,N}$  = 29,6 dB(A). Die Unterschreitung des Immissionsrichtwertes beträgt somit lediglich 10,4 dB. Die Windenergieanlage RH 354 wird daher zunächst als Vorbelastung am 10-12 in der gegenständlichen Schallimmissionsprognose berücksichtigt. Gleiches gilt für die Windenergieanlagen RH355 an den IO-12 und IO-13 sowie die RH 356, RH 357 und die RH 358 am IO-12, da diese die jeweiligen Immissionsrichtwerte um gerundet maximal 12 dB unterschreiten.

Alle weiteren Windenergieanlagen unterschreiten die Immissionsrichtwerte an den untersuchten Immissionsorten um mehr als 12 dB und werden somit nicht im Rahmen der Vorbelastungsuntersuchung berücksichtigt.

Gegenüber des auf Grundlage von [SGD Nord 2019\_1] hier verwendeten Emissionspegel von 112 dB(A) wurde im Originalbericht (siehe Revisionsverzeichnis) ein Emissionspegel von 110 dB(A) angesetzt. Auf Basis einer softwareseitigen Korrektur der Berechnungen zw. den Versionen 1.1.4.0 und 1.2.0.0 des Programmsystems MAPANDGIS (vgl. Kapitel 4.2) bzgl. Abar, Aatm und dem Reflexionsanteil in dB resultiert die Erhöhung des Schallleistungspegel der Windenergieanlagen RH 354 und RH 358 am 10-12 nicht unmittelbar in einer Erhöhung des Teilbeurteilungspegels von 2 dB.

#### Untersuchungen hinsichtlich der Zusatzbelastung 6.1.2

Die prognostizierten Geräuscheinwirkungen, verursacht durch die Windenergieanlagen der Zusatzbelastung (vgl. Tabelle 4 sowie Anhang B), sind mit folgenden Teilbeurteilungspegeln Lo,n,vB-WEA-ASK in dB(A) für die jeweilige Einzelanlage und den Beurteilungszeitraum Nacht wie folgt anzugeben (Tabelle 15):

Teilbeurteilungspegel der Untersuchung zum 12-dB-Abschneidekriterium hinsichtlich der Zusatz-Tabelle 15:

| IP-Nr.    | IRWN     | elastorig |        | LO,N,ZB-WEA-ASK |        | 2      |
|-----------|----------|-----------|--------|-----------------|--------|--------|
| II - IVI. | in dB(A) |           |        | in dB(A)        |        |        |
|           |          | WEA 01    | WEA 02 | WEA 03          | WEA 04 | WEA 05 |
| 10-01     | 45       | 36,6      | 32,6   | 29,6            | 28,4   | 28,5   |
| 10-02     | 45       | 37,4      | 32,9   | 29,8            | 28,6   | 28,9   |
| 10-03     | 45       | 41,2      | 36,2   | 31,8            | 32,0   | 35,4   |
| 10-04     | 45       | 40,4      | 36,6   | 32,2            | 32,5   | 36,2   |
| 10-05     | 45       | 38,5      | 33,7   | 29,7            | 30,0   | 33,3   |
| 10-06     | 50       | 33,0      | 30,4   | 27,6            | 28,0   | 31,1   |
| 10-07     | 50       | 32,9      | 31,3   | 27,7            | 28,3   | 31,4   |
| 10-08     | 45       | 33,2      | 32,8   | 29,0            | 29,1   | 31,7   |
| 10-09     | 45       | 33,4      | 32,1   | 28,7            | 29,4   | 33,0   |

Gutachten-Nr.: 114 0614 18R-1

Projekt:



| IP-Nr. | IRW <sub>N</sub> in dB(A) | Lo,n,zb-wea-ask in dB(A) |        |        |        |        |  |  |
|--------|---------------------------|--------------------------|--------|--------|--------|--------|--|--|
|        |                           | WEA 01                   | WEA 02 | WEA 03 | WEA 04 | WEA 05 |  |  |
| 10-10  | 45                        | 31,1                     | 29,8   | 27,5   | 28,3   | 31,8   |  |  |
| 10-11  | 45                        | 30,7                     | 29,4   | 27,9   | 28,0   | 32,6   |  |  |
| 10-12  | 40                        | 29,7                     | 28,3   | 26,1   | 26,9   | 29,9   |  |  |
| 10-13  | 45                        | 23,3                     | 25,9   | 28,5   | 29,5   | 27,6   |  |  |
| 10-14  | 45                        | 21,5                     | 23,8   | 26,2   | 26,5   | 24,5   |  |  |
| IO-15  | 45                        | 23,7                     | 25,8   | 28,2   | 27,2   | 24,6   |  |  |
| 10-16  | 45                        | 23,6                     | 24,3   | 24,9   | 23,6   | 22,0   |  |  |
| 10-17  | 40                        | 22,0                     | 22,5   | 23,0   | 21,8   | 20,4   |  |  |
| O-18   | 40                        | 20,6                     | 21,0   | 21,5   | 20,5   | 19,1   |  |  |
| O-19   | 35                        | 21,9                     | 21,9   | 22,0   | 20,9   | 19,7   |  |  |
| O-20   | 40                        | 21,3                     | 21,0   | 20,9   | 19,8   | 18,9   |  |  |
| O-21   | 45                        | 26,5                     | 25,0   | 23,7   | 22,6   | 22,2   |  |  |
| O-22   | 40                        | 27,2                     | 24,4   | 22,2   | 21,9   | 23,1   |  |  |

Die Untersuchungsergebnisse zeigen, dass das 12-dB-Abschneidekriterium an einigen Stellen nicht greift. Außer der Windenergieanlage WEA 03 - diese wird in den weiteren Berechnungen nicht mehr berücksichtigt - verursachen alle geplanten Windenergieanlagen an einigen Immissionsorten Beurteilungspegel, die den Immissionsrichtwert nicht um 12 dB<sup>6</sup> unterschreiten.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Das 12-dB-Abschneidekriterium beziffert gemäß SGD Nord 2018\_1 bzw. SGD Nord 2018\_2 einen Wert von 12 dB. Genauere Angaben werden nicht gemacht. Insofern wird hinsichtlich der Rundung ein konservativer Ansatz verfolgt, sodass auch Windenergieanlagen noch Berücksichtigung finden, die nur aufgrund der Rundung des Teilbeurteilungspegels das 12 dB Kriterium nicht mehr erfüllen.



#### Vorbelastung durch bestehende Windenergieanlagen 6.2

Auf der Grundlage der in Kapitel 5.3.3 genannten anlagenspezifischen Schallemissionsparameter sowie des in Kapitel 5.3.2 und 6.1.1 untersuchten 12-dB-Abschneidekreiteriums ergeben sich an den zu untersuchenden Immissionsorten die folgenden Werte der oberen Vertrauensbereichsgrenze der  $\label{temporalization} \mbox{Teilbeurteilungspegel $L_{O,N,VB-WEA}$ in $dB(A)$ der Vorbelastung f\"{u}r$ den Beurteilungszeitraum Nacht (Tabelle 16):}$ 

Werte der oberen Vertrauensbereichsgrenze der Teilbeurteilungspegel WEA zur Nachtzeit Tabelle 16.

| Immissionsort<br>IP-Nr | IRW <sub>N</sub> in dB(A) | Teilbeurteilungspegel L <sub>O,N,VB-WEA</sub> der untersuchten WEA unter Berücksichtigung der anlagenspezifischen Emissionsparameter |                        |                        |                        |                        |  |  |
|------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|--|--|
|                        |                           | WEA RH 354<br>in dB(A)                                                                                                               | WEA RH 355<br>in dB(A) | WEA RH 356<br>in dB(A) | WEA RH 357<br>in dB(A) | WEA RH 358<br>in dB(A) |  |  |
| IO-12                  | 40                        | 24,9(2)                                                                                                                              | 22,9                   | 23,7                   | 21,9                   | 22,0(2)                |  |  |
| IO-13                  | 45                        | _(1)                                                                                                                                 | 29,5                   | 26,7                   | _(1)                   | _(1)                   |  |  |

Keine Berücksichtigung auf Basis der Untersuchungen zum 12-dB-Abschneidekriterium in Kapitel 6.1.1.

Softwareseitige Korrektur der Berechnungen zw. den Versionen 1.1.4.0 und 1.2.0.0 bzgl. Abar, Aatm und dem (2) Reflexionsanteil in dB.

Berücksichtigung der anlagenspezifischen Untersuchungsergebnisse zeigen, dass unter Emissionsparameter – diese fallen gegenüber den zuvor berücksichtigen Schallleistungspegeln der Vorbelastung von 112 dB(A) in jedem Fall geringer aus - das 12-dB-Abschneidekriterium nun auch an allen weiteren WEA-IO-Kombinationen greift. Die geltenden Immissionsrichtwerte werden in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten durch die Werte der oberen Vertrauensbereichsgrenze der Teilbeurteilungspegel L<sub>O,N,VB-WEA</sub> in dB(A) der einzelnen Windenergieanlagen um mehr als 12 dB unterschritten.

Die Unterschreitungen betragen mindestens 15,1 dB. Aus diesem Grund findet die durch Windenergieanlagen verursachte Vorbelastung auf Basis des 12-dB-Abschneidekriteriums in den folgenden Berechnungen keine weitere Berücksichtigung.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 32 von 39



### 6.3 Vorbelastung durch sonstiges Gewerbe

Auf Grundlage der in Kapitel 5.4 genannten Rahmenbedingungen ergeben sich die folgenden Beurteilungspegel  $L_{r,N,VB\text{-}GEW}$  in dB(A) der Vorbelastung durch sonstiges Gewerbe für den Beurteilungszeitraum Nacht (Tabelle 16):

Tabelle 17: Werte der oberen Vertrauensbereichsgrenze der Vorbelastung durch sonstiges Gewerbe

| Immissionsort<br>IP-Nr. | IRW <sub>N</sub> in dB(A) | L <sub>r,N,VB-GEW</sub> in dB(A) |
|-------------------------|---------------------------|----------------------------------|
| IO-01                   | 45                        | -                                |
| IO-02                   | 45                        | -                                |
| 10-03                   | 45                        | -                                |
| IO-04                   | 45                        | -                                |
| IO-05                   | 45                        | <u>.</u>                         |
| IO-08                   | 45                        | 30,5                             |
| 10-09                   | 45                        | -                                |
| 10-11                   | 45                        | 41,6                             |
| IO-12                   | 40                        | 32,8                             |

Die Untersuchungsergebnisse zeigen, dass die geltenden Immissionsrichtwerte in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten durch die Beurteilungspegel  $L_{r,N,VB-Gew}$  in dB(A) der Vorbelastung unter Berücksichtigung konservativer Berechnungen unterschritten werden.

Insbesondere an den Immissionsorten in der Gemeinde Lieg (IO-08, IO-11, IO-12) ist aufgrund der Nutzung der Gewerbegebiete durch Flächen-PV-Anlagen aktuell von nahezu keiner Vorbelastung durch gewerbliche Emittenten zur Nachtzeit auszugehen.

### 6.4 Zusatzbelastung durch die geplanten Windenergieanlagen

Auf der Grundlage der in Kapitel 5.2.1 genannten Schallemissionsparameter sowie der in Kapitel 5.2.3 und 6.1.2 dokumentierten Untersuchungen zum 12-dB-Abschneidekriterium ergeben sich die nachfolgenden Werte der oberen Vertrauensbereichsgrenze Lo,n,zB in dB(A) der Zusatzbelastung für den Beurteilungszeitraum Nacht (Tabelle 18).

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Textteil - Langfassung Seite 33 von 39



en Vertrauensbereichsarenze der Zusatzbelastuna zur Nachtzeit

| abelle 18:              | Werte der ob              | eren Vertrauensbereichsgrenze der Zusatzbelastung zur Nachtzeit |
|-------------------------|---------------------------|-----------------------------------------------------------------|
| Immissionsort<br>IP-Nr. | IRW <sub>N</sub> in dB(A) | Lo,n,zB<br>in dB(A)                                             |
| 10-01                   | 45                        | 38,1                                                            |
| IO-02                   | 45                        | 38,7                                                            |
| IO-03                   | 45                        | 43,2                                                            |
| 10-04                   | 45                        | 43,3                                                            |
| IO-05                   | 45                        | 40,6                                                            |
| IO-06                   | 50                        | _(1)                                                            |
| 10-07                   | 50                        | _(1)                                                            |
| 10-08                   | 45                        | 36,0                                                            |
| 10-09                   | 45                        | 36,2                                                            |
| IO-10                   | 45                        | _(1)                                                            |
| 10-11                   | 45                        | 32,6                                                            |
| IO-12                   | 40                        | 34,2                                                            |
| IO-13                   | 45                        | _(1)                                                            |
| IO-14                   | 45                        | _(1)                                                            |
| IO-15                   | 45                        | _(1)                                                            |
| IO-16                   | 45                        | _(1)                                                            |
| IO-17                   | 40                        | _(1)                                                            |
| IO-18                   | 40                        | _(1)                                                            |
| IO-19                   | 35                        | _(1)                                                            |
| 10-20                   | 40                        | _(1)                                                            |
| IO-21                   | 45                        | _(1)                                                            |
| IO-22                   | 40                        | _(1)                                                            |

Keine Berücksichtigung auf Basis der Untersuchungen zum 12-dB-Abschneidekriterium in Kapitel 6.1.2 (1)

Die Untersuchungsergebnisse zeigen, dass die geltenden Immissionsrichtwerte in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten durch die Werte der oberen Vertrauensbereichsgrenze L<sub>O,N,ZB</sub> in dB(A) der Zusatzbelastung unterschritten werden. Die Unterschreitungen betragen zwischen 1,7 dB am 10-04 und 12,4 dB am 10-11. 13 Immissionsorte erfahren unter Berücksichtigung des 12-dB-Abschneidekriteriums keine Beaufschlagung durch die geplante Zusatzbelastung.

#### 6.5 Gesamtbelastung

Unter Berücksichtigung der genannten Ergebnisse der Vor- (Kap. 6.2, Kap. 6.3) und Zusatzbelastung (Kap. 6.4) ermitteln sich die nachfolgenden Werte der oberen Vertrauensbereichsgrenze L<sub>O,N,GB</sub> in dB(A) der Gesamtbelastung für den Beurteilungszeitraum Nacht (Tabelle 19).

Gutachten-Nr.: 114061418R-1

Projekt:



Tahalla 10.

| Immissionsort | IRW <sub>N</sub> | trauensbereichsgrenze der Vorbelastung |                                                 | Zusatzbelastung                    | Gesamtbelastung <sup>(1)</sup>     |
|---------------|------------------|----------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------|
| IP-Nr.        | in dB(A)         | Lo,n,vb-wea in dB(A)                   | L <sub>r,N,VB-GEW</sub> <sup>(3)</sup> in dB(A) | L <sub>O,N,ZB</sub><br>in<br>dB(A) | L <sub>O,N,GB</sub><br>in<br>dB(A) |
| IO-01         | 45               | -                                      | -                                               | 38,0                               | 38,0 (38)                          |
| IO-02         | 45               | -                                      | -                                               | 38,7                               | 38,7 (39)                          |
| IO-03         | 45               | -                                      | -                                               | 43,2                               | 43,2 (43)                          |
| IO-04         | 45               | -                                      | -                                               | 43,3                               | 43,3 (43)                          |
| IO-05         | 45               | -                                      | -                                               | 40,6                               | 40,6 (41)                          |
| IO-06         | 50               | _(2)                                   |                                                 |                                    |                                    |
| IO-07         | 50               | -(2)                                   |                                                 |                                    |                                    |
| IO-08         | 45               | :=                                     | 30,5(4)                                         | 36,0                               | 37,1 (37)                          |
| IO-09         | 45               | ·#3                                    |                                                 | 36,2                               | 36,2 (36)                          |
| IO-10         | 45               |                                        |                                                 | -                                  | ,                                  |
| IO-11         | 45               | >=-                                    | 42,6                                            | 32,6                               | 43,0 (43)                          |
| IO-12         | 40               |                                        | 34,4(5)                                         | 34,2                               | 37,3 (37)                          |
| IO-13         | 45               |                                        | •                                               | _(2)                               |                                    |
| IO-14         | 45               |                                        |                                                 | _(2)                               |                                    |
| IO-15         | 45               |                                        |                                                 | _(2)                               |                                    |
| IO-16         | 45               | _(2)                                   |                                                 |                                    |                                    |
| IO-17         | 40               | _(2)                                   |                                                 |                                    |                                    |
| IO-18         | 40               | _(2)                                   |                                                 |                                    |                                    |
| IO-19         | 35               | _(2)                                   |                                                 |                                    |                                    |
| IO-20         | 40               | _(2)                                   |                                                 |                                    |                                    |
| IO-21         | 45               |                                        |                                                 | _(2)                               |                                    |
| IO-22         | 40               |                                        |                                                 | _(2)                               |                                    |

Die geklammerten Werte stellen die gemäß LAI WEA Schall 2016 gerundeten Werte der Beurteilungspegel der (1) Gesamtbelastung dar.

Die Untersuchungsergebnisse zeigen, dass die geltenden Immissionsrichtwerte in der ungünstigsten vollen Nachtstunde an den untersuchten Immissionsorten durch die Werte der oberen Vertrauensbereichsgrenze Lo,N,GB in dB(A) der Gesamtbelastung unterschritten werden. Die Unterschreitung beträgt mindestens 1,7 dB.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Aufgrund der nichtvorhandenen Zusatzbelastung entfällt eine weitere Beurteilung. (2)

<sup>(3)</sup> Inkl. Unsicherheit der Prognose (vgl. Kapitel 8).

Im ermittelten Immissionswert sind aufgrund der Erstellung der Lärmkarten auch die Einwirkungen des in Lieg (4) südlichen gelegenen Gewerbegebietes enthalten, ohne eine Abschirmung durch die auf dem Ausbreitungsweg gelegenen Gebäude zu berücksichtigen.

Im ermittelten Immissionswert sind nun aufgrund der Erstellung der Lärmkarten auch die Einwirkungen des in Lieg (5)nördlich gelegenen Gewerbegebietes enthalten, ohne eine Abschirmung durch die auf dem Ausbreitungsweg gelegenen Gebäude zu berücksichtigen.



## 7 Beurteilung und Diskussion der Untersuchungsergebnisse

Für die Genehmigung der geplanten Windenergieanlagen ist für den immissionskritischen Nachtzeitraum der Nachweis erforderlich, dass der Betrieb der Anlagen die schalltechnischen Anforderungen der [TA Lärm] sowie des 12-dB-Abschneidekriteriums [SGD Nord 2018\_1], [SGD Nord 2018\_2] und [SGD Nord 2019\_2] einhält. Anhand der unter Anwendung der [DIN ISO 9613-2], des [DIN ISO 9613-2 Interim] sowie der [LAI WEA Schall 2016] ermittelten Vor-, Zusatz- und Gesamtbelastung erfolgt in Abhängigkeit der untersuchten Immissionsorte die Beurteilung und Diskussion der Untersuchungsergebnisse.

Unter Berücksichtigung des 12-dB-Abschneidekriteriums für die Zusatzbelastung gemäß [SGD Nord 2019\_2] wird deutlich, dass lediglich die Immissionsorte IO-01 bis IO-05, IO-08, IO-09, IO-11 und IO-12 dieser Zusatzbelastung ausgesetzt sind und daher einer Betrachtung der Vor- und Gesamtbelastung bedürfen.

Die Untersuchungsergebnisse zeigen, dass unter Berücksichtigung des 12-dB-Abschneidekriteriums für die Vorbelastung gemäß [SGD Nord 2018\_1] und [SGD Nord 2018\_2] kein Immissionsort einer Vorbelastung durch Windenergieanlagen ausgesetzt ist. Hinsichtlich einer gewerblichen Vorbelastung sind ausschließlich die Immissionsorte IO-08, IO-11 und IO-12 zu betrachten, an allen weiteren Immissionsorten stellt die Zusatzbelastung durch die geplanten Windenergieanlagen auch die Gesamtbelastung dar.

Der Immissionsort IO-08 grenzt am nördlichen Ortseingang der Gemeinde Lieg an ein Gewerbegebiet an, welches aktuell vollständig durch Flächen-PV-Anlagen genutzt wird; in der angrenzenden Schreinerei findet zur Nachtzeit kein schalltechnisch relevanter Betrieb statt. Nächtliche Schallimmission treten daher aktuell nicht auf. Da das Gewerbegebiet über keine planungsrechtliche Emissionsbegrenzung (Geräuschkontingentierung) verfügt, würde eine zukünftig schalltechnisch relevante Entwicklung des Gewerbegebietes entsprechende Nachweise zur Einhaltung der Anforderungen der [TA Lärm] erfordern. Eine konservative Abschätzung zur Vorbelastung (Überschreitung des Immissionsrichtwertes am nächstgelegenen Immissionsort um 1 dB) lässt jedoch schon jetzt ersichtlich werden, dass die Gesamtbelastung den Immissionsrichtwert am IO-08 um weiterhin mehr als 6 dB unterschreitet. Die Beurteilung anhand der Gesamtbelastung gemäß [TA Lärm] Ziffer 3.2.1 Abs. 3 verläuft somit positiv.

Eine vergleichbare Situation tritt an den Immissionsorten IO-11 und IO-12 im südlichen Bereich der Gemeinde Lieg auf. Das angrenzende Gewerbegebiet, maßgeblich durch (Flächen-)PV-Anlagen sowie eine Halle genutzt, führt im Bestand zu keiner schalltechnischen Vorbelastung. Da das Gewerbegebiet über keine planungsrechtliche Emissionsbegrenzung (Geräuschkontingentierung) verfügt, würde eine zukünftig schalltechnisch relevante Entwicklung des Gewerbegebietes entsprechende Nachweise zur Einhaltung der Anforderungen der [TA Lärm] erfordern. Eine konservative Abschätzung zur Vorbelastung (Überschreitung des Immissionsrichtwertes am nächstgelegenen Immissionsort um 1 dB) lässt jedoch schon jetzt ersichtlich

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



werden, dass die Gesamtbelastung den Immissionsrichtwert am IO-11 um 2 dB sowie am IO-12 um rund 3 dB unterschreitet. Die Beurteilung anhand der Gesamtbelastung gemäß [TA Lärm] Ziffer 3.2.1 Abs. 3 verläuft somit positiv.

Der Betrieb der geplanten fünf Windenergieanlagen vom Typ Vestas V126-3.3MW mit einer Nennleistung von 3.300 kW, einer Nabenhöhe von 149 m und einem Rotordurchmesser von 126 m ist somit im offenen Betriebsmodus Mode 0 zur Nachtzeit aus schalltechnischer Sicht realisierbar.

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



#### 8 Angaben zur Qualität der Prognose

Entsprechend den Vorgaben der [TA Lärm] ist bei einer Schallprognose eine Aussage zur Qualität der Prognose durch Abschätzung der Gesamtunsicherheit zu treffen.

Im vorliegenden Fall werden die Gesamtunsicherheit bzw. die Werte des oberen Vertrauensbereichs (Vertrauensniveau 90%) der Beurteilungspegel gemäß [LAI WEA Schall 2016] ermittelt. Der sog. Sicherheitszuschlags zur Ermittlung der oberen Vertrauensbereichsgrenze wird bereits emissionsseitig i. V. m. dem Schallleistungspegel berücksichtigt.

Die Ausbreitungsrechnungen der schalltechnischen Emissionen der Windenergieanlagen erfolgen nach dem [DIN ISO 9613-2 Interim] und berücksichtigen damit die aktuellen Vorgaben der [LAI WEA Schall 2016]. Im Rahmen eines konservativen Ansatzes erfolgen die Ausbreitungsrechnungen ohne abschirmende Wirkungen von Objekten oder Topografie jedoch unter Berücksichtigung von zwei Reflexionen.

Die Ausbreitungsrechnungen der weiteren schalltechnischen Emissionen erfolgen entsprechend den Vorgaben der [TA Lärm] entlang der [DIN ISO 9613-2].

Zur Ermittlung der gewerblichen Vorbelastung an den relevanten Immissionsorten wird die Schallleistung dieser Bereiche sukzessive erhöht, bis am jeweils maßgeblichen – i. d. R. dem nächstgelegenen Immissionsort – der Immissionsrichtwert ausgeschöpft bzw. um ein zuvor definiertes Maß überschritten wird. Gleichzeitig erfolgt auf Basis der ermittelten Schallleistung die Berechnung des Gewerbe-Immissionsanteils an den weiteren interessierenden Immissionsorten. Auf Basis der so definierten Schallleistung wird ein Maß für die Vorbelastung an den untersuchten Immissionsorten geliefert. Es handelt sich hierbei um eine Maximalabschätzung auf Basis des Zielwertes am Immissionsort. Die Qualität der Prognose bzgl. der gewerblichen Vorbelastung ist somit abschließend definiert. Die Angabe einer Prognoseunsicherheit zur zahlenmäßigen Abschätzung der Prognosequalität ist nicht erforderlich.

Textteil - Langfassung Gutachten-Nr.: 114 0614 18R-1 Seite 38 von 39

Schallimmissionsprognose WEA Lieg

Projekt:



Die Unterzeichner erstellten dieses Gutachten unabhängig und nach bestem Wissen und Gewissen.


Als Grundlage für die Feststellungen und Aussagen der Sachverständigen dienten die vorgelegten und im Gutachten zitierten Unterlagen sowie die Auskünfte der Beteiligten.

M.Eng. Justus Engelen

Projektleiter

Berichtserstellung und Auswertung

Dipl.-Ing. Matthias Brun Fachlich Verantwortlicher Prüfung und Freigabe



Schallimmissionsprognose WEA Lieg



## **Anhang**

### Verzeichnis des Anhangs

| Δ. | Anlage A der SGD Nord                           |
|----|-------------------------------------------------|
| 3  | Anlagen B der SGD Nord                          |
| С  | 3-fach-Vermessung Vestas V126-3.3MW Mode        |
| D  | 1-fach-Vermessung Nordex N131/3000 Mode 0       |
| E  | 3-fach-Vermessung Nordex N117/2400 2.400 kV     |
| F  | Immissionsorte                                  |
| G  | Übersichten B-Pläne, FNP, Gewerbegebiete        |
| н  | Tabellarisches Emissionskataster inkl. Spektren |
| I  | Grafisches Emissionskataster                    |
| J  | Dokumentation der Immissionsberechnung          |
| K  | Immissionspläne                                 |
| L  | Angaben zur VB (IO-01 bis IO-05)                |
| M  | Konformitätserklärung MAPANDGIS                 |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



# A Anlage A der SGD Nord

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg



#### VG Cochem-Zell

#### VG Cochem-Zell

Anlage A

Immissionsorte ( Nachweis Gebiets- und Flächenausweisungen )

| _    |                    |                                     |      |           |           |            |           |                                    | Eintragung in Abstirninung mi<br>Bautettplanungsbehörde | l der zusländigen                                                                       |
|------|--------------------|-------------------------------------|------|-----------|-----------|------------|-----------|------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| IP   | Ort                | Straße/Hausnummer                   | Flur | flurstück | Gemarkung | Rechtswert | Hochwert  | Immissions-<br>richtwert<br>nachts | Ausweisung nach BauNVO                                  | gemäß Bebauungsplan (B-Flan)<br>wenn nicht vorhanden gemäß<br>Flächennutzungsplan (FNP) |
| 01   | 56253 Treis-Karden | Gatteshäuserhof 2                   | 24   | 111/28    | Treis     | 380.870    | 5.557.387 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 02   | 56253 Treis-Karden | Gotteshäuserhof 1                   | 24   | 154/29    | Trels     | 380.883    | 5,557,305 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 03   | 56290 Lleg         | Auf dem Stich 2                     | 12   | 41 1      | Lieg      | 381.184    | 5.556.039 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 04 ; | 56290 Lieg         | Auf dem Stich 1                     | 12   | 38/2      | Lieg      | 381.130    | 5.555.974 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 05   | 56290 Lieg         | Auf dem Stich 4                     | 12   | 37        | Lieg      | 381.468    | 5.555.968 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 06   | 56290 Lieg         | Hauptstraße 2                       | 3    | 4/4       | Lieg      | 381.798    | 5.555.732 | 50                                 | G                                                       | FNP                                                                                     |
| 07   | 56290 Lieg         | Hauptstraße 4                       | 3    | 3/2       | Lieg      | 381.769    | 5.555.672 | 50                                 | G                                                       | FNP                                                                                     |
| 80   | 56290 Lieg         | Hauptstraße 1                       | 3    | 148/2     | Lieg      | 381.733    | 5.555.671 | 45                                 | M                                                       | FNP                                                                                     |
| 09   | 56290 Lieg         | Im Hiltchen 6                       | 8    | 29/1      | Lieg      | 381.572    | 5.555.532 | 45                                 | MD                                                      | Bolon "Nr. 1" 4, And.                                                                   |
| 10   | 56290 Licg         | in der Kaltem 1                     | 8    | 36        | Lieg      | 381.701    | 5.555.255 | 45                                 | MD                                                      | Splan "Nr. 1" 4, And.                                                                   |
| 11   | 56290 Lleg         | Hauptstraße 52                      | 3    | 93        | Lieg      | 381.754    | 5.555.229 | 45                                 | M                                                       | FNP                                                                                     |
| 12   | 56290 Lieg         | Schulstraße 7                       | 4    | 123/3     | Lieg      | 381.954    | 5 555.231 | 40                                 | WA                                                      | Eplah "Nr. 1" 4, And.                                                                   |
| 13   | 56253 Treis-Karden | Wochenendhaus                       | 25   | 1175/2    | Treis     | 378.377    | 5.554.597 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 14   | S6253 Treis-Karden | Beurenhof 2                         | 25   | 1218/1    | Treis     | 377.617    | 5.554.948 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 15   | 56253 Treis-Karden | Beurenkern                          | 25   | 1066/2    | Trels     | 377.811    | 5.556.620 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 16   | 5G253 Treis-Karden | Dünnbachstraße 5                    | 11   | 823/258   | Trels     | 378.473    | 5.558.278 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 17   | 56253 Treis-Karden | Bruttinger Straße 1                 | 6    | 151       | Treis     | 378.339    | 5.558.707 | 40                                 | WA                                                      | i FNP                                                                                   |
| 18   | 56829 Pammern      | Campingplatz                        | 21   | 17        | Pammern   | 378.059    | 5.558,963 | 40                                 | SO Campingplatz                                         | Bplan Campingplatz                                                                      |
| 19   | 56253 Treis-Karden | Seniorenresidenz<br>(Am Plenzer 18) | 5    | 7/5       | Treis     | 378.814    | 5.559.148 | 35                                 | Gemeinbedarfsfläche<br>Seniorenwohnheim                 | Bplan 10. Änd, Số ĐE                                                                    |
| 20   | 56253 Treis-Karden | Obere Welsbach Straße 1             | 4    | 19        | Treis     | 379.111    | 5.559.523 | 40                                 | WA                                                      | Bplan Lang Greth                                                                        |
| 21   | 56253 Trels-Karden | Hornhäuserhof 1                     | 17   | 40/1      | Treis     | 380,580    | 5.558.741 | 45                                 | Außenbereich                                            | Außenbereich                                                                            |
| 22   | 56290 Lütz         | Maximinstraße 12                    | 14   | 54/2      | Lütz      | 382.620    | 5.557.399 | 40                                 | WA                                                      | Bplan 2, And, Südl, OE                                                                  |

Det und Datum: Uplen jen, 3.9.2018

Errichtung von 6 Windenorgieenlagen vom Typ V126-3.3 MW 66280 Lieg

ent 26. Windpark GmbH & Co. KG, Johann-Krane-Weg 6, 48149 Münster

hat vorgelesen Verbandsgemeindeverwaltung
Coch em 15 09.18 Cochem

ntum, Unterschrift und Stempel der

Cochen, 05, 03, 20,15

Gutachten-Nr.: 114061418R-1

Schallimmissionsprognose WEA Lieg Projekt:

Anhang Seite 3 von 107



# Anlagen B der SGD Nord

Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmissionsprognose WEA Lieg



### LK Mayen-Koblenz

| -      | rücks            | sichtigende V         | orbelastun                            | g (LK Mayer        | n-Koble      | enz) / Na | acnibetrie    | nde Stand     | ortdat               | en und a          | ligemens Anleg        | onclass-           |                           |                    |                                               |                                         |             |
|--------|------------------|-----------------------|---------------------------------------|--------------------|--------------|-----------|---------------|---------------|----------------------|-------------------|-----------------------|--------------------|---------------------------|--------------------|-----------------------------------------------|-----------------------------------------|-------------|
| Yzess  | Varbandspemainde | Gemeintis             | Aniagernumer des Antragstellers       | Gemerkung          | Pur          | Fluratock | Rechtswert    | Hodtwert      | geod, Höhe (Turmfuß) | Aniagenhorateller | Anlagentyp            | Nebenhohe in Meter | Rotordurchmesser in Mater | Nermielstung in KW | Betrickowese LWA in dB (A) c'ine<br>Zuschläge | mpula- und Ton-haltgkeitszuschlag in dB | Bemerkungen |
| AVK    | Vorder           | reifel                | mar                                   |                    |              |           | 7.            | 1             |                      | 1                 | 0                     |                    |                           |                    |                                               |                                         |             |
|        | Rhein-           | Mosel 0               | 0                                     | 7 5                | ZUI          | 0         | De 1          | X             | 6                    | 1                 | ie.                   |                    |                           | -                  |                                               | -                                       |             |
|        |                  | /0                    | Contr.                                |                    |              |           |               |               |                      |                   |                       |                    | -                         | -                  |                                               | -                                       |             |
|        |                  | 15 5                  | Dere 4                                |                    |              |           |               | -             |                      |                   |                       |                    |                           | _                  |                                               |                                         |             |
| _      |                  | 201                   | D D D D D D D D D D D D D D D D D D D | zystandgen<br>Grde |              | il        | . /( Un       | terschrift An |                      | eller (Be         | treiber)              |                    | Orten                     |                    | yes, 3.                                       | 9 (                                     | 'C 18       |
| ADL 74 | ng Date          | consequences in Asses | manufacture ( be                      |                    | unating to 0 | ne Actual | and Schalleng | mogrenate to  | /0/10/0              | region und        | tri Lattedge, sir seu | reservan 1         | "                         |                    |                                               |                                         |             |
| Bea    | ntrag            | te Windener           | ieadlagen (                           | Zusatzbela         | stung)       |           |               | ·             |                      | ,                 |                       |                    | ,                         | 7                  | 445.6                                         | 1 0                                     | ſ           |
|        | CL               | Lieg                  | 7373 WEA                              | 01 Lieg            | 1 12         | .,        |               |               |                      |                   | V126-3.3MW            | 149                | 126                       | 3300               |                                               | 10                                      |             |
| 135    | CL               | Lleg                  | 374 WEA                               |                    | 11           |           | 1 0000000     | 5.556.165     |                      |                   |                       | 149                | 126                       | -                  |                                               | 0                                       |             |
| 138    | CL               | Lieg                  | 375 WEA                               |                    | 11           | 1         |               | 5.656.005     |                      |                   |                       | 149                | 126                       | 3300               |                                               | 10                                      |             |
| 135    | CL               | Lieg                  | 376 WEA                               |                    |              | 1         | 379.775       | 5.555.715     |                      |                   |                       | 149                |                           | 3300               |                                               | 10                                      |             |
|        | CL               | Lleg                  | 377 WEA                               | 05 Lieg            | 1 5          |           | 3 380.256     | 5.555.526     | 252                  | Vestas            | V126-3.3MW            | 149                | 126                       | 3300               | 105,2                                         | 1                                       |             |
| Vor    | haben:           |                       | Errichtung<br>56290 Lleg              | von 5 Windens      | ergieanla    | gen vom   | Typ Vestas    | V126-3.3 M    | w                    |                   |                       |                    |                           |                    |                                               |                                         |             |
| Ort:   | narkun           | M.                    | Lleg                                  |                    |              |           |               |               |                      |                   |                       |                    |                           |                    |                                               |                                         |             |

Projekt:

Gutachten-Nr.: 114 0614 18R-1
Projekt: Schallimmissionsprognose WEA Lieg



#### **Justus Engelen**

Elke Knopf-Wellstein <ekn@windworkspower.com>

Gesendet:

Mittwoch, 24. April 2019 14:30 Justus Engelen

Betreff:

WG: Windpark Lieger Wald - Anlage B

Von: Heß, Margret (KVMYK) [mailto:Margret.Hess@kvmyk.de]

Gesendet: Mittwoch, 27. Februar 2019 08:21

An: 'Elke Knopf-Wellstein' < ekn@windworkspower.com>

Betreff: AW: Windpark Lieger Wald - Anlage B

Sehr geehrte Frau Knopf-Wellstein,

bisher wurden hier in dem relevanten Bereich keine Anträge zur Errichtung von Windenergieanlagen gestellt. Somit behält die Bestätigung der Anlage B vom September 2018 weiterhin ihre Gültigkeit.

Mit freundlichen Grüßen

Margret Heß Bauleitplanung Windenergie / Solarkataster

Kreisverwaltung Mayen-Koblenz -Abteilung Umwelt und Bauen-Bahnhofstraße 9 56068 Koblenz

Tel: 0261 - 108 430 Fax: 0261 - 1088 430 Mail: margret.hess@kvmyk.de

Besuchen Sie uns im Internet unter www.mayen-koblenz.de

oder auf unserer Facebook-Seite unter

https://www.facebook.com/update\_security\_info.php?wizard=1#!/pages/Kreisverwaltung-Mayen-

Koblenz/247955072024052?fref=ts

Von: Elke Knopf-Wellstein [mailto:ekn@windworkspower.com]

Gesendet: Dienstag, 26. Februar 2019 17:16 An: Heß, Margret (KVMYK)

Betreff: Windpark Lieger Wald - Anlage B

Sehr geehrte Frau Heß.

wie soeben telefonisch besprochen, möchte ich Sie im Rahmen der erneuten Einreichung von Unterlagen zu unserem o.g. Projekt bei der SGD Nord bitten, mir die Aktualität der anhängenden und von Ihnen mit Datum vom 03.09.2018 unterzeichneten Anlage B zur Vorbelastung im LK Mayen-Koblenz zu bestätigen.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 6 von 107



Für Rückfragen stehe ich gern zur Verfügung. Mit freundlichen Grüßen,

# WINDWORKS POWER

Elke Knopf-Wellstein

Wind Works Development GmbH

Büro Uplengen/Wacholderstr. 6/26670 Uplengen

Tel: +49 (4956) 912003 Mobil: +49 173 / 90 58 113 Mail: ekn@windworkspower.com Web: www.windworkspower.com Amtsgericht Duisburg HRB 22704 Geschäftsführer: Dr. Ingo Stuckmann



Die Wind Works Development GmbH ist klimaneutral Wir haben vom Zero Emission Product e. V. die Zertifizierung als CO<sub>2</sub> freies Unternehmen erhalten Weitere Informationen unter www.ZeroEmissionFroduct de

Diese E-Mail und mögliche Anhänge enthalten vertrauliche Informationen, die rechtlich besonders geschützt sein können. Wenn Sie nicht der beabsichtigte Empfänger bzw. Adressat dieser E-Mail sind und diese E-Mail etwa aufgrund eines technischen Fahlers oder eines Versehens erhalten haben, informatenen Sie uns bitte sofort und Loschen Sie anschließend die E-Mail. Das unbefügte Kopieren dieser E-Mail, etwaiger Anhänge sowie die unbefügte Weitergabe der enthaltenen Enformationen an Oritte ist

this e-mail message is confidential and is intended solely for the recipient(s) listed in the header. If you are not the intended recipient and have received this e-mail in error please notify the sender immediately and destroy this e-mail.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 7 von 107



#### LK Cochem-Zell

|       |                 | sichtigende V |                                |                   |           |               |            | orde Stand    | iorida               | en und a       | iligemeine Anta   | gendale            | 1                         |                     |                                               |                                             | Anlage<br>Stand 05-20 |
|-------|-----------------|---------------|--------------------------------|-------------------|-----------|---------------|------------|---------------|----------------------|----------------|-------------------|--------------------|---------------------------|---------------------|-----------------------------------------------|---------------------------------------------|-----------------------|
| Kreis | Verburdsgemenne | Gemberse      | Anlagemummet des Antagolitiers | Gemanume          | FA        | Florenck      | Rechtswert | Homen         | peed Hohe (Turnluft) | Anapamatiteler | Arlagenty         | Nabernohe in Reter | Roterdurchmesser in Weier | Naturalisting in KW | Ramahsvanter LWA in dB (A) ratne<br>Zuszträge | pus. unt Ton haitokestzeschlag in dB<br>(A) | Benerkungen           |
| OC    |                 |               |                                |                   | +         |               |            |               |                      |                |                   |                    |                           |                     |                                               | (4)                                         |                       |
| -     |                 |               |                                | +                 | +         |               |            |               |                      |                |                   |                    |                           |                     |                                               |                                             |                       |
|       | oelegen<br>05.2 | 0 10          |                                | randigun          |           | i.[           | 11.        | terschrift An | racett               | aller (Ret     | raher)            |                    | Ortuna                    |                     | yer, 3.                                       | 9 20                                        | 18                    |
|       | u. Die v        |               | V: V                           | e 4 street was an | alog in d | en Schall- ur |            |               | _                    |                | m Lagopian žu von |                    |                           | Datu                |                                               |                                             |                       |
| 3ea   | ntrag           | te Winden     | ieanlagen (Z                   | satzbelas         | tung )    |               |            |               |                      |                |                   |                    |                           |                     |                                               |                                             |                       |
| 135   | CL              | Lieg          | 313 WEAU1                      | Lieg              | 12        |               |            |               |                      |                | V126-3.3MW        |                    |                           | 3300                |                                               | 0                                           |                       |
| 135   | CL              | Lieg          | 374 WEA02                      | Lieg              | 11        |               |            |               |                      |                | V126-3.3MW        | 149                |                           | 3300                |                                               | 0                                           |                       |
| 135   | CL              | Lieg          | 375 WEA03                      | Lieg              | 11        |               |            |               |                      |                | V126-3.3MW        | 149                | *******                   | 3300                |                                               | . 0                                         |                       |
|       | CL              | Liea          | 376 WEA04                      |                   | 9         | 2             | 379.775    | 5.555.715     | 283                  | Vestas         | V126-3.3MW        | 149                |                           | 3300                | 105,2                                         | 0                                           |                       |
| 135   |                 | Lico          | 377 WEA05                      | Lieg              | 9         | 3             | 380.256    | 5.555.526     | 252                  | Vestas         | V126-3.3MW        | 149                | 126                       | 3300                | 105.2                                         | : 0                                         |                       |
| 135   | CL              | Lieg          |                                |                   |           |               |            |               |                      |                |                   |                    |                           | *********           |                                               | 4                                           |                       |

InvestInvent 26. Windpark GmbH & Co. KG, Johann-Krane-Weg 6, 48149 Münster

Gutachten-Nr.: I14 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



#### Justus Engelen

Knieper Marco <marco.knieper@cochem-zell de> Von:

Gesendet: Mittwoch, 27. Februar 2019 08:32

'Elke Knopf-Wellstein' An: 'Thomas Keller' Cc:

AW: Änderungsantrag BIM-CL 0199/2016-1 nach § 16 BImSchG zum Betreff:

zusätzlichen Nachtbetrieb von 5 WKA in der Gemarkung Lieg; hier: zu berücksichtigende Vorbelastung LK Cochem-Zell - Anlage B

Sehr geehrte Frau Knopf-Wellstein

zu der Anlage El vom 26.09 2018 haben sich bis heute keine Änderungen ergeben, so dass diese noch aktuell ist

Mit freundlichen Grüßen Im Auftrag

Marco Knieper

Kreisverwaltung Cochem-Zell Bau- und Umweltrecht Endertplatz 2 56812 Cochem

Telefon: 0 26 71 /61-403 Telefax: 0 26 71 /61-5411 marco.knieper@cochem-zell.de www.cochem-zell.de

Von: Elke Knopf-Wellstein [mailto:ekn@windworkspower.com] Gesendet: Dienstag, 26. Februar 2019 17:18

An: Knieper Marco

Betreff: Änderungsantrag BIM-CL 0199/2016-1 nach § 16 BImSchG zum zusätzlichen Nachtbetrieb von 5 WKA in der

Gemarkung Lieg; hier: zu berücksichtigende Vorbelastung LK Cochem-Zell - Anlage B

Sehr geehrter Herr Knieper,

wie soeben telefonisch besprochen, möchte ich Sie im Rahmen der erneuten Einreichung von Unterlagen zu unserem o.g. Änderungsantrag bitten, mir die Aktualität der anhängenden und von Ihnen mit Datum vom 26.09.2018 unterzeichneten Anlage B zur Vorbelastung im LK Cochem-Zell zu bestätigen.

Für Rückfragen stehe ich gern zur Verfügung. Mit freundlichen Grüßen,

#### WINDWORKS POWER

Elke Knopf-Wellstein

Wind Works Development GmbH

Büro Uplengen/Wacholderstr. 6/26670 Uplengen

Tel: +49 (4956) 912003 Mobil: +49 173 / 90 58 113 Mail: ekn@windworkspower.com Web: www.windworkspower.com

Anhang Gutachten-Nr.: 114 0614 18R-1 Seite 9 von 107 Schallimmissionsprognose WEA Lieg Projekt:



Amtsgericht Duisburg HRB 22704 Geschäftsführer: Dr. Ingo Stuckmann



Die Wind Works Development GmbH ist Idimaneutral. Wir haben vom Zero Emission Product e. V. die Zertifizierung als CO<sub>2</sub>-freies Unternehmen erhalten. Weitere Informationen unter: www.ZeroEmissionFroduct.de

Diese E-Mail und mogliche Anhänge enthalten vertrauliche Informationen, die rechtlich besonders geschützt sein konnen. Wenn Sie nicht der beabsichtigte Empfänger bzw. Adressat dieser E-Mail sind und diese E-Mail etwa aufgrund eines technischen Fehlers oder eines Versehens erhalten haben, informieren Sie uns bitte sofort und löschen Sie anschließend die E-Mail. Das unbefügte Kopieren dieser E-Mail, etwaiger Anhänge sowie die unbefügte Meitergabe der enthaltenen Informationen an Dritte ist nicht gestattet.

This memail message is confidential and is intended solely for the recipient(s) listed in the header. If you are not the intended recipient and have received this e-mail in error please notify the sender immediately and destroy this e-mail.

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 10 von 107



#### Rhein-Hunsrück-Kreis

#### Rhein-Hunsrück-Kreis

|               |                  | ksichtigende \       |                 |                                      |                      |       |            |                  |                        | orida                 | lyn und a         | (lger-eine An'ao           | enceton            |                           |                   |                                               |                                            | Anlage E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|------------------|----------------------|-----------------|--------------------------------------|----------------------|-------|------------|------------------|------------------------|-----------------------|-------------------|----------------------------|--------------------|---------------------------|-------------------|-----------------------------------------------|--------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Area          | Verbandegamende  | Остенен              | Aniagentumenter | Anlagentomment des<br>Antrogstellers | Gernarkeng           | Plut  | Phenni     | Restained        | Hechanic               | gent, Hitto (Turnius) | Arthgentemteter   | Ardagentyp                 | Nabeshake is Melec | Reterbindens mer as Meter | Newsletting in KW | fletretunency LVA in 48 (A)<br>pres Zucchiego | ompath-und<br>Tenhaligkakauschlagin dB (A) | Opnierkungen |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RH            | Kast.            | Zilshausen           |                 | RH 369                               | Zisheusen            | 6     | 37/1       | 385 523          | 5 551 202              | 1A                    | Norder            | 34-117                     | 140.5              | 117                       | 2400              | 105.0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Ziishausen           |                 | RH 370                               | Zilshausen           | 6     | 17/1       | 265 428          | 5 561 623              | KA.                   | Norder            | 74-117                     | 142.6              | 117                       | 2500              | 105,0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | 2ilshausen           |                 | RH 371                               | Zäheusen             | 7     | 77/1       | 385528           | 5 552 075              | KA                    |                   | PI-117                     | 140.6              | 117                       | 2400              | 105,0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Sabershausen         | -               | RH 374                               | Sebershearen         | 6     |            | 368.597          | 5 553 519              | kA                    |                   | E-115                      | 140.1              | 115                       | 3000              | 106.0                                         | 0                                          |              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Sabershausen<br>Lahr | -               | RH 3/4                               | Seberateusen<br>Late | 3     | 25/1       | 388 981          | 5 552 826              | KA.                   | Enertte<br>Nardar | E-115<br>PI-131            | 149.1              | 115                       | 3300              | 106.0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Beithelm             | 1               | RH 75                                | Boltom               | 3     | 45/2       | 389 257          | 5 552 243              | NA.                   | Vestas            | N-131                      | 63                 | 131                       | 3000              | 104.5                                         | 0                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Kast.            | Beltheim             |                 | RH 76                                | Boltom               | 3     | 52         | 300 415          |                        | kA.                   | Enucus            | E-82                       | 130.4              | 92                        | 2190              | 100.4<br>103.4                                | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Kast.            | Belthem              | 1               | RH 77                                | Belleam              | 2     | 17         | 380 000          | 5 552 785              | kA                    | Engrose           | 6-62                       | 128.4              | 82                        | 2100              | 103.4                                         | 0                                          |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Kast.            | Beltheim             |                 | RH 78                                | Battheim             | Ť     | 30/3       | 356 626          | 5 552 950              | RA.                   | Energe            | 6-82                       | 138.4              | 82                        | 2330              | 103.4                                         | 0                                          |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Beitheim             |                 | RH 75                                | Belthaim             | 1     | 300        | 330 604          | 5 553 146              | AA                    | Energy            | E-92                       | 128,4              | 12                        | 2300              | 103.4                                         | 0                                          |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Beltheim             |                 | WEAT                                 | Beltein              | 3     | 46/5+497   | 389 128          | 5 652 303              | LA.                   | Enercan           | E-92                       | 95                 | 15                        | 2300              | 104.5                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Uhler                | -               | RH 133                               | Ubler                | 1     | ě          | 386 922          | 5 550 257              | A.f                   | Vestes            | V90-2006                   | 105                | 10                        | 2003              | 100.4                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Uhler                |                 | RH 124                               | Uhler                | 1     | 0          | 385 227          | 5 550 007              | kA.                   | Vestes            | V93-2010                   | 105                | 10                        | 2000              | 103,4                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Uhler                | -               | RH 135                               | Libler               | 17    | 1          | 205 256          | 5 549 780              | EA.                   | Vestes            | V90-2000                   | 105                | 90                        | 2000              | 100,4                                         | 0                                          |              | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Mörsdorf             |                 | RH 355                               | Minded               | 35    | 4          | 379490           | 5 553 326              | A.A.                  | Norder            | N-117-2400                 | 140.0              | 110.6                     | 2400              | 105.0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Mörsdorf             |                 | RH 354                               | Marsded              | 2     | 232        | 379 995          | 5 553 247              | AA.                   | Norden            | N-117-2400                 | 140,6              | 116.6                     | 2400              | 105.0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Mörsdorf             | -               | RH 357                               | Maraded              | 35    | 20         | 280 919          | 5 552 826              | k.A.                  | Hordes            | N-117-2400                 | 140,5              | 116.E                     | 2400              | 105.0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Mörsdorf             |                 | R= 151                               | Maradorf             | 30    | 12         | 250 324          | 6 552 644              | hA.                   | Nordex            | N-117-2400                 | 140,6              | 116.0                     | 2400              | 105.0                                         | 0                                          |              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RH            | Kast.            | Mörsdorf<br>Mörsdorf | 1               | RH 359                               | Marsdorf<br>Marsdorf | 34    | 1          | 379 855          | 6 652 256              | k,A,                  | Norder            | N-117-2400                 | 140,5              | 116.8                     | 2400              | 195.9                                         | 0                                          |              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Kast.            | Marsdorf             | ·               | RH 301                               | Window               | 34    | 5          | 389297<br>269683 | 5 552 091<br>5 552 122 | W.                    | Norde             | N-117-2400                 | 140.6              | 116.8                     | 2400              | 165.0                                         | 0                                          | -            | 77 50 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Kast.            | Märsdori             | -               | RH 302                               | Mandari              | 30    | 31         | 360712           | 5 551 403              | U.                    | Nordor            | N-117-2400<br>N-117-2400   | 140,6              | 116.E                     | 2400              | 101.0                                         | 0                                          |              | 27.62.2645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | Kast.            | Mörsdorf             | -               | FH 202                               | Mandari              | 17    | 32         | 263194           | 5 550 939              | U.                    | Nandos            | N-117-2430 /               | 140.6              | 116.0                     | 2400              | 105.0                                         | 0                                          | Krol         | Warwatting .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | Kast.            | Mörsdorf             |                 | RH 364                               | Mandorf              | 21    | 47         | 362.761          | 5 550 429              | KA.                   | Nordes            | 11-117-2420                | 142,6              | 116.5                     | 2400              | 103.0                                         | 0                                          | Non Tile     | The state of the s |
|               | Kast.            | Mörsdorf             | -               | RHASE                                | Maritan              | 20    |            | 202148           | 5 549 725              | KA.                   | Number            | 14-117-2400                | 142.6              | 115.9                     | 2400              | 101.0                                         | 0                                          | des Rhein-   | Hunsrück-Kroikee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 257<br>Ostore | etipen<br>Dig va | 20/ Employer         | pimen           | non der Sythie<br>ensabsthiede       | 2 Rhein-<br>5546     | H     | Simi       | ck-Kre           | terschrift An          | raga                  | A ster (Bot       | (Tell)                     |                    | Ortuno                    |                   | 1.1.1                                         |                                            | 5548         | Simmon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |                  | e Windenergie        |                 |                                      |                      |       |            | A many opening   | AND ACTOR              | a-910                 | and finds         | deben to askessy           | g.en:              | _                         |                   | 1 1                                           |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 135           |                  | Lleg                 |                 |                                      | Lieo                 | 12    |            | 200 001          | E 656 465              | 200                   | ro:               |                            |                    |                           |                   |                                               |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 135           |                  | Lieg                 |                 |                                      | Lieg                 | 11    | 7          |                  | 5 556 450<br>5 556 165 |                       |                   | V126-3,3MW/<br>V126-3,3MW/ | 149                | 126                       | 3300              | 105.2                                         | 0                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 135           |                  | Liog                 |                 |                                      | Lieg                 | 11    |            |                  | 5 556 005              |                       |                   | V125-3,3MW                 | 149                |                           | 3300              | 105.2                                         | 0                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 135           |                  | Llog                 |                 |                                      | Lieg                 | 9     |            |                  | 5 555 715              |                       |                   | V126-3,3MW                 | 149                |                           | 3300              | 105.2                                         | 0                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 135           |                  | Llag                 |                 |                                      | Lleg                 | 9     | 3          | 380 256          | 5 555 526              | 252                   | Vestas            | V126-3,3MW                 | 149                |                           | 3300              | 105.2                                         |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vorha<br>Ort: |                  |                      | 56290           |                                      | Windenerglea         | nlage | n vom Ty   |                  |                        |                       |                   |                            |                    |                           |                   |                                               |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | rkung:           |                      | Lieg            |                                      |                      |       |            |                  |                        |                       |                   |                            |                    |                           |                   |                                               |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antra         | gstelle          | r.                   | investi         | nven! 26. V                          | Windpark Gmb         | HEC   | Co. KG, Je | ohann-Kran       | e-Weg 6, 41            | 149                   | Münster           |                            |                    |                           |                   |                                               |                                            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



# C 3-fach-Vermessung Vestas V126-3.3MW Mode 0

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg



DNV·GL

BESTIMMUNG DER SCHALLLEISTUNGSPEGEL EINER WEA DES TYPS VESTAS V126-3.3MW IEC3A 50HZ (MODE 0) AUS MEHREREN EINZELMESSUNGEN FÜR DIE NABENHÖHEN 137 M **UND 149 M ÜBER GRUND** 

# Ergebniszusammenfassung aus mehreren Einzelmessungen

Vestas Wind Systems A/S

Berichtsnummer: GLGH-4286 15 13417 293-A-0001-A

Berichtsdatum: 2015-09-15



705 0054-5161 Ver 00 - Approved - Exported from DMS: 2015-09-17 by BERIE



### 5.2 Vestas V126-3.3 MW, Mode 0, $H_n = 149 \text{ m}$

### Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen für eine Nabenhöhe von 149 m

Auf der Basis von mindestens drei Messungen nach der /FGW18/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /FGW18/ Anhang D anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

| Hedeager 42 | 2                                                                                             | Anlagenbezeichnung<br>Nennleistung<br>Rotordurchmesser                                                                                                                                                               | Vestas V126-3.3MW IEC3A<br>3300 kW<br>126 m                                                                                                     |
|-------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                               | Messung-Nr                                                                                                                                                                                                           |                                                                                                                                                 |
| Winerg      | V201503<br>Østerild (DK)<br>116 m<br>GH-D<br>36 14 12099 29:<br>2014-11-24<br>ly 3.3MW / PZAE | 3 3530,1                                                                                                                                                                                                             | 2 V203838 Kaufbeuren (D) 137 m Windtest Grevenbroich GmbH SE1403388 2015-02-25 Winergy 3.3MW / PZAB 3530,1 Vestas, SFIG VND 3.5MW IG Vestas 62M |
|             | 2                                                                                             | Messung-Nr.                                                                                                                                                                                                          |                                                                                                                                                 |
| Winerg      | 137 m<br>est Grevenbroich<br>SE15022B2<br>2015-08-03<br>y 3.3MW / PZAE<br>s, SFIG VND 3.5     | 3530,1                                                                                                                                                                                                               | n<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                            |
|             | GLGH-42i Winerg Vestas IG                                                                     | Østerild (DK)  116 m GH-D GLGH-4286 14 12099 29: 2014-11-24 Winergy 3.3MW / PZAE Vestas IG, Asynchr. with Vestas 62M  3 V203839 Kaufbeuren (D) 137 m Windtest Grevenbroich SE15022B2 2015-08-03 Winergy 3.3MW / PZAE | Nennleistung                                                                                                                                    |

| <b>Leistungskurve:</b> vom Hersteller berechnet<br><b>Messzeitraum:</b> - / - |       |           |            |             |        |
|-------------------------------------------------------------------------------|-------|-----------|------------|-------------|--------|
| Schallleistungspegel L <sub>WA,k</sub> [dB]                                   |       |           |            |             |        |
| Messung                                                                       |       | Windgesch | windigkeit | in 10 m Höh | e      |
| ricosung                                                                      | 6 m/s | 7 m/s     | 8 m/s      | 9 m/s       | 10 m/s |
| 1                                                                             | 104,7 | 105,4     | 104,7      | 104,6       | 104,7  |
| 2                                                                             | 104,3 | 105,1     | 104,7      | 104,5       | 104,8  |
| 3                                                                             | 104,5 | 105,2     | 104,4      | 104,4       | 105,0  |
| Mittelwert $\overline{L}_{\parallel}$ [dB(A)]                                 | 104,5 | 105,2     | 104,6      | 104,5       | 104,8  |
| Standard-Abweichung] s [dB]                                                   | 0,2   | 0,2       | 0,2        | 0,1         | 0,2    |
| K nach /2/ =0,5 dB /3/ [dB]                                                   | 1,0   | 1,0       | 1,0        | 1,0         | 1,0    |

Bei einer 149 m hohen Anlage beträgt die der 95%-igen Nennleistung (3135 kW) entsprechende Windgeschwindigkeit 6,7 m/s.

DNV GL - Bericht GLGH-4286 15 13417 293-A-0001-A - www.dnvgl.com

Seite 9/11

VESTAS PROPRIETARY NOTICE

T05 0054-5161 Ver 00 - Approved - Exported from DMS; 2015-09-17 by BERIE

# Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen für eine Nabenhöhe von 149 m

|         |     |      |     | Windges | hwindig | keit in 10 | m Höhe |      |    |      |
|---------|-----|------|-----|---------|---------|------------|--------|------|----|------|
| Messung | 6 1 | m/s  | 7 1 | m/s     | 8       | m/s        | 9 1    | m/s  | 10 | m/s  |
| 1       | 0   | - Hz | 0   | - Hz    | 0       | - Hz       | 0      | - Hz | 0  | - H2 |
| 2       | 0   | - Hz | 0   | - Hz    | 0       | - Hz       | 0      | - Hz | 0  | - H2 |

| Messung         6 m/s         7 m/s         8 m/s         9 m/s         10 a           1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </th <th></th> <th></th> <th>Windges</th> <th>chwindigkeit in 10</th> <th>m Höhe</th> <th></th> |         |       | Windges | chwindigkeit in 10 | m Höhe |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------|--------------------|--------|--------|
| 1 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Messung | 6 m/s | 7 m/s   | 8 m/s              | 9 m/s  | 10 m/s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       | 0     | 0       | 0                  | 0      | 0      |
| 2 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2       | 0     | 0       | 0                  | 0      | 0      |

Aufgrund der baulichen Änderungen für WEA unterschiedlicher Nabenhöhen kann das akustische Verhalten in Bezug auf die Ton- und Impulshaltigkeit nicht durch Umrechnung bestimmt werden. Es treten jedoch im Allgemeinen keine erheblichen Änderungen auf. Die gemachten Angaben zur Ton- und Impulshaltigkeit sind den o. g. Prüfberichten entnommen.

| Terz-Schal          |      | gspegel<br>3 Messu |      | eferenzp | unkt $v_{10}$ | = 7 m/s | in dB |      |      |      |      |       |
|---------------------|------|--------------------|------|----------|---------------|---------|-------|------|------|------|------|-------|
| Frequenz            | 50   | 63                 | 80   | 100      | 125           | 160     | 200   | 250  | 315  | 400  | 500  | 630   |
| Lwa.max             | 79,0 | 82,2               | 84,7 | 86,6     | 89,3          | 88,8    | 90,5  | 93,1 | 94,0 | 93,7 | 95,5 | 95,3  |
| Frequenz            | 800  | 1000               | 1250 | 1600     | 2000          | 2500    | 3150  | 4000 | 5000 | 6300 | 8000 | 10000 |
| L <sub>WA,max</sub> | 95,7 | 95,2               | 94,9 | 93,4     | 91,7          | 89,6    | 87,3  | 84,6 | 78,7 | 73,2 | 68,7 | 65,6  |

| Oktav-Sch |      |     | eferenzp | unkt V <sub>10</sub> | = 7 m/s | in dB |      |
|-----------|------|-----|----------|----------------------|---------|-------|------|
| 1 4 nex   | <br> |     |          | 1.0                  |         |       |      |
| Frequenz  | 125  | 250 | 500      | 1                    |         |       | 8000 |

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Seite 10/11

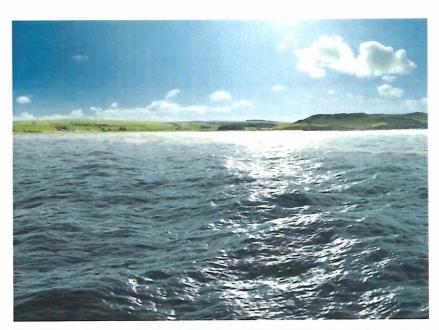
DNV GL - Bericht GLGH-4286 15 13417 293-A-0001-A - www.dnvgl.com

VESTAS PROPRIETARY NOTICE

T05 0054-5161 Ver 00 - Approved - Exported from DMS: 2015-09-17 by BERIE



DNV-GL


SCHALLEMISSIONSMESSUNG AN EINER WEA DES TYPS V126-3.3MW IEC3A 50HZ IM BETRIEBSMODUS MODE 0

# **Schallemissionsgutachten** gemäß FGW TR 1, Rev. 18

Vestas Wind Systems A/S

Berichtsnummer: GLGH-4286 14 12099 293-A-0001-C

Berichtsdatum: 2014-11-24



T05 0048-5950 Ver 00 - Approved - Exported from DMS: 2014-12-08 by BERIE

#### **4 ABWEICHUNGEN**

Die folgenden Daten wurden aus der Anlagensteuerung ausgekoppelt: Leistung, Drehzahl, Pitch und Gondelanemometerwindgeschwindigkeit.

#### **5 ZUSAMMENFASSUNG UND BEWERTUNG**

Im Auftrag der Vestas Wind Systems A/S, wurde von der GL Garrad Hassan Deutschland GmbH die Geräuschabstrahlung der WEA des Typs V126-3.3MW IEC3A 50Hz mit einer Nabenhöhe von H = 116 m in der Nähe von Østerild (DK) nach [FGW18] untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallteistungspegels ist die [FGW18]. Grundlage für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA ist die [IEC 61400-11 Ed. 2.1] bzw. für die Bewertung von Impulshaltigkeiten die [DIN 45645 T1]. Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt nicht vor, daher wurde vom WEA-Hersteller eine berechnete Leistungskurve zur Verfügung gestellt (s. Anhang).

Die Messungen ergeben für die V126-3.3MW IEC3A 50Hz die in Tabelle 5-1 dargestellten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich.

Tabelle 5-1: Zusammenfassung der Messergebnisse

| WG V <sub>10m</sub> [m/s]                                              | 6     | 7     | 8     | 9     | 10    | WG <sub>95%</sub> *) |
|------------------------------------------------------------------------|-------|-------|-------|-------|-------|----------------------|
| Theoretische elektrische Wirkleistung<br>aus der Leistungskurve P [kW] | 2266  | 3161  | 3299  | 3300  | 3300  | 3135                 |
| Gemessene Rotordrehzahl n [min-1]                                      | 12,4  | 12,7  | 12,9  | 12,9  | 12,9  | 12,7                 |
| Schallleistungspegel L <sub>WA,k</sub> [dB]                            | 104,2 | 105,4 | 104,9 | 104,5 | 104,7 | 105,4                |
| Kombinierte Gesamtmessunsicherheit<br>Uc [dB]                          | 1,0   | 0,7   | 0,7   | 0,7   | 0,7   | -                    |
| Impulshaltigkeitszuschlag KIN [dB]                                     | 0     | 0     | 0     | 0     | 0     | -                    |
| Tonhaltigkeitszuschlag KTN [dB]                                        | 0     | 0     | 0     | 0     | 0     | -                    |

<sup>\*)</sup> Hinweis: die der 95 %-igen Auslegungsnennleistung entsprechende Windgeschwindigkeit beträgt 6,94 m/s.

Einzelereignisse, die den momentanen Wert des Schallleistungspegels um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtcharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Im vorliegenden Fall wurden durch den Gutachter subjektiv weder impulshaltige noch tonale Auffälligkeiten festgestellt. Das abgestrahlte Geräusch der Anlage entspricht subjektiv dem typischen Geräusch einer Anlage dieses Leistungssteuerungstyps und weist keine weiteren Auffälligkeiten auf.

Es wird versichert, dass das Gutachten unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

DNV GL - Bericht GLGH-4286 14 12099 293-A-0001-C - www.dnvgl.com

Seite 14

VESTAS PROPRIETARY NOTICE







Schalltechnisches Gutachten gemäß FGW TR 1 zur Windenergieanlage Vestas V126-3.3MW Ser.-Nr.: 203838 mit aerodynamischer Modifizierung, am Standort Kaufbeuren / Deutschland

- Betriebsmodus 0 -

Messung 2014-12-11/12 und 2014-12-17 Vollständiger Bericht 2015-02-25

#### SE14033B8

Frimmersdorfer Str. 73a D-41517 Grevenbroich - Phone +49 (0) 2181 2278-0 - Fax +49 (0) 2181 2278-11 - info@windtest-nrw.de - www.windtest-nrw.de

Milletin i Managing Director: Dol-Geol: Monika Kriemer - Handelsregister/Commercia Register Antisgericht Monchengistbach HISB 7756 NAT No. Dit 1308579 - Steiner-Millard D. 1457760301 Anderpenfahrandeut Spanissen Evens SIE 23 05 05 00. Km. Nr. 800 272 04 - (BAN DE - 7436660600000077204 - B.C. WELA DE DN



VISIGAS PROPERTIANT MODICS: This document contains solubility confidencial information of Visida Wisions A/S. It is protected by coopinght law as at shouldness of visida receives and extend protection and the second protection

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 18 von 107





windtest grevenbroich gmbh

Seite 22 von 48

#### 4.3 Abschätzung der Gesamtmessunsicherheit Uc

Aus der berechneten Messunsicherheit des Typs A und den abgeschätzten Messunsicherheiten des Typ B ergibt sich nach [2] die kombinierte Gesamtmessunsicherheit Uc

$$U_{c} = \sqrt{U_{4.8}^{2} + U_{B1}^{2} + U_{B2}^{2} + U_{B3}^{2} + U_{B3}^{2} + U_{B4}^{2} + U_{B5}^{2} + U_{B6}^{2} + U_{B7}^{2} + U_{B8}^{2}}$$

Die ermittelten Gesamtmessunsicherheiten Uc sind in Tab. 11 dargestellt:

Tab. 11: Gesamtmessunsicherheit Uc für den Schallleistungspegel

| Stand. Windgeschwindigkeit                 | BIN 5 | BIN 6 | BIN 7 | BIN 8 | BIN 9 | BIN 10 | BIN 11 |
|--------------------------------------------|-------|-------|-------|-------|-------|--------|--------|
| Gesamtmessunsicherheit U <sub>c</sub> [dB] | 0,7   | 0,8   | 0,8   | 8,0   | 0,7   | 0,7    | 0,7    |

#### 4.4 Messunsicherheiten für Tonhaltigkeiten

Bei der Tonhaltigkeit ist  $U_A$  für jeden Einzelton der Fehler des Mittelwertes aus den maximalen Tonpegeln. Der Wert von U<sub>B3</sub> kann mit 1,7 dB abgeschätzt werden. Da es sich bei dem angegebenen Wert  $\Delta L_{a,k}$  um eine Differenz handelt und des Weiteren die Windgeschwindigkeit hier von zweitrangiger Bedeutung ist, können die Werte von  $U_{B1}$ ,  $U_{B4}$  und  $U_{B6}$  geringer angenommen werden als beim Schallleistungspegel  $L_{WA}$ . Die Ergebnisse der kombinierten Gesamtmessunsicherheit Uc für Tonhaltigkeiten bei ganzzahligen Windgeschwindigkeitswerten ist in Tab. 12 dargelegt:

Tab. 12: Gesamtmessunsicherheit Uc für Tonhaltigkeiten

| Stand. Windgeschwindigkeit                                                                        | BIN 5 | BIN 6  | BIN 7  | BIN 8              | BIN 9   | BIN 10 |
|---------------------------------------------------------------------------------------------------|-------|--------|--------|--------------------|---------|--------|
| Gesamtmessunsicherheit U <sub>c</sub><br>[dB] für tonale Auffälligkeit<br>bei 3.800 Hz - 4.200 Hz | 2,43  | 8,061) | 7,821) | 8,39 <sup>1)</sup> | 11,291) | 9,991) |

1) Hohe Unsicherheit, da nicht in jedem Spektrum ein Ton ermittelt wurde

#### 4.5 Messunsicherheiten für Terzspektren

Bei der Betrachtung von Terzbändern gibt U<sub>A</sub> die Abweichung zum jeweiligen Frequenzbandmittelungspegels in jedem Frequenzband an, welches aus der Standardabweichung mit dem Nenner  $\sqrt{N-1}$  berechnet wurde, wobei N die Anzahl der gemessenen Spektren ist. Der Wert für  $U_{\text{B3}}$  muss hier im Vergleich zur Messunsicherheitsbetrachtung des Schallleistungspegels  $L_{\text{WA}}$ größer eingeschätzt werden und liegt typischerweise bei 1,7 dB. Die Gesamtunsicherheiten Uc für die Frequenzbandmittelungspegel der Terzspektren sind in den Tabellen im Anhang 3 dargestellt.

VESTAS PROPRIETARY NOTICE

T05 0050-5047 Ver 00 - Approved - Exported from DMS: 2015-03-18 by ALROB

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 19 von 107





### Schalltechnisches Gutachten gemäß FGW TR 1 zur Windenergieanlage Vestas V126-3.3MW Ser.-Nr.: 203839 am Standort Kaufbeuren / Deutschland

- Betriebsmodus 0 (3300 kW) -

Messung 2015-06-18 Vollständiger Bericht 2015-08-03

#### SE15022B2

Frimmersdorfer Str. 73a D-41517 Grevenbroich - Phone ~49 (0) 2181 2278-0 - Fax +49 (0) 2181 2278-11 - info@windtest-nnw.de - www.windtest-nnw.de Geschalbsuhrenn i Managang Director: Dipti-Goot, Monka Kissmer - Hancelsregister/Commercial Register: Amfagericht Monchengledwach Hr88 7758
USL-46th/ANT No. DE 1938/9075 - Shiven-Ne/Tax-40, 1146/77/0001
Benhverbindungen/Bankaccount Spankasse Neuris (BLZ 305 300 00, Kts. Alt 800 272 04, IBAN DE: 7430560000000027204, IBIC WELA DE DN

T05 0053-7789 Ver 00 - Approved - Exported from DMS; 2015-09-09 by BERIE

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 20 von 107





windtest grevenbroich gmbh

Seite 19 von 41

### 4.3 Abschätzung der Gesamtmessunsicherheit U<sub>c</sub>

Aus der berechneten Messunsicherheit des Typs A und den abgeschätzten Messunsicherheiten des Typ B ergibt sich nach [2] die kombinierte Gesamtmessunsicherheit  $U_c$ :

$$U_{c} = \sqrt{U_{A,s}^{2} + U_{B1}^{2} + U_{B2}^{2} + U_{B3}^{2} + U_{B4}^{2} + U_{B5}^{2} + U_{B6}^{2} + U_{B7}^{2} + U_{B8}^{2}}$$

Die ermittelten Gesamtmessunsicherheiten Uc sind in Tab. 8 dargestellt:

Tab. 8: Gesamtmessunsicherheit Uc für den Schallleistungspegel

| Stand. Windgeschwindigkeit                 | BIN 5 | BIN 6 | BIN 7 | BIN 8 | BIN 9 | BIN 10 |
|--------------------------------------------|-------|-------|-------|-------|-------|--------|
| Gesamtmessunsicherheit U <sub>c</sub> [dB] | 0,7   | 0,7   | 0,7   | 0,7   | 0,7   | 0,7    |

### 4.4 Messunsicherheiten für Tonhaltigkeiten

Bei der Tonhaltigkeit ist UA für jeden Einzelton der Fehler des Mittelwertes aus den maximalen Tonpegeln. Der Wert von  $U_{B3}$  kann mit 1,7 dB abgeschätzt werden. Da es sich bei dem angegebenen Wert  $\Delta L_{a,k}$  um eine Differenz handelt und des Weiteren die Windgeschwindigkeit hier von zweitrangiger Bedeutung ist, können die Werte von UB1, UB4 und UB6 geringer angenommen werden als beim Schallleistungspegel LwA.

Da keine tonale Komponente gemäß Verfahren nach [1] bzw. [2] ermittelt werden konnte, wird an dieser Stelle auf eine Ausweisung von Unsicherheiten verzichtet.

### 4.5 Messunsicherheiten für Terzspektren

Bei der Betrachtung von Terzbändern gibt  $U_A$  die Abweichung zum jeweiligen Frequenzbandmittelungspegels in jedem Frequenzband an, welches aus der Standardabweichung mit dem Nenner  $\sqrt{N-1}$  berechnet wurde, wobei N die Anzahl der gemessenen Spektren ist. Der Wert für  $U_{B3}$  muss hier im Vergleich zur Messunsicherheitsbetrachtung des Schallleistungspegels  $L_{WA}$ größer eingeschätzt werden und liegt typischerweise bei 1,7 dB. Die Gesamtunsicherheiten  $U_{\rm C}$  für die Frequenzbandmittelungspegel der Terzspektren sind in den Tabellen im Anhang 3 darge-

0053-7789 Ver 00 - Approved - Exported from DMS; 2015-09-09 by BERIE

VESTAS PROPRIETARY NOTICE

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg





Wind Works Development GmbH Mühlenstraße 51 45473 Mülheim an der Ruhr

Osnabrück, 08. März 2017 / STKBG

Bestätigungsschreiben Ergebnisszusammenfassung aus mehreren Einzelmessungen inkl. Serration Trailing Edges

Sehr geehrte Damen und Herren,

hiermit bestätigen wir dass sich die Einzelmessungen in dem Dokument "0054\_5161" (Ergebniszusammenfassung aus mehreren Einzelmessungen des DNV GL mit Berichtsnummer: GLGH-4286 15 13417 293-A-0001-A / Berichtsdatum: 2015-09-15) auf Schallvermessungen mit Sägezahn Hinterkante (sogenannte Serration Trailing Edges) basiert.

Mit freundlichen Grüßen Vestas Deutschland GmbH

i.A. Stephan Kollenberg Sales Coordinator

Sales Engineers / Vestas Central Europe

Vestas Deutschland GmbH, Niederlassung Osnabrück Eduard-Pestel-Str.2, 49080 Osnabrück Dir. +49 541 335 3258 , stkbg@vestas.com

Vestas Deutschland GmbH

Otto-Hahn-Straße 2.4, 25813 Husum. Deutschland Tel +49 4841 971 0, Fax: +49 4841 971 0, Fax: +49 4841 971 360, vestas-centraleurope@vestas.com, www.vestas.com Bank: COMMERZBANK FRANKFURT (vormals DRESDNER BANK), BLZ: 500 800 00, SWIFT: DRESDEFF, Konto Nr. (EUR): 980 814 000, IBAN (EUR): DE96 5008 0000 0980 8140 00 - Bank: NORDEA, FRANKFURT AM MAIN, BLZ: 514 303 00, SWIFT: NDEADEFF, Konto Nr. (EUR): 212 571 0001, IBAN (EUR): DE99 5143 3000 2125 7100 01 Handelsregister: Flensburg B-463. Umsatzsteueridentifikationsnummer: DE 134 657 783, Steueridentifikationsnummer: 1 529 211 237 Geschaftsführer: Cornelis de Baar, Nils Backhaus Eingetr. Firmenname: Vestas Deutschland GmbH

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 22 von 107



# D 1-fach-Vermessung Nordex N131/3000 Mode 0

Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 23 von 107





Auszug aus dem Prüfbericht SE16014B2 zur Schallemissionsmessung gemäß FGW TR 1 an der Nordex Windenergieanlage des Typs N131/3000 Ser.-Nr.: 84099 am Standort Hollich

- Betriebsmodus (Mode 0) -

Messung 2016-04-06 Auszug aus dem Prüfbericht 2016-06-16

#### SE16014B2A1

Frimmersdorfer Str 73e D-41517 Grevenbroich - Phone +49 (0) 2181 2278-0 - Fax +49 (0) 2181 2278-11 - info@windtest-nrw.de - www.windtest-nrw.de

Geschaltslutrenn / Managing Drector: Dipt -Geol. Monka Kramer - Handelsregister/Commercial Register Antisiger dit Monchengladbach HRB 7758 USL-slow/NAT No. Dib 19895079 - Steuse-Nat Tak-10, 145-277/0001 Service-Managing Political Politi



Projekt:

Gutachten-Nr.: 114 0614 18R-1

Schallimmissionsprognose WEA Lieg

Anhang Seite 24 von 107





### Auszug aus dem Prüfbericht SE16014B2 zur Schallemissionsmessung gemäß FGW TR 1 an der Nordex Windenergieanlage des Typs N131/3000 Ser.-Nr.: 84099 am Standort Hollich

- Betriebsmodus (Mode 0) -

|                                      | SE                                          | 16014B      | 2A1        |        |                                     |
|--------------------------------------|---------------------------------------------|-------------|------------|--------|-------------------------------------|
| Standort bzw. Messort:               | Hollich, WEA                                | 38, Ser.    | -Nr. 84099 |        |                                     |
| Auftraggeber:                        | Nordex Ener<br>Langenhorne<br>D-22419 Har   | r Chauss    |            |        |                                     |
| Auftragnehmer:                       | windtest grev<br>Frimmersdor<br>D-41517 Gre | fer Str. 7  | 3a         |        |                                     |
| Datum der<br>Auftragserteilung:      | 2016-02-16 Auftrags                         |             | Auftragsn  | ummer: | 15 0113 06                          |
| Prüfer:                              | E                                           | Bearbeiter: |            |        | earbeiter:                          |
| DiplIng. David Rode<br>Gruppenleiter | B.Eng                                       | g Pawel     | Nicpon     |        | ebastian Schmitter<br>Projektleiter |
| evenbroich, 2016-06-16               |                                             |             |            |        |                                     |

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der windtest grevenbroich gmbh vervielfältigt werden. Er umfasst insgesamt 5 Seiten.

L NSe-nasiSE-NAS\_DISEISE16014\_Hollich(21\_Bench(ISE16014B241\_WEA38\_Mode0ISE16014B2A1\_Hollich\_N131\_WEA38\_Mode0\_FGWTR1\_rev1\_scan doc

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 25 von 107



Sachverständige für Immissionsschutz



windlest grevenbroich gmbh

Seite 3 von 5

### Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte" Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e.V.)

| Allgemeine Angaben                             |                           | Technische Daten (Herstelleran                           | gaben)             |  |  |
|------------------------------------------------|---------------------------|----------------------------------------------------------|--------------------|--|--|
| Anlagenhersteller:                             | Nordex Energy GmbH        | Nennleistung:                                            | 3000 kW            |  |  |
|                                                | Langenhorner Chaussee 600 | Rotordurchmesser:                                        | 131 m              |  |  |
|                                                | D-22419 Hamburg           | Nabenhöhe über Grund:                                    | 134 m              |  |  |
| Seriennummer:                                  | 84099                     | Turmbauart:                                              | Stahl/Beton Hybrid |  |  |
| WEA-Standort:                                  | Hollich                   | Leistungsregelung:                                       | Pitch              |  |  |
| Ergänzende Daten zum Rotor (Herstellerangaben) |                           | Erg. Daten zu Getriebe und Generator (Herstellerangaben) |                    |  |  |
| Rotorblatthersteller:                          | Carbon Rotec              | Getriebehersteller:                                      | Eickhoff           |  |  |
| Typenbezeichnung Blatt:                        | NR65.5-1                  | Typenbezeichnung Getriebe:                               | EBN 3080 A12 R00A  |  |  |
| Zusatzkomponenten:                             | Vortex-Generatoren        | Generatorhersteller:                                     | Elin               |  |  |
| Blatteinstellwinkel:                           | Variabel                  | Typenbezeichnung Generator:                              | MRM063Z06          |  |  |
| Rotorblattanzahl:                              | 3                         | Generatordrehzahlbereich:                                | 740 - 1300 U/min   |  |  |
| Rotornenndrehzahl:                             | 10.3 U/min                |                                                          |                    |  |  |

|                                                     | F                                                                 | Referenzpunkt                                                                                                          |      |                     |        |                                      |  |
|-----------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|---------------------|--------|--------------------------------------|--|
|                                                     | Standardisierte<br>Windgeschwindig-<br>keit in 10 m Höhe<br>[m/s] | Windgeschwindig- keit in 10 m Höhe [m/s]  Elektrische Wirkleistung [kW]  Elektrische Generator- drehzahl [U/min]  [dB] |      | Bemerkungen         |        |                                      |  |
|                                                     | 5                                                                 | 1569                                                                                                                   | 1100 | 1                   | 01.6   |                                      |  |
| Schallleistungspegel                                | 6                                                                 | 2503                                                                                                                   | 1140 | 1                   | 03.4   |                                      |  |
|                                                     | 71),2)                                                            | 2955                                                                                                                   | 1150 | 103,5 <sup>3)</sup> |        |                                      |  |
| L <sub>WA</sub>                                     | 8                                                                 | 3000                                                                                                                   | 1164 |                     |        |                                      |  |
|                                                     | 9                                                                 | 3000                                                                                                                   | 1164 | 103.53)             |        | 1) OF R/ Namela street               |  |
| Tonzuschlag für                                     | 5                                                                 | 1569                                                                                                                   | 1100 | 0 dB                | bei Hz | 1) 95 % Nennleistung<br>bei 6.63 m/s |  |
| 7. C. S. 20. S. | 6                                                                 | 2503                                                                                                                   | 1140 | 0 dB                | bei Hz | 2) Lwa.85% = 103.6 dB                |  |
| den Nahbereich                                      | 711                                                               | 2955                                                                                                                   | 1150 | 0 dB                | bei Hz | 3) Keine ausreichende                |  |
| K <sub>TN</sub>                                     | 8                                                                 | 3000                                                                                                                   | 1164 | 0 dB                | bei Hz | Datengrundlage im<br>Gesamtgeräusch  |  |
|                                                     | 9                                                                 | 3000                                                                                                                   | 1164 | 0 dB <sup>3)</sup>  | bei Hz | Gesamigerausch                       |  |
|                                                     | 5                                                                 | 1569                                                                                                                   | 1100 | 0 dB                |        | 1                                    |  |
| Impulszuschlag                                      | 6                                                                 | 2503                                                                                                                   | 1140 | 0 dB<br>0 dB        |        | 1                                    |  |
| für den Nahbereich                                  | 71)                                                               | 2955                                                                                                                   | 1150 |                     |        | 1                                    |  |
| K <sub>IN</sub>                                     | 8                                                                 | 3000                                                                                                                   | 1164 | 1                   | 0 dB   | 1                                    |  |
| - 4/4                                               | 9                                                                 | 3000                                                                                                                   | 1164 |                     | 0 dB   | 1                                    |  |

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 26 von 107





windtest grevenbroich gmb

Seite 4 von 5

SE16014B2A1

| windtest grev                      | 0.10.01011                     | 9     |          |        |           | Jene             | 7 7011 0           |               |         |       |       | JE 10014 | 02/11  |                   |
|------------------------------------|--------------------------------|-------|----------|--------|-----------|------------------|--------------------|---------------|---------|-------|-------|----------|--------|-------------------|
|                                    |                                |       |          | Schall | leistuna  | spegel b         | ei den n           | euen Na       | benhöhe | en    |       |          |        |                   |
| Standardisie                       |                                |       | ndigkeit | 5      | - Intuity | 6                |                    | 7             |         | 8     |       | 9        | 1      | /95 <sup>4)</sup> |
| in 1                               | 0 m Höh                        |       | _        |        |           | U                |                    |               |         |       | _     | 5        | +      |                   |
|                                    | L <sub>WA</sub> [dB<br>NH = 99 |       |          | 100    | .9        | 103,2            | 2                  | 103.6         |         | 103,3 |       | 103.4    | 10     | 3,5 <sup>5)</sup> |
|                                    | LwA [dB                        |       |          | 101    | .3        | 103.3            |                    | 103.5         |         | 103.3 |       | 103.4    | 10     | 3,5               |
|                                    | NH = 114<br>Lwa [dB            |       |          |        | -         |                  | -                  |               | -       |       | -     |          | -      |                   |
|                                    | NH = 144                       |       |          | 101    | .8        | 103,5            |                    | 103.5         |         | 103.3 |       | 103,5    | 10     | 3,5 <sup>7)</sup> |
|                                    |                                |       |          |        |           | В                | IN 58)             |               |         |       |       |          |        |                   |
|                                    |                                |       |          |        |           | rz-Schall        |                    |               |         |       |       |          |        |                   |
| Frequenz/Hz                        | 20                             | 25    | 31.5     | 40     | 50        | 63               | 80                 | 100           | 125     | 160   | 200   | 250      | 315    | 400               |
| L <sub>WA</sub> /dB                | 60,78                          | 65,87 | 70.40    | 74.53  | 80,09     | 80,27            | 83.41              | 85,18         | 85,73   | 88.02 | 90.72 | 92,27    | 93.20  | 93.9              |
| Frequenz/Hz                        | 500                            | 630   | 800      | 1000   | 1250      | 1600             | 2000               | 2500          | 3150    | 4000  | 5000  | 6300     | 8000   | 1000              |
| L <sub>WA</sub> /dB                | 93,25                          | 93,54 | 92,83    | 91,94  | 91,72     | 91.61            | 88.75              | 86.94         | 83.74   | 85.19 | 86,59 | 77,73    | 62,31  | 58,9              |
| Francisco VIII                     | 31.5                           |       | 63       | 12     |           | av-Scha<br>250   | _                  | gspegei<br>00 | 1000    | 1 2   | 000   | 4000     |        | 8000              |
| Frequenz/Hz                        | 76.3                           |       |          | 91.2   |           | 96.95            | _                  | .37           |         |       |       |          | _      |                   |
| L <sub>WA</sub> /dB                | 76,3                           | 5     | 86,31    | 91,2   | 26        |                  |                    | ,3/           | 96,96   | 9     | 4,30  | 90.10    |        | 77,91             |
|                                    |                                |       |          |        |           |                  | IN 6 <sup>8)</sup> |               |         |       |       |          |        |                   |
|                                    |                                |       |          |        |           | rz-Schall        |                    |               |         |       |       |          |        | 1                 |
| Frequenz/Hz                        | 20                             | 25    | 31,5     | 40     | 50        | 63               | 80                 | 100           | 125     | 160   | 200   | 250      | 315    | 400               |
| L <sub>WA</sub> /dB                | 60,65                          | 65,45 | 70,23    | 74,11  | 78,10     | 80.92            | 82,87              | 86,51         | 86.34   | 87,63 | 89.14 | 90,87    | 92.63  | 92.90             |
| Frequenz/Hz                        | 500                            | 630   | 800      | 1000   | 1250      | 1600             | 2000               | 2500          | 3150    | 4000  | 5000  | 6300     | 8000   | 1000              |
| L <sub>WA</sub> /dB                | 92.79                          | 94,07 | 92,82    | 93,27  | 92,39     | 91.80<br>av-Scha | 89.18              | 86,36         | 83,95   | 85,23 | 86,56 | 80,90    | 69.93  | 62,9              |
| Frequenz/Hz                        | 31.5                           |       | 63       | 12     |           | 250              |                    | 00            | 1000    | 7 2   | 000   | 4000     |        | 8000              |
|                                    |                                |       |          | +      |           |                  | -                  | -             |         | -     |       |          | -      |                   |
| L <sub>WA</sub> /dB                | 76.0                           | 0     | 85.82    | 91.6   | 04        | 95,88            | 98                 | .07           | 97,61   | 9     | 4,43  | 90.15    |        | 81,30             |
|                                    |                                |       |          |        |           |                  | BIN 7              |               |         |       |       |          |        |                   |
| Frequenz/Hz                        | 20                             | 25    | 31.5     | 40     | 50<br>50  | rz-Schall<br>63  | leistung<br>80     | 100           | 125     | 160   | 200   | 250      | 315    | 400               |
| L <sub>WA</sub> /dB                | 60,53                          | 65,24 | 70.38    | 74.13  | 77.57     | 80.99            | 83.12              | 86,37         | 86.42   | 87.94 | 89.49 | 91,24    | 92.97  | 93.26             |
| Frequenz/Hz                        | 500                            | 630   | 800      | 1000   | 1250      | 1600             | 2000               | 2500          | 3150    | 4000  | 5000  | 6300     | 8000   | 1000              |
| L <sub>WA</sub> /dB                | 93,01                          | 94,25 | 92.90    | 93.18  | 92.57     | 92.76            | 89.41              | 86.44         | 83.18   | 80.67 | 79.53 | 74.05    | 65.38  | 62.30             |
| -117/                              |                                |       | 1        |        |           | av-Scha          |                    |               | 20110   |       |       |          | 100,00 | 00.00             |
| Frequenz/Hz                        | 31.5                           | 5     | 63       | 12     |           | 250              | _                  | 00            | 1000    | 2     | 000   | 4000     |        | 8000              |
| L <sub>WA</sub> /dB                | 76.0                           | 4     | 85,89    | 91.    | 74        | 96,24            | 98                 | .31           | 97.66   | 9     | 5.06  | 86.17    |        | 74.86             |
|                                    |                                |       |          |        |           |                  | BIN 8              |               |         |       |       |          |        |                   |
|                                    |                                |       |          |        | Te        | rz-Schall        |                    | snegel        |         |       |       |          |        |                   |
| Frequenz/Hz                        | 20                             | 25    | 31.5     | 40     | 50        | 63               | 80                 | 100           | 125     | 160   | 200   | 250      | 315    | 400               |
| L <sub>WA</sub> /dB                | 60,96                          | 65,67 | 70.43    | 73,84  | 76,83     | 80.53            | 82.69              | 86,51         | 85,52   | 86.23 | 88,07 | 89.28    | 91.24  | 92.0              |
| Frequenz/Hz                        | 500                            | 630   | 800      | 1000   | 1250      | 1600             | 2000               | 2500          | 3150    | 4000  | 5000  | 6300     | 8000   | 1000              |
| L <sub>WA</sub> /dB                | 92,34                          | 93,84 | 93,00    | 93,72  | 93,25     | 93.24            | 90,68              | 88,39         | 85,19   | 82,69 | 82,40 | 76,52    | 73,56  | 71.04             |
|                                    |                                |       |          |        |           | av-Scha          |                    |               |         |       |       |          |        |                   |
| Frequenz/Hz                        | 31.5                           |       | 63       | 12     | -         | 250              | _                  | 00            | 1000    | _     | 000   | 4000     | -      | 8000              |
| L <sub>WA</sub> /dB                | 75.9                           | 1     | 85.40    | 90.    | 88        | 94,50            | 97                 | .60           | 98.11   | 9     | 5,98  | 88.39    |        | 79.05             |
|                                    |                                |       |          |        |           |                  | IN 9 <sup>3)</sup> |               |         |       |       |          |        |                   |
|                                    |                                |       |          |        |           | rz-Schall        |                    |               |         |       |       |          |        |                   |
| Frequenz/Hz                        | 20                             | 25    | 31.5     | 40     | 50        | 63               | 80                 | 100           | 125     | 160   | 200   | 250      | 315    | 400               |
| L <sub>WA</sub> /dB                | 60,41                          | 65,16 | 69,5     | 73,17  | 77,23     | 80,70            | 83.26              | 85,93         | 86.12   | 88,27 | 89,95 | 90,78    | 92,61  | 92.92             |
| Frequenz/Hz                        | 500                            | 630   | 800      | 1000   | 1250      | 1600             | 2000               | 2500          | 3150    | 4000  | 5000  | 6300     | 8000   | 1000              |
| L <sub>WA</sub> /dB                | 92,99                          | 94.25 | 93.07    | 93,42  | 92.70     | 92.34            | 89.95              | 87.55         | 84.29   | 80.73 | 80,09 | 73,26    | 65.72  | 60.2              |
|                                    |                                |       |          | 1      |           | av-Scha          |                    |               |         |       |       |          | -      | 200               |
|                                    | 31.5                           |       | 63       | 12     | 5         | 250              | 5                  | 00            | 1000    | 2     | 000   | 4000     | 1      | 8000              |
| Frequenz/Hz<br>L <sub>WA</sub> /dB | 75.1                           | -     | 85,82    | 91.6   | -         | 96,03            | -                  | .20           | 97.85   | -     | 5,15  | 86.89    | -      | 74,14             |

www.windlest-nr

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



Sachverständige für Immissionsschutz



windlest grevenbroich gmbh

Seite 5 von 5

SE16014B2A1

| Ergebnisse der Messung                                    | im tieffrequenten | Bereich gemäß DIN | 45680 (gemessen    | an der Referenzpo | sition)10) |
|-----------------------------------------------------------|-------------------|-------------------|--------------------|-------------------|------------|
| Standardisierte Windgeschwindigkeit<br>in 10 m Höhe [m/s] | 5                 | 6                 | 7                  | 8                 | 9          |
| Maximalpegel                                              | 25,6              | 26,5 <sup>9</sup> | 26,5 <sup>9)</sup> | 25,9              | 26.2       |

#### Bemerkungen:

- 1) 95 % Nennleistung bei 6.63 m/s
- 2) LWA 95% = 103.6 dB
- 3) Keine ausreichende Datengrundlage im Gesamtgeräusch
- Der Schallleistungspegel (L<sub>WA</sub>) bei 95% Nennleistung andert sich definitionsgemaß nicht für andere Nabenhöhen, es verschiebt sich lediglich die Windgeschwindigkeit in 10 m Höhe, bei der 95% Nennleistung erreicht werden.
- 5) 95% Nennleistung werden erreicht bei 6.89 m/s
- 6) 95% Nennleistung werden erreicht bei 6.77 m/s
- 7) 95% Nennleistung werden erreicht bei 6,57 m/s
- Im Frequenzbereich von 3,15 bis 5 kHz sind Störgeräusche aus dem Fremdgeräusch wahrzunehmen, daher sind die Pegel in diesem Bereich erh\u00f6ht. Es konnten keine Zeilabschnitte gefunden werden in dem das St\u00f6rger\u00e4usch nicht aufgetreten ist.
   H\u00f6chster gemessener Pegel (gemessen an der Referenzposition 225 m) au\u00dferhalb eines Wohnhauses
- Der Grenzwert für den Wohn-, Innenbereich aus der DIN 45680-Beiblatt-1 von 25 dB für die Nachtstunden, wird bereits ab einer Entfermung von 267.5 m außerhalb des Wohnraumes eingehalten bzw. unterschritten.

Dieser Auszug aus dem Prüfbencht gilt nur in Verbindung mit der Herstellerbescheinigung von 2016-06-02 Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Gemessen durch:

windtest grevenbroich gmbh

Frimmersdorfer Str. 73a D-41517 Grevenbroich

Datum:

2016-06-16

B.Sc. Sebastian Schmitter Projektleiter

B.Eng. Pawel Nicpon





Auszug aus dem Prüfbericht SE16014B2 zur Schallemission gemäß FGW TR 1 an der Nordex WEA des Typs N131/3000 Ser.-Nr.: 84099 am Standort Hollich

E0004056690 Rev. 0 / 2017-05-19

#### Freigabeblatt:

Titel des Dokuments:

Auszug aus dem Prüfbericht SE16014B2 zur Schallemission gemäß FGW TR 1 an der Nordex WEA des Typs N131/3000 Ser.-Nr.: 84099 am Standort Hollich

Dokumentennummer: E0004056690

Revision:

Sprache: DE

Abteilung: Engineering/TAP Prüfer/Datum: Pannwitt Patrick,

Pannwitt Patrick: 2017-05-19

Vertraulichkeit: Nordex confidential

Status: RELEASED Freigeber/Datum: Resing-

Woermer Helmut: 2017-05-19

Führende AST: 9189

Externe SE16014B2A1

Dokumentennummer:

Externe

Quelle:

Dokumentenversion:

**Externes** 16.06.2016

Ausgabedatum:

EXPERT / windtest grevenbroich

Diese Freigabeseite bezieht sich auf das Dokument Auszug aus dem Prüfbericht SE16014B2 zur Schallemission gemäß FGW TR 1 an der Nordex WEA des Typs N131/3000 Ser.-Nr.: 84099 am Standort Hollich, Rev. 0/2017-05-19 mit 5 Seiten.

Das Dokument wurde elektronisch erstellt und freigegeben.

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 29 von 107



# 3-fach-Vermessung Nordex N117/2400 2.400 kW

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg



WIND-consult



#### Prüfbericht

WICO 074SE513/11

### Zusammenfassung mehrerer Schallleistungspegels einer Windenergieanlage (WEA) des Typs Nordex N117/2400

nach

FGW TR1, Rev. 18 /1/ und IEC 61400-14 /3/

Bargeshagen, 18.11.2014

ilac-usa ( DAkks

Gutachten-Nr.: 114 0614 18R-1

Schallimmissionsprognose WEA Lieg

Anhang Seite 31 von 107





18.11.2014; 074SE513/11; Dieser Bericht umfasst 31 Seiten inkl. der Anlagen!

| Aufgabenstellung    | Zusammenfassung mehrerer Schallleistungspegel der WEA     |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------|--|--|--|--|--|--|--|
|                     | Nordex N117/2400 für die Nabenhöhen 91 m, 120 m und 141 m |  |  |  |  |  |  |  |
|                     |                                                           |  |  |  |  |  |  |  |
| Mess-/ Prüfobjekt   | Nordex N117/2400                                          |  |  |  |  |  |  |  |
|                     |                                                           |  |  |  |  |  |  |  |
| Auftraggeber        | Nordex Energy GmbH                                        |  |  |  |  |  |  |  |
|                     | Langenhorner Chaussee 600                                 |  |  |  |  |  |  |  |
|                     | D-22419 Hamburg                                           |  |  |  |  |  |  |  |
|                     |                                                           |  |  |  |  |  |  |  |
| Auftragserteilung / | 06.05.2013/                                               |  |  |  |  |  |  |  |
| -bestätigung        | 13.05.2013                                                |  |  |  |  |  |  |  |
|                     |                                                           |  |  |  |  |  |  |  |
| Auftragnehmer       | WIND-consult GmbH                                         |  |  |  |  |  |  |  |
|                     | Reuterstraße 9                                            |  |  |  |  |  |  |  |
|                     | D-18211 Bargeshagen                                       |  |  |  |  |  |  |  |
|                     | Tel. +49 (0) 38203-507 25                                 |  |  |  |  |  |  |  |
|                     | Fax +49 (0) 38203-507 23                                  |  |  |  |  |  |  |  |

Prüfung Bearbeitung Freigabe

C. Hoffmann M.Eng.

L. Schroedter M. Sc.

Dipl.-Ing. J. Schwabe

Der Prüfbericht wurde elektronisch unterschrieben



Bargeshagen, 18.11.2014

Dieser Prüfbericht darf nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Mess- bzw. Prüfobjekt.

WIND-consult GmbH

Seite 2 von 31

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 32 von 107





18.11.2014; 074SE513/11; Dieser Bericht umfasst 31 Seiten inkl. der Anlagen!

#### Inhalt

| 1     | Aufgabenstellung                                                      | 4  |
|-------|-----------------------------------------------------------------------|----|
| 2     | Umrechnung des Schallleistungspegels auf andere Nabenhöhen - Methode  | 5  |
| 3     | Ergebniszusammenfassung aus mehreren Einzelmessungen - Methode        | 7  |
| 4     | Ergebnisse                                                            | 8  |
| 4.1   | Umrechnung der Schallleistungspegel auf andere Nabenhöhen - WEA 82382 | 8  |
| 4.2   | Umrechnung der Schallleistungspegel auf andere Nabenhöhen - WEA 82100 | 9  |
| 4.3   | Umrechnung der Schallleistungspegel auf andere Nabenhöhen - WEA 82881 | 10 |
| 4.4   | Tonhaltigkeit                                                         | 11 |
| 4.5   | Impulshaltigkeit                                                      | 13 |
| 4.6   | Terz- und Oktav-Schallleistungspegel                                  | 15 |
| 4.6.1 | Terz- und Oktav-Schallleistungspegel - WEA 82382                      | 15 |
| 4.6.2 | Terz- und Oktav-Schallleistungspegel - WEA 82100                      | 16 |
| 4.6.3 | Terz- und Oktav-Schallleistungspegel - WEA 82881                      | 17 |
| 4.7   | Ergebniszusammenfassung aus mehreren Einzelmessungen                  | 18 |
| 5     | Verzeichnis der verwendeten Formelzeichen und Abkürzungen             | 19 |
| 6     | Tabellenverzeichnis                                                   | 20 |
| 7     | Verzeichnis der verwendeten Literatur                                 | 21 |
| Anla  | ne 1 - Datenblätter der Ergebniszusammenfassung                       | 22 |

WIND-consult GmbH

Seite 3 von 31

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 33 von 107





18.11.2014; 074SE513/11; Dieser Bericht umfasst 31 Seiten inkl. der Anlagen!

#### 1 Aufgabenstellung

Die WIND-consult GmbH wurde durch die Nordex Energy GmbH beauftragt, mehrere Schallleistungspegel der Windenergieanlage (WEA) N117/2400 auf Basis von vorliegenden akustischen Vermessungen zu einem Ergebnis zusammenzufassen. Die Zusammenfassung erfolgt für die Nabenhöhen  $h_N = 91$  m,  $h_N = 120$  m und  $h_N = 141$  m gemäß FGW TR1 Revision 18 /1/.

Die Ergebniszusammenfassung erfolgt auf Basis von drei Prüfberichten für jede geforderte Nabenhöhe (siehe Tabelle 1.1 bis Tabelle 1.3).

Tabelle 1.1: Bezugsquelle Ergebniszusammenfassung h<sub>N</sub> = 91 m

| Prüfbericht                     |     | WEA<br>Seriennummer | Datum des<br>Prüfberichts | Messinstitut          |
|---------------------------------|-----|---------------------|---------------------------|-----------------------|
| WICO 074SE513/03                | 141 | 82382               | 22.08.2013                | WIND-consult GmbH     |
| GLGH-4286 12 08939 258-S-0002-B | /5/ | 82100               | 22.10.2013                | GL Garrad Hassan GmbH |
| R0153/005-01-Rev1               | /8/ | 82881               | 09.09.2014                | Wölfel GmbH + Co. KG  |

Tabelle 1.2: Bezugsquelle Ergebniszusammenfassung  $h_N$  = 120 m

| Prüfbericht                     |     | WEA<br>Seriennummer | Datum des<br>Prüfberichts | Messinstitut          |
|---------------------------------|-----|---------------------|---------------------------|-----------------------|
| WICO 074SE513/03                | 141 | 82382               | 22.08.2013                | WIND-consult GmbH     |
| GLGH-4286 12 08939 258-S-0003-B | /6/ | 82100               | 22.10.2013                | GL Garrad Hassan GmbH |
| R0153/005-01-Rev1               | /8/ | 82881               | 09.09.2014                | Wölfel GmbH + Co. KG  |

Bezugsquelle Ergebniszusammenfassung  $h_N$  = 141 m Tabelle 1.3:

| Prüfbericht                     |     | WEA<br>Seriennummer | Datum des<br>Prüfberichts | Messinstitut          |
|---------------------------------|-----|---------------------|---------------------------|-----------------------|
| WICO 074SE513/03                | /4/ | 82382               | 22.08.2013                | WIND-consult GmbH     |
| GLGH-4286 12 08939 258-S-0004-B | 171 | 82100               | 22.10.2013                | GL Garrad Hassan GmbH |
| R0153/005-01-Rev1               | /8/ | 82881               | 09.09.2014                | Wölfel GmbH + Co. KG  |

Der Anlagentyp wurde am Standort Stadum, Schleswig-Holstein 151 und am Standort Linden, Hessen /8/ mit einer Nabenhöhe von  $h_N$  = 91 m vermessen. Der gleiche Anlagentyp wurde am Standort Hohen Luckow, Mecklenburg-Vorpommem /4/ mit einer Nabenhöhe von h<sub>N</sub> = 120 m vermes-

Gemäß /1/ wurden die in /4/ angegebenen Schallleistungspegel bei einer Nabenhöhe von  $h_N$  = 120 m auf die Nabenhöhen  $h_N$  = 91 m und  $h_N$  = 141 m umgerechnet. Darüber hinaus wurden die in /5/ bis /8/ angegebenen Schallleistungspegel bei einer Nabenhöhe von  $h_N$  = 91 m auf die Nabenhöhen  $h_N = 120$  m und  $h_N = 141$  m umgerechnet. Die entsprechenden Ergebnisse der Nabenhöhenumrechnungen sind in Kapitel 4 aufgeführt.

Zusätzlich sind die Ergebnisse der schalltechnischen Parameter entsprechend /1/ für die berechneten und vermessenen Nabenhöhen der vermessenen drei WEA zusammenzufassen und entsprechend der IEC 61400-14 /3/ anzugeben.

WIND-consult GmbH

Seite 4 von 31

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 34 von 107





18.11.2014; 074SE513/11; Dieser Bericht umfasst 31 Seiten inkl. der Anlagen!

Anlage 1 - Datenblätter der Ergebniszusammenfassung

WIND-consult GmbH

Seite 22 von 31

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 35 von 107





18.11.2014; 074SE513/11 - Anlage 3; Der Auszug umfasst 3 Seiten!

#### Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen Datenblatt aus dem Prüfbericht WICO 074SE513/11 - Anlage 3

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schalltemissionswerte eines Anlagentyps gemäß /3/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

| Anlagendaten                                      |                   |                                           |                           |         |   |  |  |
|---------------------------------------------------|-------------------|-------------------------------------------|---------------------------|---------|---|--|--|
| Hersteller Nordex Energy Gm                       | ıbН               | WEA Typ                                   | Nordex N11                | 7/2400  |   |  |  |
| Langenhorner Cha                                  | ussee 600         | Nennleistung (gesar                       | nt) 2400 kW               |         |   |  |  |
| D-22419 Hamburg                                   |                   | Betriebsweise                             | MaxPowerP                 | oint    |   |  |  |
|                                                   |                   | Nabenhöhe                                 | 141 m                     |         |   |  |  |
|                                                   |                   | Rotordurchmesser                          | 116,8 m                   | 116,8 m |   |  |  |
| Angaben zur Einzelmessung                         |                   | Me                                        | ssung-Nr.                 |         |   |  |  |
| Angaben zur Einzelmessung                         | 1                 | 2                                         | 3                         | 4       | 5 |  |  |
| Seriennummer                                      | 82382             | 82100                                     | 82881                     |         |   |  |  |
| Standort                                          | Hohen Luckow, MV  | Stadum, SH                                | Linden, HE                |         | - |  |  |
| Messinstitut                                      | WIND-consult GmbH | GL Garrad Hassan<br>Deutschland GmbH      | Wölfel GmbH +<br>Co. KG   |         |   |  |  |
| Prüfbericht bzw. Auszüge<br>aus den Prüfberichten | 074SE513/03 /4/   | GLGH-4286 12<br>08939 258-S-0004-B<br>/5/ | R0153/005-01-<br>Rev1 /6/ |         |   |  |  |
| Datum                                             | 22.08.2013        | 22.10.2013                                | 09.09.2014                |         | - |  |  |
| Getriebetyp EBN 2145 A12 R00A                     |                   | GPV535D                                   | EBN 2145 A12              |         | - |  |  |
| Generatortyp JFD-560MR-06A                        |                   | DAKAA 6330-6U                             | JFWD-560MR-06A            |         |   |  |  |
| Rotorblatttyp NR58.5                              |                   | NR58.5                                    | NR58.5-1                  |         |   |  |  |

|                                       |                                  | Schal       | lemissionspara      | meter                 |                       |             |  |  |  |  |  |  |  |  |  |
|---------------------------------------|----------------------------------|-------------|---------------------|-----------------------|-----------------------|-------------|--|--|--|--|--|--|--|--|--|
|                                       |                                  | Sch         | allleistungspegel L | -wa.p:                |                       |             |  |  |  |  |  |  |  |  |  |
| Messung                               | Windgeschwindigkeit in 10 m Höhe |             |                     |                       |                       |             |  |  |  |  |  |  |  |  |  |
|                                       | 6 m/s                            | 7 m/s       | 8 m/s               | 9 m/s                 | 10 m/s                | VPs5 1)     |  |  |  |  |  |  |  |  |  |
| 1                                     | 104,3 dB(A)                      | 104,4 dB(A) | 103,7 dB(A)         | - dB(A)               | - dB(A)               | 104,5 dB(A) |  |  |  |  |  |  |  |  |  |
| 2                                     | 103,4 dB(A)                      | 103,7 dB(A) | 103,6 dB(A)         | 103,5 dB(A)           | - dB(A)               | 103,6 dB(A  |  |  |  |  |  |  |  |  |  |
| 3                                     | 103,7 dB(A)                      | 104,3 dB(A) | 104,3 dB(A)         | 104,1 dB(A)           | - dB(A)               | 104.0 dB(A  |  |  |  |  |  |  |  |  |  |
| Mittelwert L <sub>w</sub>             | 103,8 dB(A)                      | 104,1 dB(A) | 103,8 dB(A)         | - <sup>2)</sup> dB(A) | - <sup>2]</sup> dB(A) | 104,0 dB(A  |  |  |  |  |  |  |  |  |  |
| Standardabwei-<br>chung S             | 0,5 dB(A)                        | 0,4 dB(A)   | 0.3 dB(A)           | - <sup>2)</sup> dB(A) | - <sup>2)</sup> dB(A) | 0,5 dB(A)   |  |  |  |  |  |  |  |  |  |
| K nach /3/ σ <sub>R</sub> = 0,5<br>dB | 1,3 dB(A)                        | 1,2 dB(A)   | 1,1 dB(A)           | - 2) dB(A)            | - 21 dB(A)            | 1,3 dB(A    |  |  |  |  |  |  |  |  |  |

Die Windgeschwindigkeit für 95 % der Nennleistung ist unter Berücksichtigung der meteorologischen Normalbedingungen aus der Leistungskurve berechnet (T = 15°C, p = 101,3 kPa). Hieraus ergibt sich bei einer Nabenhöhe von  $h_N = 141$  m eine Windgeschwindigkeit:  $v_{PS} = 6.5$  m/s. In den Windlassen 9 m/s und 10 m/s liegen keine bzw. nicht genügend Ergebnisse vor. Eine Zusammenfassung nach /1/ ist nicht moglich. Die Ergebnisse der drei Vermessungen mit der Nabenhöhe 141 m zeigen aber, dass die Schallleistung bei einer Windgeschwindigkeit von ca. 7 m/s ihr Maximum erreicht hat.



Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüf- und Kalibnerlaboratorium Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüf- und Kalibnerverfahren.

Projekt:

Gutachten-Nr.: 114 0614 18R-1

Schallimmissionsprognose WEA Lieg

Anhang Seite 36 von 107





18.11.2014; 074SE513/11 - Anlage 3; Der Auszug umfasst 3 Seiten!

#### Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen Datenblatt aus dem Prüfbericht WICO 074SE513/11 - Anlage 3 Seite 2 von 3

| ENTE    |   |    |      |    |             | S    | cha   | llen | nis   | sio | nspara | ame   | ter  | Zus               | chlä   | ge   |                 |                               |      |      |   |         |   |
|---------|---|----|------|----|-------------|------|-------|------|-------|-----|--------|-------|------|-------------------|--------|------|-----------------|-------------------------------|------|------|---|---------|---|
|         |   |    |      |    |             |      |       |      |       | То  | nzus   | chla  | g K  | TN:               |        |      |                 |                               |      |      |   |         |   |
| Messung |   |    |      |    |             |      |       |      |       | Win | dgesch | wind  | ligk | eit in '          | 10 m H | löhe |                 |                               |      |      |   |         |   |
|         |   | 6  | m/s  |    |             | 7 m  | Is    |      |       | 8   | m/s    |       |      | 9                 | m/s    |      |                 | 10 m/                         | S    |      | , | 'P05 T) |   |
| 1       | 0 | dB | 1360 | Hz | 0           | dB 1 | 380   | Hz   | 0     |     |        |       |      |                   | dB     | 1372 | Hz              |                               |      |      |   |         |   |
| 2       | 1 | dB | 192  | Hz | 1           | dB   | 396   | Hz   | 1     | dB  | 394    | Hz    | 1    | dB                | 384    | Hz   |                 | - 2)                          |      |      |   | - 4)    |   |
| 3       | 0 | dB | - 5) | Hz | 0           | dB   | - 5)  | Hz   | 0     | dΒ  | - 51   | Hz    | 0    | dB                | - 5)   | Hz   | 0               | dB ·                          | 5) H | z    |   | - 6)    | _ |
|         |   |    |      |    | _           |      |       | _    |       | lmp | ulszu  | sch   | lag  | K <sub>IN</sub> : |        |      |                 |                               |      |      |   |         |   |
| Messung |   |    |      |    |             |      |       |      |       | Win | dgesch | wind  | ligk | eit in            | 10 m F | löhe |                 |                               |      |      |   |         |   |
|         |   | 6  | m/s  |    | 7 m/s 8 m/s |      | 8 m/s |      | 8 m/s |     |        | 9 m/s |      |                   | 10 m   | s    |                 | V <sub>P95</sub> <sup>0</sup> |      |      |   |         |   |
| 1       | Г | 0  | dB   |    | Г           | 0 dE | 3     |      | Г     | 0   | dB     |       |      |                   | 3)     |      | . <sup>2)</sup> |                               |      | 0 dB |   |         |   |
| 2       |   | 0  | dB   |    |             | 0 dE | 3     |      |       | 0   | dB     |       |      | 0                 | dB     |      | _ 2)            |                               |      | -4)  |   |         |   |
| 3       |   | 0  | dB   |    |             | 0 dE | 3     |      |       | 0   | dB     |       |      | 0                 | dB     |      |                 | 0 0                           | В    |      |   | _ 5)    |   |

Die Windgeschwindigkeit für 95 % der Nennleistung ist unter Berücksichtigung der meteorologischen Normalbedingungen aus der Leistungskurve berechnet (T = 15°C, p = 101,3 kPa). Hieraus ergibt sich bei einer Nabenhöhe von h<sub>ti</sub> = 141 m eine Windgeschwindigkeit v<sub>rosi</sub> = 6,5 m/s. Keine Ergebnisse in der Windklasse 10 m/s bei allen Messungen keine Informationen über die Ton- und Impulshaltigkeit in der Windklasse 9 m/s im Prüfbericht /4/. Keine Informationen über die Ton- und Impulshaltigkeit im Betrienspunkt 95-%-Nennleistung im Auszug aus dem Prüfbericht /5/. Keine Frequenzinformation für die Tonhaltigkeit im Auszug aus dem Prüfbericht /6/. Keine Informationen über die Ton- und Impulshaltigkeit im Betriebspunkt 95-%-Nenneleistung im Auszug aus dem Prüfbericht /6/.

Prüfbericht /6/.



Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüf- und Kalibrierlaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüf- und Kalibrierverfahren.

Anhang Gutachten-Nr.: 114 0614 18R-1 Seite 37 von 107 Schallimmissionsprognose WEA Lieg Projekt:





18.11.2014; 074SE513/11 - Anlage 3; Der Auszug umfasst 3 Seiten!

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen Datenblatt aus dem Prüfbericht WICO 074SE513/11 - Anlage 3

Seite 3 von 3

#### Schallemissionsparameter: Terz- und Oktav-Schallleistungspegel

|                    |      | Ter   | z-/ Oktav- | Schallleis | tungspeg | el Referen | zpunkt v | <sub>15</sub> = 6,5 m. | s in dB(A | )    |      |       |  |
|--------------------|------|-------|------------|------------|----------|------------|----------|------------------------|-----------|------|------|-------|--|
| Frequenz           | 50   | 63    | 80         | 100        | 125      | 160        | 200      | 250                    | 315       | 400  | 500  | 630   |  |
| LWAP               | 76,2 | 79,5  | 82,7       | 84.3       | 86,8     | 85,9       | 88,6     | 88,6                   | 89,3      | 91,5 | 90,8 | 92,3  |  |
| LWAP               |      | 85,0  |            | 90,6       |          |            | 93,9     |                        |           | 96,5 |      |       |  |
| Frequenz           | 800  | 1000  | 1250       | 1600       | 2000     | 2500       | 3150     | 4000                   | 5000      | 6300 | 8000 | 10000 |  |
| L <sub>WA,P</sub>  | 93,3 | 94,2  | 94,3       | 94.5       | 93,0     | 92,3       | 91,1     | 88.3                   | 84.4      | 80.5 | 74.6 | 67,5  |  |
| L <sub>WA, P</sub> |      | 98,8  |            | 98,1       |          |            |          | 93,5                   |           | 81,8 |      |       |  |
| Lwa p total        |      | 104,0 |            |            |          |            |          |                        |           |      |      |       |  |

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen



L. Schroedter M.Sc.

C. Hoffmann M.Eng.

Der Auszug wurde elektronisch unterschrieben

Bargeshagen, 18.11.2014

- Fördergesellschaft Windenergie e.V. (FGW): Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schall-emissionswerte. Rev. 18. Stand 01.02.2008. Kiel (D): FGW, 2008 11/
- 121 Wind turbine generator systems - Part 11 Acoustic noise measurement techniques. IEC 61400-11:2002 + A1:2006
- Wind turbines Part 14: Declaration of apparent sound power level and tonality values of wind turbines. IEC 61400-14 Ed. 1, 2005-03 /3/
- WIND-consult GmbH (WICO): Umrechnung des Schallleistungspegels auf andere Nabenhöhen der Windenergieanlage (WEA) des Typs Nordex N117/2400: Betriebsweise MaxPowerPoint, Prüfbericht WICO 074SE513/03, Bargeshagen (D), 22.08.2013
- GL Garrad Hassan Deutschland GmbH: Auszug GLGH-4286 12 08939 258-S-0004-B aus dem Prüfbericht GLGH-4286 12 08939 258-A-0002-B zur Nabenhöhenumrechnung einer Windenergieanlage vom Typ Nordex N117/2400 : Messdatum: 2012-06-05, Kaiser-Wilhelm-Koog (D), 22 10.2013 151
- Wolfel Beratende Ingenieure GmbH + Co. KG: Auszug aus dem Prüfbericht R0153/005-01-Rev1 zur Schallemission der Windenergieanlage vom Typ N117/2400. Höchberg (D), 09.09.2014

( DAkkS

Durch die DAkkS nach DIN EN ISO/IEC 17025 akkreditiertes Prüf- und Kalibrierlaboratorium Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüf- und Kalibrierverfahren.

Gutachten-Nr.: 114 0614 18R-1

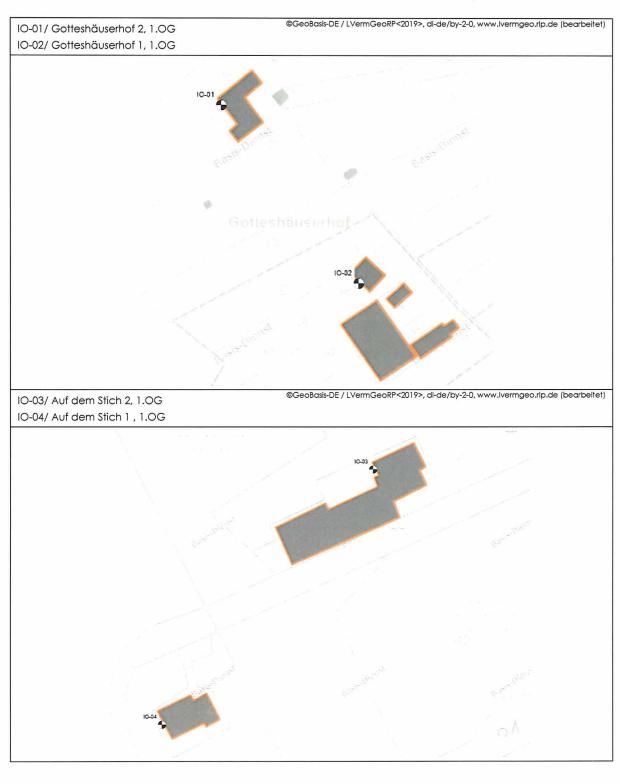
Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 38 von 107



## **Immissionsorte**


Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 39 von 107





Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

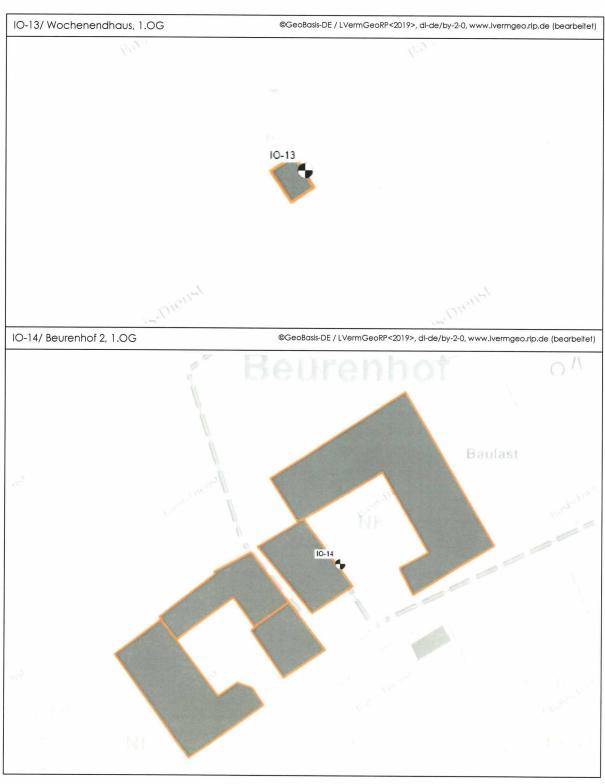
Anhang Seite 40 von 107





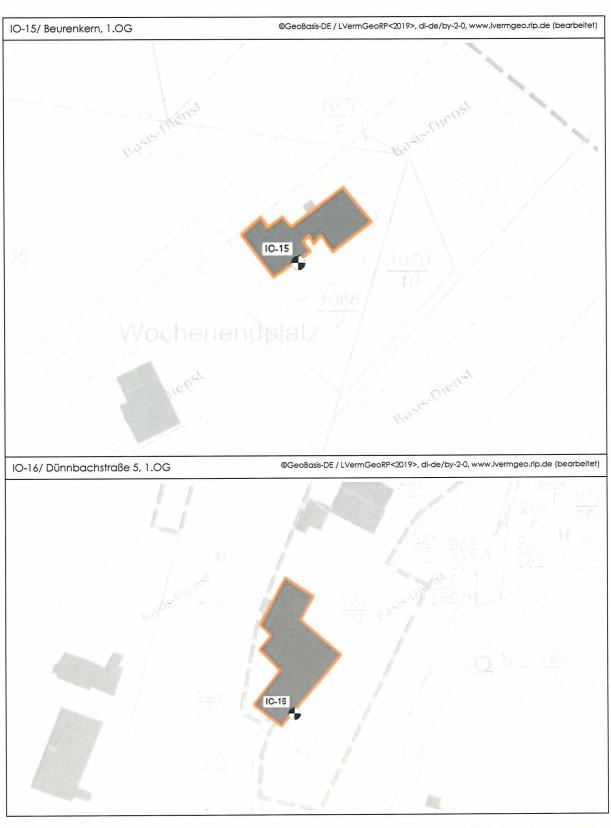
Projekt:

Schallimmissionsprognose WEA Lieg


Anhang Seite 41 von 107






Gutachten-Nr.: 114 0614 18R-1 Projekt:





Projekt: Schallimmissionsprognose WEA Lieg Anhang Seite 43 von 107

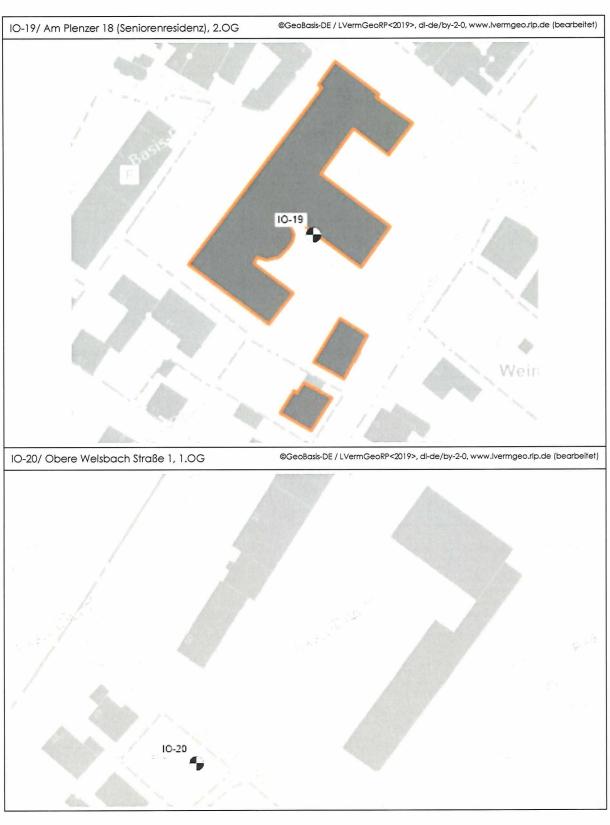




Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 44 von 107






Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmission Schallimmissionsprognose WEA Lieg

Anhang Seite 45 von 107





Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 46 von 107





Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 47 von 107



# G Übersichten B-Pläne, FNP, Gewerbegebiete

Gutachten-Nr.: 114 0614 18R-1 Projekt:



#### Gewerbegebiet im Süden von Lieg



Verbandsgemeindeverwaltung Cochem

Ravenéstraße 61 56812 Cochem

Auszug aus dem Liegenschaftskataster

Liegenschaftskarte 1:2500 Erstellt am 05.09.2018

Flurstück. Gemarkung: Gemeinde: Kreis

Cochem-Zell



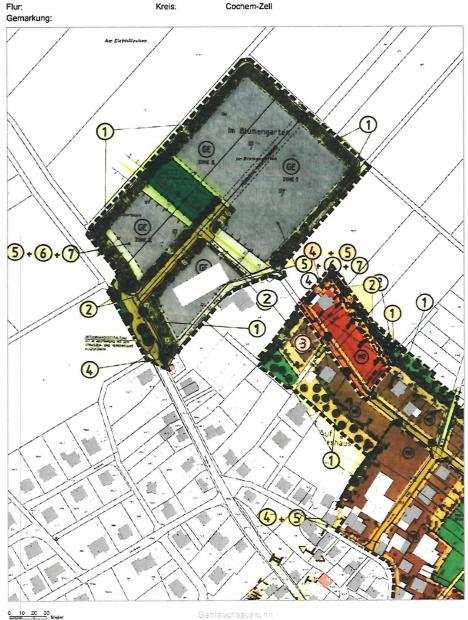
Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg Anhang Seite 49 von 107



#### Gewerbegebiet und Schreinerei im Norden von Lieg

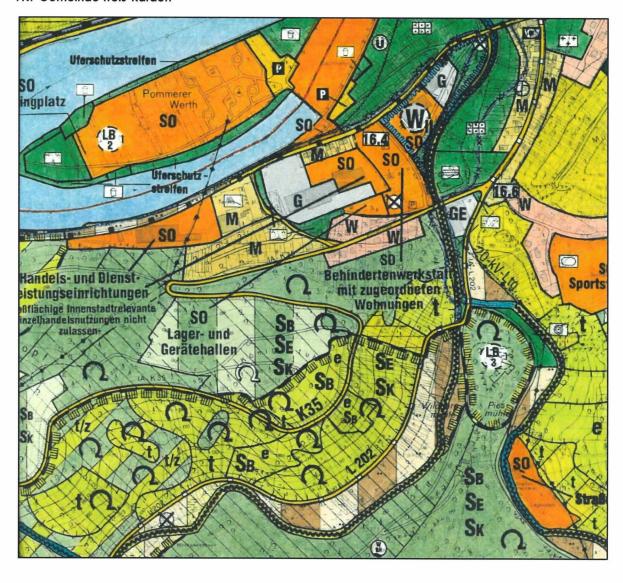



Verbandsgemeindeverwaltung Cochem Ravenéstraße 61 56812 Cochem

#### Auszug aus dem Liegenschaftskataster

Liegenschaftskarte 1:2000 Erstellt am 29.08.2018

Gemeinde: Kreis:


Cochem-Zell





Anhang

#### **FNP Gemeinde Treis-Karden**



Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmissionsprognose WEA Lieg Seite 51 von 107



## Tabellarisches Emissionskataster inkl. Spektren

Gutachten-Nr.: 114 0614 18R-1



| Zeichen        | mäß DIN IS | Bedeutung                                                                                                                                                                                                                              |
|----------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr.            | -          | Laufende Emissionsquellenortskennzahl                                                                                                                                                                                                  |
|                |            | Emissionsquellen mit gleichen Koordinaten (bei ggf. unterschiedlicher Höhe) haben gleiche<br>Nummern.                                                                                                                                  |
| Kommentar      | -          | Bezeichnung der Emissionsquelle                                                                                                                                                                                                        |
| Gruppe         |            | Bezeichnung der Emissionsquellengruppe                                                                                                                                                                                                 |
| RW Ost/HW Nord | m          | Koordinatenangabe                                                                                                                                                                                                                      |
| hQ             | m          | Höhe der Emissionsquelle                                                                                                                                                                                                               |
|                | 5-         | Index = D → Die Quelle befindet sich über einem Dach.                                                                                                                                                                                  |
| DO             | dB         | Richtwirkungsmaß                                                                                                                                                                                                                       |
| KT             | dB         | Zuschlag für Ton- und Informationshaltigkeit                                                                                                                                                                                           |
| KI             | dB         | Zuschlag für Impulshaltigkeit                                                                                                                                                                                                          |
| Lw/LmE         | dB(A)      | Schallleistungspegel der Emissionsquelle bzw. Mittelungspegel (RLS-90) der Emissionsquelle.                                                                                                                                            |
|                |            | Der Wert Lw/LmE beinhaltet bereits die in den Spalten "num.Add.", "Bez.Abst.", "Messfl./Anz." sowie "Anz." getätigten Angaben. Der grundlegende Schallleistungspegel der Emissionsquelle kann der Spalte "LWA Input" entnommen werden. |
| num.Add.       | dB         | Korrekturfaktor/Sicherheitszuschlag                                                                                                                                                                                                    |
|                |            | num.Add. = leer → keine numerische Addition/Sicherheitszuschlag bei der entsprechenden<br>Emissionsquelle berücksichtigt.                                                                                                              |
| Bez.Abst.      | m          | Messabstand zur Emissionsquelle                                                                                                                                                                                                        |
|                |            | Bez.Abst. = leer → Lw/LmE stellt den bereits berechneten Emissionswert dar.                                                                                                                                                            |
| Messfl./Anz.   | m²/-       | Eintragung der Messfläche/Fläche des schallabstrahlenden Bauteils oder Anzahl der Fahrzeuge auf der dazugehörigen Teilstrecke.                                                                                                         |
|                |            | Messfl./Anz. = leer → Lw/LmE stellt den bereits berechneten Emissionswert dar.                                                                                                                                                         |
| Anz.           | -          | Eintragung der Anzahl der Fahrzeuge auf der dazugehörigen Teilstrecke, getrennt nach Beurteilungszeiträumen.                                                                                                                           |
|                |            | Anz. = leer → Lw/LmE stellt den bereits berechneten Emissionswert dar.                                                                                                                                                                 |
| MM             | dB         | Minderungsmaßnahme an der Emissionsquelle                                                                                                                                                                                              |
|                |            | MM = leer → keine Minderung bei der entsprechenden Emissionsquelle berücksichtigt.                                                                                                                                                     |
| Einw.T         | min        | Einwirkzeit der Emissionsquelle                                                                                                                                                                                                        |
| RWID           | -          | Bezug zum verwendeten Schalldämmspektrum                                                                                                                                                                                               |
| CT             |            | RwID = leer → keine Schalldämmung bei der entsprechenden Emissionsquelle berücksichtigt.                                                                                                                                               |
| ST             | -          | Statusfeld                                                                                                                                                                                                                             |
|                |            | ST = 1 → Die Emissionsquelle ist eine kurzzeitige Geräuschspitze. ST = -1 → Die Emissionsquelle ist nicht in den Berechnungen berücksichtigt. ST = leer → Die Emissionsquelle ist eine Standard-Emissionsquelle.                       |
| T/RZ/N         | _          | Tageszeit/Ruhezeit/Nachtzeit                                                                                                                                                                                                           |
| Lw/Lp Input    | dB(A)      | Grundlegender Schallleistungspegel/-druckpegel der Emissionsquelle                                                                                                                                                                     |

Hinweis: Bei den aufgelisteten Spalten ist zu beachten, dass je nach Projekt nicht alle Spalten für die Berechnungen genutzt bzw. entsprechend dokumentiert werden.

Gutachten-Nr.: 114 0614 18R-1 Anhang
Projekt: Schallimmissionsprognose WEA Lieg Seite 53 von 107



#### 12-dB-Abschneidekriterium Zusatzbelastung Windenergie (Kap. 5.2.2)

| Nr     | Kommentar | Gruppe | RW/Ost<br>m | HW/Nord<br>m | hQ<br>m | DO<br>dB | KT<br>dB | KI<br>dB | Lw/LmE N<br>dB(A) | num<br>Add N<br>dB | MM<br>dB | EinwT<br>N<br>min | Lw/Lp<br>Input<br>dB(A) |
|--------|-----------|--------|-------------|--------------|---------|----------|----------|----------|-------------------|--------------------|----------|-------------------|-------------------------|
| WEA 01 | WEA 01    | WEA_ZB | 380694      | 5556450      | 149     | 0        | 0        | 0,0      | 106,8             | 1,6                | 0        | 60,0              | 105,2                   |
| WEA 02 | WEA 02    | WEA_ZB | 380206      | 5556165      | 149     | 0        | 0        | 0,0      | 106,8             | 1,6                | 0        | 60,0              | 105,2                   |
| WEA 03 | WEA 03    | WEA_ZB | 379711      | 5556005      | 149     | 0        | 0        | 0,0      | 106,8             | 1,6                | 0        | 60,0              | 105,2                   |
| WEA 04 | WEA 04    | WEA_ZB | 379775      | 5555715      | 149     | 0        | 0        | 0,0      | 106,8             | 1,6                | 0        | 60,0              | 105,2                   |
| WEA 05 | WEA 05    | WEA_ZB | 380256      | 5555526      | 149     | 0        | 0        | 0,0      | 106,8             | 1,6                | 0        | 60,0              | 105,2                   |

| Kommentar   | 63<br>Hz | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Ges   |
|-------------|----------|-----------|-----------|-----------|----------|----------|----------|----------|-------|
| V126 Mode 0 | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2     | 105,2 |

#### 12-dB-Abschneidekriterium Vorbelastung Windenergie (Kap. 5.3.2)

| Nr     | Kommentar  | Gruppe     | RW/Ost<br>m | HW/Nord<br>m | hQ<br>m | DO<br>dB | KT<br>dB | KI<br>dB | Lw/LmE N<br>dB(A) | num<br>Add N<br>dB | MM<br>dB | EinwT<br>N<br>min | Lw/Lp<br>Input<br>dB(A) |
|--------|------------|------------|-------------|--------------|---------|----------|----------|----------|-------------------|--------------------|----------|-------------------|-------------------------|
| RH 133 | V90-2000   | U 12dB ASK | 386023      | 5550257      | 105     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 134 | V90-2000   | U 12dB ASK | 386227      | 5550062      | 105     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 135 | V90-2000   | U 12dB ASK | 386258      | 5549780      | 105     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 354 | N-131      | U 12dB ASK | 383232      | 5552826      | 134     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 355 | N-117-2400 | U 12dB ASK | 379480      | 5553326      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 356 | N-117-2400 | U 12dB ASK | 379995      | 5553242      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 357 | N-117-2400 | U 12dB ASK | 380019      | 5552826      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 358 | N-117-2400 | U 12dB ASK | 380324      | 5552644      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 359 | N-117-2400 | U 12dB ASK | 379855      | 5552259      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 360 | N-117-2400 | U 12dB ASK | 380207      | 5552091      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 361 | N-117-2400 | U 12dB ASK | 380683      | 5552122      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 362 | N-117-2400 | U 12dB ASK | 380212      | 5551403      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 363 | N-117-2400 | U 12dB ASK | 383394      | 5550939      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 364 | N-117-2400 | U 12dB ASK | 382761      | 5550429      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 366 | N-117-2400 | U 12dB ASK | 382148      | 5549725      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 369 | N-117      | U 12dB ASK | 385523      | 5551202      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 370 | N-117      | U 12dB ASK | 385428      | 5551623      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 371 | N-117      | U 12dB ASK | 385528      | 5552075      | 141     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 374 | E-115      | U 12dB ASK | 388597      | 5553518      | 149     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 375 | E-115      | U 12dB ASK | 388901      | 5553544      | 149     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 75  | V-44       | U 12dB ASK | 389257      | 5552243      | 63      | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 76  | E-82       | U 12dB ASK | 389415      | 5552602      | 138     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 77  | E-82       | U 12dB ASK | 389093      | 5552785      | 138     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 78  | E-82       | U 12dB ASK | 388836      | 5552950      | 138     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| RH 79  | E-82       | U 12dB ASK | 388684      | 5553146      | 138     | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |
| WEA T  | E-82       | U 12dB ASK | 389128      | 5552393      | 98      | 0        | 0        | 0,0      | 112,0             | 0,0                | 0        | 60,0              | 112,0                   |

| Kommentar               | 63<br>Hz | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Ges   |
|-------------------------|----------|-----------|-----------|-----------|----------|----------|----------|----------|-------|
| VB für 12-dB-Abschneide | 94,1     | 99,9      | 104,3     | 106,5     | 106,8    | 103,4    | 96,4     | 82,0     | 112,0 |

Gutachten-Nr.: 114 0614 18R-1

Projekt:



#### Zusatzbelastung Windenergie (Kap. 5.2.3)

| Nr     | Kommentar      | Gruppe       | RW/Ost | HW/Nord | hQ  | DO | KT | KI  | Lw/LmE N<br>dB(A) | num<br>Add N | MM | EinwT<br>N | Lw/Lp<br>Input |
|--------|----------------|--------------|--------|---------|-----|----|----|-----|-------------------|--------------|----|------------|----------------|
|        | LINE ALL THERE | Total Survey | m      | m       | m   | dB | dB | dB  |                   | dB           | dB | min        | dB(A)          |
| WEA 01 | WEA 01         | WEA_ZB       | 380694 | 5556450 | 149 | 0  | 0  | 0,0 | 106,8             | 1,6          | 0  | 60,0       | 105,2          |
| WEA 02 | WEA 02         | WEA_ZB       | 380206 | 5556165 | 149 | 0  | 0  | 0,0 | 106,8             | 1,6          | 0  | 60,0       | 105,2          |
| WEA 04 | WEA 04         | WEA_ZB       | 379775 | 5555715 | 149 | 0  | 0  | 0,0 | 106,8             | 1,6          | 0  | 60,0       | 105,2          |
| WEA 05 | WEA 05         | WEA_ZB       | 380256 | 5555526 | 149 | 0  | 0  | 0,0 | 106,8             | 1,6          | 0  | 60,0       | 105,2          |

| Kommentar   | 63<br>Hz | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Ges   |
|-------------|----------|-----------|-----------|-----------|----------|----------|----------|----------|-------|
| V126 Mode 0 | 87,3     | 93,1      | 97,5      | 99,7      | 100,0    | 96,6     | 89,6     | 75,2     | 105,2 |

#### Vorbelastung Windenergie (Kap. 5.3.3)

| Nr      | Kommentar  | Gruppe | RW/Ost | HW/Nord<br>m | hQ<br>m | DO<br>dB | KT<br>dB | KI<br>dB | Lw/LmE N<br>dB(A) | num<br>Add N<br>dB | MM<br>dB | EinwT<br>N<br>min | Lw/Lp<br>Input<br>dB(A) |
|---------|------------|--------|--------|--------------|---------|----------|----------|----------|-------------------|--------------------|----------|-------------------|-------------------------|
| 511.051 | M 101      | 154 15 |        | 22.00        |         | uв       | ub o     | 777      | 407.0             |                    | ub<br>o  |                   |                         |
| RH 354  | N-131      | WEA_VB | 383232 | 5552826      | 134     | 0        | 0        | 0,0      | 107,0             | 2,5                | 0        | 60,0              | 104,5                   |
| RH 355  | N-117-2400 | WEA_VB | 379480 | 5553326      | 141     | 0        | 0        | 0,0      | 107,5             | 2,5                | 0        | 60,0              | 105,0                   |
| RH 356  | N-117-2400 | WEA_VB | 379995 | 5553242      | 141     | 0        | 0        | 0,0      | 107,5             | 2,5                | 0        | 60,0              | 105,0                   |
| RH 357  | N-117-2400 | WEA_VB | 380019 | 5552826      | 141     | 0        | 0        | 0,0      | 107,5             | 2,5                | 0        | 60,0              | 105,0                   |
| RH 358  | N-117-2400 | WEA_VB | 380324 | 5552644      | 141     | 0        | 0        | 0,0      | 107,5             | 2,5                | 0        | 60,0              | 105,0                   |

| Kommentar | 63 Hz | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Ges   |
|-----------|-------|-----------|-----------|-----------|----------|----------|----------|----------|-------|
| VB N131   | 86,9  | 92,8      | 97,3      | 99,3      | 98,7     | 96,1     | 87,2     | 75,9     | 104,5 |
| VB N117   | 86,05 | 91,65     | 94,95     | 97,55     | 99,85    | 99,15    | 94,55    | 82,85    | 105,0 |

#### Sonstige Vorbelastung durch Gewerbe (Kap. 5.4)

| Nr             | Kommentar                 | Gruppe | RW/Ost | HW/Nord | hQ |    |    | 2.55 | Lw/Lm<br>E N | num<br>Add N |   | Messfl<br>m² | Anz<br>N | MM | EinwT<br>N | Rw<br>ID | ST | Lw/Lp<br>Input |
|----------------|---------------------------|--------|--------|---------|----|----|----|------|--------------|--------------|---|--------------|----------|----|------------|----------|----|----------------|
| and the States | decide the rest former to | 4      | m      | m       | m  | dB | dB | dB   | dB(A)        | dB           | m | Anz          | - 1967   | dB | min        | 0.50     |    | dB(A)          |
| Gew_Lieg_N     | Gew_Lieg_N                | VB_Gew | 381721 | 5555762 | 1  | 0  | 0  | 0,0  | 98,4         | 0,0          |   |              |          | 0  | 60,0       |          |    | 98,4           |
| Gew_Lieg_S     | Gew_Lieg_S                | VB_Gew | 381599 | 5555015 | 1  | 0  | 0  | 0,0  | 96,4         | 0,0          |   |              |          | 0  | 60,0       |          |    | 96,4           |

| Kommentar     | 63<br>Hz | 125<br>Hz | 250<br>Hz | 500<br>Hz | 1<br>kHz | 2<br>kHz | 4<br>kHz | 8<br>kHz | Ges  |
|---------------|----------|-----------|-----------|-----------|----------|----------|----------|----------|------|
| VB Gew Lieg S | -200,0   | -200,0    | -200,0    | 97,4      | -200,0   | -200,0   | -200,0   | -200,0   | 97,4 |
| VB Gew Lieg N | -200,0   | -200,0    | -200,0    | 99,4      | -200,0   | -200,0   | -200,0   | -200,0   | 99,4 |

#### Gesamtbelastung

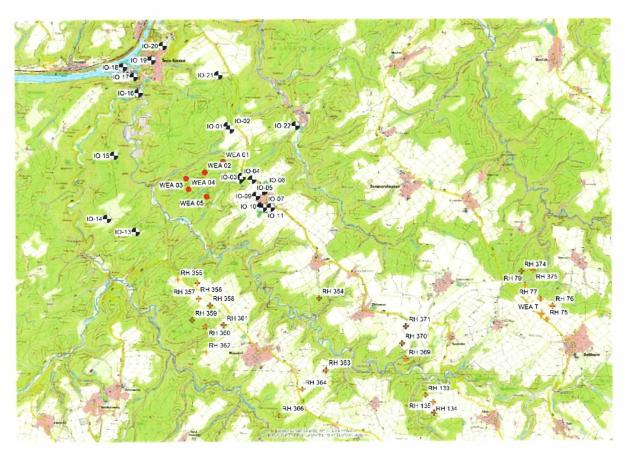
Die Gesamtbelastung setzt sich in Abhängigkeit des Immissionsortes aus der o. g. Vor- (Kap. 5.3.3, 5.4) und Zusatzbelastung (Kap. 5.2.3) zusammen. Die Berechnungen können dem Anhang J entnommen werden.

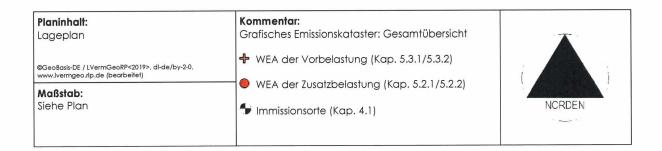
Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

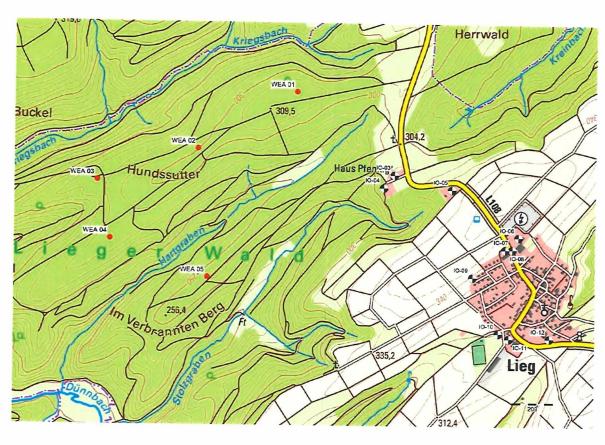
Anhang Seite 55 von 107

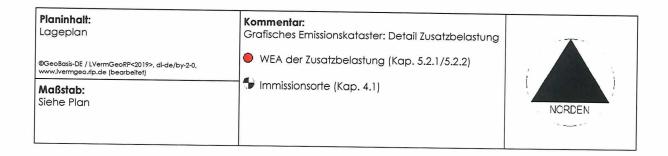




## **Grafisches Emissionskataster**

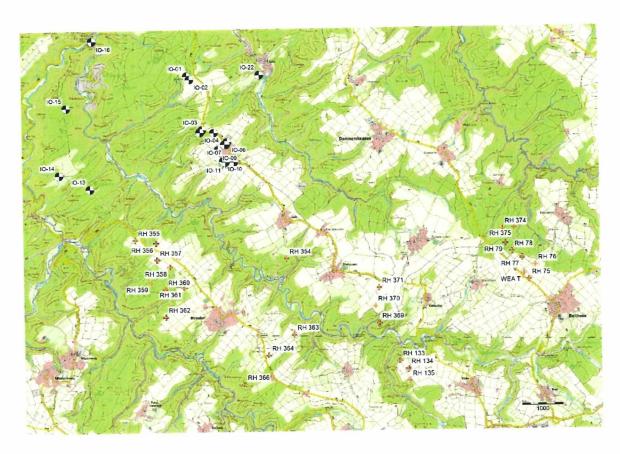
Gutachten-Nr.: 114 0614 18R-1 Projekt:

# uppenkampundpartner


Sachverständige für Immissionsschutz

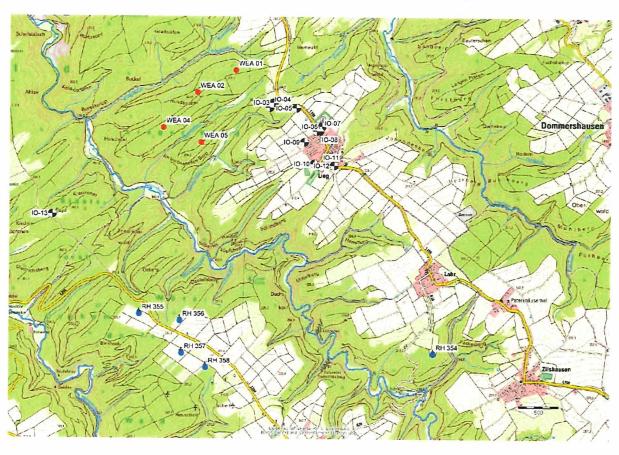


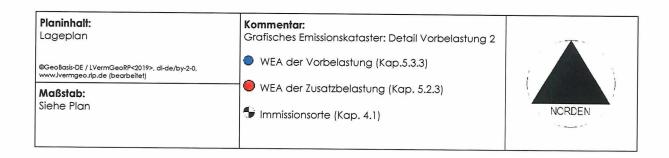




Gutachten-Nr.: 114 0614 18R-1










| <b>Planinhalt:</b><br>Lageplan                        | Kommentar:<br>Grafisches Emissionskataster: Detail Vorbelastung 1 | 7 <b></b> |
|-------------------------------------------------------|-------------------------------------------------------------------|-----------|
| @GeoBasis-DE / LVermGeoRP<2019>, dl-de/by-2-0,        | ♣ WEA der Vorbelastung (Kap. 5.3.1/5.3.2)                         |           |
| www.lvermgeo.tlp.de (bearbeitet)  Maßstab: Siehe Plan |                                                                   | NCRDEN    |
| olone ( lan                                           |                                                                   | * * *     |













Projekt:



# Dokumentation der Immissionsberechnung

Gutachten-Nr.: 114 0614 18R-1 Projekt:



| Zeichen   | Einheit | Bedeutung                                                                                                                                                                                                                                                                                                         |
|-----------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr.       | -       | Laufende Emissionsquellenortskennzahl                                                                                                                                                                                                                                                                             |
|           |         | Emissionsquellen mit gleichen Koordinaten (bei ggf. unterschiedlicher Höhe) haben gleiche<br>Nummern.                                                                                                                                                                                                             |
| Kommentar |         | Bezeichnung der Emissionsquelle                                                                                                                                                                                                                                                                                   |
| Gruppe    |         | Bezeichnung der Emissionsquellengruppe                                                                                                                                                                                                                                                                            |
| LAT       | dB(A)   | Schalldruckpegel der Emissionsquelle am Immissionspunkt.                                                                                                                                                                                                                                                          |
|           | -       | Je nach Berechnungsart ist LAT mit oder ohne Berücksichtigung von Minderungsmaßnahmen angegeben.                                                                                                                                                                                                                  |
| DC        | dB      | Richtwirkungskorrektur                                                                                                                                                                                                                                                                                            |
|           |         | Enthält KO sowie DO. DI ist separat ausgewiesen.                                                                                                                                                                                                                                                                  |
| DT        | dB      | Korrekturwert für die Einwirkzeit im Verhältnis zum Beurteilungszeitraum.                                                                                                                                                                                                                                         |
| +RT       | dB      | Zuschlag für Tageszeiten erhöhter Empfindlichkeit                                                                                                                                                                                                                                                                 |
| MM        | dB      | Minderungsmaßnahme an der Emissionsquelle                                                                                                                                                                                                                                                                         |
|           |         | MM = leer → keine Minderung bei der entsprechenden Emissionsquelle berücksichtigt.                                                                                                                                                                                                                                |
| KT/KI     | dB      | Zuschlag für Ton-, Informations- und Impulshaltigkeit                                                                                                                                                                                                                                                             |
| Cmet      | dB      | Meteorologie-Korrektur-Faktor                                                                                                                                                                                                                                                                                     |
| d(p)      | m       | Horizontaler (projizierter) Abstand der Emissionsquelle zum Immissionsort.  Bei Berechnungen mit Geländeberücksichtigung gibt der Wert die Strecke zwischen Emissionsquelle und Immissionsort an. Die Berechnung erfolgt softwareintern und ist bei Linien- bzw. Flächenquellen u. U. nicht händisch überprüfbar. |
| DI        | dB      | Richtwirkungsmaß                                                                                                                                                                                                                                                                                                  |
| Abar      | dB      | Die Dämpfung aufgrund von Abschirmung.                                                                                                                                                                                                                                                                            |
| Adiv      | dB      | Die Dämpfung aufgrund geometrischer Ausbreitung                                                                                                                                                                                                                                                                   |
|           | ID      | Die Berechnung erfolgt softwareintern und ist u. U. nicht händisch überprüfbar.  Die Dämpfung aufgrund von Luftabsorption.                                                                                                                                                                                        |
| Aatm      | dB      | Die Dampfung aufgrund von Luffabsorpflort.                                                                                                                                                                                                                                                                        |
| Agr       | dB      | Die Dämpfung aufgrund des Bodeneffekts.                                                                                                                                                                                                                                                                           |
| Refl.Ant. | dB      | Reflexionsanteil an senkrechten Oberflächen und Decken bzw. Wänden.  Ist energetisch im LAT enthalten.                                                                                                                                                                                                            |
| Lw/LmE    | dB(A)   | Schalleistungspegel der Emissionsquelle bzw. Mittelungspegel (RLS-90) der Emissionsquelle.                                                                                                                                                                                                                        |
|           | _       | Der Wert Lw/LmE beinhaltet bereits die in den Spalten "num.Add.", "Bez.Abst.", "Messfl./Anz." sowie "Anz." getätigten Angaben. Der grundlegende Schallleistungspegel der Emissionsquelle kanr der Spalte "LWA Input" entnommen werden.                                                                            |
| T/RZ/N    | -       | Tageszeit/Ruhezeit/Nachtzeit                                                                                                                                                                                                                                                                                      |

Hinweis: Bei den aufgelisteten Spalten ist zu beachten, dass je nach Projekt nicht alle Spalten für die Berechnungen genutzt bzw. entsprechend dokumentiert werden.

Gutachten-Nr.: 114 0614 18R-1

Projekt:



# Berechnungen für den Nachtzeitraum (22:00 Uhr bis 6:00 Uhr)

Gutachten-Nr.: 114 0614 18R-1



### 12-dB-Abschneidekriterium Zusatzbelastung Windenergie (Kap. 6.4)

|                  | 10-01            |                  |            |     |     |     |         |           |        |          |      |       |       |                                         |             |             |
|------------------|------------------|------------------|------------|-----|-----|-----|---------|-----------|--------|----------|------|-------|-------|-----------------------------------------|-------------|-------------|
| ·                | Kommentar        | Gruppe           | LAT        | DC  | DT  | MM  | KT/KI   | Cmet      | d(p)   | DI       | Abar | Adiv  | Aatm  | Agr                                     | Refl<br>Ant | Lw/LmE<br>N |
|                  |                  | 0.0000           | N<br>dB(A) | dB  | dB  | dB  | dB      | N<br>dB   | m      | dB       | dB   | dB    | dB    | dB                                      | dB          | dB(A)       |
| EA 01            | WEA 01           | WEA ZB           | 36,6       | 0,0 | 0,0 | 0   | 0       | 0         | 953,4  | 0        | 0,0  | 70,6  | 2,6   | -3,0                                    | -           | 106,8       |
| EA 02            | WEA 02           | WEA_ZB           | 32,6       | 0,0 | 0,0 | 0   | 0       | 0         | 1372.4 | 0        | 0,0  | 73,7  | 3,5   | -3,0                                    |             | 106,8       |
| EA 02            | WEA 02           | WEA ZB           | 29,6       | 0,0 | 0,0 | 0   | 0       | 0         | 1774,3 | 0        | 0,0  | 76,0  | 4,2   | -3,0                                    | -           | 106,8       |
| EA 03            | WEA 04           | WEA_ZB           | 28,4       | 0,0 | 0,0 | 0   | 0       | 0         | 1974,2 | 0        | 0,0  | 76,9  | 4,5   | -3,0                                    | -           | 106,8       |
| /EA 05           | WEA 05           | WEA_ZB           | 28.5       | 0,0 | 0.0 | 0   | 0       | 0         | 1946.0 | 0        | 0,0  | 76,8  | 4,5   | -3,0                                    | (+          | 106,8       |
| EA 05            | WEA 05           | Sum              | 39,4       | 0,0 | 0,0 |     |         |           |        |          |      |       |       | *************************************** |             |             |
|                  |                  |                  |            |     |     |     |         |           |        |          |      |       |       |                                         |             |             |
|                  | 10-02            |                  |            | 1   |     |     | 1/7/1/1 | 0         | 4/-1   | DI       | Abar | Adiv  | Aatm  | Agr                                     | Refl        | Lw/LmE      |
| г                | Kommentar        | Gruppe           | LAT<br>N   | DC  | DT  | MM  | KT/KI   | Cmet<br>N | d(p)   | וט       | Abar | Adiv  | Aduli | Agi                                     | Ant         | N           |
|                  |                  |                  | dB(A)      | dB  | dB  | dB  | dB      | dB        | m      | dB       | dB   | dB    | dB    | dB                                      | dB          | dB(A)       |
| /EA 01           | WEA 01           | WEA_ZB           | 37,4       | 0,0 | 0,0 | 0   | 0       | 0         | 884,9  | 0        | 0,0  | 69,9  | 2,5   | -3,0                                    | -           | 106,8       |
| /EA 02           | WEA 02           | WEA_ZB           | 32,9       | 0,0 | 0,0 | 0   | 0       | 0         | 1331,2 | 0        | 0,0  | 73,5  | 3,4   | -3,0                                    |             | 106,8       |
| VEA 03           | WEA 03           | WEA_ZB           | 29,8       | 0,0 | 0,0 | 0   | 0       | 0         | 1752,9 | 0        | 0,0  | 75,9  | 4,2   | -3,0                                    | -           | 106,8       |
| VEA 04           | WEA 04           | WEA_ZB           | 28,6       | 0,0 | 0,0 | 0   | 0       | 0         | 1940,6 | 0        | 0,0  | 76,8  | 4,5   | -3,0                                    |             | 106,8       |
| VEA 05           | WEA 05           | WEA_ZB           | 28,9       | 0,0 | 0,0 | 0   | 0       | 0         | 1887,7 | 0        | 0,0  | 76,5  | 4,4   | -3,0                                    |             | 106,8       |
|                  |                  | Sum              | 39,9       |     |     |     |         |           |        |          |      |       |       |                                         |             |             |
|                  | 10-03            | •                |            |     |     |     |         |           |        |          |      |       |       |                                         |             |             |
| lr               | Kommentar        | Gruppe           | LAT        | DC  | DT  | MM  | KT/KI   | Cmet      | d(p)   | DI       | Abar | Adiv  | Aatm  | Agr                                     | Refl        | Lw/Lm       |
|                  |                  | ,                | N<br>dB(A) | dB  | dB  | dB  | dB      | dB        | m      | dB       | dB   | dB    | dB    | dB                                      | Ant<br>dB   | dB(A)       |
| VEA 01           | WEA 01           | WEA_ZB           | 41,2       | 0,0 | 0,0 | 0   | 0       | 0         | 654,8  | 0        | 0,0  | 67,3  | 2,0   | -3,0                                    | 32,7        | 106,8       |
| VEA 02           | WEA 02           | WEA ZB           | 36.2       | 0,0 | 0,0 | 0   | 0       | 0         | 994,8  | 0        | 0,0  | 70,9  | 2,7   | -3,0                                    | 19,2        | 106,8       |
| VEA 03           | WEA 03           | WEA ZB           | 31,8       | 0,0 | 0,0 | 0   | 0       | 0         | 1477,2 | 0        | 0,0  | 74,4  | 3,7   | -3,0                                    | 11,7        | 106,8       |
| VEA 04           | WEA 04           | WEA_ZB           | 32,0       | 0,0 | 0,0 | 0   | 0       | 0         | 1450,2 | 0        | 0,0  | 74,2  | 3,6   | -3,0                                    | *           | 106,8       |
| WEA 05           | WEA 05           | WEA_ZB           | 35,4       | 0,0 | 0,0 | 0   | 0       | 0         | 1063,9 | 0        | 0,0  | 71,5  | 2,9   | -3,0                                    | -           | 106,8       |
|                  |                  | Sum              | 43,8       |     |     |     |         |           |        |          |      |       |       |                                         |             |             |
|                  | 10-04            |                  |            |     |     |     |         |           |        |          |      |       |       | I                                       | Refl        | Lw/Lm       |
| Nr               | Kommentar        | Gruppe           | LAT<br>N   | DC  | DT  | MM  | KT/KI   | Cmet<br>N | d(p)   | DI       | Abar | Adiv  | Aatm  | Agr                                     | Ant         | N N         |
|                  |                  |                  | dB(A)      | dB  | dB  | dB  | dB      | dB        | m      | dB       | dB   | dB    | dB    | dB                                      | dB          | dB(A)       |
| NEA O4           | WEA 01           | WEA_ZB           | 40.4       | 0.0 | 0,0 | 0   | 0       | 0         | 661.4  | 0        | 0.0  | 67,4  | 2,0   | -3,0                                    |             | 106,8       |
| NEA 01           | 1.150 (C)(0); 18 | WEA_ZB           | 36,6       | 0,0 | 0,0 | 0   | 0       | 0         | 953,6  | 0        | 0,0  | 70.6  | 2,6   | -3,0                                    | -           | 106,8       |
| NEA 02           | WEA 02           | WEA_ZB           | 32,2       | 0,0 | 0,0 | 0   | 0       | 0         | 1424,2 | 0        | 0,0  | 74,1  | 3,6   | -3,0                                    | -           | 106,8       |
| WEA 03           | WEA 03           | WEA_ZB           | 32,5       | 0,0 | 0,0 | 0   | 0       | 0         | 1385,1 | 0        | 0,0  | 73,8  | 3.5   | -3,0                                    | 1.0         | 106,8       |
| WEA 04           | WEA 04           | WEA_ZB           | 36,2       | 0,0 | 0,0 | 0   | 0       | 0         | 987,0  | 0        | 0,0  | 70.9  | 2.7   | -3.0                                    | -           | 106,8       |
| WEA 05           | WEA 05           | Sum              | 43,6       | 0,0 | 0,0 | + • | + -     | + -       | 007,0  | <u> </u> |      | 3,313 | -,-   | -                                       |             |             |
|                  | 10-05            | puni             | 40,0       | 1   |     |     |         |           |        |          |      |       |       |                                         |             |             |
| Nr               | Kommentar        | Gruppe           | LAT<br>N   | DC  | DT  | MM  | KT/KI   | Cmet<br>N | d(p)   | DI       | Abar | Adiv  | Aatm  | Agr                                     | Refl<br>Ant | Lw/Ln       |
|                  |                  |                  | dB(A)      | dB  | dB  | dB  | dB      | dB        | m      | dB       | dB   | dB    | dB    | dB                                      | dB          | dB(A        |
| WEA 01           | WEA 01           | WEA_ZB           | 38,5       | 0,0 | 0,0 | 0   | 0       | 0         | 919,1  | 0        | 0,0  | 70,3  | 2,6   | -3,0                                    | 33,2        | 106,        |
| WEA 02           | WEA 02           | WEA_ZB           | 33,7       | 0,0 | 0,0 | 0   | 0       | 0         | 1281,7 | 0        | 0,0  | 73,1  | 3,3   | -3,0                                    | 22,7        | 106,        |
| WEA 03           | WEA 03           | WEA_ZB           | 29,7       | 0,0 | 0,0 | 0   | 0       | 0         | 1759,4 | 0        | 0,0  | 75,9  | 4,2   | -3,0                                    | -           | 106,        |
|                  |                  |                  |            | 1   | 0.0 | _   | 0       | 0         | 1714,1 | 0        | 0,0  | 75,7  | 4,1   | -3,0                                    | -           | 106,        |
| WEA 04           | WEA 04           | WEA_ZB           | 30,0       | 0,0 | 0,0 | 0   |         |           |        |          |      | 11000 | 10.00 |                                         |             |             |
| WEA 04<br>WEA 05 | WEA 04<br>WEA 05 | WEA_ZB<br>WEA_ZB | 30,0       | 0,0 | 0,0 | 0   | 0       | 0         | 1291,6 | 0        | 0,0  | 73,2  | 3,3   | -3,0                                    | -           | 106,        |

Gutachten-Nr.: 114 0614 18R-1

Projekt:



|                                                                                                   | 10-06                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                              |                                               |                                                                                                                   |                                             |                                                             |                                                                                        |                                                                       |                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nr                                                                                                | Kommentar                                                                                                                                                             | Gruppe                                                                                                                                                                                                                        | LAT<br>N                                                                                                  | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DT                                           | MM                                         | KT/KI                                        | Cmet                                          | d(p)                                                                                                              | DI                                          | Abar                                                        | Adiv                                                                                   | Aatm                                                                  | Agr                                                                                     | Refl                                                     | Lw/Ln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MEA O4                                                                                            | The second of                                                                                                                                                         |                                                                                                                                                                                                                               | dB(A)                                                                                                     | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                           | dB                                         | dB                                           | dB                                            | m                                                                                                                 | dB                                          | dB                                                          | dB                                                                                     | dB                                                                    | dB                                                                                      | Ant<br>dB                                                | dB(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WEA 01                                                                                            | WEA 01                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 33,0                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1322,3                                                                                                            | 0                                           | 0,0                                                         | 73,4                                                                                   | 3,4                                                                   | -3,0                                                                                    | -                                                        | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WEA 02<br>WEA 03                                                                                  | WEA 02                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 30,4                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1653,6                                                                                                            | 0                                           | 0,0                                                         | 75,4                                                                                   | 4,0                                                                   | -3,0                                                                                    | -                                                        | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                   | WEA 03                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 27,6                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 2106,8                                                                                                            | 0                                           | 0,0                                                         | 77,5                                                                                   | 4,8                                                                   | -3,0                                                                                    | -                                                        | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WEA 04                                                                                            | WEA 04                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 28,0                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 2025,4                                                                                                            | 0                                           | 0,0                                                         | 77,1                                                                                   | 4,6                                                                   | -3,0                                                                                    | -                                                        | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WEA 05                                                                                            | WEA 05                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 31,1                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1557,3                                                                                                            | 0                                           | 0,0                                                         | 74,8                                                                                   | 3,8                                                                   | -3,0                                                                                    |                                                          | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                   |                                                                                                                                                                       | Sum                                                                                                                                                                                                                           | 37,5                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                              |                                               |                                                                                                                   |                                             |                                                             |                                                                                        |                                                                       |                                                                                         |                                                          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                   | 10-07                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                              |                                               |                                                                                                                   |                                             |                                                             |                                                                                        |                                                                       |                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nr                                                                                                | Kommentar                                                                                                                                                             | Gruppe                                                                                                                                                                                                                        | LAT                                                                                                       | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DT                                           | MM                                         | KT/KI                                        | Cmet                                          | d(p)                                                                                                              | DI                                          | Abar                                                        | Adiv                                                                                   | Aatm                                                                  | 1 4                                                                                     | D-fl                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                   |                                                                                                                                                                       |                                                                                                                                                                                                                               | N<br>dB(A)                                                                                                | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                           | dB                                         | dB                                           | N<br>dB                                       | m m                                                                                                               | dB                                          | dB                                                          | dB                                                                                     | dB                                                                    | Agr<br>dB                                                                               | Refl<br>Ant<br>dB                                        | Lw/Ln<br>N<br>dB(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VEA 01                                                                                            | WEA 01                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 32,9                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1331,8                                                                                                            | 0                                           | 0,0                                                         | 73,5                                                                                   | 3,4                                                                   | -3,0                                                                                    | -                                                        | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VEA 02                                                                                            | WEA 02                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 31,3                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1642,2                                                                                                            | 0                                           | 0,0                                                         | 75,3                                                                                   | 4,0                                                                   | -3,0                                                                                    | 23,3                                                     | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VEA 03                                                                                            | WEA 03                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 27,7                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 2086,2                                                                                                            | 0                                           | 0,0                                                         | 77,4                                                                                   | 4,7                                                                   | -3,0                                                                                    | -                                                        | 106,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VEA 04                                                                                            | WEA 04                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 28,3                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1996,3                                                                                                            | 0                                           | 0,0                                                         | 77,0                                                                                   | 4,6                                                                   | -3,0                                                                                    | 7,3                                                      | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VEA 05                                                                                            | WEA 05                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 31,4                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1521,1                                                                                                            | 0                                           | 0,0                                                         | 74,6                                                                                   | 3,7                                                                   | -3,0                                                                                    | -                                                        | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                   |                                                                                                                                                                       | Sum                                                                                                                                                                                                                           | 37,7                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                              |                                               | ,                                                                                                                 | -                                           | 0,0                                                         | 14,0                                                                                   | 3,7                                                                   | -5,0                                                                                    | <u> </u>                                                 | 100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                   | 10-08                                                                                                                                                                 |                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                              |                                               |                                                                                                                   |                                             |                                                             |                                                                                        |                                                                       |                                                                                         |                                                          | · P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lr                                                                                                | Kommentar                                                                                                                                                             | Gruppe                                                                                                                                                                                                                        | LAT<br>N                                                                                                  | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DT                                           | MM                                         | KT/KI                                        | Cmet<br>N                                     | d(p)                                                                                                              | DI                                          | Abar                                                        | Adiv                                                                                   | Aatm                                                                  | Agr                                                                                     | Refl<br>Ant                                              | Lw/Lm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                   |                                                                                                                                                                       | Library Co.                                                                                                                                                                                                                   | dB(A)                                                                                                     | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                           | dB                                         | dB                                           | dB                                            | m                                                                                                                 | dB                                          | dB                                                          | dB                                                                                     | dB                                                                    | dB                                                                                      | dB                                                       | dB(A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| /EA 01                                                                                            | WEA 01                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 33,2                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1303,3                                                                                                            | 0                                           | 0,0                                                         | 73,3                                                                                   | 3,3                                                                   | -3,0                                                                                    | -                                                        | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 02                                                                                             | WEA 02                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 32,8                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1608,3                                                                                                            | 0                                           | 0,0                                                         | 75,1                                                                                   | 3,9                                                                   | -3,0                                                                                    | 28,6                                                     | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 03                                                                                             | WEA 03                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 29,0                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 2051,1                                                                                                            | 0                                           | 0,0                                                         | 77,2                                                                                   | 4,7                                                                   | -3,0                                                                                    | 22,5                                                     | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /EA 04                                                                                            | WEA 04                                                                                                                                                                | WEA_ZB                                                                                                                                                                                                                        | 29,1                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1960,6                                                                                                            | 0                                           | 0,0                                                         | 76,8                                                                                   | 4,5                                                                   | -3,0                                                                                    | 20,6                                                     | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                   |                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                            |                                              |                                               |                                                                                                                   |                                             |                                                             |                                                                                        |                                                                       |                                                                                         |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /EA 05                                                                                            | WEA 05                                                                                                                                                                | WEA_ZB<br>Sum                                                                                                                                                                                                                 | 31,7<br>38,5                                                                                              | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0                                          | 0                                          | 0                                            | 0                                             | 1485,5                                                                                                            | 0                                           | 0,0                                                         | 74,4                                                                                   | 3,7                                                                   | -3,0                                                                                    | -                                                        | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                   | IO-09 Kommentar                                                                                                                                                       |                                                                                                                                                                                                                               | 38,5                                                                                                      | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,0<br>DT                                    | O<br>MM                                    | 0<br>KT/KI                                   | 0<br>Cmet                                     | 100,900 8.2                                                                                                       | 500                                         |                                                             |                                                                                        |                                                                       |                                                                                         | Refl                                                     | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r                                                                                                 | IO-09<br>Kommentar                                                                                                                                                    | Sum                                                                                                                                                                                                                           | LAT<br>N<br>dB(A)                                                                                         | DC<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DT<br>dB                                     | MM<br>dB                                   | KT/KI                                        | Cmet<br>N<br>dB                               | 1485,5<br>d(p)<br>m                                                                                               | DI dB                                       | 0,0<br>Abar                                                 | 74,4 Adiv                                                                              | 3,7 Aatm dB                                                           | -3,0<br>Agr<br>dB                                                                       | -                                                        | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| r<br>EA 01                                                                                        | IO-09<br>Kommentar                                                                                                                                                    | Sum Gruppe WEA_ZB                                                                                                                                                                                                             | 38,5<br>LAT<br>N<br>dB(A)<br>33,4                                                                         | DC<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DT<br>dB                                     | MM<br>dB                                   | KT/KI<br>dB<br>0                             | Cmet<br>N<br>dB                               | d(p)<br>m<br>1275,0                                                                                               | DI dB                                       | O,0  Abar  dB  O,0                                          | 74,4<br>Adiv<br>dB<br>73,1                                                             | Aatm<br>dB<br>3,3                                                     | -3,0<br>Agr<br>dB<br>-3,0                                                               | Refl<br>Ant                                              | Lw/Lm<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| r<br>EA 01<br>EA 02                                                                               | IO-09<br>Kommentar<br>WEA 01<br>WEA 02                                                                                                                                | Sum  Gruppe  WEA_ZB  WEA_ZB                                                                                                                                                                                                   | 38,5<br>LAT<br>N<br>dB(A)<br>33,4<br>32,1                                                                 | DC dB 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DT dB 0,0 0,0                                | MM<br>dB<br>0                              | KT/KI<br>dB<br>0                             | Cmet<br>N<br>dB                               | d(p)<br>m<br>1275,0<br>1508,9                                                                                     | 0<br>DI<br>dB<br>0                          | 0,0<br>Abar<br>dB<br>0,0                                    | 74,4 Adiv dB 73,1 74,6                                                                 | 3,7  Aatm dB 3,3 3,7                                                  | -3,0<br>Agr<br>dB<br>-3,0<br>-3,0                                                       | Refl<br>Ant<br>dB                                        | Lw/Lm<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EA 01<br>EA 02<br>EA 03                                                                           | IO-09<br>Kommentar<br>WEA 01<br>WEA 02<br>WEA 03                                                                                                                      | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                                                                                                           | 38,5  LAT N dB(A) 33,4 32,1 28,7                                                                          | DC dB 0,0 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DT dB 0,0 0,0 0,0                            | MM dB 0 0 0                                | KT/KI<br>dB<br>0<br>0                        | 0<br>Cmet<br>N<br>dB<br>0                     | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6                                                                           | 0 DI dB 0 0 0                               | 0,0<br>Abar<br>dB<br>0,0<br>0,0                             | 74,4 Adiv dB 73,1 74,6 76,7                                                            | 3,7 Aatm dB 3,3 3,7 4,4                                               | -3,0<br>Agr<br>dB<br>-3,0                                                               | Refi<br>Ant<br>dB                                        | Lw/Lm<br>N<br>dB(A)<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| EA 01<br>EA 02<br>EA 03<br>EA 04                                                                  | IO-09<br>Kommentar<br>WEA 01<br>WEA 02<br>WEA 03<br>WEA 04                                                                                                            | Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                                                                                                        | 38,5  LAT N dB(A) 33,4 32,1 28,7 29,4                                                                     | DC dB 0,0 0,0 0,0 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DT dB 0,0 0,0 0,0 0,0 0,0                    | MM dB 0 0 0 0 0 0 0                        | KT/KI<br>dB<br>0<br>0                        | 0<br>Cmet<br>N<br>dB<br>0<br>0                | 1485,5<br>d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1                                                       | 0 DI dB 0 0 0 0 0                           | 0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0                      | 74,4  Adiv dB 73,1 74,6 76,7 76,1                                                      | 3,7  Aatm dB 3,3 3,7                                                  | -3,0<br>Agr<br>dB<br>-3,0<br>-3,0                                                       | Refl<br>Ant<br>dB                                        | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 01<br>EA 02<br>EA 03<br>EA 04                                                                  | IO-09<br>Kommentar<br>WEA 01<br>WEA 02<br>WEA 03                                                                                                                      | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                                                                                           | 38,5  LAT N dB(A) 33,4 32,1 28,7 29,4 33,0                                                                | DC dB 0,0 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DT dB 0,0 0,0 0,0                            | MM dB 0 0 0                                | KT/KI<br>dB<br>0<br>0                        | 0<br>Cmet<br>N<br>dB<br>0                     | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6                                                                           | 0 DI dB 0 0 0                               | 0,0<br>Abar<br>dB<br>0,0<br>0,0                             | 74,4 Adiv dB 73,1 74,6 76,7                                                            | 3,7 Aatm dB 3,3 3,7 4,4                                               | -3,0<br>Agr<br>dB<br>-3,0<br>-3,0<br>-3,0                                               | Refl<br>Ant<br>dB<br>-<br>23,5                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /EA 01<br>/EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05                                          | IO-09<br>Kommentar<br>WEA 01<br>WEA 02<br>WEA 03<br>WEA 04                                                                                                            | Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                                                                                                        | 38,5  LAT N dB(A) 33,4 32,1 28,7 29,4                                                                     | DC dB 0,0 0,0 0,0 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DT dB 0,0 0,0 0,0 0,0 0,0                    | MM dB 0 0 0 0 0 0 0                        | KT/KI<br>dB<br>0<br>0                        | 0<br>Cmet<br>N<br>dB<br>0<br>0                | 1485,5<br>d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1                                                       | 0 DI dB 0 0 0 0 0                           | 0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0                      | 74,4  Adiv dB 73,1 74,6 76,7 76,1                                                      | 3,7 Aatm dB 3,3 3,7 4,4 4,3                                           | -3,0<br>Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                       | Refl<br>Ant<br>dB<br>-<br>23,5                           | Lw/Lmh<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EA 01<br>EA 02<br>EA 03<br>EA 04<br>EA 05                                                         | IO-09<br>Kommentar<br>WEA 01<br>WEA 02<br>WEA 03<br>WEA 04                                                                                                            | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                                                                                           | 38,5  LAT N dB(A) 33,4 32,1 28,7 29,4 33,0                                                                | DC dB 0,0 0,0 0,0 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DT dB 0,0 0,0 0,0 0,0 0,0                    | MM dB 0 0 0 0 0 0 0 0 0                    | KT/KI<br>dB<br>0<br>0<br>0                   | 0                                             | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2                                                       | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | 0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0<br>0,0               | 74,4<br>Adiv<br>dB<br>73,1<br>74,6<br>76,7<br>76,1<br>73,4                             | 3,7<br>dB<br>3,3<br>3,7<br>4,4<br>4,3<br>3,4                          | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                       | Refl<br>Ant<br>dB<br>-<br>23,5                           | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FA 01<br>EA 02<br>EA 03<br>EA 04<br>EA 05                                                         | IO-09 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar                                                                                                  | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe                                                                                                                                                                      | 38,5  LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7                                                           | DC dB 0,0 0,0 0,0 0,0 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DT<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0  | MM dB 0 0 0 0 0 0 0                        | KT/KI<br>dB<br>0<br>0                        | 0<br>Cmet<br>N<br>dB<br>0<br>0                | 1485,5<br>d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1                                                       | 0 DI dB 0 0 0 0 0                           | 0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0                      | 74,4  Adiv dB 73,1 74,6 76,7 76,1                                                      | 3,7 Aatm dB 3,3 3,7 4,4 4,3                                           | -3,0<br>Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                       | Refl<br>Ant<br>dB<br>-<br>23,5                           | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EA 01<br>EA 02<br>EA 03<br>EA 04<br>EA 05                                                         | IO-09 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar                                                                                                  | Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe                                                                                                                                                                           | 38,5  LAT N dB(A) 33,4 28,7 29,4 33,0 38,7                                                                | DC dB 0,0 0,0 0,0 0,0 0,0 dB 0 | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI  dB  0  0  0  0  KT/KI                 | 0                                             | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2                                                       | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 74,4  Adiv  dB  73,1  74,6  76,7  76,1  73,4                                           | 3,7  Aatm dB 3,3 3,7 4,4 4,3 3,4                                      | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB                                 | Refi<br>Ant<br>dB<br>-<br>23,5<br>-<br>-                 | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FA 01 FEA 02 FEA 03 FEA 04 FEA 05 FEA 05 FEA 07                                                   | IO-09 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar  WEA 01 WEA 01                                                                                   | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe  WEA_ZB                                                                                                                                                              | 38,5  LAT N B(A) 33,4 32,1 28,7 29,4 33,0 38,7                                                            | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 DT dB          | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI  dB  0  0  0  0  KT/KI  dB             | 0                                             | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m                                          | 0 DI dB 0 0 0 0 0 DI dB                     | Abar<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB                                        | 3,7  Aatm  dB  3,3  3,7  4,4  4,3  3,4  Aatm  dB  3,8                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                    | Refil Ant dB Refil Ant dB                                | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FA 01 FEA 02 FEA 03 FEA 04 FEA 05 FEA 05 FEA 07  | IO-09 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar  WEA 01 WEA 02 WEA 03                                                                            | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                                                              | 38,5  LAT N B(A) 33,4 32,1 28,7 29,4 33,0 38,7                                                            | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m                                          | 0 DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Abar<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9                                   | 3,7  dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2                          | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0<br>-3,0                 | Refi Ant dB                                              | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| F  FEA 01  FEA 02  FEA 03  FEA 04  FEA 05  FEA 01  FEA 01  FEA 02  FEA 03  FEA 04                 | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 01  WEA 02  WEA 03  WEA 04                                                    | Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                    | 38,5  LAT N B(A) 33,4 32,1 28,7 29,4 33,0 38,7                                                            | DC dB 0,0 0,0 0,0 0,0 dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DT dB 0,0 0,0 0,0 DT dB 0,0 0,0 0,0          | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m<br>1568,0<br>1754,2                      | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6                         | 3,7  dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8                      | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                              | Lw/Lme N dB(A) 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FA 01 FEA 02 FEA 03 FEA 04 FEA 05 FEA 05 FEA 07  | IO-09 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar  WEA 01 WEA 02 WEA 03                                                                            | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                      | 38,5  LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7  LAT N dB(A) 31,1 29,8 27,5 28,3 31,8                     | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m<br>1568,0<br>1754,2<br>2128,6            | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6 76,9                    | 3,7  dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5                  | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0               | Refi Ant dB                                              | Lw/LmE N dB(A) 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106 |
| F EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05                                    | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 01  WEA 02  WEA 03  WEA 04                                                    | Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                    | 38,5  LAT N B(A) 33,4 32,1 28,7 29,4 33,0 38,7  LAT N A(B(A) 31,1 29,8 27,5 28,3                          | DC dB 0,0 0,0 0,0 0,0 dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m<br>1568,0<br>1754,2<br>22126,6<br>1982,6 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6                         | 3,7  dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8                      | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                              | Lw/Lme N dB(A) 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05                                      | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 01  WEA 03  WEA 04  WEA 05                                                    | Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB Sum                                                                                                                                                | 38,5  LAT N B(A) 32,1 28,7 29,4 33,0 38,7  LAT N B(A) 31,1 29,5 27,5 26,3 31,8 37,0                       | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m<br>1568,0<br>1754,2<br>22126,6<br>1982,6 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6 76,9                    | 3,7  dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5                  | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0               | Refl Ant dB                                              | Lw/Lm N N 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 10 |
| EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05                                      | WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar  WEA 01 WEA 01 WEA 02 WEA 03 WEA 04 WEA 01 WEA 01 WEA 02 WEA 03 WEA 03                                            | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB                                                                                                      | LAT N B(A) 33,4 32,1 28,7 29,4 33,0 38,7 LAT N B(A) 31,1 29,8 27,5 26,3 31,8 37,0 LAT N                   | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MMM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p)<br>m<br>1275,0<br>1508,9<br>1921,6<br>1808,1<br>1317,2<br>d(p)<br>m<br>1568,0<br>1754,2<br>22126,6<br>1982,6 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6 76,9                    | 3,7  dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5                  | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0               | Refi Ant dB                                              | Lw/Lm/Lm/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lm/Lw/Lw/Lw/Lw/Lw/Lw/Lw/Lw/Lw/Lw/Lw/Lw/Lw/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EA 01<br>EA 02<br>EA 03<br>EA 04<br>EA 05<br>EA 01<br>EA 02<br>EA 02<br>EA 03<br>EA 04            | IO-09 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-10 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-11 Kommentar                                             | Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB Sum  Gruppe  Sum  Gruppe  WEA_ZB Gruppe  Gruppe                                     | LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7 LAT N dB(A) 31,1 29,8 27,5 26,3 31,8 37,0 LAT N dB(A)           | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MMM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p) m 1275,0 1508,9 1921,6 1808,1 1317,2 d(p) m 1568,0 1754,2 2128,6 1982,6 1472,0                               | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6 76,9 74,4               | Aatm dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5 3,7              | Agr<br>dB<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0               | Refl Ant dB                                              | Lw/Lm N N 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 10 |
| EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05                                      | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 03  WEA 04  WEA 05  IO-11  Kommentar                                          | Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB | LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7 LAT N dB(A) 31,1 29,5 26,3 31,8 37,0 LAT N dB(A) 30,7           | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p) m 1275,0 1508,9 1921,6 1808,1 1317,2 d(p) m 1568,0 1754,2 2128,6 1982,6 1472,0                               | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6 76,9 74,4  Adiv               | Aatm dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5 3,7              | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0                                          | Refl Ant dB Refl Ant | Lw/Lm N N 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 10 |
| EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05                                      | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 01  KOMMENTAR  WEA 01  WEA 01  WEA 01  WEA 01  WEA 01 | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe  WEA_ZB      | LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7 LAT N dB(A) 31,1 29,8 27,5 28,3 31,8 37,0 LAT N dB(A) 30,7 29,4 | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MMM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p) m 1275,0 1508,9 1921,6 1808,1 1317,2 d(p) m 1568,0 1754,2 2128,6 1982,6 1472,0 d(p) m                        | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 77,6 76,9 74,4  Adiv dB                 | Aatm dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5 3,7  Aatm dB     | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0                                          | Refl Ant dB                                              | Lw/Lm/N N GB(A) 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 10 |
| EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 04 EA 05 | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-11  Kommentar                                  | Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB                                         | LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7 LAT N dB(A) 31,1 29,8 27,5 28,3 37,0 LAT N dB(A) 30,7 29,4 27,9 | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MMM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p) m 1275,0 1508,9 1921,6 1808,1 1317,2  d(p) m 1568,0 1754,2 22126,6 1982,6 1472,0  d(p) m 1621,9              | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 75,9 77,6 76,9 74,4  Adiv dB 75,2 | Aatm dB 3,3 3,7 4,4 4,3 3,4  Aatm dB 3,8 4,2 4,8 4,5 3,7  Aatm dB 3,9 | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0                                          | Refl Ant dB                                              | Lw/Lm N N GB(A) 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 10 |
| EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 02 EA 03 EA 04 EA 05  EA 01 EA 03 EA 04 EA 05             | IO-09  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 05  IO-10  Kommentar  WEA 01  WEA 02  WEA 03  WEA 04  WEA 01  KOMMENTAR  WEA 01  WEA 01  WEA 01  WEA 01  WEA 01 | Sum  Gruppe  WEA_ZB  WEA_ZB  WEA_ZB  WEA_ZB  Sum  Gruppe  WEA_ZB      | LAT N dB(A) 33,4 32,1 28,7 29,4 33,0 38,7 LAT N dB(A) 31,1 29,8 27,5 28,3 31,8 37,0 LAT N dB(A) 30,7 29,4 | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DT dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0, | MMM dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | KT/KI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cmet N dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | d(p) m 1275,0 1508,9 1921,6 1808,1 1317,2  d(p) m 1568,0 1754,2 2128,6 1472,0  d(p) m 1621,9 1812,8               | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   | Abar dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,              | 74,4  Adiv dB 73,1 74,6 76,7 76,1 73,4  Adiv dB 74,9 77,6 76,9 74,4  Adiv dB 75,2 76,2 | Aatm dB 3,8 4,2 4,8 4,5 3,7 Aatm dB 3,9 4,3                           | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0                                          | Refl Ant dB Refl Ant dB                                  | Lw/Lm N GB(A) 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106,8 106, |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                            |                                                                                             |                                       |                                                                                                                                      |                                                 |                                                                                       |                                                                                                                                          |                                                                                                                                   |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                    | LAT N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DT                                                                                           | ММ                                                         | KT/KI                                                                                       | Cmet<br>N                             | d(p)                                                                                                                                 | DI<br>dB                                        | Abar<br>dB                                                                            | Adiv                                                                                                                                     | Aatm<br>dB                                                                                                                        | Agr<br>dB                                                    | Refl<br>Ant<br>dB                                                                                           | Lw/LmE<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | State Section                                                                                                                                                                                                                                                                                                                                                                                                                             | dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB                                                                                           | dB                                                         | dB                                                                                          | dB                                    | m                                                                                                                                    |                                                 |                                                                                       |                                                                                                                                          |                                                                                                                                   | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 1758,5                                                                                                                               | 0                                               | 0,0                                                                                   | 75,9                                                                                                                                     | 4,2<br>4,6                                                                                                                        | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 1986,0                                                                                                                               | 0                                               | 0,0                                                                                   | 77,0                                                                                                                                     | -                                                                                                                                 | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2375,0                                                                                                                               | 0                                               | 0,0                                                                                   | 78,5                                                                                                                                     | 5,2                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2234,7                                                                                                                               | 0                                               | 0,0                                                                                   | 78,0                                                                                                                                     | 5,0                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 1725,4                                                                                                                               | 0                                               | 0,0                                                                                   | 75,7                                                                                                                                     | 4,1                                                                                                                               | -3,0                                                         |                                                                                                             | 100,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                            |                                                                                             |                                       |                                                                                                                                      |                                                 |                                                                                       |                                                                                                                                          |                                                                                                                                   |                                                              | 7-11                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                            |                                                                                             |                                       |                                                                                                                                      |                                                 |                                                                                       |                                                                                                                                          |                                                                                                                                   |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | was a self or                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DT                                                                                           |                                                            | KT/KI                                                                                       | Cmet                                  | d(p)                                                                                                                                 | DI                                              | Abar                                                                                  | Adiv                                                                                                                                     | Aatm                                                                                                                              | Agr                                                          | Refl                                                                                                        | Lw/LmE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                    | N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DC dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DT<br>dB                                                                                     | MM<br>dB                                                   | dB                                                                                          | N<br>dB                               | m m                                                                                                                                  | dB                                              | dB                                                                                    | dB                                                                                                                                       | dB                                                                                                                                | dB                                                           | Ant<br>dB                                                                                                   | N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2971,6                                                                                                                               | 0                                               | 0,0                                                                                   | 80,5                                                                                                                                     | 6,0                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Committee - Comm | WEA ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2414,4                                                                                                                               | 0                                               | 0,0                                                                                   | 78,6                                                                                                                                     | 5,2                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 1944,4                                                                                                                               | 0                                               | 0,0                                                                                   | 76,8                                                                                                                                     | 4,5                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 1795,7                                                                                                                               | 0                                               | 0,0                                                                                   | 76,1                                                                                                                                     | 4,2                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /EA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2099,4                                                                                                                               | 0                                               | 0,0                                                                                   | 77,4                                                                                                                                     | 4,7                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /EA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB<br>Sum                                                                                                                                                                                                                                                                                                                                                                                                                             | 34,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | -                                                                                           |                                       | 2000).                                                                                                                               |                                                 |                                                                                       |                                                                                                                                          |                                                                                                                                   |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 A V                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | 1777                                                       |                                                                                             |                                       |                                                                                                                                      |                                                 |                                                                                       |                                                                                                                                          |                                                                                                                                   |                                                              |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                            | 107.001                                                                                     | 04                                    | 4/5\                                                                                                                                 | DI                                              | Abar                                                                                  | Adiv                                                                                                                                     | Aatm                                                                                                                              | Agr                                                          | Refl                                                                                                        | Lw/LmE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                    | LAT<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DT                                                                                           | MM                                                         | KT/KI                                                                                       | Cmet<br>N                             | d(p)                                                                                                                                 | Di                                              |                                                                                       | 11111111                                                                                                                                 |                                                                                                                                   |                                                              | Ant                                                                                                         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                           | dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB                                                                                           | dB                                                         | dB                                                                                          | dB                                    | m                                                                                                                                    | dB                                              | dB                                                                                    | dB                                                                                                                                       | dB                                                                                                                                | dB                                                           | dB                                                                                                          | dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VEA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 3428,1                                                                                                                               | 0                                               | 0,0                                                                                   | 81,7                                                                                                                                     | 6,6                                                                                                                               | -3,0                                                         | -                                                                                                           | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VEA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2865,1                                                                                                                               | 0                                               | 0,0                                                                                   | 80,1                                                                                                                                     | 5,9                                                                                                                               | -3,0                                                         | •                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Albert 1 Al-                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | -                                                          | -                                                                                           |                                       | 2349,5                                                                                                                               | 0                                               | 0,0                                                                                   | 78,4                                                                                                                                     | 5,1                                                                                                                               | -3,0                                                         | -                                                                                                           | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MEV U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA 7R                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2349,5                                                                                                                               | 0                                               | 0,0                                                                                   | 10,1                                                                                                                                     | -1.                                                                                                                               | 7.00                                                         |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          |                                                            |                                                                                             | 100                                   |                                                                                                                                      | 0                                               | 0,0                                                                                   | 78,2                                                                                                                                     | 5,0                                                                                                                               | -3,0                                                         |                                                                                                             | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VEA 03<br>VEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0                                                                                           | 0                                     | 2294,6<br>2704,0                                                                                                                     |                                                 | 1/40                                                                                  |                                                                                                                                          |                                                                                                                                   | 7.00                                                         |                                                                                                             | 106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VEA 03<br>VEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEA 04<br>WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                            |                                                                                             | 100                                   | 2294,6                                                                                                                               | 0                                               | 0,0                                                                                   | 78,2                                                                                                                                     | 5,0<br>5,7                                                                                                                        | -3,0<br>-3,0                                                 |                                                                                                             | 106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VEA 03<br>VEA 04<br>VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB<br>WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                                          | 26,5<br>24,5<br>31,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0<br>0,0<br>DT                                                                             | 0<br>0                                                     | 0<br>0<br>KT/KI                                                                             | 0<br>0                                | 2294,6<br>2704,0                                                                                                                     | 0<br>0                                          | 0,0<br>0,0<br>Abar                                                                    | 78,2<br>79,6                                                                                                                             | 5,0<br>5,7                                                                                                                        | -3,0<br>-3,0<br>Agr                                          | Refl Ant                                                                                                    | 106,8<br>Lw/Lml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| VEA 03<br>VEA 04<br>VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04<br>WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEA_ZB<br>WEA_ZB<br>Sum                                                                                                                                                                                                                                                                                                                                                                                                                   | 26,5<br>24,5<br>31,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0                                                                                          | 0                                                          | 0<br>0<br>KT/KI                                                                             | 0<br>0<br>Cmet<br>N<br>dB             | 2294,6<br>2704,0<br>d(p)                                                                                                             | 0<br>0<br>DI<br>dB                              | 0,0<br>0,0<br>Abar                                                                    | 78,2<br>79,6<br>Adiv                                                                                                                     | 5,0<br>5,7<br>Aatm                                                                                                                | -3,0<br>-3,0<br>Agr<br>dB                                    | Refl<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VEA 03<br>VEA 04<br>VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04 WEA 05  IO-15 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WEA_ZB<br>WEA_ZB<br>Sum                                                                                                                                                                                                                                                                                                                                                                                                                   | 26,5<br>24,5<br>31,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0<br>0,0<br>DT                                                                             | 0<br>0                                                     | 0<br>0<br>KT/KI                                                                             | 0<br>0                                | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4                                                                                              | 0 0 0 DI dB 0                                   | 0,0<br>0,0<br>Abar<br>dB                                                              | 78,2<br>79,6<br>Adiv<br>dB<br>80,2                                                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9                                                                                                   | -3,0<br>-3,0<br>Agr<br>dB<br>-3,0                            | Refi<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VEA 03<br>VEA 04<br>VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04 WEA 05  IO-15 Kommentar WEA 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA_ZB WEA_ZB Sum Gruppe WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                           | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>DC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0,0<br>0,0<br>DT                                                                             | 0<br>0<br>MM<br>dB                                         | 0<br>0<br>KT/KI                                                                             | 0<br>0<br>Cmet<br>N<br>dB             | 2294,6<br>2704,0<br>d(p)                                                                                                             | 0<br>0<br>DI<br>dB                              | 0,0<br>0,0<br>Abar<br>dB<br>0,0                                                       | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7                                                                                               | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3                                                                                            | -3,0<br>-3,0<br>Agr<br>dB<br>-3,0<br>-3,0                    | Refi<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VEA 03<br>VEA 04<br>VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04 WEA 05  IO - 15 Kommentar  WEA 01 WEA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEA_ZB WEA_ZB Sum Gruppe WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                                    | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>DC<br>dB<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,0<br>0,0<br>DT<br>dB<br>0,0                                                                | 0<br>0<br>MM<br>dB                                         | O O O O O O O O O O O O O O O O O O O                                                       | O O O O O O O O O O O O O O O O O O O | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4                                                                                              | 0 0 0 DI dB 0                                   | 0,0<br>0,0<br>Abar<br>dB                                                              | 78,2<br>79,6<br>Adiv<br>dB<br>80,2                                                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6                                                                                     | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                 | Refi<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VEA 03 VEA 04 VEA 05  Nr  WEA 01 WEA 02 WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WEA 04 WEA 05  IO - 15 Kommentar  WEA 01 WEA 02 WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                                    | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0<br>0,0<br>DC<br>dB<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0                                                         | 0<br>0<br>0<br>MM<br>dB<br>0                               | 0<br>0<br>0<br>KT/KI<br>dB<br>0                                                             | Cmet<br>N<br>dB                       | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5                                                                                    | 0<br>0<br>0<br>DI<br>dB<br>0                    | 0,0<br>0,0<br>Abar<br>dB<br>0,0                                                       | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7                                                                                               | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3                                                                                            | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refi<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VEA 03 VEA 04 VEA 05  Nr  NEA 01 NEA 02 NEA 03 NEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 04 WEA 05  IO -15  Kommentar  WEA 01 WEA 02 WEA 03 WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                             | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0                                                         | 0<br>0<br>0<br>MM<br>dB<br>0<br>0                          | 0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0                                                        | 0<br>0<br>0<br>Cmet<br>N<br>dB<br>0   | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2                                                                          | 0<br>0<br>0<br>0<br>dB<br>0<br>0                | 0,0<br>0,0<br>Abar<br>dB<br>0,0<br>0,0                                                | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0                                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6                                                                                     | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                 | Refl<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VEA 03<br>VEA 04<br>VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04 WEA 05  IO - 15 Kommentar  WEA 01 WEA 02 WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                      | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0<br>0,0<br>DC<br>dB<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0                                                         | 0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0                     | 0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7                                                                | 0<br>0<br>0<br>1<br>dB<br>0<br>0<br>0           | 0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0                                  | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0                                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8                                                                              | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VEA 03 VEA 04 VEA 05  Nr  WEA 01 WEA 02 WEA 03 WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 04 WEA 05  IO -15  Kommentar  WEA 01 WEA 02 WEA 03 WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                             | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0                                                         | 0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0                     | 0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7                                                                | 0<br>0<br>0<br>1<br>dB<br>0<br>0<br>0           | 0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0                                  | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0                                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8                                                                              | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| VEA 03 VEA 04 VEA 05  Nr  NEA 01 NEA 02 NEA 03 NEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 04 WEA 05  IO -15  Kommentar  WEA 01 WEA 02 WEA 03 WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                      | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0                                                         | 0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0                     | 0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2                                                      | 0<br>0<br>0<br>dB<br>0<br>0<br>0                | 0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                     | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6                                                                       | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VEA 03 VEA 04 VEA 05  VEA 05  VEA 05  VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                                                                                                                                                                                                                                                                                                                                                      | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0                                                         | 0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0                     | 0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7                                                                | 0<br>0<br>0<br>1<br>dB<br>0<br>0<br>0           | 0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0                                  | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0                                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8                                                                              | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB<br>-<br>-<br>-                                                                            | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,6<br>106,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VEA 03 VEA 04 VEA 05  Nr  NEA 01 NEA 02 NEA 03 NEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum                                                                                                                                                                                                                                                                                                                                                                  | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>26,2<br>27,2<br>24,6<br>33,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,0<br>0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0<br>0,0<br>0,0                                    | 0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2                                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | 0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0             | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6                                                                       | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB                                                                                           | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| VEA 03 VEA 04 VEA 05  NF  NEA 01 NEA 02 NEA 03 NEA 04 NEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEA 04 WEA 05  IO - 15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO - 16 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe                                                                                                                                                                                                                                                                                                                                                                 | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>26,2<br>27,2<br>24,6<br>33,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                            | 0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2                                                      | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>d,0<br>dB               | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6                                                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6                                                                       | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,6<br>106,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VEA 03 VEA 04 VEA 05  Nr  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WEA_ZB                                                                                                                                                                                                                                                                                                                                                | 26,5<br>24,5<br>31,9<br>LAT<br>NB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                     | 0<br>0<br>0<br>0<br>MM<br>dB<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2                                                      | 0<br>0<br>0<br>0<br>dB<br>0<br>0<br>0<br>0<br>0 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>d,0<br>dB               | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2                                                 | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB                                                         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,6<br>106,6<br>106,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VEA 03 VEA 04 VEA 05  Ir  WEA 01 NEA 02 NEA 03 NEA 04 NEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEA 04 WEA 05  IO - 15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO - 16 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEA_ZB                                                                                                                                                                                                                                                                                                                                                       | 26,5<br>24,5<br>31,9<br>LAT<br>N dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                           | MM   dB   0   0   0   0   0   0   0   0   0                | 0<br>0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0<br>0<br>0<br>0<br>0                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2                                                      | DI   dB   0   0   0   0   0   0   0   0   0     | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>dB<br>dB          | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8                                         | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,7                                           | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB<br>                                                                                       | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,8<br>106,8<br>106,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VEA 03 VEA 04 VEA 05  Nr  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB                                                                                                                                                                                                                                                                                                                                   | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | MM   dB   0   0   0   0   0   0   0   0   0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Cmet N dB                             | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2<br>d(p)<br>m<br>2898,8<br>2755,2<br>2609,0           | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>dB<br>dB          | 78,2<br>79,6<br>79,6<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>79,3                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9                                                  | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>dB<br>Refl<br>Ant<br>dB              | Lw/Lm<br>N<br>N dB(A<br>106,8<br>106,8<br>106,6<br>106,6<br>106,6<br>106,6<br>106,6<br>106,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 02 VEA 03 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 01 WEA 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WEA_ZB                                                                                                                                                                                                                                                                                                                                                              | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,9<br>24,9<br>23,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0 | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2<br>d(p)<br>m<br>2898,8<br>2755,2<br>2609,0<br>2894,1 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0 | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2                                 | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,5                                           | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A/<br>106,8<br>106,8<br>106,8<br>106,8<br>106,8<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VEA 03 VEA 04 VEA 05  Nr  WEA 01 WEA 03 WEA 03 WEA 05  Nr  WEA 01 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 01 WEA 02 WEA 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB                                                                                                                                                                                                                                                                                                                                   | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>26,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,3<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | MM   dB   0   0   0   0   0   0   0   0   0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Cmet N dB                             | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2<br>d(p)<br>m<br>2898,8<br>2755,2<br>2609,0           | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>dB<br>dB          | 78,2<br>79,6<br>79,6<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>79,3                                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9                                                  | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>dB<br>Refl<br>Ant<br>dB              | Lw/Lm<br>N<br>dB(A/<br>106,8<br>106,8<br>106,8<br>106,8<br>106,8<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WEA_ZB                                                                                                                                                                                                                                                                                                                                                              | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,9<br>24,9<br>23,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0 | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2<br>d(p)<br>m<br>2898,8<br>2755,2<br>2609,0<br>2894,1 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0 | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2                                 | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,5                                           | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,6<br>106,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEA_ZB                                                                                                                                                                                                                                                                                                                                                              | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>26,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,3<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0 | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2<br>d(p)<br>m<br>2898,8<br>2755,2<br>2609,0<br>2894,1 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0 | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2                                 | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,5                                           | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A/<br>106,8<br>106,8<br>106,6<br>106,6<br>106,6<br>106,1<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEA_ZB Sum                                                                                                                                                                                                                                                                                                                                                          | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,9<br>24,9<br>23,6<br>22,0<br>30,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                           | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2294,6<br>2704,0<br>d(p)<br>m<br>2891,4<br>2441,5<br>2000,2<br>2165,7<br>2680,2<br>d(p)<br>m<br>2898,8<br>2755,2<br>2609,0<br>2894,1 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0 | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2                                 | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,5                                           | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl<br>Ant<br>dB<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Lw/Lm<br>N<br>dB(A)<br>106,8<br>106,6<br>106,6<br>106,6<br>106,6<br>106,6<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WEA_ZB                                                                                                                                                                                                                                                                                                                                                              | 26,5<br>24,5<br>31,9<br>LAT<br>N dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N dB(A)<br>23,6<br>24,3<br>24,9<br>23,6<br>22,0<br>30,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC   dB   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | Cmet N dB                             | 2294,6 2704,0  d(p) m 2891,4 2441,5 2000,2 2165,7 2680,2  d(p) m 2898,8 2755,2 2609,0 2894,1 3293,5                                  | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                    | 78,2<br>79,6<br>79,6<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2<br>80,2<br>81,3                       | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,3<br>5,5<br>5,6                             | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0               | Refl<br>Ant<br>dB<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,8<br>106,8<br>106,1<br>106,0<br>106,1<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 02 VEA 03 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-17 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB | 26,5 24,5 31,9  LAT N dB(A) 23,7 25,8 28,2 27,2 24,6 33,2 24,9 23,6 24,3 24,9 23,6 22,0 30,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DC   dB   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | Cmet N dB                             | 2294,6 2704,0  d(p)  m 2891,4 2441,5 2000,2 2165,7 2680,2  d(p)  m 2898,8 2755,2 2609,0 2894,1 3293,5                                | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                    | 78,2<br>79,6<br>79,6<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2<br>81,3                               | 5,0 5,7  Aatm dB 5,9 5,3 4,6 4,8 5,6  Aatm dB 5,9 6,5  Aatm dB 6,5  Aatm dB                                                       | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,8<br>106,8<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 01 VEA 02 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-17 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB                                                                                                                                                                                                                    | 26,5<br>24,5<br>31,9<br>LAT<br>N dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N dB(A)<br>23,6<br>24,3<br>24,9<br>23,6<br>22,0<br>30,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DC   dB   O,0   O,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                           | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | Cmet N dB                             | 2294,6 2704,0  d(p)  m 2891,4 2441,5 2000,2 2165,7 2680,2  d(p)  m 2898,8 2755,2 2609,0 2894,1 3293,5                                | DI   dB   0   0   0   0   0   0   0   0   0     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                    | 78,2<br>79,6<br>79,6<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>80,2<br>81,3                               | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>6,5                                           | -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0                      | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,8<br>106,8<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 05 VEA 05 VEA 05 VEA 01 VEA 02 VEA 03 VEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-17 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB                                                                                                                                                                                                                    | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>24,9<br>24,9<br>25,8<br>26,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2 | DC   dB   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                           | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | Cmet N dB                             | 2294,6 2704,0  d(p)  m 2891,4 2441,5 2000,2 2165,7 2680,2  d(p)  m 2898,8 2755,2 2609,0 2894,1 3293,5  d(p)  m 3281,9 3173,7         | DI   dB   0   0   0   0   0   0   0   0   0     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                    | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,3<br>80,2<br>81,3                         | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>6,5 | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0               | Refl Ant dB                                                                                                 | Lw/Lm N N GB(A 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106 |
| VEA 03 VEA 04 VEA 05 VEA 05 VEA 01 VEA 02 VEA 03 VEA 04 VEA 05 VEA 03 VEA 04 VEA 05 VEA 06 VEA 07 VE | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-17 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEA_ZB Sum  Gruppe  WEA_ZB                                                                                                                                                                                                                          | 26,5<br>24,5<br>31,9<br>LAT<br>N dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>24,9<br>23,6<br>24,3<br>24,9<br>23,6<br>24,3<br>30,8<br>LAT<br>N dB(A)<br>23,6<br>24,3<br>24,9<br>22,0<br>20,0<br>20,0<br>20,0<br>20,0<br>20,0<br>20,0<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DC dB 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                           | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | Cmet N dB                             | 2294,6 2704,0  d(p)  m 2891,4 2441,5 2000,2 2165,7 2680,2  d(p)  m 2898,8 2755,2 2609,0 2894,1 3293,5  d(p)  m 3281,9 3173,7 3048,3  | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                    | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,8<br>79,8<br>80,2<br>81,3<br>80,2<br>81,3 | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,7<br>5,5<br>5,5<br>6,5<br>6,5               | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0               | Refl Ant dB                                                                                                 | Lw/Lm<br>N<br>dB(A<br>106,8<br>106,8<br>106,8<br>106,8<br>106,8<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1<br>106,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| VEA 03 VEA 04 VEA 05  Ir  VEA 01 VEA 02 VEA 03 VEA 04 VEA 05  Nr  WEA 01 WEA 02 WEA 05  Nr  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WEA 04 WEA 05  IO-15 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-16 Kommentar  WEA 01 WEA 02 WEA 03 WEA 04 WEA 05  IO-17 Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB                                                                                                                                                                                                                    | 26,5<br>24,5<br>31,9<br>LAT<br>N<br>dB(A)<br>23,7<br>25,8<br>28,2<br>27,2<br>24,6<br>33,2<br>LAT<br>N<br>dB(A)<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>23,6<br>24,9<br>24,9<br>24,9<br>25,8<br>26,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2<br>27,2 | DC   dB   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0   0,0 | 0,0<br>0,0<br>0,0<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0, | MM   dB   0   0   0   0   0   0   0   0   0                | KT/KI   dB   0   0   0   0   0   0   0   0   0                                              | Cmet N dB                             | 2294,6 2704,0  d(p)  m 2891,4 2441,5 2000,2 2165,7 2680,2  d(p)  m 2898,8 2755,2 2609,0 2894,1 3293,5  d(p)  m 3281,9 3173,7         | DI   dB   0   0   0   0   0   0   0   0   0     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                    | 78,2<br>79,6<br>Adiv<br>dB<br>80,2<br>78,7<br>77,0<br>77,7<br>79,6<br>Adiv<br>dB<br>80,2<br>79,3<br>80,2<br>81,3                         | 5,0<br>5,7<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>5,9<br>5,3<br>4,6<br>4,8<br>5,6<br>Aatm<br>dB<br>6,5 | Agr dB -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0 -3,0               | Refl Ant dB                                                                                                 | Lw/Lm N N GB(A 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106,4 106 |

Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmission



|                                                                                                  | IO-18                                                             |                                                                      |                                                                                           |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    |                             |                                                                                     |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|-----------------------|----------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------|
| Nr                                                                                               | Kommentar                                                         | Gruppe                                                               | LAT                                                                                       | DC                                                               | DT                                                               | MM                    | KT/KI                                                    | Cmet                                  | d(p)                                                                            | DI                                    | Abar                                                        | 1 4.0                                                              |                                                             |                                                                    |                             |                                                                                     |
|                                                                                                  |                                                                   |                                                                      | N<br>dB(A)                                                                                | dB                                                               | dB                                                               | dB                    | dB                                                       | N<br>dB                               | 1000000                                                                         |                                       | Abar                                                        | Adiv                                                               | Aatm                                                        | Agr                                                                | Refl<br>Ant                 | Lw/Lm                                                                               |
| WEA 01                                                                                           | WEA 01                                                            | WEA_ZB                                                               | 20,6                                                                                      | 0,0                                                              | 0.0                                                              | 0                     |                                                          | 100000                                | m                                                                               | dB                                    | dB                                                          | dB                                                                 | dB                                                          | dB                                                                 | dB                          | dB(A                                                                                |
| WEA 02                                                                                           | WEA 02                                                            | WEA ZB                                                               | 21,0                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3660,2                                                                          | 0                                     | 0,0                                                         | 82,3                                                               | 6,9                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| WEA 03                                                                                           | WEA 03                                                            | WEA ZB                                                               | 21,5                                                                                      | 0.0                                                              | 0.0                                                              | 0                     | 0                                                        | 0                                     | 3545,6<br>3405,2                                                                | 0                                     | 0,0                                                         | 82,0                                                               | 6,8                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| WEA 04                                                                                           | WEA 04                                                            | WEA ZB                                                               | 20,5                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3689,8                                                                          | 0                                     | 0,0                                                         | 81,6                                                               | 6,6                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| WEA 05                                                                                           | WEA 05                                                            | WEA_ZB                                                               | 19,1                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 4091,8                                                                          | 0                                     | 0,0                                                         | 82,3                                                               | 7,0                                                         | -3,0                                                               | -                           | 106,8                                                                               |
|                                                                                                  |                                                                   | Sum                                                                  | 27,6                                                                                      | 1,0                                                              | 0,0                                                              | 1                     | "                                                        | -                                     | 4091,8                                                                          | 0                                     | 0,0                                                         | 83,2                                                               | 7,4                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| 1-1                                                                                              |                                                                   |                                                                      |                                                                                           |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    |                             | _                                                                                   |
|                                                                                                  | IO-19                                                             |                                                                      |                                                                                           |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    |                             |                                                                                     |
| Nr                                                                                               | Kommentar                                                         | Gruppe                                                               | LAT                                                                                       | DC                                                               | DT                                                               | MM                    | KT/KI                                                    | Cmet                                  | d(p)                                                                            | DI                                    | Abar                                                        | Adiv                                                               | Aatm                                                        | Agr                                                                | Refl                        | 1 1                                                                                 |
|                                                                                                  |                                                                   |                                                                      | N<br>dB(A)                                                                                | dB                                                               | dB                                                               | dB                    | dB                                                       | N<br>dB                               |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    | Ant                         | Lw/Lm                                                                               |
| NEA 01                                                                                           | WEA 01                                                            | WEA ZB                                                               | 21.9                                                                                      | 0.0                                                              | 0,0                                                              | 0                     | 1 1 1 1                                                  |                                       | m                                                                               | dB                                    | dB                                                          | dB                                                                 | dB                                                          | dB                                                                 | dB                          | dB(A)                                                                               |
| NEA 02                                                                                           | WEA 02                                                            | WEA_ZB                                                               | 21,9                                                                                      | 0,0                                                              | 0,0                                                              |                       | 0                                                        | 0                                     | 3306,9                                                                          | 0                                     | 0,0                                                         | 81,4                                                               | 6,5                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| NEA 03                                                                                           | WEA 03                                                            | WEA_ZB                                                               | 22,0                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3309,4                                                                          | 0                                     | 0,0                                                         | 81,4                                                               | 6,5                                                         | -3,0                                                               | •                           | 106,8                                                                               |
| VEA 04                                                                                           | WEA 04                                                            | WEA ZB                                                               | 20,9                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3283,9                                                                          | 0                                     | 0,0                                                         | 81,3                                                               | 6,5                                                         | -3,0                                                               |                             | 106,8                                                                               |
| VEA 05                                                                                           | WEA 05                                                            | WEA_ZB                                                               | 19,7                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3579,6                                                                          | 0                                     | 0,0                                                         | 82,1                                                               | 6,8                                                         | -3,0                                                               | -                           | 106,8                                                                               |
|                                                                                                  |                                                                   | Sum                                                                  | 28,4                                                                                      | 0,0                                                              | 0,0                                                              | -                     | -                                                        | 0                                     | 3909,8                                                                          | 0                                     | 0,0                                                         | 82,8                                                               | 7,2                                                         | -3,0                                                               | -                           | 106,8                                                                               |
|                                                                                                  |                                                                   | 127 77 19                                                            |                                                                                           |                                                                  |                                                                  |                       |                                                          | 0.00                                  |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    |                             |                                                                                     |
|                                                                                                  | 10-20                                                             |                                                                      |                                                                                           |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    |                             |                                                                                     |
| Ir                                                                                               | Kommentar                                                         | Gruppe                                                               | LAT                                                                                       | DC                                                               | DT                                                               | MM                    | KT/KI                                                    | Cmet                                  | 4/-)                                                                            | DI                                    |                                                             |                                                                    | 2.5                                                         |                                                                    |                             |                                                                                     |
|                                                                                                  |                                                                   |                                                                      | N                                                                                         |                                                                  | -                                                                | 37.17.200             | - SENEZIO                                                | N                                     | d(p)                                                                            | DI I                                  | Abar                                                        | Adiv                                                               | Aatm                                                        | Agr                                                                | Refl<br>Ant                 | Lw/LmE<br>N                                                                         |
|                                                                                                  |                                                                   |                                                                      | dB(A)                                                                                     | dB                                                               | dB                                                               | dB                    | dB                                                       | dB                                    | m                                                                               | dB                                    | dB                                                          | dB                                                                 | dB                                                          | dB                                                                 | dB                          | dB(A)                                                                               |
| VEA 01                                                                                           | WEA 01                                                            | WEA_ZB                                                               | 21,3                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3473,9                                                                          | 0                                     | 0,0                                                         | 81,8                                                               | 6,7                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| VEA 02                                                                                           | WEA 02                                                            | WEA_ZB                                                               | 21,0                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3548,0                                                                          | 0                                     | 0,0                                                         | 82,0                                                               | 6,8                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| VEA 03                                                                                           | WEA 03                                                            | WEA_ZB                                                               | 20,9                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3582,5                                                                          | 0                                     | 0,0                                                         | 82,1                                                               | 6,8                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| VEA 04                                                                                           | WEA 04                                                            | WEA_ZB                                                               | 19,8                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 3878,7                                                                          | 0                                     | 0,0                                                         | 82,8                                                               | 7,2                                                         | -3,0                                                               | -                           | 106,8                                                                               |
| VEA 05                                                                                           | WEA 05                                                            | WEA_ZB                                                               | 18,9                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 4168,2                                                                          | 0                                     | 0,0                                                         | 83,4                                                               | 7,5                                                         | -3.0                                                               | _                           | 106,8                                                                               |
|                                                                                                  |                                                                   | Sum                                                                  | 27,4                                                                                      |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             | ,                                                                  | - ,-                                                        | -,0                                                                |                             | 100,0                                                                               |
|                                                                                                  |                                                                   |                                                                      |                                                                                           |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       | ,                                                           |                                                                    |                                                             |                                                                    | 7 7                         |                                                                                     |
|                                                                                                  | 10-21                                                             |                                                                      |                                                                                           |                                                                  |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             |                                                                    |                                                             |                                                                    |                             |                                                                                     |
| г                                                                                                | Kommentar                                                         | Gruppe                                                               | LAT                                                                                       | DC                                                               | DT                                                               | MM                    | KT/KI                                                    | Cmet                                  | d(p)                                                                            | DI                                    | Abar                                                        | Adiv                                                               | Aatm                                                        | Agr                                                                | Refl                        | Lw/LmE                                                                              |
|                                                                                                  |                                                                   | ' -                                                                  | N                                                                                         |                                                                  |                                                                  | _                     |                                                          | N                                     |                                                                                 |                                       |                                                             |                                                                    | Addii                                                       | Agi                                                                | Ant                         | N N                                                                                 |
|                                                                                                  |                                                                   |                                                                      |                                                                                           | dB                                                               | dB                                                               | dB                    | dB                                                       | dB                                    | m                                                                               | dB                                    | dB                                                          | dB                                                                 | dB                                                          | dB                                                                 | dB                          | dB(A)                                                                               |
|                                                                                                  | 1151.41                                                           |                                                                      | dB(A)                                                                                     | 10,75000                                                         |                                                                  |                       |                                                          |                                       |                                                                                 |                                       |                                                             | 78.2                                                               | 5,1                                                         | -3,0                                                               | -                           | 106.8                                                                               |
| /EA 01                                                                                           | WEA 01                                                            | WEA_ZB                                                               | 26,5                                                                                      | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 2298,7                                                                          | 0                                     | 0,0                                                         | 78,2                                                               | 0,1                                                         |                                                                    |                             |                                                                                     |
| /EA 01<br>/EA 02                                                                                 | WEA 02                                                            | WEA_ZB                                                               | 26,5<br>25,0                                                                              | 0,0                                                              | 0,0                                                              | 0                     | 0                                                        | 0                                     | 2298,7<br>2606,8                                                                | 0                                     | 0,0                                                         | 79,3                                                               | 1000                                                        |                                                                    | -                           |                                                                                     |
| /EA 01<br>/EA 02<br>/EA 03                                                                       | WEA 02<br>WEA 03                                                  | WEA_ZB<br>WEA_ZB                                                     | 26,5<br>25,0<br>23,7                                                                      | 0,0<br>0,0<br>0,0                                                | 0,0                                                              | 0                     | 0                                                        |                                       | 111100-00-1811                                                                  |                                       |                                                             |                                                                    | 5,5<br>5,9                                                  | -3,0<br>-3,0                                                       | -                           | 106,8                                                                               |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04                                                             | WEA 02<br>WEA 03<br>WEA 04                                        | WEA_ZB WEA_ZB WEA_ZB                                                 | 26,5<br>25,0<br>23,7<br>22,6                                                              | 0,0<br>0,0<br>0,0<br>0,0                                         | 0,0<br>0,0<br>0,0                                                | 0                     | 0                                                        | 0                                     | 2606,8                                                                          | 0                                     | 0,0                                                         | 79,3                                                               | 5,5                                                         | -3,0<br>-3,0                                                       | -                           | 106,8<br>106,8                                                                      |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04                                                             | WEA 02<br>WEA 03                                                  | WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                          | 26,5<br>25,0<br>23,7<br>22,6<br>22,2                                                      | 0,0<br>0,0<br>0,0                                                | 0,0                                                              | 0                     | 0                                                        | 0                                     | 2606,8<br>2873,1                                                                | 0                                     | 0,0                                                         | 79,3<br>80,2                                                       | 5,5<br>5,9                                                  | -3,0                                                               | -                           | 106,8<br>106,8<br>106,8                                                             |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04                                                             | WEA 02<br>WEA 03<br>WEA 04                                        | WEA_ZB<br>WEA_ZB<br>WEA_ZB                                           | 26,5<br>25,0<br>23,7<br>22,6                                                              | 0,0<br>0,0<br>0,0<br>0,0                                         | 0,0<br>0,0<br>0,0                                                | 0 0                   | 0 0 0                                                    | 0 0 0                                 | 2606,8<br>2873,1<br>3133,7                                                      | 0 0 0                                 | 0,0<br>0,0<br>0,0                                           | 79,3<br>80,2<br>80,9                                               | 5,5<br>5,9<br>6,3                                           | -3,0<br>-3,0<br>-3,0                                               | -                           | 106,8<br>106,8                                                                      |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04                                                             | WEA 02<br>WEA 03<br>WEA 04<br>WEA 05                              | WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                          | 26,5<br>25,0<br>23,7<br>22,6<br>22,2                                                      | 0,0<br>0,0<br>0,0<br>0,0                                         | 0,0<br>0,0<br>0,0                                                | 0 0                   | 0 0 0                                                    | 0 0 0                                 | 2606,8<br>2873,1<br>3133,7                                                      | 0 0 0                                 | 0,0<br>0,0<br>0,0                                           | 79,3<br>80,2<br>80,9                                               | 5,5<br>5,9<br>6,3                                           | -3,0<br>-3,0<br>-3,0                                               | -                           | 106,8<br>106,8<br>106,8                                                             |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05                                                   | WEA 02<br>WEA 03<br>WEA 04<br>WEA 05                              | WEA_ZB<br>WEA_ZB<br>WEA_ZB<br>WEA_ZB<br>Sum                          | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3                                              | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                  | 0,0<br>0,0<br>0,0                                                | 0 0                   | 0 0 0                                                    | 0 0 0                                 | 2606,8<br>2873,1<br>3133,7                                                      | 0 0 0                                 | 0,0<br>0,0<br>0,0                                           | 79,3<br>80,2<br>80,9                                               | 5,5<br>5,9<br>6,3                                           | -3,0<br>-3,0<br>-3,0                                               | -                           | 106,8<br>106,8<br>106,8                                                             |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05                                                   | WEA 02<br>WEA 03<br>WEA 04<br>WEA 05                              | WEA_ZB WEA_ZB WEA_ZB WEA_ZB                                          | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3                                              | 0,0<br>0,0<br>0,0<br>0,0                                         | 0,0<br>0,0<br>0,0                                                | 0 0                   | 0 0 0                                                    | 0<br>0<br>0<br>0                      | 2606,8<br>2873,1<br>3133,7                                                      | 0 0 0                                 | 0,0<br>0,0<br>0,0                                           | 79,3<br>80,2<br>80,9                                               | 5,5<br>5,9<br>6,3                                           | -3,0<br>-3,0<br>-3,0<br>-3,0                                       | -                           | 106,8<br>106,8<br>106,8<br>106,8                                                    |
| /EA 01<br>/EA 02<br>/EA 03                                                                       | WEA 02<br>WEA 03<br>WEA 04<br>WEA 05                              | WEA_ZB<br>WEA_ZB<br>WEA_ZB<br>WEA_ZB<br>Sum                          | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3                                              | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                  | 0,0<br>0,0<br>0,0<br>0,0                                         | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0                      | 2606,8<br>2873,1<br>3133,7<br>3232,8<br>d(p)                                    | 0<br>0<br>0<br>0                      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 79,3<br>80,2<br>80,9<br>81,2                                       | 5,5<br>5,9<br>6,3<br>6,4                                    | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                               | Refi                        | 106,8<br>106,8<br>106,8<br>106,8                                                    |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05                                                   | WEA 02<br>WEA 03<br>WEA 04<br>WEA 05                              | WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum                                      | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3                                              | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DC                            | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DT                            | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>KT/KI<br>dB                     | 0 0 0 0 0 Cmet N dB                   | 2606,8<br>2873,1<br>3133,7<br>3232,8<br>d(p)<br>m                               | 0<br>0<br>0<br>0                      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>Abar<br>dB               | 79,3<br>80,2<br>80,9<br>81,2<br>Adiv                               | 5,5<br>5,9<br>6,3<br>6,4<br>Aatm                            | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB                         | Refi Ant dB                 | 106,8<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)                            |
| EA 01 EA 02 EA 03 EA 04 EA 05                                                                    | WEA 02<br>WEA 03<br>WEA 04<br>WEA 05<br>IO-22<br>Kommentar        | WEA_ZB WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum                               | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3<br>LAT<br>N<br>dB(A)                         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DC<br>dB                      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DT<br>dB                      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>KT/KI<br>dB                     | 0 0 0 0 0 0 Cmet N dB 0               | 2606,8<br>2873,1<br>3133,7<br>3232,8<br>d(p)<br>m<br>2167,3                     | 0<br>0<br>0<br>0<br>0                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>Abar<br>dB               | 79,3<br>80,2<br>80,9<br>81,2<br>Adiv<br>dB                         | 5,5<br>5,9<br>6,3<br>6,4<br>Aatm<br>dB                      | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0         | -<br>-<br>Refi<br>Ant<br>dB | 106,8<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)                            |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05<br>/EA 05                                         | WEA 02 WEA 03 WEA 04 WEA 05  IO-22 Kommentar WEA 01 WEA 02        | WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum Gruppe WEA_ZB WEA_ZB                 | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3<br>LAT<br>N<br>dB(A)<br>27,2<br>24,4         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DC<br>dB<br>0,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DT<br>dB<br>0,0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>KT/KI<br>dB                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2606,8<br>2873,1<br>3133,7<br>3232,8<br>d(p)<br>m<br>2167,3<br>2726,3           | 0<br>0<br>0<br>0<br>0<br>0<br>dB      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0        | 79,3<br>80,2<br>80,9<br>81,2<br>Adiv<br>dB<br>77,7<br>79,7         | 5,5<br>5,9<br>6,3<br>6,4<br>Aatm<br>dB<br>4,8<br>5,7        | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0<br>-3,0         | Refi Ant dB                 | 106,8<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)                            |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05                                                   | WEA 02 WEA 03 WEA 04 WEA 05  IO-22 Kommentar WEA 01               | WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB WEA_ZB | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3<br>LAT<br>N<br>dB(A)<br>27,2<br>24,4<br>22,2 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DC<br>dB<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DT<br>dB<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>KT/KI<br>dB<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2606,8<br>2873,1<br>3133,7<br>3232,8<br>d(p)<br>m<br>2167,3<br>2726,3<br>3236,6 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0<br>0,0 | 79,3<br>80,2<br>80,9<br>81,2<br>Adiv<br>dB<br>77,7<br>79,7<br>81,2 | 5,5<br>5,9<br>6,3<br>6,4<br>Aatm<br>dB<br>4,8<br>5,7<br>6,4 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0<br>-3,0<br>-3,0 | Refi Ant dB                 | 106,8<br>106,8<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)<br>106,8<br>106,8 |
| /EA 01<br>/EA 02<br>/EA 03<br>/EA 04<br>/EA 05<br>/EA 05<br>/EA 01<br>/EA 01<br>/EA 02<br>/EA 03 | WEA 02 WEA 03 WEA 04 WEA 05  IO-22 Kommentar WEA 01 WEA 02 WEA 03 | WEA_ZB WEA_ZB WEA_ZB WEA_ZB Sum Gruppe WEA_ZB WEA_ZB                 | 26,5<br>25,0<br>23,7<br>22,6<br>22,2<br>31,3<br>LAT<br>N<br>dB(A)<br>27,2<br>24,4         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DC<br>dB<br>0,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>DT<br>dB<br>0,0        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>KT/KI<br>dB                     | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2606,8<br>2873,1<br>3133,7<br>3232,8<br>d(p)<br>m<br>2167,3<br>2726,3           | 0<br>0<br>0<br>0<br>0<br>0<br>dB      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>Abar<br>dB<br>0,0        | 79,3<br>80,2<br>80,9<br>81,2<br>Adiv<br>dB<br>77,7<br>79,7         | 5,5<br>5,9<br>6,3<br>6,4<br>Aatm<br>dB<br>4,8<br>5,7        | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>dB<br>-3,0<br>-3,0         | Refi<br>Ant<br>dB           | 106,8<br>106,8<br>106,8<br>106,8<br>Lw/LmE<br>N<br>dB(A)<br>106,8                   |

Projekt:



## 12-dB-Abschneidekriterium Vorbelastung Windenergie (Kap. 6.1)

| Nr     | IO-01<br>Kommentar | Gruppe      | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|--------------------|-------------|-------------------|----------|----------|----------|-------------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
|        |                    | 140 10 401/ | 13,5              | 0,0      | 0,0      | 0        | 0           | 0               | 8827.6    | 0        | 0,0        | 89,9       | 11,6       | -3,0      | -                 | 112,0                |
| RH 133 | V90-2000           | U 12dB ASK  | 13,0              | 0,0      | 0,0      | 0        | 0           | 0               | 9105,8    | 0        | 0,0        | 90,2       | 11,8       | -3,0      | -                 | 112,0                |
| RH 134 | V90-2000           | U 12dB ASK  | 12,6              | 0,0      | 0,0      | 0        | 0           | 0               | 9352,1    | 0        | 0,0        | 90,4       | 12,0       | -3,0      |                   | 112,0                |
| RH 135 | V90-2000           | U 12dB ASK  | (2)               | 0,0      | 0,0      | 0        | 0           | 0               | 5161,0    | 0        | 0,0        | 85,2       | 8,6        | -3,0      |                   | 112,0                |
| RH 354 | N-131              | U 12dB ASK  | 21,2              |          | 0,0      | 0        | 0           | 0               | 4278.6    | 0        | 0.0        | 83,6       | 7,7        | -3,0      | -                 | 112,0                |
| RH 355 | N-117-2400         | U 12dB ASK  | 23,7              | 0,0      | 0,0      | 0        | 0           | 0               | 4228,3    | 0        | 0,0        | 83,5       | 7,6        | -3,0      |                   | 112,0                |
| RH 356 | N-117-2400         | U 12dB ASK  | 23,9              | 0,0      | -1-      | 0        | 0           | 0               | 4633,3    | 0        | 0,0        | 84,3       | 8,1        | -3,0      | -                 | 112,0                |
| RH 357 | N-117-2400         | U 12dB ASK  | 22,6              | 0,0      | 0,0      |          | 0           | 0               | 4771,1    | 0        | 0.0        | 84,6       | 8,2        | -3,0      | - 12              | 112,0                |
| RH 358 | N-117-2400         | U 12dB ASK  | 22,2              | 0,0      | 0,0      | 0        | 0           | 0               | 5220,0    | 0        | 0.0        | 85,3       | 8.7        | -3,0      |                   | 112,0                |
| RH 359 | N-117-2400         | U 12dB ASK  | 21,0              | 0,0      | 0,0      | 0        | -           | - 00            | 5333,1    | 0        | 0,0        | 85,5       | 8,8        | -3,0      | 1-                | 112,0                |
| RH 360 | N-117-2400         | U 12dB ASK  | 20,7              | 0,0      | 0,0      | 0        | 0           | 0               | 5268,6    | 0        | 0,0        | 85,4       | 8.7        | -3,0      | -                 | 112,0                |
| RH 361 | N-117-2400         | U 12dB ASK  | 20,9              | 0,0      | 0,0      | 0        | 0           | 0               |           | 0        | 0,0        | 86,6       | 9,4        | -3,0      | -                 | 112,0                |
| RH 362 | N-117-2400         | U 12dB ASK  | 19,0              | 0,0      | 0,0      | 0        | 0           | 0               | 6016,4    | _        | 0,0        | 87,8       | 10,2       | -3,0      | -                 | 112,0                |
| RH 363 | N-117-2400         | U 12dB ASK  | 17,0              | 0,0      | 0,0      | 0        | 0           | 0               | 6944,5    | 0        | 0,0        | 88,2       | 10,2       | -3,0      | -                 | 112,0                |
| RH 364 | N-117-2400         | U 12dB ASK  | 16,4              | 0,0      | 0,0      | 0        | 0           | 0               | 7225,7    | 0        | 10.7       | 88,8       | 10,4       | -3,0      | -                 | 112,0                |
| RH 366 | N-117-2400         | U 12dB ASK  | 15,3              | 0,0      | 0,0      | 0        | 0           | 0               | 7778,0    | 0        | 0,0        | 88.8       | 10,9       | -3,0      | -                 | 112,0                |
| RH 369 | N-117              | U 12dB ASK  | 15,3              | 0,0      | 0,0      | 0        | 0           | 0               | 7771,4    | 0        | 0,0        | 88.4       | 10,9       | -3,0      |                   | 112,0                |
| RH 370 | N-117              | U 12dB ASK  | 16,1              | 0,0      | 0,0      | 0        | 0           | 0               | 7381,3    | 0        | 0,0        | 0900900    | 10,0       | -3,0      | -                 | 112,0                |
| RH 371 | N-117              | U 12dB ASK  | 16,6              | 0,0      | 0,0      | 0        | 0           | 0               | 7100,5    | 0        | 0,0        | 88,0       | 11,5       | -3,0      | 5,9               | 112,0                |
| RH 374 | E-115              | U 12dB ASK  | 14,4              | 0,0      | 0,0      | 0        | 0           | 0               | 8688,6    | 0        | 0,0        | 89,8       |            | -3,0      | 5,5               | 112,0                |
| RH 375 | E-115              | U 12dB ASK  | 14,0              | 0,0      | 0,0      | 0        | 0           | 0               | 8950,2    | 0        | 0,0        | 90,0       | 11,7       | -3,0      | 5,5               | 112,0                |
| RH 75  | V-44               | U 12dB ASK  | 11,8              | 0,0      | 0,0      | 0        | 0           | 0               | 9882,8    | 0        | 0,0        | 90,9       | 12,3       | -3,0      | 4,5               | 112,0                |
| RH 76  | E-82               | U 12dB ASK  | 12,6              | 0,0      | 0,0      | 0        | 0           | 0               | 9839,8    | 0        | 0,0        | 90,9       | 12,3       | 2.0       | 5,0               | 112,                 |
| RH 77  | E-82               | U 12dB ASK  | 13,2              | 0,0      | 0,0      | 0        | 0           | 0               | 9469,2    | 0        | 0,0        | 90,5       | 12,0       | -3,0      | 1.00              | 112,                 |
| RH 78  | E-82               | U 12dB ASK  | 13,6              | 0,0      | 0,0      | 0        | 0           | 0               | 9164,5    | 0        | 0,0        | 90,2       | 11,8       | -3,0      | 5,4               |                      |
| RH 79  | E-82               | U 12dB ASK  | 14,0              | 0,0      | 0,0      | 0        | 0           | 0               | 8937,2    | 0        | 0,0        | 90,0       | 11,7       | -3,0      | 5,6               | 112,                 |
| WEA T  | E-82               | U 12dB ASK  | 12,1              | 0,0      | 0,0      | 0        | 0           | 0               | 9695,4    | 0        | 0,0        | 90,7       | 12,2       | -3,0      | 7-                | 112,                 |
|        |                    | Sum         | 32,8              | -        |          |          |             |                 |           |          |            |            |            |           |                   |                      |

| lr     | IO-02<br>Kommentar | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|--------------------|------------|-------------------|----------|----------|----------|-------------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
|        | 100 0000           | U 12dB ASK | 13.7              | 0.0      | 0.0      | 0        | 0           | 0               | 8724.3    | 0        | 0,0        | 89,8       | 11,5       | -3,0      | -                 | 112,0                |
| RH 133 | V90-2000           | U 12dB ASK | 13,7              | 0,0      | 0.0      | 0        | 0           | 0               | 9002.4    | 0        | 0,0        | 90,1       | 11,7       | -3,0      |                   | 112,0                |
| RH 134 | V90-2000           | U 12dB ASK | 12.8              | 0,0      | 0.0      | 0        | 0           | 0               | 9248.8    | 0        | 0,0        | 90,3       | 11,9       | -3,0      | -                 | 112,0                |
| RH 135 | V90-2000           |            | 21.4              | 0,0      | 0.0      | 0        | 0           | 0               | 5059.1    | 0        | 0,0        | 85,1       | 8,5        | -3,0      | -                 | 112,0                |
| RH 354 | N-131              | U 12dB ASK | 23,9              | 0,0      | 0.0      | 0        | 0           | 0               | 4221.4    | 0        | 0.0        | 83.5       | 7,6        | -3,0      |                   | 112,0                |
| RH 355 | N-117-2400         | U 12dB ASK | _                 | -1-      | 0,0      | 0        | 0           | 0               | 4161.0    | 0        | 0.0        | 83,4       | 7,5        | -3,0      | -                 | 112,0                |
| RH 356 | N-117-2400         | U 12dB ASK | 24,1              | 0,0      | 17.5     | 0        | 0           | 0               | 4564.2    | 0        | 0,0        | 84,2       | 8,0        | -3.0      | -                 | 112,0                |
| RH 357 | N-117-2400         | U 12dB ASK | 22,8              | 0,0      | 0,0      |          |             | -               | 4696.7    | 0        | 0,0        | 84.4       | 8,1        | -3,0      | 0=                | 112.0                |
| RH 358 | N-117-2400         | U 12dB ASK | 22,4              | 0,0      | 0,0      | 0        | 0           | 0               | 5151.6    | 0        | 0,0        | 85,2       | 8,6        | -3.0      | -                 | 112,0                |
| RH 359 | N-117-2400         | U 12dB ASK | 21,2              | 0,0      | 0,0      | 0        | 0           | 0               |           | 0        | 0,0        | 85.4       | 8.7        | -3,0      | -                 | 112.0                |
| RH 360 | N-117-2400         | U 12dB ASK | 20,9              | 0,0      | 0,0      | 0        | 0           | 0               | 5259,4    | -        | -1-        | 85.3       | 8,6        | -3,0      | -                 | 112.0                |
| RH 361 | N-117-2400         | U 12dB ASK | 21,1              | 0,0      | 0,0      | 0        | 0           | 0               | 5188,7    | 0        | 0,0        | 86.5       | 9,4        | -3,0      | -                 | 112.0                |
| RH 362 | N-117-2400         | U 12dB ASK | 19,2              | 0,0      | 0,0      | 0        | 0           | 0               | 5941,6    | 0        | 0,0        | 2.45       | - 25       | -3,0      | -                 | 112,0                |
| RH 363 | N-117-2400         | U 12dB ASK | 17,2              | 0,0      | 0,0      | 0        | 0           | 0               | 6845,1    | 0        | 0,0        | 87,7       | 10,1       | -3,0      | -                 | 112,0                |
| RH 364 | N-117-2400         | U 12dB ASK | 16,6              | 0,0      | 0,0      | 0        | 0           | 0               | 7129,9    | 0        | 0,0        | 88,1       | 10,4       |           | -                 | 112,0                |
| RH 366 | N-117-2400         | U 12dB ASK | 15,5              | 0,0      | 0,0      | 0        | 0           | 0               | 7686,6    | 0        | 0,0        | 88,7       | 10,8       | -3,0      | -                 | 112,0                |
| RH 369 | N-117              | U 12dB ASK | 15,5              | 0,0      | 0,0      | 0        | 0           | 0               | 7668,1    | 0        | 0,0        | 88,7       | 10,8       | -3,0      |                   | 112,0                |
| RH 370 | N-117              | U 12dB ASK | 16,3              | 0,0      | 0,0      | 0        | 0           | 0               | 7278,0    | 0        | 0,0        | 88,2       | 10,5       | -3,0      | _                 | 112,0                |
| RH 371 | N-117              | U 12dB ASK | 16,9              | 0,0      | 0,0      | 0        | 0           | 0               | 6997,4    | 0        | 0,0        | 87,9       | 10,3       | -3,0      | -                 |                      |
| RH 374 | E-115              | U 12dB ASK | 13,9              | 0,0      | 0,0      | 0        | 0           | 0               | 8595,9    | 0        | 0,0        | 89,7       | 11,5       | -3,0      | 1-2               | 112,0<br>112,0       |
| RH 375 | E-115              | U 12dB ASK | 13,4              | 0,0      | 0,0      | 0        | 0           | 0               | 8858,4    | 0        | 0,0        | 89,9       | 11,6       | -3,0      | -                 | (0.000)              |
| RH 75  | V-44               | U 12dB ASK | 12,0              | 0,0      | 0,0      | 0        | 0           | 0               | 9786,5    | 0        | 0,0        | 90,8       | 12,2       | -3,0      | -                 | 112,0                |
| RH 76  | E-82               | U 12dB ASK | 12,0              | 0,0      | 0,0      | 0        | 0           | 0               | 9745,1    | 0        | 0,0        | 90,8       | 12,2       | -3,0      | -                 | 112,0                |
| RH 77  | E-82               | U 12dB ASK | 12,6              | 0,0      | 0,0      | 0        | 0           | 0               | 9374,5    | 0        | 0,0        | 90,4       | 12,0       | -3,0      | -                 | 112,0                |
| RH 78  | E-82               | U 12dB ASK | 13,1              | 0,0      | 0,0      | 0        | 0           | 0               | 9069,9    | 0        | 0,0        | 90,1       | 11,8       | -3,0      |                   | 112,0                |
| RH 79  | E-82               | U 12dB ASK | 13,5              | 0,0      | 0,0      | 0        | 0           | 0               | 8843,0    | 0        | 0,0        | 89,9       | 11,6       | -3,0      |                   | 112,0                |
| WEA T  | E-82               | U 12dB ASK | 12,3              | 0,0      | 0,0      | 0        | 0           | 0               | 9599,3    | 0        | 0,0        | 90,6       | 12,1       | -3,0      | -                 | 112,0                |
| WEA I  |                    | Sum        | 32.9              |          |          |          |             |                 |           |          |            |            |            |           |                   |                      |

Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmission



| Nr     | Kommentar  | -                 |            |          |          |    |             |                 |           |     |      |      |      |      |             |        |
|--------|------------|-------------------|------------|----------|----------|----|-------------|-----------------|-----------|-----|------|------|------|------|-------------|--------|
| NI     | Kommentar  | Gruppe            | N<br>dB(A) | DC<br>dB | DT<br>dB | MM | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI  | Abar | Adiv | Aatm | Agr  | Refl<br>Ant | Lw/LmE |
| RH 133 | V90-2000   | U 12dB ASK        | 15.8       | 0.0      | 0,0      | 0  | 0           | 0               |           | 100 | 7.75 | dB   | dB   | dB   | dB          | dB(A)  |
| RH 134 | V90-2000   | U 12dB ASK        | 15,2       | 0.0      | 0.0      | 0  | 0           | 0               | 7541,4    | 0   | 0,0  | 88,5 | 10,7 | -3,0 | -           | 112,0  |
| RH 135 | V90-2000   | U 12dB ASK        | 14,8       | 0,0      | 0.0      | 0  | 0           | 0               | 7822,2    | 0   | 0,0  | 88,9 | 10,9 | -3,0 | -           | 112,0  |
| RH 354 | N-131      | U 12dB ASK        | 25,3       | 0.0      | 0.0      | 0  | 0           | 0               | 8059,3    | 0   | 0,0  | 89,1 | 11,1 | -3,0 | -           | 112,0  |
| RH 355 | N-117-2400 | U 12dB ASK        | 27.5       | 0,0      | 0,0      | 0  | 0           | -               | 3812,8    | 0   | 0,0  | 82,6 | 7,1  | -3,0 |             | 112,0  |
| RH 356 | N-117-2400 | U 12dB ASK        | 28,2       | 0.0      | 0,0      | 0  | 0           | 0               | 3207,3    | 0   | 0,0  | 81,1 | 6,4  | -3,0 | -           | 112,0  |
| RH 357 | N-117-2400 | U 12dB ASK        | 26,7       | 0.0      | 0.0      | 0  | ,           | 0               | 3042,7    | 0   | 0,0  | 80,7 | 6,1  | -3,0 |             | 112,0  |
| RH 358 | N-117-2400 | U 12dB ASK        | 26,4       | 0,0      | 0,0      | _  | 0           | 0               | 3421,7    | 0   | 0,0  | 81,7 | 6,6  | -3,0 | -           | 112,0  |
| RH 359 | N-117-2400 | U 12dB ASK        | 24,6       | 0.0      | 0,0      | 0  | 0           | 0               | 3505,9    | 0   | 0,0  | 81,9 | 6,7  | -3,0 |             | 112,0  |
| RH 360 | N-117-2400 | U 12dB ASK        | 24,4       | 0,0      | 0,0      | 0  | 0           | 0               | 4009,8    | 0   | 0,0  | 83,1 | 7,4  | -3,0 | -           | 112,0  |
| RH 361 | N-117-2400 | U 12dB ASK        | 24,4       | 0,0      | 2000     | 0  | 0           | 0               | 4069,8    | 0   | 0,0  | 83,2 | 7,4  | -3,0 | -           | 112,0  |
| RH 362 | N-117-2400 | U 12dB ASK        | 22,3       |          | 0,0      | 0  | 0           | 0               | 3951,9    | 0   | 0,0  | 82,9 | 7,3  | -3,0 | -           | 112,0  |
| RH 363 | N-117-2400 | U 12dB ASK        | 20,1       | 0,0      | 0,0      | 0  | 0           | 0               | 4739,2    | 0   | 0,0  | 84,5 | 8,2  | -3,0 | -           | 112,0  |
| RH 364 | N-117-2400 | U 12dB ASK        |            | -1-      | 0,0      | 0  | 0           | 0               | 5560,9    | 0   | 0,0  | 85,9 | 9,0  | -3,0 | -           | 112,0  |
| RH 366 | N-117-2400 | U 12dB ASK        | 19,4       | 0,0      | 0,0      | 0  | 0           | 0               | 5830,4    | 0   | 0,0  | 86,3 | 9,2  | -3,0 | -           | 112,0  |
| RH 369 | N-117      | U 12dB ASK        | 18,1       | 0,0      | 0,0      | 0  | 0           | 0               | 6389,7    | 0   | 0,0  | 87,1 | 9,7  | -3,0 | -           | 112,0  |
| RH 370 | N-117      | U 12dB ASK        | 17,9       | 0,0      | 0,0      | 0  | 0           | 0               | 6500,3    | 0   | 0,0  | 87,3 | 9,8  | -3,0 | -           | 112,0  |
| RH 371 | N-117      | U 12dB ASK        | 18,7       | 0,0      | 0,0      | 0  | 0           | 0               | 6127,6    | 0   | 0,0  | 86,7 | 9,5  | -3,0 | -           | 112,0  |
| RH 374 | E-115      | U 12dB ASK        | 19,3       | 0,0      | 0,0      | 0  | 0           | 0               | 5884,4    | 0   | 0,0  | 86,4 | 9,3  | -3,0 |             | 112,0  |
| RH 375 | E-115      | U 12dB ASK        | 15,6       | 0,0      | 0,0      | 0  | 0           | 0               | 7833,2    | 0   | 0,0  | 88,9 | 10,9 | -3,0 | 4,3         | 112,0  |
| RH 75  | V-44       | 1 000 000 000 000 | 15,0       | 0,0      | 0,0      | 0  | 0           | 0               | 8113,2    | 0   | 0,0  | 89,2 | 11,1 | -3,0 | 3,7         | 112,0  |
| RH 76  | E-82       | U 12dB ASK        | 13,3       | 0,0      | 0,0      | 0  | 0           | 0               | 8922,9    | 0   | 0,0  | 90,0 | 11,7 | -3,0 | -           | 112,0  |
| RH 77  | E-82       | U 12dB ASK        | 13,3       | 0,0      | 0,0      | 0  | 0           | 0               | 8923,4    | 0   | 0,0  | 90,0 | 11,7 | -3,0 | /E          | 112,0  |
| RH 78  | E-82       | U 12dB ASK        | 13,9       | 0,0      | 0,0      | 0  | 0           | 0               | 8555,5    | 0   | 0,0  | 89,6 | 11,4 | -3,0 | -           | 112.0  |
| RH 79  | E-82       | U 12dB ASK        | 14,5       | 0,0      | 0,0      | 0  | 0           | 0               | 8255,4    | 0   | 0,0  | 89,3 | 11,2 | -3,0 | -           | 112,0  |
| VEA T  | E-82       | U 12dB ASK        | 15,2       | 0,0      | 0,0      | 0  | 0           | 0               | 8042,1    | 0   | 0,0  | 89,1 | 11,1 | -3,0 | 4,2         | 112,0  |
| VEA 1  | E-62       | U 12dB ASK        | 13,6       | 0,0      | 0,0      | 0  | 0           | 0               | 8743,5    | 0   | 0,0  | 89,8 | 11,6 | -3,0 | -           | 112,0  |
|        |            | Sum               | 36,3       |          |          |    |             |                 |           |     |      |      |      |      |             |        |

| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m        | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|------------|------------|-------------------|----------|----------|----------|-------------|-----------------|------------------|----------|------------|------------|------------|-----------|-------------------|----------------------|
| RH 133 | V90-2000   | U 12dB ASK | 15,8              | 0,0      | 0,0      | 0        | 0           | 0               | 7526,5           | 0        | 0,0        | 88.5       | 10,7       | -3,0      |                   | 112.0                |
| RH 134 | V90-2000   | U 12dB ASK | 15,3              | 0,0      | 0,0      | 0        | 0           | 0               | 7807,7           | 0        | 0.0        | 88,8       | 10,9       | -3,0      | (5)               | 30000                |
| RH 135 | V90-2000   | U 12dB ASK | 14,8              | 0,0      | 0,0      | 0        | 0           | 0               | 8043,1           | 0        | 0,0        | 89,1       | 11,1       | -3,0      | -                 | 112,0                |
| RH 354 | N-131      | U 12dB ASK | 25,4              | 0,0      | 0,0      | 0        | 0           | 0               | 3787.9           | 0        | 0.0        | 82.6       | 7,1        | -3,0      | -                 | 112,0                |
| RH 355 | N-117-2400 | U 12dB ASK | 27,9              | 0,0      | 0,0      | 0        | 0           | 0               | 3124,4           | 0        | 0,0        | 80.9       | 6,2        | -         | -                 | 112,0                |
| RH 356 | N-117-2400 | U 12dB ASK | 28,6              | 0,0      | 0,0      | 0        | 0           | 0               | 2962.6           | 0        | 0,0        | 80,4       | 6,0        | -3,0      |                   | 112,0                |
| RH 357 | N-117-2400 | U 12dB ASK | 27,0              | 0.0      | 0,0      | 0        | 0           | 0               | 3343,1           | 0        | 0,0        | 81,5       | 6,5        | -3,0      |                   | 112,0                |
| RH 358 | N-117-2400 | U 12dB ASK | 26,7              | 0,0      | 0.0      | 0        | 0           | 0               | 3430,5           | 0        | 0,0        | 81,7       | ,          | -3,0      | 7                 | 112,0                |
| RH 359 | N-117-2400 | U 12dB ASK | 24,9              | 0,0      | 0.0      | 0        | 0           | 0               | 3931,4           | 0        | 0,0        | 82.9       | 6,6        | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400 | U 12dB ASK | 24,6              | 0,0      | 0.0      | 0        | 0           | 0               | 3994.5           | 0        | 0,0        |            | 7,3        | -3,0      |                   | 112,0                |
| RH 361 | N-117-2400 | U 12dB ASK | 25.0              | 0,0      | 0,0      | 0        | 0           | 0               | 3881,3           | 0        | 0,0        | 83,0       | 7,3        | -3,0      | -                 | 112,0                |
| RH 362 | N-117-2400 | U 12dB ASK | 22,5              | 0,0      | 0,0      | 0        | 0           | 0               | 4665,3           | 0        | 0,0        | 82,8       | 7,2        | -3,0      | -                 | 112,0                |
| RH 363 | N-117-2400 | U 12dB ASK | 20,2              | 0.0      | 0,0      | 0        | 0           | 0               | 5523,4           | 0        | 0,0        | 84,4       | 8,1        | -3,0      | -                 | 112,0                |
| RH 364 | N-117-2400 | U 12dB ASK | 19,6              | 0,0      | 0,0      | 0        | 0           | 0               | 5783,1           | 0        |            | 85,8       | 9,0        | -3,0      | -                 | 112,0                |
| RH 366 | N-117-2400 | U 12dB ASK | 18,3              | 0,0      | 0,0      | 0        | 0           | 0               | 6334,2           | 0        | 0,0        | 86,2       | 9,2        | -3,0      | -                 | 112,0                |
| RH 369 | N-117      | U 12dB ASK | 17,9              | 0,0      | 0,0      | 0        | 0           | 0               | 6488,3           | 0        | 0,0        | 87,0       | 9,7        | -3,0      | -                 | 112,0                |
| RH 370 | N-117      | U 12dB ASK | 18.8              | 0,0      | 0,0      | 0        | 0           | 0               | 6118,5           | 0        | 0,0        | 87,2       | 9,8        | -3,0      | -                 | 112,0                |
| RH 371 | N-117      | U 12dB ASK | 19,3              | 0,0      | 0.0      | 0        | 0           | 0               | 5880.9           | 0        | 0,0        | 86,7       | 9,5        | -3,0      | •                 | 112,0                |
| RH 374 | E-115      | U 12dB ASK | 15,2              | 0,0      | 0,0      | 0        | 0           | 0               | 7863,3           | 0        | 2000       | 86,4       | 9,3        | -3,0      |                   | 112,0                |
| RH 375 | E-115      | U 12dB ASK | 14,7              | 0,0      | 0,0      | 0        | 0           | 0               | 8144,4           | 0        | 0,0        | 88,9       | 10,9       | -3,0      | -                 | 112,0                |
| RH 75  | V-44       | U 12dB ASK | 13,3              | 0,0      | 0,0      | 0        | 0           | 0               |                  |          | 0,0        | 89,2       | 11,1       | -3,0      | -                 | 112,0                |
| RH 76  | E-82       | U 12dB ASK | 13,3              | 0,0      | 0,0      | 0        | 0           | 0               | 8944,0<br>8948,0 | 0        | 0,0        | 90,0       | 11,7       | -3,0      | -                 | 112,0                |
| RH 77  | E-82       | U 12dB ASK | 13,9              | 0,0      | 0,0      | 0        | 0           | 0               | 8580,6           | 0        | 0,0        | 90,0       | 11,7       | -3,0      | -                 | 112,0                |
| RH 78  | E-82       | U 12dB ASK | 14,4              | 0,0      | 0.0      | 0        | 0           | 0               | 8281,1           | 0        | 0,0        | 89,7       | 11,4       | -3,0      | -                 | 112,0                |
| RH 79  | E-82       | U 12dB ASK | 14,8              | 0,0      | 0,0      | 0        | 0           | 0               | 8069.0           | 0        | 0,0        | 89,4       | 11,2       | -3,0      | -                 | 112,0                |
| VEA T  | E-82       | U 12dB ASK | 13,6              | 0,0      | 0,0      | 0        | 0           | 0               |                  | 0        | 0,0        | 89,1       | 11,1       | -3,0      | -                 | 112,0                |
|        |            | Sum        | 36,6              | 3,0      | 0,0      | -        | -           | 0               | 8765,4           | 0        | 0,0        | 89,8       | 11,6       | -3,0      |                   | 112,0                |



| 10-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and the same of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              |                                                                    |                                                                    |                                                          |                                                     | T                                                        | -1/-\ T                                                                                                                                            | DI I                                           | Abor                                                               | Adiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aatm                                                                                         | Agr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refl                                                                                        | Lw/LmE                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N                                                                                                            |                                                                    |                                                                    |                                                          | dB                                                  | N<br>dB                                                  | m (p)                                                                                                                                              | dB                                             | dB                                                                 | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                                                                                           | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ant<br>dB                                                                                   | N<br>dB(A)                                                          |
| 100 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I 404D ACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100.0                                                                                                        |                                                                    |                                                                    | 0                                                        | 0                                                   | 0                                                        | 7306,0                                                                                                                                             | 0                                              | 0,0                                                                | 88,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,5                                                                                         | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
| 700000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                              | _                                                                  | _                                                                  |                                                          |                                                     |                                                          | 7586,0                                                                                                                                             | 0                                              | 0,0                                                                | 88,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,7                                                                                         | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
| The same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    |                                                                    | 1.0                                                      |                                                     | 0                                                        | 7826,5                                                                                                                                             | 0                                              | 0,0                                                                | 88,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,9                                                                                         | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | -                                                                  | -                                                                  | 100                                                      | 0                                                   | 0                                                        | 3604,9                                                                                                                                             | 0                                              | 0,0                                                                | 82,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,9                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
| (0. 355.35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    |                                                                    |                                                          |                                                     | 0                                                        | 3308,8                                                                                                                                             | 0                                              | 0,0                                                                | 81,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,5                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | -                                                                  | 100                                                                |                                                          |                                                     | 0                                                        | 3100,7                                                                                                                                             | 0                                              | 0,0                                                                | 80,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,2                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | -                                                                  | ,                                                                  |                                                          | V.011                                               | 100                                                      | 3462.8                                                                                                                                             | 0                                              | 0,0                                                                | 81,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,7                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    | 10.6                                                               |                                                          |                                                     |                                                          | 3517.9                                                                                                                                             | 0                                              | 0,0                                                                | 81,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,8                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
| 5. 15.2 St. 2-Village 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LEG TAYASTA TAYASTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                              |                                                                    |                                                                    | -                                                        |                                                     |                                                          |                                                                                                                                                    | 0                                              | 0,0                                                                | 83,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,4                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | -                                                                  | - 0                                                                | - 777                                                    |                                                     |                                                          | 0.000000                                                                                                                                           | 0                                              | 0,0                                                                | 83,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,4                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              | 0.407                                                              | 100,000                                                            |                                                          |                                                     | -                                                        |                                                                                                                                                    | 110                                            | 200                                                                | 82.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,3                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T. 15-70-70-10-10-10-10-10-10-10-10-10-10-10-10-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |                                                                    |                                                                    | -                                                        |                                                     |                                                          |                                                                                                                                                    |                                                | 100.00                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.2                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -/-                                                                                         | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 100001-010001-0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                    |                                                                    |                                                          |                                                     | 200                                                      | 100000000000000000000000000000000000000                                                                                                            |                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | 112,0                                                               |
| AND AND ACCOUNTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    |                                                                    |                                                          |                                                     |                                                          |                                                                                                                                                    |                                                | 0.00                                                               | 2007.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100                                                                                          | -3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The second of th |                                                                                                              | 120                                                                | _                                                                  |                                                          |                                                     |                                                          | 20 CC 18                                                                                                                                           |                                                |                                                                    | 0000100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    |                                                                    |                                                          |                                                     |                                                          | 200,000,000,000                                                                                                                                    |                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | 7.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             | 112,0                                                               |
| N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | _                                                                  |                                                                    | (57)                                                     |                                                     |                                                          |                                                                                                                                                    |                                                |                                                                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                           | 112,0                                                               |
| N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | - 1                                                                |                                                                    |                                                          | ////                                                |                                                          | 10 5                                                                                                                                               |                                                | _                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00                                                                                        | 00.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                           | 112.0                                                               |
| N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000.00                                                                                                       | -                                                                  | -                                                                  | _                                                        |                                                     | 197                                                      | 0.000                                                                                                                                              |                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | 112,0                                                               |
| E-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | -                                                                  |                                                                    |                                                          |                                                     | _                                                        | 5 - S- F-                                                                                                                                          |                                                | 1000                                                               | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | 112,0                                                               |
| E-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15,2                                                                                                         | ,                                                                  |                                                                    | _                                                        |                                                     |                                                          |                                                                                                                                                    |                                                |                                                                    | A SECULIAR S | 1,5,19,4,00                                                                                  | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | 112,0                                                               |
| V-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13,8                                                                                                         | 0,0                                                                | 100                                                                | _                                                        |                                                     |                                                          |                                                                                                                                                    |                                                | 100                                                                | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 112,0                                                               |
| E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13,8                                                                                                         | 0,0                                                                |                                                                    |                                                          |                                                     |                                                          |                                                                                                                                                    |                                                | 0.000                                                              | 377-277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                           | 112,0                                                               |
| E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14,4                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        | 100                                                 | 138                                                      |                                                                                                                                                    | -                                              | ,                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                    | 112,0                                                               |
| E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15,0                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        |                                                     |                                                          |                                                                                                                                                    |                                                | 5,705                                                              | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 112,0                                                               |
| E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15,4                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        | 0                                                   |                                                          |                                                                                                                                                    |                                                | _                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                           | 112,0                                                               |
| F-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14,1                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        | 0                                                   | 0                                                        | 8455,1                                                                                                                                             | 0                                              | 0,0                                                                | 89,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,4                                                                                         | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                           | 112,0                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36,4                                                                                                         |                                                                    |                                                                    |                                                          |                                                     |                                                          |                                                                                                                                                    |                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                     |
| IO-06<br>Kommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gruppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAT<br>N                                                                                                     | DC                                                                 | DT                                                                 | MM                                                       | KT/KI                                               | Cmet                                                     | d(p)                                                                                                                                               | DI                                             | Abar                                                               | Adiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aatm                                                                                         | Agr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Refl<br>Ant<br>dB                                                                           | Lw/Lm<br>N<br>dB(A                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    |                                                                    |                                                          | Autoria                                             | 1900                                                     |                                                                                                                                                    |                                                | 1                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500                                                                                         | 112,0                                                               |
| V90-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | 0.000                                                              |                                                                    | _                                                        |                                                     |                                                          |                                                                                                                                                    |                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 50                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 112,0                                                               |
| V90-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                              |                                                                    | 00000                                                              |                                                          | - 22                                                |                                                          |                                                                                                                                                    | 100                                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.75                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 112,0                                                               |
| V90-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2007.600                                                                                                     | - 5                                                                |                                                                    | _                                                        | -                                                   |                                                          | No. of Contract Action                                                                                                                             |                                                |                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | 25,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 590.00                                                                                      | 112,0                                                               |
| N-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27,4                                                                                                         | 0,0                                                                | -                                                                  |                                                          |                                                     |                                                          |                                                                                                                                                    |                                                | 50.000                                                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                           | 112,0                                                               |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27,0                                                                                                         | 0,0                                                                |                                                                    | -                                                        |                                                     |                                                          |                                                                                                                                                    |                                                |                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | 112,                                                                |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28,1                                                                                                         | 0,0                                                                | 0,0                                                                |                                                          | -                                                   | - / 0                                                    |                                                                                                                                                    |                                                | -                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             | 112,                                                                |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26,7                                                                                                         | 0,0                                                                | 0,0                                                                | - 157                                                    |                                                     | _                                                        |                                                                                                                                                    |                                                | 0.000                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 112,                                                                |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26,7                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        |                                                     | 2.5                                                      |                                                                                                                                                    |                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - AUSEC                                                                                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             | 112,                                                                |
| N 117 2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I 404D ACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                              | 100                                                                |                                                                    |                                                          | 0                                                   |                                                          |                                                                                                                                                    | 1 0                                            | 0,0                                                                | 83,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             | 112,                                                                |
| N-11/-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U IZOD ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24,7                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        | U                                                   |                                                          |                                                                                                                                                    |                                                | _                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |                                                                     |
| N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24,7                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        | 0                                                   | 0                                                        | 3975,2                                                                                                                                             | 0                                              | 0,0                                                                | 83,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,3                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,9                                                                                         |                                                                     |
| 50.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,750,000                                                                                                    | -                                                                  |                                                                    |                                                          |                                                     |                                                          | 3975,2<br>3780,2                                                                                                                                   | 0                                              | 0,0                                                                | 82,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1                                                                                          | -3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,3                                                                                         | 112,                                                                |
| N-117-2400<br>N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24,8                                                                                                         | 0,0                                                                | 0,0                                                                | 0                                                        | 0                                                   | 0                                                        | 3975,2                                                                                                                                             | 0                                              | 0,0                                                                | 82,5<br>84,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0                                                                                   | -3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8                                                                                  | 112,                                                                |
| N-117-2400<br>N-117-2400<br>N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24,8<br>25,5                                                                                                 | 0,0                                                                | 0,0                                                                | 0                                                        | 0                                                   | 0                                                        | 3975,2<br>3780,2                                                                                                                                   | 0                                              | 0,0<br>0,0<br>0,0                                                  | 82,5<br>84,3<br>85,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1<br>8,0<br>8,5                                                                            | -3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,3<br>5,8                                                                                  | 112<br>112<br>112                                                   |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24,8<br>25,5<br>22,8                                                                                         | 0,0<br>0,0<br>0,0                                                  | 0,0<br>0,0<br>0,0<br>0,0                                           | 0 0                                                      | 0 0                                                 | 0 0                                                      | 3975,2<br>3780,2<br>4612,0                                                                                                                         | 0                                              | 0,0<br>0,0<br>0,0<br>0,0                                           | 82,5<br>84,3<br>85,1<br>85,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8                                                                     | -3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5                                                                     | 112,<br>112,<br>112,<br>112,                                        |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24,8<br>25,5<br>22,8<br>21,4<br>21,2                                                                         | 0,0<br>0,0<br>0,0<br>0,0                                           | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                    | 0 0 0                                                    | 0 0 0                                               | 0 0 0                                                    | 3975,2<br>3780,2<br>4612,0<br>5053,4                                                                                                               | 0 0                                            | 0,0<br>0,0<br>0,0                                                  | 82,5<br>84,3<br>85,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1<br>8,0<br>8,5<br>8,8<br>9,4                                                              | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,3<br>5,8<br>-<br>12,5<br>8,4                                                              | 112,<br>112,<br>112,<br>112,                                        |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4                                                                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                    | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 0<br>0<br>0<br>0                                         | 0 0 0 0                                             | 0<br>0<br>0<br>0                                         | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7                                                                                                     | 0 0 0                                          | 0,0<br>0,0<br>0,0<br>0,0                                           | 82,5<br>84,3<br>85,1<br>85,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3                                                       | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8                                                       | 112,<br>112,<br>112,<br>112,<br>112,<br>112,                        |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8                                                         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                      | 0<br>0<br>0<br>0                                         | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0                                         | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8                                                                                           | 0<br>0<br>0<br>0                               | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                    | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9                                                | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2                                               | 112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,                |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7                                                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0                                    | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0                                                                                 | 0<br>0<br>0<br>0                               | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7                                         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8                                                       | 112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,        |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-7<br>N-117<br>N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3                                         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0                               | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4                                                                       | 0<br>0<br>0<br>0<br>0                          | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                      | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9                                                | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2                                               | 112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,        |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5                                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                          | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0                                                             | 0<br>0<br>0<br>0<br>0<br>0                     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7                                         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4                                       | 112,<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 |
| N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5                                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0<br>7152,5                                                   | 0<br>0<br>0<br>0<br>0<br>0                     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4<br>88,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7                                         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4<br>-<br>5,9                           | 112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,        |
| N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117 N-117 N-117 S-115 E-115 V-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5<br>16,0                         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0<br>7152,5<br>7434,0                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0                | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4<br>88,1<br>88,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7<br>10,4                                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4                                       | 112,<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112 |
| N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117 N-117 N-117 N-115 E-115 E-115 V-44 E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5<br>16,0<br>15,1                 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0<br>7152,5<br>7434,0<br>8235,5                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4<br>88,1<br>88,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7<br>10,4<br>10,6<br>11,2                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4<br>-<br>5,9                           | 112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,        |
| N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117 N-117 N-117 E-115 E-115 V-44 E-82 E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5<br>16,0<br>15,1<br>15,1         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0<br>7152,5<br>7434,0<br>8235,5<br>8237,4<br>7869,8           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4<br>88,1<br>88,4<br>89,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7<br>10,4<br>10,6<br>11,2                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4<br>-<br>5,9<br>5,9                    | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112  |
| N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117 N-117 N-117 N-117 E-115 E-115 V-44 E-82 E-82 E-82 E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5<br>16,0<br>15,1<br>15,7<br>16,2 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0<br>7152,5<br>7434,0<br>8235,5<br>8237,4<br>7869,8<br>7570,1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4<br>88,1<br>88,4<br>89,3<br>89,3<br>88,9<br>88,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7<br>10,4<br>10,6<br>11,2<br>10,9         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4<br>-<br>-<br>5,9<br>5,9<br>6,4        | 112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112<br>112  |
| N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117-2400 N-117 N-117 N-117 E-115 E-115 V-44 E-82 E-82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U 12dB ASK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24,8<br>25,5<br>22,8<br>21,4<br>21,2<br>19,4<br>19,8<br>20,7<br>21,3<br>16,5<br>16,0<br>15,1<br>15,1         | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 3975,2<br>3780,2<br>4612,0<br>5053,4<br>5391,7<br>6018,8<br>5866,0<br>5484,4<br>5226,0<br>7152,5<br>7434,0<br>8235,5<br>8237,4<br>7869,8           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 82,5<br>84,3<br>85,1<br>85,6<br>86,6<br>86,4<br>85,8<br>85,4<br>88,1<br>88,4<br>89,3<br>89,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,1<br>8,0<br>8,5<br>8,8<br>9,4<br>9,3<br>8,9<br>8,7<br>10,4<br>10,6<br>11,2<br>10,9<br>10,7 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | 9,3<br>5,8<br>-<br>12,5<br>8,4<br>9,8<br>10,2<br>10,4<br>-<br>-<br>5,9<br>5,9<br>6,4<br>6,7 | 112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,<br>112,        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V90-2000    | V90-2000                                                                                                     | Nomentar   Gruppe                                                  | Nommentar   Gruppe                                                 | Nommentar   Gruppe                                       | Namentar   Sruppe                                   | Namentar   Sruppe                                        | Nommentar                                                                                                                                          | Nommentar                                      | Nommentar                                                          | Nommentar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Nommentar                                                                                    | Namentar   Sruppe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Namentar   Gruppe                                                                           | Namentar                                                            |



Sachverständige für Immissionsschutz

|        | 10-07      |            |                   |          |          |          |             |                 |           |          |      |      |      |           |                   |        |
|--------|------------|------------|-------------------|----------|----------|----------|-------------|-----------------|-----------|----------|------|------|------|-----------|-------------------|--------|
| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar | Adiv | Aatm | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE |
| RH 133 | V90-2000   | U 12dB ASK | 17,1              | 0.0      | 0.0      | 0        | 0           | 0               | 6887.4    | 0        | 0.0  |      |      | 1999      | ub                | dB(A)  |
| RH 134 | V90-2000   | U 12dB ASK | 16,5              | 0,0      | 0.0      | 0        | 0           | 0               | 7167.2    | 0        | -,-  | 87,8 | 10,2 | -3,0      | -                 | 112,0  |
| RH 135 | V90-2000   | U 12dB ASK | 16.0              | 0.0      | 0.0      | 0        | 0           | 0               | 7408.7    | 0        | 0,0  | 88,1 | 10,4 | -3,0      | 75                | 112,0  |
| RH 354 | N-131      | U 12dB ASK | 27.6              | 0,0      | 0,0      | 0        | 0           | 0               | 3202.1    | 0        | 0,0  | 88,4 | 10,6 | -3,0      | :=:               | 112,0  |
| RH 355 | N-117-2400 | U 12dB ASK | 27,2              | 0.0      | 0.0      | 0        | 0           | 0               | 3280.0    | 0        |      | 81,1 | 6,3  | -3,0      | -                 | 112,0  |
| RH 356 | N-117-2400 | U 12dB ASK | 28,3              | 0,0      | 0.0      | 0        | 0           | 0               | 3010.9    | 0        | 0,0  | 81,3 | 6,4  | -3,0      |                   | 112,0  |
| RH 357 | N-117-2400 | U 12dB ASK | 27.0              | 0.0      | 0,0      | 0        | 0           | 0               | 3343.9    | 0        | 0,0  | 80,6 | 6,1  | -3,0      | -                 | 112,0  |
| RH 358 | N-117-2400 | U 12dB ASK | 26,9              | 0,0      | 0.0      | 0        | 0           | 0               | 3357.8    | 0        | 0,0  | 81,5 | 6,5  | -3,0      | -                 | 112,0  |
| RH 359 | N-117-2400 | U 12dB ASK | 24.9              | 0.0      | 0,0      | 0        | 0           | 0               | 3915.1    | 0        | 0,0  | 81,5 | 6,6  | -3,0      | 1-1               | 112,0  |
| RH 360 | N-117-2400 | U 12dB ASK | 24,9              | 0.0      | 0,0      | 0        | 0           | 0               | 3915,1    | -        | 0,0  | 82,8 | 7,2  | -3,0      | -                 | 112,0  |
| RH 361 | N-117-2400 | U 12dB ASK | 25.6              | 0,0      | 0.0      | 0        | 0           | 0               | 3714.5    | 0        | 0,0  | 82,8 | 7,2  | -3,0      | •                 | 112,0  |
| RH 362 | N-117-2400 | U 12dB ASK | 22,9              | 0,0      | 0.0      | 0        | 0           | 0               | 4545.7    | 0        | 0,0  | 82,4 | 7,0  | -3,0      | -:                | 112,0  |
| RH 363 | N-117-2400 | U 12dB ASK | 21,9              | 0.0      | 0.0      | 0        | 0           | 0               | 5006.3    | 0        | 0,0  | 84,1 | 8,0  | -3,0      | -                 | 112,0  |
| RH 364 | N-117-2400 | U 12dB ASK | 21,0              | 0,0      | 0.0      | 0        | 0           | 0               | 5338.4    | 0        | 0,0  | 85,0 | 8,4  | -3,0      | 10,1              | 112,0  |
| RH 366 | N-117-2400 | U 12dB ASK | 19,6              | 0.0      | 0,0      | 0        | 0           | 0               | 5961.0    | 0        | 0,0  | 85,5 | 8,8  | -3,0      | 9,9               | 112,0  |
| RH 369 | N-117      | U 12dB ASK | 19,4              | 0,0      | 0.0      | 0        | 0           | 0               | 5839.1    | 0        | 0,0  | 86,5 | 9,4  | -3,0      | 9,3               | 112,0  |
| RH 370 | N-117      | U 12dB ASK | 20.4              | 0.0      | 0,0      | 0        | 0           | 0               | 5459.7    | 0        | 0,0  | 86,3 | 9,3  | -3,0      | •                 | 112,0  |
| RH 371 | N-117      | U 12dB ASK | 21,0              | 0.0      | 0.0      | 0        | 0           | 0               | 5205.8    | 0        | 0,0  | 85,7 | 8,9  | -3,0      | -                 | 112,0  |
| RH 374 | E-115      | U 12dB ASK | 17,3              | 0,0      | 0.0      | 0        | 0           | 0               | 7162.5    | 0        | 0,0  | 85,3 | 8,6  | -3,0      | -                 | 112,0  |
| RH 375 | E-115      | U 12dB ASK | 16.0              | 0,0      | 0,0      | 0        | 0           | 0               |           | 0        | 0,0  | 88,1 | 10,4 | -3,0      | 9,6               | 112,0  |
| RH 75  | V-44       | U 12dB ASK | 16,6              | 0,0      | 0,0      | 0        | 0           | 0               | 7445,1    | 0        | 0,0  | 88,4 | 10,6 | -3,0      | -                 | 112,0  |
| RH 76  | E-82       | U 12dB ASK | 16,6              | 0,0      | 0,0      | 0        | 0           | 0               | 8237,4    | 0        | 0,0  | 89,3 | 11,2 | -3,0      | 12,4              | 112,0  |
| RH 77  | E-82       | U 12dB ASK | 17,2              | 0,0      | 0,0      | 0        | 0           | 0               | 8242,5    | 0        | 0,0  | 89,3 | 11,2 | -3,0      | 12,4              | 112,0  |
| RH 78  | E-82       | U 12dB ASK | 17,2              | 0.0      | 0,0      | 0        | 0           | 0               | 7875,3    | 0        | 0,0  | 88,9 | 10,9 | -3,0      | 13,0              | 112,0  |
| RH 79  | E-82       | U 12dB ASK | 16.9              | 0,0      | 0,0      | 0        | 0           | 0               | 7576,1    | 0        | 0,0  | 88,6 | 10,7 | -3,0      | 13,6              | 112,0  |
| VEA T  | E-82       | U 12dB ASK | 16,9              | 0,0      | 0.0      | 0        | 0           | 0               | 7364,9    | 0        | 0,0  | 88,3 | 10,6 | -3,0      | 9,2               | 112,0  |
|        |            | Sum        | 37.1              | 0,0      | 0,0      | -        | 0           | U               | 8058,8    | 0        | 0,0  | 89,1 | 11,1 | -3,0      | 12,7              | 112,0  |

| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m      | DI | Abar<br>dB | Adiv  | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|------------|------------|-------------------|----------|----------|----------|-------------|-----------------|----------------|----|------------|-------|------------|-----------|-------------------|----------------------|
| RH 133 | V90-2000   | U 12dB ASK | 17,0              | 0,0      | 0.0      | 0        | 0           | 0               | 6908.8         | 0  | 0.0        | 87,8  | 10.2       | -3.0      |                   |                      |
| RH 134 | V90-2000   | U 12dB ASK | 16.5              | 0,0      | 0.0      | 0        | 0           | 0               | 7188.7         | 0  | 0,0        | 88.1  | 10,2       | 2000      | -                 | 112,0                |
| RH 135 | V90-2000   | U 12dB ASK | 16,0              | 0,0      | 0,0      | 0        | 0           | 0               | 7429.8         | 0  | 0,0        | 88.4  | 10,4       | -3,0      | -                 | 112,0                |
| RH 354 | N-131      | U 12dB ASK | 27.5              | 0,0      | 0,0      | 0        | 0           | 0               | 3217.8         | 0  | 0,0        | 81.1  | ,-         | -3,0      | -                 | 112,0                |
| RH 355 | N-117-2400 | U 12dB ASK | 27,3              | 0,0      | 0.0      | 0        | 0           | 0               | 3254.7         | 0  | 0,0        | 81,2  | 6,4        | -3,0      | -                 | 112,0                |
| RH 356 | N-117-2400 | U 12dB ASK | 28,4              | 0,0      | 0,0      | 0        | 0           | 0               | 2989.4         | 0  | 0.0        | 80.5  | -1         | -3,0      | -                 | 112,0                |
| RH 357 | N-117-2400 | U 12dB ASK | 27,1              | 0,0      | 0,0      | 0        | 0           | 0               | 3324.7         | 0  | 0,0        | 81.4  | 6,1        | -3,0      | -                 | 112,0                |
| RH 358 | N-117-2400 | U 12dB ASK | 27,0              | 0.0      | 0,0      | 0        | 0           | 0               | 3341.9         | 0  | 0,0        | 81,4  | 6,5        | -3,0      | -                 | 112,0                |
| RH 359 | N-117-2400 | U 12dB ASK | 25,0              | 0.0      | 0.0      | 0        | 0           | 0               | 3897.2         | 0  | 0,0        | 82.8  | 6,5        | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400 | U 12dB ASK | 25.0              | 0,0      | 0.0      | 0        | 0           | 0               | 3893.9         | 0  | -,-        | , , , | 7,2        | -3,0      | -                 | 112,0                |
| RH 361 | N-117-2400 | U 12dB ASK | 25,6              | 0,0      | 0,0      | 0        | 0           | 0               | 3703,5         | _  | 0,0        | 82,8  | 7,2        | -3,0      | -                 | 112,0                |
| RH 362 | N-117-2400 | U 12dB ASK | 22,9              | 0,0      | 0,0      | 0        | 0           | 0               | 4533.0         | 0  | 0,0        | 82,4  | 7,0        | -3,0      | -                 | 112,0                |
| RH 363 | N-117-2400 | U 12dB ASK | 21,5              | 0,0      | 0,0      | 0        | 0           | 0               | 5017.3         | 0  | 0,0        | 84,1  | 7,9        | -3,0      | -                 | 112,0                |
| RH 364 | N-117-2400 | U 12dB ASK | 20.7              | 0,0      | 0,0      | 0        | 0           | 0               | 5344.4         | 0  | 0,0        | 85,0  | 8,5        | -3,0      | •                 | 112,0                |
| RH 366 | N-117-2400 | U 12dB ASK | 19,1              | 0,0      | 0,0      | 0        | 0           | 0               | 5962.6         | 0  | 0,0        | 85,6  | 8,8        | -3,0      | -                 | 112,0                |
| RH 369 | N-117      | U 12dB ASK | 19,4              | 0,0      | 0.0      | 0        | 0           | 0               | 5861.4         | 0  | 0,0        | 86,5  | 9,4        | -3,0      | -                 | 112,0                |
| RH 370 | N-117      | U 12dB ASK | 20.3              | 0.0      | 0,0      | 0        | 0           | 0               | 5483.0         | 0  | 0,0        | 86,4  | 9,3        | -3,0      |                   | 112,0                |
| RH 371 | N-117      | U 12dB ASK | 21,0              | 0,0      | 0.0      | 0        | 0           | 0               | 5231.0         |    | 0,0        | 85,8  | 8,9        | -3,0      | -                 | 112,0                |
| RH 374 | E-115      | U 12dB ASK | 16,4              | 0,0      | 0,0      | 0        | 0           | 0               | 7196.1         | 0  | 0,0        | 85,4  | 8,7        | -3,0      | •                 | 112,0                |
| RH 375 | E-115      | U 12dB ASK | 15,9              | 0,0      | 0,0      | 0        | 0           | 0               | 7478.9         | 0  | 0,0        | 88,1  | 10,4       | -3,0      | <b></b>           | 112,0                |
| RH 75  | V-44       | U 12dB ASK | 14,4              | 0.0      | 0,0      | 0        | 0           | 0               | Service / Pube | 0  | 0,0        | 88,5  | 10,6       | -3,0      | -                 | 112,0                |
| RH 76  | E-82       | U 12dB ASK | 14,4              | 0,0      | 0,0      | 0        | 0           | _               | 8269,4         | 0  | 0,0        | 89,3  | 11,2       | -3,0      | E.                | 112,0                |
| RH 77  | E-82       | U 12dB ASK | 15,1              | 0,0      | 0.0      |          | -           | 0               | 8275,1         | 0  | 0,0        | 89,3  | 11,2       | -3,0      | -                 | 112,0                |
| RH 78  | E-82       | U 12dB ASK | 15,1              | 0,0      | -1-      | 0        | 0           | 0               | 7908,0         | 0  | 0,0        | 89,0  | 11,0       | -3,0      | -                 | 112,0                |
| RH 79  | E-82       | U 12dB ASK | 16,0              | 0,0      | 0,0      |          | 0           | 0               | 7608,9         | 0  | 0,0        | 88,6  | 10,7       | -3,0      | -                 | 112,0                |
| VEA T  | E-82       | U 12dB ASK |                   |          | 0,0      | 0        | 0           | 0               | 7398,0         | 0  | 0,0        | 88,4  | 10,6       | -3,0      | -                 | 112,0                |
| ,      |            |            | 14,8              | 0,0      | 0,0      | 0        | 0           | 0               | 8090,9         | 0  | 0,0        | 89,2  | 11,1       | -3,0      |                   | 112,0                |
|        |            | Sum        | 37,1              |          |          |          |             |                 |                |    |            |       |            |           |                   |                      |

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg



|        | 10-09                    | Gruppe            | LAT          | DC  | DT  | MM  | KT/KI | Cmet    | d(p)    | DI | Abar | Adiv | Aatm | Agr      | Refl      | Lw/LmE     |
|--------|--------------------------|-------------------|--------------|-----|-----|-----|-------|---------|---------|----|------|------|------|----------|-----------|------------|
| ir     | Kommentar                | Бгирре            | N<br>dB(A)   | dB  | dB  | dB  | dB    | N<br>dB | m       | dB | dB   | dB   | dB   | dB       | Ant<br>dB | N<br>dB(A) |
| RH 133 | V90-2000                 | U 12dB ASK        | 17.0         | 0,0 | 0,0 | 0   | 0     | 0       | 6903,3  | 0  | 0,0  | 87,8 | 10,2 | -3,0     | -         | 112,0      |
| RH 134 | V90-2000                 | U 12dB ASK        | 16,5         | 0,0 | 0,0 | 0   | 0     | 0       | 7184,2  | 0  | 0,0  | 88,1 | 10,4 | -3,0     | •         | 112,0      |
| RH 135 | V90-2000                 | U 12dB ASK        | 16.0         | 0,0 | 0,0 | 0   | 0     | 0       | 7420,8  | 0  | 0,0  | 88,4 | 10,6 | -3,0     | -         | 112,0      |
| RH 354 | N-131                    | U 12dB ASK        | 27.7         | 0,0 | 0,0 | 0   | 0     | 0       | 3176,7  | 0  | 0,0  | 81,0 | 6,3  | -3,0     | •         | 112,0      |
| RH 355 | N-117-2400               | U 12dB ASK        | 28,2         | 0.0 | 0,0 | 0   | 0     | 0       | 3042,7  | 0  | 0,0  | 80,7 | 6,1  | -3,0     | · **      | 112,0      |
| RH 356 | N-117-2400               | U 12dB ASK        | 29.3         | 0.0 | 0,0 | 0   | 0     | 0       | 2782,9  | 0  | 0,0  | 79,9 | 5,8  | -3,0     | -         | 112,0      |
| RH 357 | N-117-2400               | U 12dB ASK        | 27.9         | 0.0 | 0.0 | 0   | 0     | 0       | 3123,1  | 0  | 0,0  | 80,9 | 6,2  | -3,0     | -         | 112,0      |
| RH 358 | N-117-2400               | U 12dB ASK        | 27.8         | 0.0 | 0.0 | 0   | 0     | 0       | 3149,0  | 0  | 0,0  | 81,0 | 6,3  | -3,0     | -         | 112,0      |
| RH 359 | N-117-2400               | U 12dB ASK        | 25,7         | 0.0 | 0,0 | 0   | 0     | 0       | 3698,3  | 0  | 0,0  | 82,4 | 7,0  | -3,0     | -         | 112,0      |
| RH 360 | N-117-2400<br>N-117-2400 | U 12dB ASK        | 25.6         | 0.0 | 0.0 | 0   | 0     | 0       | 3703,9  | 0  | 0,0  | 82,4 | 7,0  | -3,0     | -         | 112,0      |
|        | N-117-2400               | U 12dB ASK        | 26,3         | 0.0 | 0.0 | 0   | 0     | 0       | 3526,3  | 0  | 0,0  | 81,9 | 6,8  | -3,0     | -         | 112,0      |
| RH 361 | N-117-2400<br>N-117-2400 | U 12dB ASK        | 23,5         | 0.0 | 0.0 | 0   | 0     | 0       | 4349,0  | 0  | 0,0  | 83,8 | 7,7  | -3,0     |           | 112,0      |
| RH 362 | N-117-2400<br>N-117-2400 | U 12dB ASK        | 21.7         | 0.0 | 0.0 | 0   | 0     | 0       | 4943,4  | 0  | 0,0  | 84,9 | 8,4  | -3,0     |           | 112,0      |
| RH 363 | N-117-2400<br>N-117-2400 | U 12dB ASK        | 20.9         | 0.0 | 0.0 | 0   | 0     | 0       | 5242,2  | 0  | 0,0  | 85,4 | 8,7  | -3,0     | -         | 112,0      |
| RH 364 | N-117-2400<br>N-117-2400 | U 12dB ASK        | 19.4         | 0.0 | 0.0 | 0   | 0     | 0       | 5837,6  | 0  | 0,0  | 86,3 | 9,3  | -3,0     | •         | 112,0      |
| RH 366 | N-117-2400<br>N-117      | U 12dB ASK        | 19,4         | 0.0 | 0.0 | 0   | 0     | 0       | 5863,6  | 0  | 0,0  | 86,4 | 9,3  | -3,0     | -         | 112,0      |
| RH 369 |                          | U 12dB ASK        | 20.3         | 0.0 | 0.0 | 0   | 0     | 0       | 5493,2  | 0  | 0,0  | 85,8 | 8,9  | -3,0     | -         | 112,0      |
| RH 370 | N-117                    | U 12dB ASK        | 20,9         | 0.0 | 0.0 | 0   | 0     | 0       | 5256,8  | 0  | 0,0  | 85,4 | 8,7  | -3,0     | -         | 112,0      |
| RH 371 | N-117                    | U 12dB ASK        | 16,2         | 0,0 | 0.0 | 0   | 0     | 0       | 7310.8  | 0  | 0,0  | 88,3 | 10,5 | -3,0     | 1-1       | 112,0      |
| RH 374 | E-115                    | U 12dB ASK        | 15,7         | 0,0 | 0.0 | 0   | 0     | 0       | 7596.2  | 0  | 0,0  | 88,6 | 10,7 | -3,0     | 12        | 112,0      |
| RH 375 | E-115                    | U 12dB ASK        | 14.3         | 0,0 | 0.0 | 0   | 0     | 0       | 8360.9  | 0  | 0,0  | 89,4 | 11,3 | -3,0     |           | 112,0      |
| RH 75  | V-44                     | U 12dB ASK        | 14,3         | 0,0 | 0.0 | 0   | 0     | 0       | 8375,5  | 0  | 0,0  | 89,5 | 11,3 | -3,0     | -         | 112,0      |
| RH 76  | E-82                     |                   | 14,2         | 0,0 | 0.0 | 0   | 0     | 0       | 8009.7  | 0  | 0,0  | 89,1 | 11,0 | -3,0     | -         | 112,0      |
| RH 77  | E-82                     | U 12dB ASK        | 15.4         | 0,0 | 0.0 | 0   | 0     | 0       | 7712.2  | 0  | 0,0  | 88,7 | 10,8 | -3,0     |           | 112,0      |
| RH 78  | E-82                     | U 12dB ASK        | 15,4         | 0,0 | 0,0 | 0   | 0     | 0       | 7504.5  | 0  | 0,0  | 88,5 | 10,7 | -3,0     | -         | 112,0      |
| RH 79  | E-82                     | U 12dB ASK        | 85.65        |     | 0,0 | 0   | 0     | 0       | 8184.4  | 0  | 0.0  | 89.3 | 11,2 | -3,0     |           | 112,0      |
| WEA T  | E-82                     | U 12dB ASK<br>Sum | 14,6<br>37.6 | 0,0 | 0,0 | 1 0 | J 0   | + -     | 0 104,4 | +- | 0,0  | 3414 | 1    | <u> </u> | _         | _          |

| lr                | IO-10<br>Kommentar       | Gruppe     | LAT<br>N<br>dB(A) | DC dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m        | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|-------------------|--------------------------|------------|-------------------|-------|----------|----------|-------------|-----------------|------------------|----------|------------|------------|------------|-----------|-------------------|----------------------|
| RH 133            | V90-2000                 | U 12dB ASK | 17.7              | 0,0   | 0.0      | 0        | 0           | 0               | 6609,4           | 0        | 0,0        | 87,4       | 9,9        | -3,0      |                   | 112,0                |
| RH 134            | V90-2000                 | U 12dB ASK | 17.1              | 0.0   | 0,0      | 0        | 0           | 0               | 6890,7           | 0        | 0,0        | 87,8       | 10,2       | -3,0      |                   | 112,0                |
| RH 135            | V90-2000                 | U 12dB ASK | 16,6              | 0,0   | 0.0      | 0        | 0           | 0               | 7125,5           | 0        | 0,0        | 88,0       | 10,4       | -3,0      | -                 | 112,0                |
| RH 354            | N-131                    | U 12dB ASK | 28.9              | 0,0   | 0,0      | 0        | 0           | 0               | 2874,4           | 0        | 0,0        | 80,2       | 5,9        | -3,0      | 1.5               | 112,0                |
| RH 355            | N-117-2400               | U 12dB ASK | 28.6              | 0,0   | 0.0      | 0        | 0           | 0               | 2945,0           | 0        | 0,0        | 80,4       | 6,0        | -3,0      | -                 | 112,0                |
| RH 356            | N-117-2400               | U 12dB ASK | 30.0              | 0,0   | 0,0      | 0        | 0           | 0               | 2642,0           | 0        | 0,0        | 79,4       | 5,6        | -3,0      | 75                | 112,0                |
| SON A PROPERTY OF | N-117-2400               | U 12dB ASK | 28,6              | 0,0   | 0.0      | 0        | 0           | 0               | 2958,6           | 0        | 0,0        | 80,4       | 6,0        | -3,0      |                   | 112,0                |
| RH 357            | N-117-2400<br>N-117-2400 | U 12dB ASK | 28,6              | 0.0   | 0.0      | 0        | 0           | 0               | 2955,7           | 0        | 0,0        | 80,4       | 6,0        | -3,0      |                   | 112,0                |
| RH 358<br>RH 359  | N-117-2400               | U 12dB ASK | 26,3              | 0,0   | 0,0      | 0        | 0           | 0               | 3522,0           | 0        | 0,0        | 81,9       | 6,8        | -3,0      |                   | 112,0                |
|                   | N-117-2400<br>N-117-2400 | U 12dB ASK | 26,4              | 0,0   | 0,0      | 0        | 0           | 0               | 3501,7           | 0        | 0,0        | 81,9       | 6,7        | -3,0      | -                 | 112,0                |
| RH 360            | N-117-2400<br>N-117-2400 | U 12dB ASK | 27,2              | 0,0   | 0.0      | 0        | 0           | 0               | 3297,3           | 0        | 0,0        | 81,4       | 6,5        | -3,0      | -                 | 112,0                |
| RH 361            | N-117-2400<br>N-117-2400 | U 12dB ASK | 24.2              | 0.0   | 0,0      | 0        | 0           | 0               | 4132,1           | 0        | 0,0        | 83,3       | 7,5        | -3,0      | •                 | 112,0                |
| RH 362            | AND AND ADDRESS.         | U 12dB ASK | 22.6              | 0.0   | 0.0      | 0        | 0           | 0               | 4639.2           | 0        | 0,0        | 84,3       | 8,1        | -3,0      |                   | 112,0                |
| RH 363            | N-117-2400               | U 12dB ASK | 21,7              | 0,0   | 0,0      | 0        | 0           | 0               | 4944.3           | 0        | 0,0        | 84,9       | 8,4        | -3,0      |                   | 112,0                |
| RH 364            | N-117-2400               | U 12dB ASK | 20,1              | 0,0   | 0.0      | 0        | 0           | 0               | 5550.7           | 0        | 0,0        | 85,9       | 9,0        | -3,0      | IN.               | 112,0                |
| RH 366            | N-117-2400               |            | 20,1              | 0,0   | 0,0      | 0        | 0           | 0               | 5573,4           | 0        | 0.0        | 85,9       | 9,0        | -3,0      | -                 | 112,0                |
| RH 369            | N-117                    | U 12dB ASK | 21,0              | 0,0   | 0,0      | 0        | 0           | 0               | 5207.2           | 0        | 0,0        | 85.3       | 8,6        | -3,0      |                   | 112,0                |
| RH 370            | N-117                    | U 12dB ASK |                   | 0,0   | 0,0      | 0        | 10          | 0               | 4979.9           | 0        | 0.0        | 84,9       | 8,4        | -3,0      | -                 | 112,0                |
| RH 371            | N-117                    | U 12dB ASK | 21,6              | - 1   | 0.0      | 0        | 0           | 0               | 7115.0           | 0        | 0.0        | 88,0       | 10.4       | -3,0      | -                 | 112,0                |
| RH 374            | E-115                    | U 12dB ASK | 16,6              | 0,0   | 270      | 0        | 0           | 0               | 7403.6           | 0        | 0.0        | 88,4       | 10,6       | -3.0      | -                 | 112,0                |
| RH 375            | E-115                    | U 12dB ASK | 16,0              | 0,0   | 0,0      | -        | 0           | 0               | 8136.4           | 0        | 0.0        | 89.2       | 11,1       | -3,0      | 3:=3              | 112.0                |
| RH 75             | V-44                     | U 12dB ASK | 14,7              | 0,0   | 0,0      | 0        |             | 0               | 8161,3           | 0        | 0.0        | 89.2       | 11,1       | -3.0      | 12                | 112,0                |
| RH 76             | E-82                     | U 12dB ASK | 14,6              | 0,0   | 0,0      | 0        | 0           | _               |                  | 0        | 0,0        | 88.8       | 10.9       | -3.0      |                   | 112,0                |
| RH 77             | E-82                     | U 12dB ASK | 15,3              | 0,0   | 0,0      | 0        | 0           | 0               | 7797,3<br>7501.8 | 0        | 0,0        | 88.5       | 10,9       | -3,0      | -                 | 112,0                |
| RH 78             | E-82                     | U 12dB ASK | 15,8              | 0,0   | 0,0      | 0        | 0           | 0               | 7501,8           | 0        | 0,0        | 88.3       | 10,7       | -3,0      | 7.1               | 112.0                |
| RH 79             | E-82                     | U 12dB ASK | 16,7              | 0,0   | 0,0      | 0        | 0           | 0               | 8000.0000.000    | 0        | 0,0        | 89,0       | 11.0       | -3,0      |                   | 112,0                |
| WEA T             | E-82                     | U 12dB ASK | 15,0              | 0,0   | 0,0      | 0        | 0           | 0               | 7962,4           | 1 0      | 0,0        | 09,0       | 11,0       | -5,0      | -                 | + 112,0              |
|                   |                          | Sum        | 38,4              |       |          |          |             |                 |                  |          |            |            |            |           |                   |                      |



|        | 10-11      |              |                   |          |       |    |       |                 |        |          |      |              |            |              |             |             |
|--------|------------|--------------|-------------------|----------|-------|----|-------|-----------------|--------|----------|------|--------------|------------|--------------|-------------|-------------|
| Nr     | Kommentar  | Gruppe       | LAT<br>N<br>dB(A) | DC<br>dB | DT dB | MM | KT/KI | Cmet<br>N<br>dB | d(p)   | DI<br>dB | Abar | Adiv         | Aatm       | Agr<br>dB    | Refl<br>Ant | Lw/LmE      |
| RH 133 | V90-2000   | U 12dB ASK   | 17,8              | 0.0      | 0,0   | 0  | 0     | 0               | 6555,4 | 0        |      |              |            |              | dB          | dB(A)       |
| RH 134 | V90-2000   | U 12dB ASK   | 17,2              | 0,0      | 0.0   | 0  | 0     | 0               | 6836,7 | 0        | 0,0  | 87,3         | 9,9        | -3,0         | -           | 112,0       |
| RH 135 | V90-2000   | U 12dB ASK   | 16,7              | 0.0      | 0,0   | 0  | 0     | 0               | 7072,0 | 0        | 0,0  | 87,7<br>88.0 | 10,1       | -3,0         | •           | 112,0       |
| RH 354 | N-131      | U 12dB ASK   | 29,2              | 0.0      | 0.0   | 0  | 1 0   | 0               | 2824,8 | 0        | 0,0  | 80,0         | 10,3       | -3,0         | -           | 112,0       |
| RH 355 | N-117-2400 | U 12dB ASK   | 28.5              | 0.0      | 0.0   | 0  | 0     | 0               | 2968,8 | 0        | 0,0  | 80,0         | 5,8        | -3,0         | -           | 112,0       |
| RH 356 | N-117-2400 | U 12dB ASK   | 29,9              | 0,0      | 0.0   | 0  | 0     | 0               | 2657.4 | 0        | 0,0  | 79.5         | 6,0        | -3,0         | •           | 112,0       |
| RH 357 | N-117-2400 | U 12dB ASK   | 28,5              | 0,0      | 0,0   | 0  | 0     | 0               | 2968.4 | 0        | 0.0  |              | 5,6        | -3,0         | -           | 112,0       |
| RH 358 | N-117-2400 | U 12dB ASK   | 28.6              | 0.0      | 0.0   | 0  | 0     | 0               | 2958,4 | 0        | 0,0  | 80,4         | 6,0        | -3,0         | -           | 112,0       |
| RH 359 | N-117-2400 | U 12dB ASK   | 26.3              | 0,0      | 0.0   | 0  | 0     | 0               | 3528.6 | 0        | 0,0  | 80,4<br>81,9 | 6,0        | -3,0         | -           | 112,0       |
| RH 360 | N-117-2400 | U 12dB ASK   | 26,4              | 0.0      | 0,0   | 0  | 0     | 0               | 3501.7 | 0        | 0,0  | 81,9         | 6,8        | -3,0         | -           | 112,0       |
| RH 361 | N-117-2400 | U 12dB ASK   | 27,2              | 0,0      | 0.0   | 0  | 0     | 0               | 3289.9 | 0        | 0,0  | 100000       | 6,7        | -3,0         | -           | 112,0       |
| RH 362 | N-117-2400 | U 12dB ASK   | 24,2              | 0.0      | 0,0   | 0  | 0     | 0               | 4127.9 | 0        | 0,0  | 81,3         | 6,5        | -3,0         |             | 112,0       |
| RH 363 | N-117-2400 | U 12dB ASK   | 22,7              | 0,0      | 0,0   | 0  | 0     | 0               | 4596,2 | 0        | 0,0  | 83,3<br>84,2 | 7,5<br>8.0 | -3,0         | -           | 112,0       |
| RH 364 | N-117-2400 | U 12dB ASK   | 21,8              | 0.0      | 0,0   | 0  | 0     | 0               | 4908.2 | 0        | 0,0  | 84.8         |            | -3,0         |             | 112,0       |
| RH 366 | N-117-2400 | U 12dB ASK   | 20,2              | 0.0      | 0,0   | 0  | 0     | 0               | 5521.2 | 0        | 0,0  | 85.8         | 8,3        | -3,0         | 75.5        | 112,0       |
| RH 369 | N-117      | U 12dB ASK   | 20,2              | 0,0      | 0.0   | 0  | 0     | 0               | 5518,5 | 0        | 0,0  | 85,8         | 9,0        | -3,0         | -           | 112,0       |
| RH 370 | N-117      | U 12dB ASK   | 21,2              | 0,0      | 0,0   | 0  | 0     | 0               | 5151,5 | 0        | 0,0  | 85,2         | 8.6        | -3,0         | •           | 112,0       |
| RH 371 | N-117      | U 12dB ASK   | 21,8              | 0,0      | 0,0   | 0  | 0     | 0               | 4922.8 | 0        | 0,0  | 84.8         | 8,4        | -3,0         | -           | 112,0       |
| RH 374 | E-115      | U 12dB ASK   | 16.7              | 0.0      | 0.0   | 0  | 0     | 0               | 7057,4 | 0        | 0,0  | 88,0         | 2.4.7      | -3,0         | -           | 112,0       |
| RH 375 | E-115      | U 12dB ASK   | 16,2              | 0,0      | 0,0   | 0  | 0     | 0               | 7346.2 | 0        | 0,0  | 88,3         | 10,3       | -3,0<br>-3.0 |             | 112,0       |
| RH 75  | V-44       | U 12dB ASK   | 14,8              | 0,0      | 0.0   | 0  | 0     | 0               | 8077.7 | 0        | 0,0  | 89.1         | 11,1       | -,-          | 11-         | 112,0       |
| RH 76  | E-82       | U 12dB ASK   | 15,4              | 0,0      | 0,0   | 0  | 0     | 0               | 8102.9 | 0        | 0,0  | 89,2         | 11,1       | -3,0<br>-3,0 | -           | 112,0       |
| RH 77  | E-82       | U 12dB ASK   | 16,0              | 0.0      | 0,0   | 0  | 0     | 0               | 7738,9 | 0        | 0,0  | 88,8         | 10,8       | -3,0         | 6,8         | 112,0       |
| RH 78  | E-82       | U 12dB ASK   | 16,6              | 0.0      | 0.0   | 0  | 0     | 0               | 7443,5 | 0        | 0,0  | 88.4         | 10,6       | -3,0         | 7,3         | 112,0       |
| RH 79  | E-82       | U 12dB ASK   | 16,9              | 0,0      | 0,0   | 0  | 0     | 0               | 7240.2 | 0        | 0,0  | 88.2         | 10,6       | -3,0         | 7,7         | 112,0       |
| VEA T  | E-82       | U 12dB ASK   | 15,1              | 0,0      | 0,0   | 0  | 0     | 0               | 7903,7 | 0        | 0,0  | 88,9         | 11,0       | -3,0         | 7,9         | 112,0       |
|        |            | Sum          | 38,4              |          | 5/5   |    | -     | -               | 1000,1 | -        | 0,0  | 00,9         | 11,0       | -3,0         | -           | 112,0       |
|        | IO-12      |              |                   |          |       |    |       |                 |        |          |      |              |            |              |             |             |
| lr     | Kommentar  | Gruppe       | LAT<br>N          | DC       | DT    | MM | KT/KI | Cmet<br>N       | d(p)   | DI       | Abar | Adiv         | Aatm       | Agr          | Refl<br>Ant | Lw/LmE<br>N |
|        |            | CITAL AVENUE | dB(A)             | dB       | dB    | dB | dB    | dB              | m      | dB       | dB   | dB           | dB         | dB           | dB          | dB(A)       |
| RH 133 | V90-2000   | U 12dB ASK   | 18,1              | 0,0      | 0,0   | 0  | 0     | 0               | 6427.8 | 0        | 0,0  | 87,2         | 9.8        | -3,0         |             | Dec. 100.00 |
| RH 134 | V90-2000   | U 12dB ASK   | 17,5              | 0.0      | 0.0   | 0  | 0     | 0               | 6708.3 | 0        | 0.0  | 87,5         | 10,0       | -3,0         |             | 112,0       |
| H 135  | V90-2000   | U 12dB ASK   | 17,0              | 0,0      | 0,0   | 0  | 0     | 0               | 6947.1 | 0        | 0,0  | 87.8         | 10,0       | -3,0         | -           | 112,0       |
| H 354  | N-131      | U 12dB ASK   | 29,6              | 0,0      | 0,0   | 0  | 0     | 0               | 2726.5 | 0        | 0.0  | 79.7         | 5,7        | -3,0         |             | 112,0       |
| H 355  | N-117-2400 | U 12dB ASK   | 28,2              | 0,0      | 0,0   | 0  | 0     | 0               | 3125.6 | 0        | 0.0  | 80.9         | 6.2        | -3,0         |             | 112,0       |
| 2H 356 | N-117-2400 | I 124D ACK   | 200               | 0.0      | 0.0   | -  | -     | -               | 3120,0 | v        | 0,0  | 00,5         | 0,2        | -3,0         | 16,9        | 112,0       |

| 19     | 10-12      |            |                   |          |          |          |             |                 |           |          |            |      |              |              |                   |                      |
|--------|------------|------------|-------------------|----------|----------|----------|-------------|-----------------|-----------|----------|------------|------|--------------|--------------|-------------------|----------------------|
| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv | Aatm         | Agr          | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
| RH 133 | V90-2000   | U 12dB ASK | 18,1              | 0,0      | 0.0      | 0        | 0           | 0               | 6427.8    | 0        | 0,0        | 87.2 | 9.8          | -3,0         |                   | 112,0                |
| RH 134 | V90-2000   | U 12dB ASK | 17,5              | 0.0      | 0.0      | 0        | 0           | 0               | 6708.3    | 0        | 0.0        | 87,5 | 10.0         | -3,0         | -                 | 112,0                |
| RH 135 | V90-2000   | U 12dB ASK | 17,0              | 0.0      | 0,0      | 0        | 0           | 0               | 6947.1    | 0        | 0,0        | 87.8 | 10,0         | -3,0         | -                 |                      |
| RH 354 | N-131      | U 12dB ASK | 29,6              | 0,0      | 0,0      | 0        | 0           | 0               | 2726.5    | 0        | 0,0        | 79.7 | 5,7          | -3,0         | -                 | 112,0                |
| RH 355 | N-117-2400 | U 12dB ASK | 28,2              | 0,0      | 0,0      | 0        | 0           | 0               | 3125.6    | 0        | 0,0        | 80.9 | 6,2          | -3,0         | 16.9              | 112,0                |
| RH 356 | N-117-2400 | U 12dB ASK | 29.8              | 0.0      | 0,0      | 0        | 0           | 0               | 2795,0    | 0        | 0.0        | 79,9 | 5,8          | -3,0         | 20,3              | 112,0<br>112.0       |
| RH 357 | N-117-2400 | U 12dB ASK | 28,0              | 0,0      | 0.0      | 0        | 0           | 0               | 3090.7    | 0        | 0.0        | 80.8 | 6,2          | -3,0         | 20,3              | 05.7509,050          |
| RH 358 | N-117-2400 | U 12dB ASK | 28,1              | 0.0      | 0.0      | 0        | 0           | 0               | 3061,4    | 0        | 0,0        | 80,7 | 6,2          | -3,0         |                   | 112,0                |
| RH 359 | N-117-2400 | U 12dB ASK | 25,9              | 0,0      | 0,0      | 0        | 0           | 0               | 3641.3    | 0        | 0.0        | 82.2 | 6,9          | -3,0         |                   | 112,0                |
| RH 360 | N-117-2400 | U 12dB ASK | 26.0              | 0,0      | 0.0      | 0        | 0           | 0               | 3595.8    | 0        | 0,0        | 82,1 | 6,9          | -3,0         | -                 | 112,0                |
| RH 361 | N-117-2400 | U 12dB ASK | 26,9              | 0.0      | 0.0      | 0        | 0           | 0               | 3361,7    | 0        | 0,0        | 81.5 | 6,6          | -3,0         |                   | 112,0                |
| RH 362 | N-117-2400 | U 12dB ASK | 23,9              | 0,0      | 0,0      | 0        | 0           | 0               | 4207.9    | 0        | 0,0        | 83.5 | 7,6          | -3,0         | -                 | 112,0                |
| RH 363 | N-117-2400 | U 12dB ASK | 22,9              | 0.0      | 0.0      | 0        | 0           | 0               | 4529,9    | 0        | 0,0        | 84.1 | 7,0          | -3,0         | -                 | 112,0                |
| RH 364 | N-117-2400 | U 12dB ASK | 21,9              | 0,0      | 0,0      | 0        | 0           | 0               | 4872.4    | 0        | 0,0        | 84,7 | 8.3          | -3,0         | -                 | 112,0                |
| RH 366 | N-117-2400 | U 12dB ASK | 20.6              | 0.0      | 0,0      | 0        | 0           | 0               | 5511.8    | 0        | 0.0        | 85,8 | 8,9          | -3,0         | 9.8               | 112,0                |
| RH 369 | N-117      | U 12dB ASK | 20,6              | 0,0      | 0.0      | 0        | 0           | 0               | 5384.7    | 0        | 0,0        | 85.6 | 8.8          | -3,0         | 9,0               | 112,0                |
| RH 370 | N-117      | U 12dB ASK | 21.9              | 0,0      | 0,0      | 0        | 0           | 0               | 5011.5    | 0        | 0,0        | 85,0 | 8,5          | -3,0         | - 400             | 112,0                |
| RH 371 | N-117      | U 12dB ASK | 22,5              | 0,0      | 0.0      | 0        | 0           | 0               | 4771,9    | 0        | 0,0        | 84.6 | 8,2          | -3,0         | 10,2<br>10.6      | 112,0                |
| RH 374 | E-115      | U 12dB ASK | 17,6              | 0.0      | 0,0      | 0        | 0           | 0               | 6863.7    | 0        | 0,0        | 87.7 | 10.1         | -3,0         | 7,8               | 112,0                |
| RH 375 | E-115      | U 12dB ASK | 16,5              | 0.0      | 0.0      | 0        | 0           | 0               | 7151.8    | 0        | 0.0        | 88.1 | 10,1         | 7.07         | 7,8               | 112,0                |
| RH 75  | V-44       | U 12dB ASK | 15.7              | 0.0      | 0.0      | 0        | 0           | 0               | 7892.5    | 0        | 0,0        | 88.9 | 2897.5       | -3,0         | -                 | 112,0                |
| RH 76  | E-82       | U 12dB ASK | 15,6              | 0.0      | 0.0      | 0        | 0           | 0               | 7914.3    | 0        | 0,0        | 89.0 | 10,9<br>11.0 | -3,0         | 6,5               | 112,0                |
| RH 77  | E-82       | U 12dB ASK | 16,3              | 0,0      | 0,0      | 0        | 0           | 0               | 7514,3    | 0        | 0,0        | 88.6 | 10,7         | -3,0         | 6,5               | 112,0                |
| RH 78  | E-82       | U 12dB ASK | 16,9              | 0.0      | 0,0      | 0        | 0           | 0               | 7253,7    | 0        | 0,0        | 88,2 | 10,7         | -3,0<br>-3,0 | 6,9               | 112,0                |
| RH 79  | E-82       | U 12dB ASK | 17,3              | 0,0      | 0.0      | 0        | 0           | 0               | 7049.2    | 0        | 0.0        | 88.0 | 10,5         | -3,0         | 7,6               | 112,0                |
| NEA T  | E-82       | U 12dB ASK | 16,0              | 0.0      | 0.0      | 0        | 0           | 0               | 7717.7    | 0        | 0,0        | 88.7 | 10,3         | -3,0         | 7,9<br>6.7        | 112,0                |
|        |            | Sum        | 38,3              | -,-      | -,0      |          | -           | -               | .,,,      | , J      | 0,0        | 00,7 | 10,0         | -3,0         | 0,7               | 112,0                |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 74 von 107



|                                                                                                                  | 10-13                                                                                                                             |                                                                                                                                                                                            |                                                                                  |                                                                    |                                                                    |                                      |                                 |                                      |                                                                                                                             |                                           |                                                                    |                                                                                              |                                                                                              |                                                              |                                                                                            |                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| г                                                                                                                | Kommentar                                                                                                                         | Gruppe                                                                                                                                                                                     | LAT<br>N                                                                         | DC                                                                 | DT                                                                 | ММ                                   | KT/KI                           | Cmet<br>N                            | d(p)                                                                                                                        | DI                                        | Abar                                                               | Adiv<br>dB                                                                                   | Aatm<br>dB                                                                                   | Agr<br>dB                                                    | Refl<br>Ant<br>dB                                                                          | Lw/LmE<br>N<br>dB(A)                                                                            |
|                                                                                                                  | 1                                                                                                                                 |                                                                                                                                                                                            | dB(A)                                                                            | dB                                                                 | dB                                                                 | dB                                   | dB                              | dB                                   | m                                                                                                                           | dB                                        | dB                                                                 | 0.50000                                                                                      | -                                                                                            |                                                              | -                                                                                          | 112,0                                                                                           |
| H 133                                                                                                            | V90-2000                                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 13,5                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 8793,8                                                                                                                      | 0                                         | 0,0                                                                | 89,9                                                                                         | 11,6                                                                                         | -3,0<br>-3,0                                                 |                                                                                            | 112,0                                                                                           |
| H 134                                                                                                            | V90-2000                                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 13,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 9068,1                                                                                                                      | 0                                         | 0,0                                                                | 90,1                                                                                         | 11,8                                                                                         | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| H 135                                                                                                            | V90-2000                                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 12,8                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 9238,8                                                                                                                      | 0                                         | 0,0                                                                | 85,3                                                                                         | 8,6                                                                                          | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| H 354                                                                                                            | N-131                                                                                                                             | U 12dB ASK                                                                                                                                                                                 | 21,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 5170,7<br>1692,5                                                                                                            | 0                                         | 0,0                                                                | 75,6                                                                                         | 4,1                                                                                          | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| H 355                                                                                                            | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 35,4                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 2117.6                                                                                                                      | 0                                         | 0,0                                                                | 77,5                                                                                         | 4,8                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| H 356                                                                                                            | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 32,7                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 2422,9                                                                                                                      | 0                                         | 0,0                                                                | 78,7                                                                                         | 5,2                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 357                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 31,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 2764.2                                                                                                                      | 0                                         | 0,0                                                                | 79.8                                                                                         | 5,7                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| H 358                                                                                                            | N-117-2400                                                                                                                        | U 12dB ASK<br>U 12dB ASK                                                                                                                                                                   | 29,4<br>29,4                                                                     | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 2772,1                                                                                                                      | 0                                         | 0,0                                                                | 79,8                                                                                         | 5,8                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| H 359                                                                                                            | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 29,4                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 3108,1                                                                                                                      | 0                                         | 0,0                                                                | 80,8                                                                                         | 6,2                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 360                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 26,8                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 3387,6                                                                                                                      | 0                                         | 0,0                                                                | 81,6                                                                                         | 6,6                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 361                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 25,7                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 3688,0                                                                                                                      | 0                                         | 0,0                                                                | 82,3                                                                                         | 7,0                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 362                                                                                                           | N-117-2400<br>N-117-2400                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 18,5                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 6212,2                                                                                                                      | 0                                         | 0,0                                                                | 86,9                                                                                         | 9,6                                                                                          | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| RH 363<br>RH 364                                                                                                 | N-117-2400<br>N-117-2400                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 18,9                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 6052,9                                                                                                                      | 0                                         | 0,0                                                                | 86,6                                                                                         | 9,5                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 366                                                                                                           | N-117-2400<br>N-117-2400                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 18,7                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 6164,4                                                                                                                      | 0                                         | 0,0                                                                | 86,8                                                                                         | 9,6                                                                                          | -3,0                                                         | 141                                                                                        | 112,0                                                                                           |
| RH 369                                                                                                           | N-117-2400<br>N-117                                                                                                               | U 12dB ASK                                                                                                                                                                                 | 15,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 7914,0                                                                                                                      | 0                                         | 0,0                                                                | 89,0                                                                                         | 11,0                                                                                         | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| RH 370                                                                                                           | N-117                                                                                                                             | U 12dB ASK                                                                                                                                                                                 | 15,6                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 7655,5                                                                                                                      | 0                                         | 0,0                                                                | 88,7                                                                                         | 10,8                                                                                         | -3,0                                                         | :-                                                                                         | 112,0                                                                                           |
| RH 371                                                                                                           | N-117                                                                                                                             | U 12dB ASK                                                                                                                                                                                 | 15,7                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 7586,3                                                                                                                      | 0                                         | 0,0                                                                | 88,6                                                                                         | 10,7                                                                                         | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 374                                                                                                           | E-115                                                                                                                             | U 12dB ASK                                                                                                                                                                                 | 11,2                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10279,9                                                                                                                     | 0                                         | 0,0                                                                | 91,2                                                                                         | 12,5                                                                                         | -3,0                                                         | 3.5                                                                                        | 112,0                                                                                           |
| RH 375                                                                                                           | E-115                                                                                                                             | U 12dB ASK                                                                                                                                                                                 | 10,8                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10579,3                                                                                                                     | 0                                         | 0,0                                                                | 91,5                                                                                         | 12,7                                                                                         | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 75                                                                                                            | V-44                                                                                                                              | U 12dB ASK                                                                                                                                                                                 | 10,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 11133,8                                                                                                                     | 0                                         | 0,0                                                                | 91,9                                                                                         | 13,0                                                                                         | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| RH 76                                                                                                            | E-82                                                                                                                              | U 12dB ASK                                                                                                                                                                                 | 10,0                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 11220,3                                                                                                                     | 0                                         | 0,0                                                                | 92,0                                                                                         | 13,1                                                                                         | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 77                                                                                                            | E-82                                                                                                                              | U 12dB ASK                                                                                                                                                                                 | 10,4                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10871,3                                                                                                                     | 0                                         | 0,0                                                                | 91,7                                                                                         | 12,9                                                                                         | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
| RH 78                                                                                                            | E-82                                                                                                                              | U 12dB ASK                                                                                                                                                                                 | 10,8                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10591,2                                                                                                                     | 0                                         | 0,0                                                                | 91,5                                                                                         | 12,7                                                                                         | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| RH 79                                                                                                            | E-82                                                                                                                              | U 12dB ASK                                                                                                                                                                                 | 11,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10411,9                                                                                                                     | 0                                         | 0,0                                                                | 91,3                                                                                         | 12,6                                                                                         | -3,0                                                         |                                                                                            | 112,0                                                                                           |
| WEA T                                                                                                            | E-82                                                                                                                              | U 12dB ASK                                                                                                                                                                                 | 10,3                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10977,3                                                                                                                     | 0                                         | 0,0                                                                | 91,8                                                                                         | 12,9                                                                                         | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
|                                                                                                                  |                                                                                                                                   | Sum                                                                                                                                                                                        | 40,2                                                                             |                                                                    |                                                                    |                                      |                                 |                                      |                                                                                                                             |                                           |                                                                    |                                                                                              |                                                                                              |                                                              |                                                                                            |                                                                                                 |
| Nr                                                                                                               | IO-14<br>Kommentar                                                                                                                | Gruppe                                                                                                                                                                                     | LAT                                                                              | DC                                                                 | DT                                                                 | MM                                   | KT/KI                           | Cmet                                 | d(p)                                                                                                                        | DI                                        | Abar                                                               | Adiv                                                                                         | Aatm                                                                                         | Agr                                                          | Refl<br>Ant                                                                                | Lw/LmE                                                                                          |
|                                                                                                                  |                                                                                                                                   |                                                                                                                                                                                            | dB(A)                                                                            | dB                                                                 | dB                                                                 | dB                                   | dB                              | dB                                   | m                                                                                                                           | dB                                        | dB                                                                 | dB                                                                                           | dB                                                                                           | dB                                                           | dB                                                                                         | dB(A)                                                                                           |
| RH 133                                                                                                           | V90-2000                                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 12,3                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 9628,0                                                                                                                      | 0                                         | 0,0                                                                | 90,7                                                                                         | 12,1                                                                                         | -3,0                                                         | -3,0                                                                                       | 112,0                                                                                           |
| RH 134                                                                                                           | V90-2000                                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 11,9                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 9901,6                                                                                                                      | 0                                         | 0,0                                                                | 90,9                                                                                         | 12,3                                                                                         | -3,0                                                         | -3,3                                                                                       | 112,0                                                                                           |
| RH 135                                                                                                           | V90-2000                                                                                                                          | U 12dB ASK                                                                                                                                                                                 | 11,7                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 10070,4                                                                                                                     | 0                                         | 0,0                                                                | 91,1                                                                                         | 12,4                                                                                         | -3,0                                                         | -3,2                                                                                       | 112,0<br>112,0                                                                                  |
| RH 354                                                                                                           | N-131                                                                                                                             | U 12dB ASK                                                                                                                                                                                 | 19,1                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 6004,8                                                                                                                      | 0                                         | 0,0                                                                | 86,6                                                                                         | 9,4                                                                                          | -3,0<br>-3,0                                                 | 1,7<br>25,1                                                                                | 112,0                                                                                           |
| RH 355                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 31,8                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 2476,5                                                                                                                      | 0                                         | 0,0                                                                | 78,9                                                                                         | 5,3<br>6,0                                                                                   | -3,0                                                         | 15,1                                                                                       | 112,0                                                                                           |
| RH 356                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 28,9                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 2931,6                                                                                                                      | 0                                         | 0,0                                                                | 80,3<br>81,1                                                                                 | 6,4                                                                                          | -3,0                                                         | 22,0                                                                                       | 112,0                                                                                           |
| RH 357                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 28,6                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 3210,8                                                                                                                      | 0                                         | 0,0                                                                | 82.0                                                                                         | 6,8                                                                                          | -3,0                                                         | 20,4                                                                                       | 112,0                                                                                           |
| RH 358                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 27,2                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 3559,6<br>3503.1                                                                                                            | 0                                         | 0,0                                                                | 81,9                                                                                         | 6,7                                                                                          | -3,0                                                         | 22,1                                                                                       | 112.0                                                                                           |
| RH 359                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 27,8                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 3860,1                                                                                                                      | 0                                         | 0,0                                                                | 82,7                                                                                         | 7,2                                                                                          | -3,0                                                         | 19,9                                                                                       | 112,0                                                                                           |
| RH 360                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 26,3                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 4173,5                                                                                                                      | 0                                         | 0,0                                                                | 83,4                                                                                         | 7,5                                                                                          | -3,0                                                         | 18,9                                                                                       | 112,0                                                                                           |
| RH 361                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 25,2                                                                             | -7                                                                 | 0,0                                                                | 0                                    | 0                               | 0                                    | 4396,8                                                                                                                      | 0                                         | 0,0                                                                | 83,9                                                                                         | 7.8                                                                                          | -3,0                                                         | -                                                                                          | 112,0                                                                                           |
|                                                                                                                  |                                                                                                                                   |                                                                                                                                                                                            |                                                                                  |                                                                    |                                                                    |                                      |                                 | 0                                    | 4000,0                                                                                                                      | 2287                                      | ,                                                                  |                                                                                              | 2.5                                                                                          | -3,0                                                         | 3,0                                                                                        | 112,0                                                                                           |
| RH 362                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 23,3                                                                             | 0,0                                                                | -                                                                  | _                                    | 0                               | 0                                    | 7034.5                                                                                                                      | 0                                         | 0.0                                                                | 1 87.9                                                                                       | 1 10.3                                                                                       |                                                              |                                                                                            |                                                                                                 |
| RH 363                                                                                                           | N-117-2400                                                                                                                        | U 12dB ASK                                                                                                                                                                                 | 17,0                                                                             | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 7034,5<br>6850.2                                                                                                            | 0                                         | 0,0                                                                | 87,9<br>87,7                                                                                 | 10,3                                                                                         |                                                              |                                                                                            | 112,0                                                                                           |
| RH 363<br>RH 364                                                                                                 | N-117-2400<br>N-117-2400                                                                                                          | U 12dB ASK<br>U 12dB ASK                                                                                                                                                                   | 17,0<br>18,3                                                                     | 0,0                                                                | 0,0                                                                | 0                                    | 0                               | 0                                    | 6850,2                                                                                                                      | 0                                         | 0,0                                                                | 87,7                                                                                         | 10,3                                                                                         | -3,0<br>-3,0                                                 | 12,0<br>12,3                                                                               | 112,0<br>112,0                                                                                  |
| RH 363<br>RH 364<br>RH 366                                                                                       | N-117-2400<br>N-117-2400<br>N-117-2400                                                                                            | U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK                                                                                                                                                     | 17,0<br>18,3<br>18,3                                                             | 0,0<br>0,0<br>0,0                                                  | 0,0<br>0,0<br>0,0                                                  | 0 0                                  | 0                               | 0                                    | 6850,2<br>6917,4                                                                                                            | 0                                         | 0,0                                                                | 87,7<br>87,8                                                                                 | 10,1                                                                                         | -3,0                                                         | 12,0                                                                                       | 112,0                                                                                           |
| RH 363<br>RH 364<br>RH 366<br>RH 369                                                                             | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117                                                                                   | U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK<br>U 12dB ASK                                                                                                                                       | 17,0<br>18,3<br>18,3<br>13,7                                                     | 0,0<br>0,0<br>0,0                                                  | 0,0<br>0,0<br>0,0<br>0,0                                           | 0 0 0                                | 0 0                             | 0                                    | 6850,2                                                                                                                      | 0                                         | 0,0                                                                | 87,7                                                                                         | 10,1                                                                                         | -3,0<br>-3,0                                                 | 12,0<br>12,3                                                                               | 112,0<br>112,0                                                                                  |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370                                                                   | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117                                                                          | U 12dB ASK                                                                                                                          | 17,0<br>18,3<br>18,3<br>13,7<br>14,1                                             | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                    | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                    | 0 0                                  | 0                               | 0 0                                  | 6850,2<br>6917,4<br>8750,7                                                                                                  | 0 0                                       | 0,0<br>0,0<br>0,0                                                  | 87,7<br>87,8<br>89,8                                                                         | 10,1<br>10,2<br>11,6                                                                         | -3,0<br>-3,0<br>-3,0                                         | 12,0<br>12,3<br>-2,6                                                                       | 112,0<br>112,0<br>112,0                                                                         |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371                                                         | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117                                                                 | U 12dB ASK                                                                                                               | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2                                     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 0<br>0<br>0<br>0                     | 0 0 0                           | 0 0 0                                | 6850,2<br>6917,4<br>8750,7<br>8491,7                                                                                        | 0 0 0                                     | 0,0<br>0,0<br>0,0<br>0,0                                           | 87,7<br>87,8<br>89,8<br>89,6                                                                 | 10,1<br>10,2<br>11,6<br>11,4                                                                 | -3,0<br>-3,0<br>-3,0<br>-3,0                                 | 12,0<br>12,3<br>-2,6<br>-2,7                                                               | 112,0<br>112,0<br>112,0<br>112,0                                                                |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374                                               | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>E-115                                                        | U 12dB ASK                                                                                         | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2                                     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                      | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0                     | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6                                                                              | 0<br>0<br>0<br>0                          | 0,0<br>0,0<br>0,0<br>0,0<br>0,0                                    | 87,7<br>87,8<br>89,8<br>89,6<br>89,5                                                         | 10,1<br>10,2<br>11,6<br>11,4<br>11,3                                                         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                         | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4                                                       | 112,0<br>112,0<br>112,0<br>112,0<br>112,0                                                       |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374<br>RH 375                                     | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115                                 | U 12dB ASK                                                                              | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2<br>10,2<br>9,8                      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0                | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6<br>11075,5                                                                   | 0<br>0<br>0<br>0<br>0                     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                             | 87,7<br>87,8<br>89,8<br>89,6<br>89,5<br>91,9                                                 | 10,1<br>10,2<br>11,6<br>11,4<br>11,3<br>13,0                                                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0                 | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4<br>-10,9                                              | 112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0                                              |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374<br>RH 375<br>RH 75                            | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115                                      | U 12dB ASK                                                                   | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2<br>10,2<br>9,8<br>9,1               | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                      | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0                | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6<br>11075,5                                                                   | 0<br>0<br>0<br>0<br>0                     | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0                      | 87,7<br>87,8<br>89,8<br>89,6<br>89,5<br>91,9                                                 | 10,1<br>10,2<br>11,6<br>11,4<br>11,3<br>13,0                                                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0         | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4<br>-10,9                                              | 112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0                                     |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374<br>RH 375<br>RH 75<br>RH 76                   | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115<br>V-44<br>E-82                 | U 12dB ASK                                  | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2<br>10,2<br>9,8<br>9,1<br>9,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0           | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6<br>11075,5<br>11373,4<br>11951,9                                             | 0<br>0<br>0<br>0<br>0<br>0                | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0               | 87,7<br>87,8<br>89,8<br>89,6<br>89,5<br>91,9<br>92,1<br>92,5                                 | 10,1<br>10,2<br>11,6<br>11,4<br>11,3<br>13,0<br>13,1<br>13,4                                 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4<br>-10,9<br>-11,4<br>-10,3                            | 112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0                            |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374<br>RH 75<br>RH 75<br>RH 76<br>RH 77           | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115<br>V-44<br>E-82<br>E-82         | U 12dB ASK                       | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2<br>10,2<br>9,8<br>9,1<br>9,0<br>9,4 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6<br>11075,5<br>11373,4<br>11951,9<br>12032,0                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0        | 87,7<br>87,8<br>89,8<br>89,6<br>89,5<br>91,9<br>92,1<br>92,5<br>92,6                         | 10,1<br>10,2<br>11,6<br>11,4<br>11,3<br>13,0<br>13,1<br>13,4<br>13,5                         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4<br>-10,9<br>-11,4<br>-10,3<br>-11,0<br>-10,7<br>-10,5 | 112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0          |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374<br>RH 375<br>RH 75<br>RH 76<br>RH 77<br>RH 77 | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115<br>V-44<br>E-82<br>E-82<br>E-82 | U 12dB ASK                                  | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2<br>10,2<br>9,8<br>9,1<br>9,0        | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6<br>11075,5<br>11373,4<br>11951,9<br>12032,0<br>11680,8<br>11398,4<br>11215,6 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 87,7<br>87,8<br>89,8<br>89,6<br>89,5<br>91,9<br>92,1<br>92,5<br>92,6<br>92,3<br>92,1<br>92,0 | 10,1<br>10,2<br>11,6<br>11,4<br>11,3<br>13,0<br>13,1<br>13,4<br>13,5<br>13,3<br>13,2<br>13,1 | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4<br>-10,9<br>-11,4<br>-10,3<br>-11,0<br>-10,7<br>-10,5 | 112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0 |
| RH 363<br>RH 364<br>RH 366<br>RH 369<br>RH 370<br>RH 371<br>RH 374<br>RH 375<br>RH 75<br>RH 76<br>RH 77          | N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117-2400<br>N-117<br>N-117<br>N-117<br>E-115<br>E-115<br>V-44<br>E-82<br>E-82         | U 12dB ASK | 17,0<br>18,3<br>18,3<br>13,7<br>14,1<br>14,2<br>10,2<br>9,8<br>9,1<br>9,0<br>9,4 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6850,2<br>6917,4<br>8750,7<br>8491,7<br>8419,6<br>11075,5<br>11373,4<br>11951,9<br>12032,0<br>11680,8<br>11398,4            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 87,7<br>87,8<br>89,8<br>89,6<br>89,5<br>91,9<br>92,1<br>92,5<br>92,6<br>92,3<br>92,1         | 10,1<br>10,2<br>11,6<br>11,4<br>11,3<br>13,0<br>13,1<br>13,4<br>13,5<br>13,3<br>13,2         | -3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0<br>-3,0 | 12,0<br>12,3<br>-2,6<br>-2,7<br>-3,4<br>-10,9<br>-11,4<br>-10,3<br>-11,0<br>-10,7<br>-10,5 | 112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0<br>112,0                   |

Projekt:

Gutachten-Nr.: 114 0614 18R-1 Projekt: Schallimmissionsprognose WEA Lieg



|        | 10-15      |            |                   |          |          |          |       |                 |           |          |            |            |            |           |                   |                      |
|--------|------------|------------|-------------------|----------|----------|----------|-------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI | Cmet<br>N<br>dB | d(p)      | DI<br>dB | Abar       | Adiv       | Aatm       | Agr       | Refl<br>Ant<br>dB | Lw/LmE               |
| RH 133 | V90-2000   | U 12dB ASK | 11,1              | 0,0      | 0,0      | 0        | 0     | 0               | 10389,9   | 0        | 0,0        |            |            |           | ав                | dB(A)                |
| RH 134 | V90-2000   | U 12dB ASK | 10,7              | 0.0      | 0.0      | 0        | 0     | 0               | 10670,9   | 0        | 0,0        | 91,3       | 12,6       | -3,0      | -                 | 112,0                |
| RH 135 | V90-2000   | U 12dB ASK | 10,4              | 0.0      | 0,0      | 0        | 0     | 0               | 10870,9   | 0        | 0,0        | 91,6       | 12,7       | -3,0      | -                 | 112,0                |
| RH 354 | N-131      | U 12dB ASK | 17,6              | 0,0      | 0.0      | 0        | 0     | 0               | 6618,4    | 0        | 0,0        | 91,7       | 12,9       | -3,0      | 1-                | 112,0                |
| RH 355 | N-117-2400 | U 12dB ASK | 25,7              | 0,0      | 0,0      | 0        | 0     | 0               | 3696.3    | 0        | , , ,      | 87,4       | 9,9        | -3,0      | -                 | 112,0                |
| RH 356 | N-117-2400 | U 12dB ASK | 24,5              | 0,0      | 0,0      | 0        | 0     | 0               | 4025,6    | 0        | 0,0        | 82,3       | 7,0        | -3,0      |                   | 112,0                |
| RH 357 | N-117-2400 | U 12dB ASK | 23,4              | 0,0      | 0,0      | 0        | 0     | 0               | 4393,4    | 0        | 0,0        | 83,1       | 7,4        | -3,0      | -                 | 112,0                |
| RH 358 | N-117-2400 | U 12dB ASK | 22,4              | 0,0      | 0,0      | 0        | 0     | 0               | 4706,8    | 0        |            | 83,8       | 7,8        | -3,0      | -                 | 112,0                |
| RH 359 | N-117-2400 | U 12dB ASK | 22,1              | 0,0      | 0,0      | 0        | 0     | 0               | 4819,2    | 0        | 0,0        | 84,4       | 8,1        | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400 | U 12dB ASK | 21,2              | 0.0      | 0,0      | 0        | 0     | 0               | 5126,3    | 0        | 0,0        | 84,7       | 8,3        | -3,0      | -                 | 112,0                |
| RH 361 | N-117-2400 | U 12dB ASK | 20,7              | 0,0      | 0,0      | 0        | 0     | 0               | 5339,3    | 0        | 0,0        | 85,2       | 8,6        | -3,0      | -                 | 112,0                |
| RH 362 | N-117-2400 | U 12dB ASK | 19,7              | 0.0      | 0.0      | 0        | 0     | 0               | 5745,4    | 0        | 0,0        | 85,5       | 8,8        | -3,0      | -                 | 112,0                |
| RH 363 | N-117-2400 | U 12dB ASK | 15,0              | 0.0      | 0,0      | 0        | 0     | 0               | 7967.2    | 0        | 0,0        | 86,2       | 9,2        | -3,0      | -                 | 112,0                |
| RH 364 | N-117-2400 | U 12dB ASK | 15,0              | 0,0      | 0,0      | 0        | 0     | 0               | 7907,2    | 0        | 0,0        | 89,0       | 11,0       | -3,0      | -                 | 112,0                |
| RH 366 | N-117-2400 | U 12dB ASK | 14,7              | 0,0      | 0,0      | 0        | 0     | 0               | 8147.9    | 0        | 0,0        | 89,0       | 11,0       | -3,0      | -                 | 112,0                |
| RH 369 | N-117      | U 12dB ASK | 12,5              | 0,0      | 0,0      | 0        | 0     | 0               | 9426.6    | 0        | 0,0        | 89,2       | 11,1       | -3,0      | -                 | 112,0                |
| RH 370 | N-117      | U 12dB ASK | 13,0              | 0,0      | 0,0      | 0        | 0     | 0               | 9111,7    | 0        | 0,0        | 90,5       | 12,0       | -3,0      |                   | 112,0                |
| RH 371 | N-117      | U 12dB ASK | 13,3              | 0,0      | 0,0      | 0        | 0     | 0               | 8958,3    | 0        | 0,0        | 90,2       | 11,8       | -3,0      |                   | 112,0                |
| RH 374 | E-115      | U 12dB ASK | 9,9               | 0.0      | 0,0      | 0        | 0     | 0               | 11225,3   | 0        | 0,0        | 90,0       | 11,7       | -3,0      | -                 | 112,0                |
| RH 375 | E-115      | U 12dB ASK | 9,6               | 0,0      | 0,0      | 0        | 0     | 0               | 11510,5   | 0        | 0,0        | 92,0       | 13,1       | -3,0      | -                 | 112,0                |
| RH 75  | V-44       | U 12dB ASK | 8,6               | 0.0      | 0,0      | 0        | 0     | 0               | 12255,6   | 0        | 0,0        | 92,2       | 13,2       | -3,0      | ( <del>-</del>    | 112,0                |
| RH 76  | E-82       | U 12dB ASK | 8,6               | 0,0      | 0,0      | 0        | 0     | 0               | 12282,4   | 0        | 0,0        | 92,8       | 13,6       | -3,0      | -                 | 112,0                |
| RH 77  | E-82       | U 12dB ASK | 9,1               | 0.0      | 0,0      | 0        | 0     | 0               | 11918.2   | 0        | 0,0        | 92,8       | 13,6       | -3,0      | -                 | 112,0                |
| RH 78  | E-82       | U 12dB ASK | 9,4               | 0,0      | 0,0      | 0        | 0     | 0               | 11622.1   | 0        | 0,0        | 92,5       | 13,4       | -3,0      | -                 | 112,0                |
| RH 79  | E-82       | U 12dB ASK | 9,7               | 0,0      | 0,0      | 0        | 0     | 0               | 11416,8   | 0        | 0,0        | 92,3       | 13,3       | -3,0      | -                 | 112,0                |
| VEA T  | E-82       | U 12dB ASK | 8,9               | 0,0      | 0,0      | 0        | 0     | 0               | 12082,5   | 0        | 0,0        | 92,1       | 13,2       | -3,0      | -                 | 112,0                |
|        |            | Sum        | 32,7              | -,-      | 0,0      | -        |       | -               | 12002,3   | U        | 0,0        | 92,6       | 13,5       | -3,0      | -                 | 112,0                |
| 2      | IO-16      |            |                   |          |          |          |       |                 |           |          |            |            |            |           |                   |                      |
| lr     | Kommentar  | Gruppe     | LAT               | DC       | DT       | MM       | KT/KI | Cmet            | d(n)      | DI       | Abor       | A di.      |            |           |                   |                      |
|        |            |            | N<br>dB(A)        | dB       | dB       | dB       | dB    | N<br>dB         | d(p)<br>m | dВ       | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
| RH 133 | V90-2000   | U 12dB ASK | 10,2              | 0,0      | 0,0      | 0        | 0     | 0               | 11021,5   | 0        | 0,0        | 91,8       | 12.9       | -3,0      |                   |                      |
| RH 134 | V90-2000   | U 12dB ASK | 9,8               | 0,0      | 0,0      | 0        | 0     | 0               | 11303,7   | 0        | 0,0        | 92,1       | 13,1       | -3,0      | -                 | 112,0                |
| H 135  | V90-2000   | U 12dB ASK | 9.5               | 0.0      | 0.0      | 0        | 0     | 0               | 11531.3   | 0        | 0,0        | 92,1       | 13,1       | -3,0      |                   | 112,0                |

| Nr       | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT   | MM | KT/KI | Cmet<br>N | d(p)    | DI | Abar | Adiv | Aatm | Agr    | Refl<br>Ant | Lw/LmE<br>N |
|----------|------------|------------|-------------------|----------|------|----|-------|-----------|---------|----|------|------|------|--------|-------------|-------------|
| RH 133   | 100 0000   |            |                   |          | dB   | dB | dB    | dB        | m       | dB | dB   | dB   | dB   | dB     | dB          | dB(A)       |
|          | V90-2000   | U 12dB ASK | 10,2              | 0,0      | 0,0  | 0  | 0     | 0         | 11021,5 | 0  | 0,0  | 91,8 | 12,9 | -3,0   | -           | 112,0       |
| RH 134   | V90-2000   | U 12dB ASK | 9,8               | 0,0      | 0,0  | 0  | 0     | 0         | 11303,7 | 0  | 0,0  | 92,1 | 13,1 | -3,0   | -           | 112,0       |
| RH 135   | V90-2000   | U 12dB ASK | 9,5               | 0,0      | 0,0  | 0  | 0     | 0         | 11531,3 | 0  | 0,0  | 92,2 | 13,2 | -3.0   | -           | 112,0       |
| RH 354   | N-131      | U 12dB ASK | 16,4              | 0,0      | 0,0  | 0  | 0     | 0         | 7245,6  | 0  | 0,0  | 88.2 | 10,5 | -3,0   | -           | 112.0       |
| RH 355   | N-117-2400 | U 12dB ASK | 21,4              | 0,0      | 0,0  | 0  | 0     | 0         | 5067,1  | 0  | 0.0  | 85,1 | 8.5  | -3.0   | -           | 112,0       |
| RH 356   | N-117-2400 | U 12dB ASK | 20,9              | 0,0      | 0,0  | 0  | 0     | 0         | 5273.7  | 0  | 0,0  | 85,4 | 8,7  | -3.0   | _           | 112,0       |
| RH 357   | N-117-2400 | U 12dB ASK | 19,8              | 0,0      | 0,0  | 0  | 0     | 0         | 5680,2  | 0  | 0.0  | 86,1 | 9,1  | -3,0   | -           | 112,0       |
| RH 358   | N-117-2400 | U 12dB ASK | 19,2              | 0,0      | 0,0  | 0  | 0     | 0         | 5942.5  | 0  | 0.0  | 86.5 | 9,4  | -3,0   |             |             |
| RH 359   | N-117-2400 | U 12dB ASK | 18,6              | 0.0      | 0.0  | 0  | 0     | 0         | 6187,1  | 0  | 0.0  | 86,8 | 9,6  | -3,0   | -           | 112,0       |
| RH 360   | N-117-2400 | U 12dB ASK | 18,0              | 0.0      | 0.0  | 0  | 0     | 0         | 6436.0  | 0  | 0,0  | 87.2 | 9,8  | 55.055 | -           | 112,0       |
| RH 361   | N-117-2400 | U 12dB ASK | 17,8              | 0,0      | 0.0  | 0  | 0     | 0         | 6551.3  | 0  | 0,0  | 87.3 |      | -3,0   | -           | 112,0       |
| RH 362   | N-117-2400 | U 12dB ASK | 16.6              | 0.0      | 0.0  | 0  | 0     | 0         | 7101.3  | 0  | 0,0  |      | 9,9  | -3,0   |             | 112,0       |
| RH 363   | N-117-2400 | U 12dB ASK | 13,5              | 0.0      | 0.0  | 0  | 0     | 0         | 8844.6  | 0  | 0,0  | 88,0 | 10,3 | -3,0   | -           | 112,0       |
| RH 364   | N-117-2400 | U 12dB ASK | 13.3              | 0,0      | 0.0  | 0  | 0     | 0         | 8953.0  | 0  | 2.60 | 89,9 | 11,6 | -3,0   | -           | 112,0       |
| RH 366   | N-117-2400 | U 12dB ASK | 12,7              | 0,0      | 0.0  | 0  | 0     | 0         | 9317.5  |    | 0,0  | 90,0 | 11,7 | -3,0   | -           | 112,0       |
| RH 369   | N-117      | U 12dB ASK | 11.7              | 0.0      | 0,0  | 0  | 0     | 0         |         | 0  | 0,0  | 90,4 | 11,9 | -3,0   | -           | 112,0       |
| RH 370   | N-117      | U 12dB ASK | 12,2              | 0,0      | 0,0  | 0  | 0     |           | 9995,9  | 0  | 0,0  | 91,0 | 12,4 | -3,0   | •           | 112,0       |
| RH 371   | N-117      | U 12dB ASK | 12,2              | 0,0      | 0,0  | 0  | -     | 0         | 9634,2  | 0  | 0,0  | 90,7 | 12,1 | -3,0   | •           | 112,0       |
| RH 374   | E-115      | U 12dB ASK | 10,0              | 0,0      | 2.62 |    | 0     | 0         | 9403,4  | 0  | 0,0  | 90,5 | 12,0 | -3,0   | •           | 112,0       |
| RH 375   | E-115      | U 12dB ASK | 9,6               | 0.00     | 0,0  | 0  | 0     | 0         | 11195,5 | 0  | 0,0  | 92,0 | 13,0 | -3,0   | -           | 112,0       |
| RH 75    | V-44       | U 12dB ASK | _                 | 0,0      | 0,0  | 0  | 0     | 0         | 11459,9 | 0  | 0,0  | 92,2 | 13,2 | -3,0   | -           | 112,0       |
| RH 76    | E-82       |            | 8,5               | 0,0      | 0,0  | 0  | 0     | 0         | 12364,0 | 0  | 0,0  | 92,8 | 13,7 | -3,0   | -           | 112,0       |
| RH 77    |            | U 12dB ASK | 8,5               | 0,0      | 0,0  | 0  | 0     | 0         | 12335,1 | 0  | 0,0  | 92,8 | 13,6 | -3,0   | -           | 112,0       |
| RH 78    | E-82       | U 12dB ASK | 9,0               | 0,0      | 0,0  | 0  | 0     | 0         | 11964,6 | 0  | 0,0  | 92,6 | 13,4 | -3,0   |             | 112,0       |
| 00.00000 | E-82       | U 12dB ASK | 9,4               | 0,0      | 0,0  | 0  | 0     | 0         | 11660,9 | 0  | 0,0  | 92,3 | 13,3 | -3,0   | -           | 112.0       |
| RH 79    | E-82       | U 12dB ASK | 9,7               | 0,0      | 0,0  | 0  | 0     | 0         | 11436,6 | 0  | 0,0  | 92,2 | 13,2 | -3,0   | -           | 112,0       |
| VEA T    | E-82       | U 12dB ASK | 8,7               | 0,0      | 0,0  | 0  | 0     | 0         | 12179,5 | 0  | 0,0  | 92,7 | 13,6 | -3,0   | -           | 112,0       |
|          |            | Sum        | 29,7              |          |      |    |       |           |         |    |      | _    |      |        |             |             |

Anhang Seite 76 von 107



| Nr     | IO-17<br>Kommentar | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|--------------------|------------|-------------------|----------|----------|----------|-------------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
|        | 100 0000           | U 12dB ASK | 9.7               | 0.0      | 0.0      | 0        | 0           | 0               | 11427,3   | 0        | 0,0        | 92,2       | 13,2       | -3,0      | 7=1               | 112,0                |
| RH 133 | V90-2000           | U 12dB ASK | 9.3               | 0.0      | 0.0      | 0        | 0           | 0               | 11709,2   | 0        | 0,0        | 92,4       | 13,3       | -3,0      | -                 | 112,0                |
| RH 134 | V90-2000           | U 12dB ASK | 9,0               | 0.0      | 0,0      | 0        | 0           | 0               | 11939.5   | 0        | 0,0        | 92,5       | 13,4       | -3,0      |                   | 112,0                |
| RH 135 | V90-2000           |            | 15,5              | 0,0      | 0,0      | 0        | 0           | 0               | 7658.7    | 0        | 0,0        | 88,7       | 10,8       | -3,0      | (a)               | 112,0                |
| RH 354 | N-131              | U 12dB ASK | 20.2              | 0,0      | 0,0      | 0        | 0           | 0               | 5513.2    | 0        | 0.0        | 85,8       | 8,9        | -3,0      |                   | 112,0                |
| RH 355 | N-117-2400         | U 12dB ASK |                   | -,-      | 0.0      | 0        | 0           | 0               | 5722.1    | 0        | 0.0        | 86,1       | 9,1        | -3,0      | -                 | 112,0                |
| RH 356 | N-117-2400         | U 12dB ASK | 19,7              | 0,0      | -1-      | 0        | 0           | 0               | 6128.5    | 0        | 0,0        | 86.7       | 9.5        | -3,0      |                   | 112,0                |
| RH 357 | N-117-2400         | U 12dB ASK | 18,7              | 0,0      | 0,0      | 0        | 0           | 0               | 6391.0    | 0        | 0.0        | 87.1       | 9.8        | -3.0      | -                 | 112,0                |
| RH 358 | N-117-2400         | U 12dB ASK | 18,1              | 0,0      | 0,0      |          | 0           | 0               | 6634.4    | 0        | 0,0        | 87.4       | 10.0       | -3,0      | -                 | 112,0                |
| RH 359 | N-117-2400         | U 12dB ASK | 17,6              | 0,0      | 0,0      | 0        |             |                 | 6884.5    | 0        | 0.0        | 87.7       | 10.2       | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400         | U 12dB ASK | 17,1              | 0,0      | 0,0      | 0        | 0           | 0               | 6999.6    | 0        | 0.0        | 87.9       | 10.3       | -3,0      | -                 | 112.0                |
| RH 361 | N-117-2400         | U 12dB ASK | 16,8              | 0,0      | 0,0      | 0        | 0           | 0               |           | 0        | 0,0        | 88.6       | 10,7       | -3.0      | -                 | 112.0                |
| RH 362 | N-117-2400         | U 12dB ASK | 15,8              | 0,0      | 0,0      | 0        | 0           | 0               | 7549,4    | 0        | 0,0        | 90.3       | 11.9       | -3.0      |                   | 112.0                |
| RH 363 | N-117-2400         | U 12dB ASK | 12,8              | 0,0      | 0,0      | 0        | 0           | 0               | 9276,1    |          |            | 90,3       | 12.0       | -3.0      | -                 | 112,0                |
| RH 364 | N-117-2400         | U 12dB ASK | 12,6              | 0,0      | 0,0      | 0        | 0           | 0               | 9393,7    | 0        | 0,0        | 90,4       | 12,0       | -3.0      | -                 | 112,0                |
| RH 366 | N-117-2400         | U 12dB ASK | 12,0              | 0,0      | 0,0      | 0        | 0           | 0               | 9764,3    | 0        | 0,0        | 7503       | 12,2       | -3.0      |                   | 112,0                |
| RH 369 | N-117              | U 12dB ASK | 11,1              | 0,0      | 0,0      | 0        | 0           | 0               | 10396,3   | 0        | 0,0        | 91,3       |            | -3,0      | -                 | 112,0                |
| RH 370 | N-117              | U 12dB ASK | 11,6              | 0,0      | 0,0      | 0        | 0           | 0               | 10029,8   | 0        | 0,0        | 91,0       | 12,4       | 514.5     | -                 | 112,0                |
| RH 371 | N-117              | U 12dB ASK | 12,0              | 0,0      | 0,0      | 0        | 0           | 0               | 9789,9    | 0        | 0,0        | 90,8       | 12,2       | -3,0      |                   | 112,0                |
| RH 374 | E-115              | U 12dB ASK | 9,6               | 0,0      | 0,0      | 0        | 0           | 0               | 11504,2   | 0        | 0,0        | 92,2       | 13,2       | -3,0      | 1.0               | 112,0                |
| RH 375 | E-115              | U 12dB ASK | 9,3               | 0,0      | 0,0      | 0        | 0           | 0               | 11764,1   | 0        | 0,0        | 92,4       | 13,3       | -3,0      | -                 | (2007.45)            |
| RH 75  | V-44               | U 12dB ASK | 8,1               | 0,0      | 0,0      | 0        | 0           | 0               | 12694,3   | 0        | 0,0        | 93,1       | 13,8       | -3,0      |                   | 112,0                |
| RH 76  | E-82               | U 12dB ASK | 8,2               | 0,0      | 0,0      | 0        | 0           | 0               | 12655,7   | 0        | 0,0        | 93,0       | 13,8       | -3,0      | -                 | 112,0                |
| RH 77  | E-82               | U 12dB ASK | 8,6               | 0,0      | 0,0      | 0        | 0           | 0               | 12284,9   | 0        | 0,0        | 92,8       | 13,6       | -3,0      | -                 | 112,0                |
| RH 78  | E-82               | U 12dB ASK | 9,0               | 0,0      | 0,0      | 0        | 0           | 0               | 11980,5   | 0        | 0,0        | 92,6       | 13,5       | -3,0      | -                 | 112,0                |
| RH 79  | E-82               | U 12dB ASK | 9,3               | 0,0      | 0,0      | 0        | 0           | 0               | 11753,5   | 0        | 0,0        | 92,4       | 13,3       | -3,0      |                   | 112,0                |
| WEA T  | E-82               | U 12dB ASK | 8,3               | 0,0      | 0,0      | 0        | 0           | 0               | 12508,2   | 0        | 0,0        | 92,9       | 13,7       | -3,0      | -                 | 112,0                |
| WEA I  |                    | Sum        | 28.8              | +        |          |          | 1           |                 |           |          |            |            |            |           |                   |                      |

| Nr     | IO-18<br>Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|---------------------|------------|-------------------|----------|----------|----------|-------------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
| RH 133 | V90-2000            | U 12dB ASK | 9,2               | 0.0      | 0,0      | 0        | 0           | 0               | 11805,3   | 0        | 0,0        | 92,4       | 13,4       | -3,0      | -                 | 112,0                |
| RH 134 | V90-2000            | U 12dB ASK | 8,8               | 0,0      | 0.0      | 0        | 0           | 0               | 12087,3   | 0        | 0,0        | 92,6       | 13,5       | -3,0      | -                 | 112,0                |
| 00.0   | V90-2000            | U 12dB ASK | 8,6               | 0.0      | 0,0      | 0        | 0           | 0               | 12317,1   | 0        | 0,0        | 92,8       | 13,6       | -3,0      | -                 | 112,0                |
| RH 135 | N-131               | U 12dB ASK | 14,9              | 0,0      | 0,0      | 0        | 0           | 0               | 8034,9    | 0        | 0,0        | 89,1       | 11,1       | -3,0      |                   | 112,0                |
| RH 354 | N-131<br>N-117-2400 | U 12dB ASK | 19.5              | 0,0      | 0.0      | 0        | 0           | 0               | 5826,1    | 0        | 0,0        | 86,3       | 9,2        | -3,0      | -                 | 112,0                |
| RH 355 |                     | U 12dB ASK | 18,9              | 0,0      | 0.0      | 0        | 0           | 0               | 6051,6    | 0        | 0,0        | 86,6       | 9,5        | -3,0      | -                 | 112,0                |
| RH 356 | N-117-2400          | U 12dB ASK | 18.0              | 0.0      | 0.0      | 0        | 0           | 0               | 6454,8    | 0        | 0,0        | 87,2       | 9,8        | -3,0      | -                 | 112,0                |
| RH 357 | N-117-2400          | U 12dB ASK | 17,4              | 0,0      | 0.0      | 0        | 0           | 0               | 6724,3    | 0        | 0,0        | 87,5       | 10,0       | -3,0      | -                 | 112,0                |
| RH 358 | N-117-2400          | U 12dB ASK | 16,9              | 0,0      | 0,0      | 0        | 0           | 0               | 6951.3    | 0        | 0,0        | 87,8       | 10,2       | -3,0      |                   | 112,0                |
| RH 359 | N-117-2400          |            | 16,9              | 0,0      | 0,0      | 0        | 0           | 0               | 7210,0    | 0        | 0,0        | 88,2       | 10,4       | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400          | U 12dB ASK | 16,2              | 0.0      | 0,0      | 0        | 0           | 0               | 7337.1    | 0        | 0.0        | 88.3       | 10,5       | -3,0      | -                 | 112,0                |
| RH 361 | N-117-2400          | U 12dB ASK |                   | -1-      | 0,0      | 0        | 0           | 0               | 7870,0    | 0        | 0,0        | 88,9       | 10.9       | -3.0      | -                 | 112,0                |
| RH 362 | N-117-2400          | U 12dB ASK | 15,2              | 0,0      |          | 0        | 0           | 0               | 9644.1    | 0        | 0,0        | 90,7       | 12.1       | -3,0      |                   | 112,0                |
| RH 363 | N-117-2400          | U 12dB ASK | 12,2              | 0,0      | 0,0      |          |             | -               | 9752.5    | 0        | 0,0        | 90.8       | 12,2       | -3,0      | 14                | 112,0                |
| RH 364 | N-117-2400          | U 12dB ASK | 12,0              | 0,0      | 0,0      | 0        | 0           | 0               |           | 0        | 0,0        | 91.1       | 12,4       | -3,0      | -                 | 112,0                |
| RH 366 | N-117-2400          | U 12dB ASK | 11,5              | 0,0      | 0,0      | 0        | 0           | 0               | 10110,8   | -        | 100        | 80000      | 12,4       | -3,0      | -                 | 112,0                |
| RH 369 | N-117               | U 12dB ASK | 10,6              | 0,0      | 0,0      | 0        | 0           | 0               | 10775,1   | 0        | 0,0        | 91,6       | 12,6       | -3,0      | -                 | 112,0                |
| RH 370 | N-117               | U 12dB ASK | 11,1              | 0,0      | 0,0      | 0        | 0           | 0               | 10409,0   | 0        | 0,0        | 91,3       |            | -3,0      | -                 | 112,0                |
| RH 371 | N-117               | U 12dB ASK | 11,4              | 0,0      | 0,0      | 0        | 0           | 0               | 10169,4   | 0        | 0,0        | 91,1       | 12,5       | - 7.6     | -                 | 112,0                |
| RH 374 | E-115               | U 12dB ASK | 9,1               | 0,0      | 0,0      | 0        | 0           | 0               | 11870,1   | 0        | 0,0        | 92,5       | 13,4       | -3,0      | -                 | 112,0                |
| RH 375 | E-115               | U 12dB ASK | 8,8               | 0,0      | 0,0      | 0        | 0           | 0               | 12128,7   | 0        | 0,0        | 92,7       | 13,5       | -3,0      |                   | 112,0                |
| RH 75  | V-44                | U 12dB ASK | 7,7               | 0,0      | 0,0      | 0        | 0           | 0               | 13066,0   | 0        | 0,0        | 93,3       | 14,0       | -3,0      |                   | ,                    |
| RH 76  | E-82                | U 12dB ASK | 7,7               | 0,0      | 0,0      | 0        | 0           | 0               | 13024,9   | 0        | 0,0        | 93,3       | 14,0       | -3,0      | -                 | 112,0                |
| RH 77  | E-82                | U 12dB ASK | 8,2               | 0,0      | 0,0      | 0        | 0           | 0               | 12654,1   | 0        | 0,0        | 93,0       | 13,8       | -3,0      | -                 | 112,0                |
| RH 78  | E-82                | U 12dB ASK | 8,5               | 0,0      | 0,0      | 0        | 0           | 0               | 12349,6   | 0        | 0,0        | 92,8       | 13,6       | -3,0      | 141               | 112,0                |
| RH 79  | E-82                | U 12dB ASK | 8,8               | 0,0      | 0,0      | 0        | 0           | 0               | 12121,8   | 0        | 0,0        | 92,7       | 13,5       | -3,0      | -                 | 112,0                |
| WEA T  | E-82                | U 12dB ASK | 7,9               | 0,0      | 0,0      | 0        | 0           | 0               | 12879,5   | 0        | 0,0        | 93,2       | 13,9       | -3,0      | -                 | 112,0                |
|        |                     | Sum        | 28,1              |          |          |          |             |                 |           |          |            |            |            |           |                   |                      |



|        | 10-19      |            |                   |          |          |          |             |                 |         |      |      |      |      |      |             |             |
|--------|------------|------------|-------------------|----------|----------|----------|-------------|-----------------|---------|------|------|------|------|------|-------------|-------------|
| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)    | DI   | Abar | Adiv | Aatm | Agr  | Refl<br>Ant | Lw/LmE<br>N |
| RH 133 | V90-2000   | U 12dB ASK | 10,5              | 0.0      | 0,0      | 0        | 0           | 0               | 11452.0 | 1000 |      |      |      | dB   | dB          | dB(A)       |
| RH 134 | V90-2000   | U 12dB ASK | 10.1              | 0.0      | 0.0      | 0        | 0           | 0               | 11732,4 | 0    | 0,0  | 92,2 | 13,2 | -3,0 | 2,9         | 112,0       |
| RH 135 | V90-2000   | U 12dB ASK | 9,8               | 0.0      | 0,0      | 0        | 0           | 0               | 11732,4 | 0    | 0,0  | 92,4 | 13,3 | -3,0 | 2,5         | 112,0       |
| RH 354 | N-131      | U 12dB ASK | 16.3              | 0,0      | 0.0      | 0        | 0           | 0               |         | 0    | 0,0  | 92,6 | 13,5 | -3,0 | 2,2         | 112,0       |
| RH 355 | N-117-2400 | U 12dB ASK | 19,3              | 0.0      | 0.0      | 0        | 0           | 0               | 7720,5  | 0    | 0,0  | 88,7 | 10,8 | -3,0 | 8,6         | 112,0       |
| RH 356 | N-117-2400 | U 12dB ASK | 19,0              | 0,0      | 0,0      | 0        | 0           | 0               | 5871,1  | 0    | 0,0  | 86,4 | 9,3  | -3,0 | · ·         | 112,0       |
| RH 357 | N-117-2400 | U 12dB ASK | 18.0              | 0,0      | 0.0      | 0        | 0           | 0               | 6033,3  | 0    | 0,0  | 86,6 | 9,4  | -3,0 |             | 112,0       |
| RH 358 | N-117-2400 | U 12dB ASK | 17,5              | 0,0      | 0.0      | 0        | 0           | 0               | 6446,8  | 0    | 0,0  | 87,2 | 9,8  | -3,0 |             | 112,0       |
| RH 359 | N-117-2400 | U 12dB ASK | 16,9              | 0.0      | 0,0      | 0        | 0           | 0               | 6687,2  | 0    | 0,0  | 87,5 | 10,0 | -3,0 | -           | 112,0       |
| RH 360 | N-117-2400 | U 12dB ASK | 16,4              | 0.0      | 0.0      | 0        | 0           | 0               | 6976,7  | 0    | 0,0  | 87,9 | 10,2 | -3,0 | -           | 112,0       |
| RH 361 | N-117-2400 | U 12dB ASK | 16,3              | 0,0      | 0.0      | 0        | 0           | 0               | 7202,0  | 0    | 0,0  | 88,1 | 10,4 | -3,0 | -           | 112,0       |
| RH 362 | N-117-2400 | U 12dB ASK | 15,1              | 0.0      | 0.0      | 0        | 0           |                 | 7279,3  | 0    | 0,0  | 88,2 | 10,5 | -3,0 | -           | 112,0       |
| RH 363 | N-117-2400 | U 12dB ASK | 12.5              | 0.0      | 0.0      | 0        | 0           | 0               | 7878,4  | 0    | 0,0  | 88,9 | 10,9 | -3,0 | •           | 112,0       |
| RH 364 | N-117-2400 | U 12dB ASK | 12.3              | 0,0      | 0.0      | 0        | 0           | 0               | 9407,8  | 0    | 0,0  | 90,5 | 12,0 | -3,0 |             | 112,0       |
| RH 366 | N-117-2400 | U 12dB ASK | 11,6              | 0.0      | 0.0      | 0        | 0           | 0               | 9578,8  | 0    | 0,0  | 90,6 | 12,1 | -3,0 | -           | 112,0       |
| RH 369 | N-117      | U 12dB ASK | 11,9              | 0,0      | 0,0      | 0        | 0           | -               | 10002,8 | 0    | 0,0  | 91,0 | 12,4 | -3,0 | -           | 112,0       |
| RH 370 | N-117      | U 12dB ASK | 12,4              | 0,0      | 0,0      | 0        |             | 0               | 10406,3 | 0    | 0,0  | 91,3 | 12,6 | -3,0 | 4,3         | 112,0       |
| RH 371 | N-117      | U 12dB ASK | 12,8              | 0.0      | 0,0      | 0        | 0           | 0               | 10026,0 | 0    | 0,0  | 91,0 | 12,4 | -3,0 | 4,8         | 112,0       |
| RH 374 | E-115      | U 12dB ASK | 9,9               | 0.0      | 0,0      |          | 0           | 0               | 9760,8  | 0    | 0,0  | 90,8 | 12,2 | -3,0 | 5,2         | 112,0       |
| RH 375 | E-115      | U 12dB ASK | 9,5               | 0,0      | 0,0      | 0        | 0           | 0               | 11295,5 | 0    | 0,0  | 92,1 | 13,1 | -3,0 |             | 112,0       |
| RH 75  | V-44       | U 12dB ASK | 8,3               | 0,0      | 0,0      | 0        | 0           | 0               | 11546,7 | 0    | 0,0  | 92,2 | 13,2 | -3,0 |             | 112,0       |
| H 76   | E-82       | U 12dB ASK | 8,4               | 0,0      | 0.0      | 0        | 0           | 0               | 12525,4 | 0    | 0,0  | 92,9 | 13,7 | -3,0 |             | 112,0       |
| H 77   | E-82       | U 12dB ASK | 8,8               |          | -7-      | 0        | 0           | 0               | 12467,5 | 0    | 0,0  | 92,9 | 13,7 | -3,0 | -           | 112,0       |
| H 78   | E-82       | U 12dB ASK | 9,2               | 0,0      | 0,0      | 0        | 0           | 0               | 12097,0 | 0    | 0,0  | 92,6 | 13,5 | -3,0 | -           | 112,0       |
| H 79   | E-82       | U 12dB ASK | 9,2               | 0,0      | 0,0      | 0        | 0           | 0               | 11791,9 | 0    | 0,0  | 92,4 | 13,4 | -3,0 | -           | 112,0       |
| /EA T  | E-82       | U 12dB ASK | ,                 | 0,0      | 0,0      | 0        | 0           | 0               | 11560,0 | 0    | 0,0  | 92,3 | 13,2 | -3,0 | -           | 112,0       |
|        |            | Sum        | 8,5<br>28,4       | 0,0      | 0,0      | 0        | 0           | 0               | 12336,3 | 0    | 0,0  | 92,8 | 13,6 | -3,0 | -           | 112,0       |

| I | 0 | -2 | 0 |
|---|---|----|---|
|   |   |    |   |

| Nr     | Kommentar  | Gruppe     | LAT<br>N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)                                    | DI | Abar | Adiv    | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|------------|------------|-------------------|----------|----------|----------|-------------|-----------------|-----------------------------------------|----|------|---------|------------|-----------|-------------------|----------------------|
| RH 133 | V90-2000   | U 12dB ASK | 9,5               | 0,0      | 0,0      | 0        | 0           | 0               | 11565.7                                 | 0  | 0,0  | 92,3    | 13,2       | -3.0      |                   |                      |
| RH 134 | V90-2000   | U 12dB ASK | 9,2               | 0,0      | 0.0      | 0        | 0           | 0               | 11844,5                                 | 0  | 0.0  | 92,5    | _          | 215       | -                 | 112,0                |
| RH 135 | V90-2000   | U 12dB ASK | 8,8               | 0,0      | 0,0      | 0        | 0           | 0               | 12089.3                                 | 0  | 0,0  | 92,5    | 13,4       | -3,0      | -                 | 112,0                |
| RH 354 | N-131      | U 12dB ASK | 15,2              | 0,0      | 0,0      | 0        | 0           | 0               | 7871,0                                  | 0  | 0,0  | 88,9    |            | -3,0      | •                 | 112,0                |
| RH 355 | N-117-2400 | U 12dB ASK | 18,5              | 0,0      | 0,0      | 0        | 0           | 0               | 6218.4                                  | 0  | 0,0  | 86,9    | 10,9       | -3,0      | -                 | 112,0                |
| RH 356 | N-117-2400 | U 12dB ASK | 18,2              | 0,0      | 0.0      | 0        | 0           | 0               | 6352.7                                  | 0  | 0,0  | 20.0000 | 9,6        | -3,0      | •                 | 112,0                |
| RH 357 | N-117-2400 | U 12dB ASK | 17,3              | 0,0      | 0.0      | 0        | 0           | 0               | 6768,6                                  | 0  |      | 87,1    | 9,7        | -3,0      | -                 | 112,0                |
| RH 358 | N-117-2400 | U 12dB ASK | 16,9              | 0,0      | 0,0      | 0        | 0           | 0               | 6994.8                                  | 0  | 0,0  | 87,6    | 10,1       | -3,0      | -                 | 112,0                |
| RH 359 | N-117-2400 | U 12dB ASK | 16,2              | 0,0      | 0,0      | 0        | 0           | 0               | 7311,0                                  | 0  | -1-  | 87,9    | 10,3       | -3,0      | /#.               | 112,0                |
| RH 360 | N-117-2400 | U 12dB ASK | 15,8              | 0,0      | 0.0      | 0        | 0           | 0               | 9 C S S S S S S S S S S S S S S S S S S | -  | 0,0  | 88,3    | 10,5       | -3,0      | -                 | 112,0                |
| RH 361 | N-117-2400 | U 12dB ASK | 15,7              | 0,0      | 0,0      | 0        | 0           | 0               | 7520,9                                  | 0  | 0,0  | 88,5    | 10,7       | -3,0      | -                 | 112,0                |
| RH 362 | N-117-2400 | U 12dB ASK | 14,6              | 0.0      | 0.0      | 0        | 0           | 0               | 7574,7                                  | 0  | 0,0  | 88,6    | 10,7       | -3,0      | . <del></del>     | 112,0                |
| RH 363 | N-117-2400 | U 12dB ASK | 12.3              | 0,0      | 0.0      | 0        | 0           | 0               | 8202,2                                  | 0  | 0,0  | 89,3    | 11,2       | -3,0      | (=)               | 112,0                |
| RH 364 | N-117-2400 | U 12dB ASK | 11,9              | 0,0      | 0.0      | 0        | 0           | 0               | 9600,7                                  | 0  | 0,0  | 90,6    | 12,1       | -3,0      | *                 | 112,0                |
| RH 366 | N-117-2400 | U 12dB ASK | 11,3              | 0,0      | 0,0      | 0        | 0           | -               | 9807,0                                  | 0  | 0,0  | 90,8    | 12,2       | -3,0      |                   | 112,0                |
| RH 369 | N-117      | U 12dB ASK | 10,9              | 0,0      | 0,0      | 0        | 0           | 0               | 10265,2                                 | 0  | 0,0  | 91,2    | 12,5       | -3,0      | -                 | 112,0                |
| RH 370 | N-117      | U 12dB ASK | 11,5              | 0,0      | 0,0      | 0        | 0           |                 | 10511,6                                 | 0  | 0,0  | 91,4    | 12,7       | -3,0      |                   | 112,0                |
| RH 371 | N-117      | U 12dB ASK | 11,9              | 0,0      | 0.0      | 0        |             | 0               | 10122,5                                 | 0  | 0,0  | 91,1    | 12,4       | -3,0      | -/                | 112,0                |
| RH 374 | E-115      | U 12dB ASK | 9,9               | 0,0      | 0,0      | 0        | 0           | 0               | 9839,6                                  | 0  | 0,0  | 90,9    | 12,3       | -3,0      | •                 | 112,0                |
| RH 375 | E-115      | U 12dB ASK | 9,6               | 0,0      | 0.4      |          | 0           | 0               | 11235,1                                 | 0  | 0,0  | 92,0    | 13,1       | -3,0      |                   | 112,0                |
| RH 75  | V-44       | U 12dB ASK | 8,4               |          | 0,0      | 0        | 0           | 0               | 11478,9                                 | 0  | 0,0  | 92,2    | 13,2       | -3,0      | -                 | 112,0                |
| RH 76  | E-82       | U 12dB ASK |                   | 0,0      | 0,0      | 0        | 0           | 0               | 12493,6                                 | 0  | 0,0  | 92,9    | 13,7       | -3,0      |                   | 112,0                |
| RH 77  | E-82       | U 12dB ASK | 8,4               | 0,0      | 0,0      | 0        | 0           | 0               | 12420,9                                 | 0  | 0,0  | 92,9    | 13,7       | -3,0      |                   | 112,0                |
| RH 78  | E-82       | U 12dB ASK | 8,9               | 0,0      | 0,0      | 0        | 0           | 0               | 12051,2                                 | 0  | 0,0  | 92,6    | 13,5       | -3,0      | 3-                | 112,0                |
| RH 79  | E-82       | U 12dB ASK | 9,3               | 0,0      | 0,0      | 0        | 0           | 0               | 11746,2                                 | 0  | 0,0  | 92,4    | 13,3       | -3,0      | -                 | 112,0                |
| VEA T  | E-82       |            | 9,6               | 0,0      | 0,0      | 0        | 0           | 0               | 11510,8                                 | 0  | 0,0  | 92,2    | 13,2       | -3,0      | -                 | 112,0                |
|        | 1-02       | U 12dB ASK | 8,6               | 0,0      | 0,0      | 0        | 0           | 0               | 12302,6                                 | 0  | 0,0  | 92,8    | 13,6       | -3,0      | -                 | 112,0                |
|        |            | Sum        | 27,8              |          |          |          |             |                 |                                         |    |      |         |            |           |                   |                      |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 78 von 107



| г      | IO-21<br>Kommentar | Gruppe     | LAT<br>N<br>dB(A) | DC dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|--------------------|------------|-------------------|-------|----------|----------|-------------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
| 1.0    | Chest waster has   |            |                   | 0.0   | 0.0      | 0        | 0           | 0               | 10081.2   | 0        | 0,0        | 91,1       | 12,4       | -3,0      | -                 | 112,0                |
| H 133  | V90-2000           | U 12dB ASK | 11,5              | 0,0   | 0.0      | 0        | 0           | 0               | 10356.0   | 0        | 0,0        | 91,3       | 12,6       | -3,0      | -                 | 112,0                |
| H 134  | V90-2000           | U 12dB ASK | 11,1              | 0,0   | 0,0      | 0        | 0           | 0               | 10610.0   | 0        | 0.0        | 91,5       | 12,7       | -3,0      |                   | 112,0                |
| H 135  | V90-2000           | U 12dB ASK | 10,8              | -1-   | 0,0      | 0        | 0           | 0               | 6484.0    | 0        | 0.0        | 87,2       | 9,8        | -3,0      | -                 | 112,0                |
| H 354  | N-131              | U 12dB ASK | 17,9              | 0,0   |          | 0        | 0           | 0               | 5528.0    | 0        | 0,0        | 85.8       | 9,0        | -3,0      | *:                | 112,0                |
| H 355  | N-117-2400         | U 12dB ASK | 20,2              | 0,0   | 0,0      | 0        | 0           | 0               | 5532.3    | 0        | 0.0        | 85.9       | 9,0        | -3,0      | -                 | 112,0                |
| H 356  | N-117-2400         | U 12dB ASK | 20,2              | 0,0   | 0,0      | _        | 0           | 0               | 5944.2    | 0        | 0.0        | 86.5       | 9,4        | -3,0      | -                 | 112,0                |
| RH 357 | N-117-2400         | U 12dB ASK | 19,2              | 0,0   | 0,0      | 0        | 0           | 0               | 6104.8    | 0        | 0.0        | 86.7       | 9,5        | -3,0      | -                 | 112,0                |
| RH 358 | N-117-2400         | U 12dB ASK | 18,8              | 0,0   | 0,0      | 0        | 0           | 0               | 6524.6    | 0        | 0.0        | 87.3       | 9.9        | -3,0      | -                 | 112,0                |
| RH 359 | N-117-2400         | U 12dB ASK | 17,9              | 0,0   | 0,0      | 0        | 0           | 0               | 6662.4    | 0        | 0.0        | 87.5       | 10.0       | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400         | U 12dB ASK | 17,6              | 0,0   | 0,0      | 0        | -           | 0               | 6621.8    | 0        | 0,0        | 87.4       | 9,9        | -3.0      | -                 | 112,0                |
| RH 361 | N-117-2400         | U 12dB ASK | 17,6              | 0,0   | 0,0      | 0        | 0           | 0               | 7349.1    | 0        | 0.0        | 88.3       | 10.5       | -3,0      |                   | 112,0                |
| RH 362 | N-117-2400         | U 12dB ASK | 16,1              | 0,0   | 0,0      | 0        | 0           |                 | 8296.0    | 0        | 0,0        | 89.4       | 11,2       | -3.0      | -                 | 112,0                |
| RH 363 | N-117-2400         | U 12dB ASK | 14,4              | 0,0   | 0,0      | 0        | 0           | 0               | 8595.6    | 0        | 0.0        | 89.7       | 11.5       | -3,0      | -                 | 112.0                |
| RH 364 | N-117-2400         | U 12dB ASK | 13,9              | 0,0   | 0,0      | 0        | 0           | 0               |           | 0        | 0,0        | 90.2       | 11.8       | -3.0      | -                 | 112.0                |
| RH 366 | N-117-2400         | U 12dB ASK | 13,0              | 0,0   | 0,0      | 0        | 0           | 0               | 9153,3    | 0        | 0,0        | 90,2       | 11,7       | -3.0      | -                 | 112.0                |
| RH 369 | N-117              | U 12dB ASK | 13,2              | 0,0   | 0,0      | 0        | 0           | 0               | 9016,7    | _        | 0,0        | 89.7       | 11,7       | -3.0      | -                 | 112,0                |
| RH 370 | N-117              | U 12dB ASK | 13,8              | 0,0   | 0,0      | 0        | 0           | 0               | 8614,3    | 0        | 0.0        | 89.4       | 11,3       | -3.0      | -                 | 112.0                |
| RH 371 | N-117              | U 12dB ASK | 14,4              | 0,0   | 0,0      | 0        | 0           | 0               | 8304,4    | 0        | -4-        | 90,6       | 12.1       | -3,0      | -                 | 112.0                |
| RH 374 | E-115              | U 12dB ASK | 12,3              | 0,0   | 0,0      | 0        | 0           | 0               | 9571,0    | 0        | 0,0        | 90,8       | 12,1       | -3,0      | <u> </u>          | 112,0                |
| RH 375 | E-115              | U 12dB ASK | 11,9              | 0,0   | 0,0      | 0        | 0           | 0               | 9813,0    | 0        | 0,0        |            | 12,2       | -3,0      | -                 | 112,0                |
| RH 75  | V-44               | U 12dB ASK | 10,5              | 0,0   | 0,0      | 0        | 0           | 0               | 10842,1   | 0        | 0,0        | 91,7       |            | -3,0      | +-                | 112,                 |
| RH 76  | E-82               | U 12dB ASK | 10,6              | 0,0   | 0,0      | 0        | 0           | 0               | 10761,5   | 0        | 0,0        | 91,6       | 12,8       | -3,0      | -                 | 112,                 |
| RH 77  | E-82               | U 12dB ASK | 11,1              | 0,0   | 0,0      | 0        | 0           | 0               | 10392,4   | 0        | 0,0        | 91,3       | 12,6       |           | -                 | 112,                 |
| RH 78  | E-82               | U 12dB ASK | 11,5              | 0,0   | 0,0      | 0        | 0           | 0               | 10087,4   | 0        | 0,0        | 91,1       | 12,4       | -3,0      | -                 | 112,                 |
| RH 79  | E-82               | U 12dB ASK | 11,9              | 0,0   | 0,0      | 0        | 0           | 0               | 9850,7    | 0        | 0,0        | 90,9       | 12,3       |           | · ·               | 112,                 |
| WEAT   | E-82               | U 12dB ASK | 10,7              | 0,0   | 0,0      | 0        | 0           | 0               | 10649,6   | 0        | 0,0        | 91,5       | 12,7       | -3,0      | -                 | 112,                 |
| WEAT.  |                    | Sum        | 29.7              |       |          | $\top$   |             |                 |           |          |            |            |            |           |                   |                      |

| г.,    | IO-22<br>Kommentar                        | Gruppe     | LAT<br>N<br>dB(A)                       | DC dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | Abar<br>dB | Adiv<br>dB | Aatm<br>dB | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
|--------|-------------------------------------------|------------|-----------------------------------------|-------|----------|----------|-------------|-----------------|-----------|----------|------------|------------|------------|-----------|-------------------|----------------------|
| 11.400 | V90-2000                                  | U 12dB ASK | 15.1                                    | 0,0   | 0,0      | 0        | 0           | 0               | 7917,1    | 0        | 0,0        | 89,0       | 11,0       | -3,0      | -                 | 112,0                |
| H 133  | V90-2000                                  | U 12dB ASK | 14,6                                    | 0.0   | 0.0      | 0        | 0           | 0               | 8181,9    | 0        | 0,0        | 89,2       | 11,2       | -3,0      | -                 | 112,0                |
| H 134  | V90-2000                                  | U 12dB ASK | 14,1                                    | 0.0   | 0,0      | 0        | 0           | 0               | 8449,1    | 0        | 0,0        | 89,5       | 11,3       | -3,0      | -                 | 112,0                |
| H 135  | N-131                                     | U 12dB ASK | 22,7                                    | 0,0   | 0,0      | 0        | 0           | 0               | 4622,9    | 0        | 0,0        | 84,3       | 8,0        | -3,0      | 12                | 112,0                |
| RH 354 | N-131<br>N-117-2400                       | U 12dB ASK | 21,2                                    | 0.0   | 0.0      | 0        | 0           | 0               | 5152,2    | 0        | 0,0        | 85,2       | 8,6        | -3,0      | 1.5               | 112,0                |
| RH 355 | N-117-2400<br>N-117-2400                  | U 12dB ASK | 21,8                                    | 0,0   | 0,0      | 0        | 0           | 0               | 4925,7    | 0        | 0,0        | 84,8       | 8,4        | -3,0      | -                 | 112,0                |
| RH 356 | N 12 12 1-10 1-10 1-10 1-10 1-10 1-10 1-1 | U 12dB ASK | 20.9                                    | 0.0   | 0.0      | 0        | 0           | 0               | 5270,9    | 0        | 0,0        | 85,4       | 8,7        | -3,0      | -                 | 112,0                |
| RH 357 | N-117-2400                                | U 12dB ASK | 20,8                                    | 0,0   | 0,0      | 0        | 0           | 0               | 5289,9    | 0        | 0,0        | 85,5       | 8,7        | -3,0      | -                 | 112,0                |
| RH 358 | N-117-2400                                | U 12dB ASK | 19,4                                    | 0,0   | 0.0      | 0        | 0           | 0               | 5844,9    | 0        | 0,0        | 86,3       | 9,3        | -3,0      | -                 | 112,0                |
| RH 359 | N-117-2400                                | U 12dB ASK | 19,4                                    | 0,0   | 0.0      | 0        | 0           | 0               | 5838,8    | 0        | 0,0        | 86,3       | 9,3        | -3,0      | -                 | 112,0                |
| RH 360 | N-117-2400                                | U 12dB ASK | 19,9                                    | 0.0   | 0.0      | 0        | 0           | 0               | 5629.7    | 0        | 0,0        | 86,0       | 9,1        | -3,0      | -                 | 112,0                |
| RH 361 | N-117-2400                                | U 12dB ASK | 18,0                                    | 0,0   | 0,0      | 0        | 0           | 0               | 6468.8    | 0        | 0,0        | 87,2       | 9,8        | -3,0      | -                 | 112,0                |
| RH 362 | N-117-2400                                |            | 17,9                                    | 0,0   | 0,0      | 0        | 0           | 0               | 6514,2    | 0        | 0,0        | 87,3       | 9,9        | -3,0      | -                 | 112,0                |
| RH 363 | N-117-2400                                | U 12dB ASK | 16,9                                    | 0,0   | 0,0      | 0        | 0           | 0               | 6979.7    | 0        | 0,0        | 87,9       | 10,2       | -3,0      | 1-                | 112,0                |
| RH 364 | N-117-2400                                | U 12dB ASK | A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0,0   | 0,0      | 0        | 0           | 0               | 7695.7    | 0        | 0,0        | 88,7       | 10,8       | -3,0      | -                 | 112,0                |
| RH 366 | N-117-2400                                | U 12dB ASK | 15,5<br>17,2                            | 0,0   | 0,0      | 0        | 0           | 0               | 6850.6    | 0        | 0.0        | 87,7       | 10,1       | -3,0      | -                 | 112,0                |
| RH 369 | N-117                                     | U 12dB ASK |                                         | 0,0   | 0,0      | 0        | 0           | 0               | 6430.9    | 0        | 0.0        | 87.2       | 9,8        | -3,0      | -                 | 112,0                |
| RH 370 | N-117                                     | U 12dB ASK | 18,1                                    | 2002  | 0,0      | 0        | 1 0         | 0               | 6076.6    | 0        | 0.0        | 86.7       | 9,5        | -3,0      | -                 | 112,0                |
| RH 371 | N-117                                     | U 12dB ASK | 18,9                                    | 0,0   |          | 0        | 0           | 0               | 7136.0    | 0        | 0.0        | 88.1       | 10,4       | -3,0      | -                 | 112,0                |
| RH 374 | E-115                                     | U 12dB ASK | 16,6                                    | 0,0   | 0,0      | 0        | 0           | 0               | 7378,2    | 0        | 0,0        | 88,4       | 10.6       | -3,0      | -                 | 112,0                |
| RH 375 | E-115                                     | U 12dB ASK | 16,1                                    | 0,0   | 0,0      | -        | 0           | 0               | 8410,7    | 0        | 0,0        | 89.5       | 11,3       | -3,0      | -                 | 112,0                |
| RH 75  | V-44                                      | U 12dB ASK | 14,2                                    | 0,0   | 0,0      | 0        | 0           | 0               | 8327,0    | 0        | 0.0        | 89,4       | 11,3       | -3,0      | -                 | 112,0                |
| RH 76  | E-82                                      | U 12dB ASK | 14,3                                    | 0,0   | 0,0      | 0        | -           |                 | 7958.0    | 0        | 0.0        | 89.0       | 11.0       | -3.0      | -                 | 112,0                |
| RH 77  | E-82                                      | U 12dB ASK | 15,0                                    | 0,0   | 0,0      | 0        | 0           | 0               | 7956,0    | 0        | 0,0        | 88.7       | 10.8       | -3.0      | -                 | 112.0                |
| RH 78  | E-82                                      | U 12dB ASK | 15,6                                    | 0,0   | 0,0      | 0        | 0           | 0               | 7416.4    | 0        | 0.0        | 88.4       | 10,6       | -3.0      | -                 | 112,0                |
| RH 79  | E-82                                      | U 12dB ASK | 16,0                                    | 0,0   | 0,0      | 0        | 0           |                 | 8218.4    | 0        | 0,0        | 89,3       | 11,2       | -3.0      | -                 | 112,0                |
| WEA T  | E-82                                      | U 12dB ASK | 14,5                                    | 0,0   | 0,0      | 0        | 0           | 0               | 6218,4    | + "      | 0,0        | 09,0       | 11,2       | - 0,0     |                   | 3.3-1                |
|        |                                           | Sum        | 32,4                                    |       |          |          |             |                 |           |          |            |            |            |           |                   |                      |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



# Vorbelastung Windenergie (Kap. 6.2)

|        | 10-12              |        |            |          |          |          |             |                 |        |          |       |      |      |           |                   |                      |
|--------|--------------------|--------|------------|----------|----------|----------|-------------|-----------------|--------|----------|-------|------|------|-----------|-------------------|----------------------|
| Nr     | Kommentar          | Gruppe | N<br>dB(A) | DC<br>dB | DT<br>dB | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)   | DI<br>dB | Abar  | Adiv | Aatm | Agr<br>dB | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
| RH 354 | N-131              | WEA_VB | 24,9       | 0,0      | 0,0      | 0        | 0           | 0               | 2726,5 | 0        | 0,0   | 79,7 | 5,4  |           |                   |                      |
| RH 355 | N-117-2400         | WEA_VB | 22,9       | 0.0      | 0,0      | 0        | 0           | 0               | 3125,6 | 0        | 0.950 |      |      | -3,0      | -                 | 107,0                |
| RH 356 | N-117-2400         | WEA_VB | 23,7       | 0,0      | 0,0      | 0        | 0           | 0               |        | -        | 0,0   | 80,9 | 7,9  | -3,0      | 16,8              | 107,5                |
| RH 357 | N-117-2400         | WEA_VB | 21,9       | 0,0      | 0,0      | - 0      |             | -               | 2795,0 | 0        | 0,0   | 79,9 | 7,4  | -3,0      | 14,2              | 107,5                |
| RH 358 | N-117-2400         | WEA_VB |            |          |          | 0        | 0           | 0               | 3090,7 | 0        | 0,0   | 80,8 | 7,9  | -3,0      | -                 | 107,5                |
|        | 1111-2400          |        | 22,0       | 0,0      | 0,0      | 0        | 0           | 0               | 3061,4 | 0        | 0,0   | 80,7 | 7,8  | -3,0      | -                 | 107,5                |
|        |                    | Sum    | 30,2       |          |          |          |             |                 |        |          |       |      |      |           |                   |                      |
| Nr     | IO-13<br>Kommentar | Gruppe | LAT<br>N   | DC       | DT       | MM       | KT/KI       | Cmet<br>N       | d(p)   | DI       | Abar  | Adiv | Aatm | Agr       | Refl              | Lw/LmE               |
| 211055 |                    |        | dB(A)      | dB       | dB       | dB       | dB          | dB              | m      | dB       | dB    | dB   | dB   | dB        | Ant<br>dB         | N<br>dB(A)           |
| RH 355 | N-117-2400         | WEA_VB | 29,5       | 0,0      | 0,0      | 0        | 0           | 0               | 1692,5 | 0        | 0,0   | 75,6 | 5,5  | -3,0      | -                 | 107,5                |
| RH 356 | N-117-2400         | WEA_VB | 26,7       | 0,0      | 0,0      | 0        | 0           | 0               | 2117,6 | 0        | 0,0   | 77,5 | 6,3  | -3,0      |                   | 107,5                |
|        |                    |        |            |          |          |          |             |                 |        |          |       |      |      |           | -                 |                      |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 80 von 107



# Zusatzbelastung Windenergie

|                  | 10-01            |                         |              |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
|------------------|------------------|-------------------------|--------------|------|------|-------|-------------|-----------------|------------------|----------|------|--------------|------------|--------------|-------------------|----------------------|
|                  | Kommentar        | Gruppe                  | LAT<br>N     | DC   | DT   | MM    | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m        | DI<br>dB | Abar | Adiv<br>dB   | Aatm<br>dB | Agr<br>dB    | Refl<br>Ant<br>dB | Lw/LmE<br>N<br>dB(A) |
| 6.0              |                  |                         | dB(A)        | dB   | dB   | dB    |             | 0               | 953,4            | 0        | 0,0  | 70,6         | 2,6        | -3,0         |                   | 106,8                |
| EA 01            | WEA 01           | WEA_ZB                  | 36,6         | 0,0  | 0,0  | 0     | 0           | 0               | 1372,4           | 0        | 0,0  | 73,7         | 3,5        | -3,0         | -                 | 106,8                |
| EA 02            | WEA 02           | WEA_ZB                  | 32,6         | 0,0  | 0,0  | 0     | U           | -               | 13/2,4           | -        | 0,0  | 7,0,7        | -,-        | -,-          |                   |                      |
|                  |                  | Sum                     | 38,0         |      | -    |       |             | 7               | 7 17 7           | 177      |      |              |            | -            |                   | 7                    |
|                  | 10-02            | 1                       |              |      |      | 45.01 |             |                 | 16-1             | DI       | Abar | Adiv         | Aatm       | Agr          | Refl              | Lw/LmE               |
|                  | Kommentar        | Gruppe                  | LAT          | DC   | DT   | MM    | KT/KI       | Cmet<br>N       | d(p)             | DI       | Abai | Auiv         | Aduli      | Agi          | Ant               | N                    |
|                  |                  |                         | N<br>dB(A)   | dB   | dB   | dB    | dB          | dB              | m                | dB       | dB   | dB           | dB         | dB           | dB                | dB(A)                |
| EA 01            | WEA 01           | WEA_ZB                  | 37,4         | 0,0  | 0,0  | 0     | 0           | 0               | 884,9            | 0        | 0,0  | 69,9         | 2,5        | -3,0         |                   | 106,8                |
| /EA 02           | WEA 02           | WEA_ZB                  | 32,9         | 0,0  | 0,0  | 0     | 0           | 0               | 1331,2           | 0        | 0,0  | 73,5         | 3,4        | -3,0         |                   | 106,8                |
| LN 02            | 1102             | Sum                     | 38,7         |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
|                  | 7.77             |                         |              |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
|                  | 10-03            | Crunna                  | LAT          | DC   | DT   | MM    | KT/KI       | Cmet            | d(p)             | DI       | Abar | Adiv         | Aatm       | Agr          | Refl              | Lw/LmE               |
| lr               | Kommentar        | Gruppe                  | N            |      |      |       |             | N               |                  | dB       | dB   | dB           | dB         | dB           | Ant<br>dB         | N<br>dB(A)           |
|                  |                  |                         | dB(A)        | dB   | dB   | dB    | dB<br>0     | dB<br>0         | m<br>654,8       | 0        | 0,0  | 67,3         | 2,0        | -3,0         | 32,7              | 106,8                |
| VEA 01           | WEA 01           | WEA_ZB                  | 41,2         | 0,0  | 0,0  | 0     |             | 0               | 994,8            | 0        | 0,0  | 70,9         | 2,7        | -3,0         | 19,2              | 106,8                |
| VEA 02           | WEA 02           | WEA_ZB                  | 36,2         | 0,0  | 0,0  | 0     | 0           | 0               | 1063,9           | 0        | 0,0  | 71,5         | 2,9        | -3,0         | -                 | 106,8                |
| VEA 05           | WEA 05           | WEA_ZB<br>Sum           | 35,4<br>43,2 | 0,0  | 0,0  | 0     | -           | "               | 1000,0           | +-       |      | ,-           |            |              |                   |                      |
|                  |                  | Pulli                   | 10,2         |      |      |       |             | 1               |                  |          |      |              |            |              |                   |                      |
|                  | 10-04            |                         |              |      |      |       |             |                 |                  | T 51     | 1 41 | Adiv         | Aatm       | Agr          | Refl              | Lw/LmE               |
| lr               | Kommentar        | Gruppe                  | LAT          | DC   | DT   | MM    | KT/KI       | Cmet<br>N       | d(p)             | DI       | Abar | Adiv         | Aaum       | Agi          | Ant               | N N                  |
|                  |                  |                         | N<br>dB(A)   | dB   | dB   | dB    | dB          | dB              | m                | dB       | dB   | dB           | dB         | dB           | dB                | dB(A)                |
| NEA 01           | WEA 01           | WEA_ZB                  | 40,4         | 0,0  | 0,0  | 0     | 0           | 0               | 661,4            | 0        | 0,0  | 67,4         | 2,0        | -3,0         | ~                 | 106,8                |
| NEA 02           | WEA 02           | WEA_ZB                  | 36,6         | 0,0  | 0,0  | 0     | 0           | 0               | 953,6            | 0        | 0,0  | 70,6         | 2,6        | -3,0         | -                 | 106,8                |
| NEA 04           | WEA 04           | WEA_ZB                  | 32,5         | 0,0  | 0,0  | 0     | 0           | 0               | 1385,1           | 0        | 0,0  | 73,8         | 3,5        | -3,0         | -                 | 106,8<br>106,8       |
| WEA 05           | WEA 05           | WEA_ZB                  | 36,2         | 0,0  | 0,0  | 0     | 0           | 0               | 987,0            | 0        | 0,0  | 70,9         | 2,7        | -3,0         | -                 | 100,0                |
|                  |                  | Sum                     | 43,3         |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
|                  | 10-05            |                         |              |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
| Nr               | Kommentar        | Gruppe                  | LAT          | DC   | DT   | MM    | KT/KI       |                 | d(p)             | DI       | Abar | Adiv         | Aatm       | Agr          | Refl<br>Ant       | Lw/Lm                |
|                  |                  |                         | dB(A)        | dB   | dB   | dB    | dB          | N<br>dB         | m                | dB       | dB   | dB           | dB         | dB           | dB                | dB(A)                |
| WEA 01           | WEA 01           | WEA_ZB                  | 38,5         | 0,0  | 0,0  | 0     | 0           | 0               | 919,1            | 0        | 0,0  | 70,3         | 2,6        | -3,0         | 33,2              | 106,8                |
| WEA 02           | WEA 02           | WEA_ZB                  | 33,7         | 0,0  | 0,0  | 0     | 0           | 0               | 1281,7           | 0        | 0,0  | 73,1         | 3,3        | -3,0         | 22,7              | 106,8                |
| WEA 05           | WEA 05           | WEA_ZB                  | 33,3         | 0,0  | 0,0  | 0     | 0           | 0               | 1291,6           | 0        | 0,0  | 73,2         | 3,3        | -3,0         | -                 | 106,8                |
|                  |                  | Sum                     | 40,6         |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
|                  | 10-08            |                         |              |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
| Nr               | Kommentar        | Gruppe                  | LAT          | DC   | DT   | MM    | KT/KI       |                 | d(p)             | DI       | Abar | Adiv         | Aatm       | Agr          | Refl<br>Ant       | Lw/Lm<br>N           |
|                  |                  |                         | N<br>dB(A)   | dB   | dB   | dB    | dB          | N<br>dB         | m                | dB       | dB   | dB           | dB         | dB           | dB                | dB(A                 |
| WEA 01           | WEA 01           | WEA_ZB                  | 33,2         | 0,0  | 0,0  | 0     | 0           | 0               | 1303,3           | 0        | 0,0  | 73,3         | 3,3        | -3,0         |                   | 106,8                |
| WEA 02           | WEA 02           | WEA_ZB                  | 32,8         | 0,0  | 0,0  | 0     | 0           | 0               | 1608,3           | 0        | 0,0  | 75,1         | 3,9        | -3,0         | 28,6              | 106,8                |
|                  |                  | Sum                     | 36,0         |      |      |       |             |                 |                  |          |      |              |            |              |                   | 1                    |
|                  | 10-09            |                         |              |      |      |       |             |                 |                  |          |      |              |            |              |                   |                      |
| Nr               | Kommentar        | Gruppe                  | LAT          | DC   | DT   | MM    | KT/K        |                 | d(p)             | DI       | Abar | Adiv         | Aatm       | Agr          | Refl              | Lw/Ln                |
| 130              | Commental        |                         | N            | dB   |      | dB    | dB          | N<br>dB         | m                | dB       | dB   | dB           | dB         | dB           | Ant<br>dB         | dB(A                 |
|                  | 1                |                         | dB(A)        | l ag | l ag | l ub  | l ub        | l ub            |                  |          |      | 0.000        |            |              |                   | 824                  |
|                  |                  |                         |              |      |      | -     | _ ^         | 1 0             | 127F 0           | 0        | 0.0  | 73 1         | 3.3        | -3.0         |                   | 106.8                |
| WEA 01           | WEA 01           | WEA_ZB                  | 33,4         | 0,0  | _    | 0     | 0           | 0               | 1275,0           | 0        | 0,0  | 73,1         | 3,3        | -3,0<br>-3,0 | -                 | 106,                 |
| WEA 01<br>WEA 05 | WEA 01<br>WEA 05 | WEA_ZB<br>WEA_ZB<br>Sum |              | 0,0  | _    | 0     | 0           | 0               | 1275,0<br>1317,2 | 0        | 0,0  | 73,1<br>73,4 | 3,3        | -3,0         |                   |                      |

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg



|                                  | 10-11               |                  |                    |           |           |          |             |                 |             |          |            |            |            |            |             |             |
|----------------------------------|---------------------|------------------|--------------------|-----------|-----------|----------|-------------|-----------------|-------------|----------|------------|------------|------------|------------|-------------|-------------|
| Nr                               | Kommentar           | Gruppe           | LAT<br>N<br>dB(A)  | DC<br>dB  | DT<br>dB  | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)        | DI<br>dB | Abar<br>dB | Adiv       | Aatm       | Agr        | Refl<br>Ant | Lw/LmE      |
| WEA 05                           | WEA 05              | WEA_ZB           | 32,6               | 0,0       | 0,0       | 0        |             | 1               | 1000        |          |            |            | 0.225      | dB         | dB          | dB(A)       |
|                                  |                     | Sum              | 32,6               | 0,0       | 0,0       | 0        | 0           | 0               | 1528,9      | 0        | 0,0        | 74,7       | 3,8        | -3,0       | 26,7        | 106,8       |
|                                  | IO-12               | h Jan and        |                    |           | 77        | y Irea   |             |                 | 12          |          | 177        | 100        |            |            |             |             |
|                                  | IO-12               |                  |                    |           |           | V II     |             |                 | 12          |          |            | 4 -        |            |            |             |             |
| Nr                               | IO-12<br>Kommentar  | Gruppe           | LAT<br>N<br>dB(A)  | DC<br>dB  | DT<br>dB  | MM<br>dB | KT/KI<br>dB | Cmet<br>N<br>dB | d(p)<br>m   | DI dB    | Abar       | Adiv       | Aatm<br>dB | Agr        | Refl<br>Ant | Lw/LmE<br>N |
|                                  |                     | Gruppe<br>WEA_ZB | N                  |           | dB        | dB       | dB          | N<br>dB         | m           | dB       | dB         | dB         | dB         | dB         |             | N<br>dB(A)  |
| WEA 01                           | Kommentar           |                  | N<br>dB(A)<br>29,7 | dB<br>0,0 | dB<br>0,0 | dB<br>0  | dB<br>0     | N<br>dB         | m<br>1758,5 | dB<br>0  | dB<br>0,0  | dB<br>75,9 | dB<br>4,2  | dB<br>-3,0 | Ant         | N<br>dB(A)  |
| Nr<br>WEA 01<br>WEA 02<br>WEA 05 | Kommentar<br>WEA 01 | WEA_ZB           | N<br>dB(A)         | dB        | dB        | dB       | dB          | N<br>dB         | m           | dB       | dB         | dB         | dB         | dB         | Ant<br>dB   | N<br>dB(A)  |

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 82 von 107



# Sonstige Vorbelastung durch Gewerbe (Kap. 6.3)

|            | IO-08      | and or house to be detection as its |            | No. |     |          |                 |                 |           |    |      |      |            |     | D-4       | hti -                   |
|------------|------------|-------------------------------------|------------|-----|-----|----------|-----------------|-----------------|-----------|----|------|------|------------|-----|-----------|-------------------------|
| Nr.        | Kommentar  |                                     | N<br>dB(A) |     | 3.1 | MM<br>dB | KT/K<br>I<br>dB | Cmet<br>N<br>dB | d(p)<br>m | dB | dB   | dB   | Aatm<br>dB | dB  | Ant<br>dB | Lw/Ln<br>E<br>N<br>dB(A |
| Gew_Lieg_N | Gew_Lieg_N | VB_Gew                              | 29,6       | 3,0 | 0,0 | 0        | 0               | 0,4             | 109,7     | 0  | 16,7 | 51,8 | 0,2        | 2,7 | 12,4      | 99,4                    |
|            | Gew_Lieg_S | VB_Gew                              | 23,5       | 3,0 | 0,0 | 0        | 0               | 1,7             | 601,6     | 0  | 3,3  | 66,6 | 1,1        | 4,5 | -         | 97,4                    |
| Gew_Lieg_S | Gew_Lieg_0 | Sum                                 | 30,5       | -   |     |          |                 |                 |           |    |      |      |            |     |           |                         |

|            | 10-11      |        |                   |     | 43  |          |    |                 |           |          |      |      | A          | A   | D-fl      | Lw/Ln  |
|------------|------------|--------|-------------------|-----|-----|----------|----|-----------------|-----------|----------|------|------|------------|-----|-----------|--------|
| Nr.        | Kommentar  | Gruppe | LAT<br>N<br>dB(A) |     |     | MM<br>dB | L  | Cmet<br>N<br>dB | d(p)<br>m | DI<br>dB | dB   | dB   | Aatm<br>dB | dB  | Ant<br>dB | E<br>N |
|            |            |        |                   |     |     | _        | dB | 4.0             | 5040      | _        | 40.0 | 66,3 | 1,1        | 4,6 | -6,8      | dB(A)  |
| Gew_Lieg_N | Gew_Lieg_N | VB_Gew |                   |     |     | _        | 0  | 1,8             | 584,8     | 0        | -    | -    | - 10       |     | -         |        |
| Gew_Lieg_S | Gew_Lieg_S | VB_Gew | 42,6              | 3,0 | 0,0 | 0        | 0  | 0,6             | 111,8     | 0        | 0,9  | 52,0 | 0,2        | 3,7 | 10,2      | 97,4   |
| O6#_L109_0 |            | Sum    | 42,6              |     |     |          |    |                 |           |          |      |      |            |     |           |        |

| Nr.                      | Kommentar  |        |          |     |     |    | · (** 0.4) | 0 1 | 11-1  | DI | A L  | Adia | Aatm | Agr | Refl | I w/I r   |
|--------------------------|------------|--------|----------|-----|-----|----|------------|-----|-------|----|------|------|------|-----|------|-----------|
|                          | Commentar  | Gruppe | LAT<br>N | DC  | DT  | MM | K I/KI     | N   | d(p)  | וט | Abar | Adiv | Adum | Agi | Ant  | E         |
|                          |            |        | dB(A)    | dB  | dB  | dB | dB         | dB  | m     | dB | dB   | dB   | dB   | dB  | dB   | N<br>dB(A |
| S 11 N                   | Gew_Lieg_N | VB_Gew | 25,7     | 3,0 | 0,0 | 0  | 0          | 1,8 | 608,2 | 0  | 2,9  | 66,7 | 1,2  | 4,3 | -2,3 | 99,4      |
| Gew_Lieg_N<br>Gew_Lieg_S | Gew_Lieg_S | VB_Gew |          |     |     |    | 0          | 1,6 | 296,1 | 0  | 0,3  | 60,4 | 0,6  | 4,4 | 25,1 | 97,4      |

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg



# Gesamtbelastung (Kap. 6.5)

|                                                        | 10-01                                                                              |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|--------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------|------------------------------|----------------------------|-----------------------------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------|-------------------------------------|---------------------------------------------------------------------|
| Nr                                                     | Kommentar                                                                          | Gruppe                                                      | LAT                                                                       | DC                                                | DT                                                 | MM                           | KT/KI                      | Cmet                                    | d/n)                                            | DI                                        | Abar                                    | A aller                                    | T 4.4                                   | T                                |                                     |                                                                     |
|                                                        |                                                                                    |                                                             | N                                                                         | - 10                                              | 36,0174                                            |                              |                            | N                                       | d(p)                                            |                                           | Abai                                    | Adiv                                       | Aatm                                    | Agr                              | Refl<br>Ant                         | Lw/Ln                                                               |
|                                                        |                                                                                    |                                                             | dB(A)                                                                     | dB                                                | dB                                                 | dB                           | dB                         | dB                                      | m                                               | dB                                        | dB                                      | dB                                         | dB                                      | dB                               | dB                                  | dB(A                                                                |
| WEA 01                                                 | WEA 01                                                                             | WEA_ZB                                                      | 36,6                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 953,4                                           | 0                                         | 0,0                                     | 70,6                                       | 2,6                                     | -3,0                             | S                                   | 106,8                                                               |
| WEA 02                                                 | WEA 02                                                                             | WEA_ZB                                                      | 32,6                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 1372,4                                          | 0                                         | 0,0                                     | 73,7                                       | 3,5                                     | -3,0                             | -                                   | 106,8                                                               |
|                                                        |                                                                                    | Sum                                                         | 38,0                                                                      |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|                                                        |                                                                                    |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|                                                        | 10-02                                                                              |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
| Nr                                                     | Kommentar                                                                          | Gruppe                                                      | LAT                                                                       | DC                                                | DT                                                 | MM                           | KT/KI                      | Cmet                                    | d(n)                                            | DI                                        | Abar                                    | Adia                                       | A adam                                  | I A                              | I Defi                              | 1                                                                   |
|                                                        | 1.5.1.1.1.0.1.0.2.1                                                                | Старре                                                      | N                                                                         | "                                                 |                                                    | IVIIVI                       | KIIKI                      | N                                       | d(p)                                            | l Di                                      | Abar                                    | Adiv                                       | Aatm                                    | Agr                              | Refl<br>Ant                         | Lw/Ln<br>N                                                          |
|                                                        | 44                                                                                 |                                                             | dB(A)                                                                     | dB                                                | dB                                                 | dB                           | dB                         | dB                                      | m                                               | dB                                        | dB                                      | dB                                         | dB                                      | dB                               | dB                                  | dB(A                                                                |
| NEA 01                                                 | WEA 01                                                                             | WEA_ZB                                                      | 37,4                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 884,9                                           | 0                                         | 0,0                                     | 69,9                                       | 2,5                                     | -3,0                             | -                                   | 106,                                                                |
| WEA 02                                                 | WEA 02                                                                             | WEA_ZB                                                      | 32,9                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 1331,2                                          | 0                                         | 0,0                                     | 73,5                                       | 3,4                                     | -3,0                             | -                                   | 106,                                                                |
|                                                        |                                                                                    | Sum                                                         | 38,7                                                                      |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            | -,-                                     | *,*                              |                                     | 100,                                                                |
|                                                        |                                                                                    |                                                             |                                                                           |                                                   |                                                    | -                            | К                          |                                         |                                                 | -                                         |                                         |                                            |                                         | 15.71                            |                                     |                                                                     |
|                                                        |                                                                                    |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
| 15. 1                                                  | 10-03                                                                              | _6                                                          | 7.7.                                                                      |                                                   |                                                    |                              |                            | - 1                                     | 15.0                                            |                                           | The state of                            |                                            |                                         |                                  |                                     |                                                                     |
| lr                                                     | Kommentar                                                                          | Gruppe                                                      | LAT                                                                       | DC                                                | DT                                                 | MM                           | KT/KI                      | Cmet                                    | d(p)                                            | DI                                        | Abar                                    | Adiv                                       | Aatm                                    | Agr                              | Refl                                | Lw/Lr                                                               |
|                                                        |                                                                                    |                                                             | N<br>dB(A)                                                                | dB                                                | dB                                                 | dB                           | dB                         | N<br>dB                                 | -                                               | dB                                        | dD.                                     | 45                                         | 40                                      | 45                               | Ant                                 | N                                                                   |
| WEA 01                                                 | WEA 01                                                                             | A/F4 70                                                     | 11.0                                                                      | 1000                                              | 1000000                                            | 10000                        |                            | 30000                                   | m                                               |                                           | dB                                      | dB                                         | dB                                      | dB                               | dB                                  | dB(A                                                                |
| NEA 01                                                 | WEA 02                                                                             | WEA_ZB                                                      | 41,2                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 654,8                                           | 0                                         | 0,0                                     | 67,3                                       | 2,0                                     | -3,0                             | 32,7                                | 106,                                                                |
| NEA 05                                                 | WEA 02                                                                             | WEA_ZB                                                      | 36,2                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 994,8                                           | 0                                         | 0,0                                     | 70,9                                       | 2,7                                     | -3,0                             | 19,2                                | 106,                                                                |
| VEA US                                                 | WEA US                                                                             | WEA_ZB                                                      | 35,4                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 1063,9                                          | 0                                         | 0,0                                     | 71,5                                       | 2,9                                     | -3,0                             | -                                   | 106,                                                                |
|                                                        |                                                                                    | Sum                                                         | 43,2                                                                      |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|                                                        |                                                                                    |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|                                                        | 10-04                                                                              |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
| Vr                                                     | Kommentar                                                                          | Gruppe                                                      | LAT                                                                       | DC                                                | DT                                                 | MM                           | KT/KI                      | Cmet                                    | 4/-1                                            | I DI                                      | Abas                                    | 4 -17 -                                    |                                         |                                  |                                     |                                                                     |
|                                                        | - Commental                                                                        | Grappe                                                      | N                                                                         | DC                                                | DI                                                 | IVIIVI                       | KI/KI                      | Cmet<br>N                               | d(p)                                            | DI                                        | Abar                                    | Adiv                                       | Aatm                                    | Agr                              | Refl<br>Ant                         | Lw/Ln                                                               |
|                                                        |                                                                                    |                                                             | dB(A)                                                                     | dB                                                | dB                                                 | dB                           | dB                         | dB                                      | m                                               | dB                                        | dB                                      | dB                                         | dB                                      | dB                               | dB                                  | dB(A                                                                |
| VEA 01                                                 | WEA 01                                                                             | WEA_ZB                                                      | 40,4                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 661,4                                           | 0                                         | 0,0                                     | 67,4                                       | 2,0                                     | -3,0                             | -                                   | 106,8                                                               |
| VEA 02                                                 | WEA 02                                                                             | WEA_ZB                                                      | 36,6                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 953,6                                           | 0                                         | 0,0                                     | 70,6                                       | 2,6                                     | -3,0                             |                                     | 106,8                                                               |
| VEA 04                                                 | WEA 04                                                                             | WEA_ZB                                                      | 32,5                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 1385,1                                          | 0                                         | 0,0                                     | 73,8                                       | 3,5                                     | -3,0                             | -                                   | 106,8                                                               |
| VEA 05                                                 | WEA 05                                                                             | WEA_ZB                                                      | 36,2                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 987,0                                           | 0                                         | 0,0                                     | 70,9                                       | 2,7                                     | -3,0                             | -                                   | 106,8                                                               |
|                                                        |                                                                                    | Sum                                                         | 43,3                                                                      | -,-                                               | 0,0                                                | -                            | -                          | -                                       | 307,0                                           | <u> </u>                                  | 0,0                                     | 70,5                                       | 2,1                                     | -5,0                             |                                     | 100,0                                                               |
|                                                        |                                                                                    |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|                                                        |                                                                                    |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
|                                                        | 10-05                                                                              |                                                             |                                                                           |                                                   |                                                    |                              |                            |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
| lr                                                     | Kommentar                                                                          | Gruppe                                                      | LAT                                                                       | DC                                                | DT                                                 | MM                           | KT/KI                      | Cmet                                    | d(p)                                            | DI                                        | Abar                                    | Adiv                                       | Aatm                                    | Agr                              | Refl                                | Lw/Lm                                                               |
|                                                        | ŀ                                                                                  |                                                             | N                                                                         |                                                   | _                                                  |                              |                            | N                                       |                                                 |                                           | 5375 332                                |                                            | 000000000000000000000000000000000000000 |                                  | Ant                                 | N                                                                   |
|                                                        |                                                                                    |                                                             | dB(A)                                                                     | dB                                                | dB                                                 | dB                           | dB                         | dB                                      | m                                               | dB                                        | dB                                      | dB                                         | dB                                      | dB                               | dB                                  | dB(A                                                                |
| VEA 01                                                 | WEA 01                                                                             | WEA_ZB                                                      | 38,5                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 919,1                                           | 0                                         | 0,0                                     | 70,3                                       | 2,6                                     | -3,0                             | 33,2                                | 106,8                                                               |
| Vess V. V. S.                                          |                                                                                    |                                                             |                                                                           | 00                                                | 0,0                                                | 0                            | 0                          | 0                                       | 1281,7                                          | 0                                         | 0,0                                     | 73,1                                       | 3,3                                     | -3,0                             | 22,7                                | 106,8                                                               |
| 80 H I / 10 K / 10 K                                   | WEA 02                                                                             | WEA_ZB                                                      | 33,7                                                                      | 0,0                                               | 100.000                                            |                              | 500                        |                                         |                                                 |                                           |                                         | 73,2                                       | 3,3                                     | -3,0                             | -                                   | 106,8                                                               |
| VEA 02<br>VEA 05                                       | WEA 02<br>WEA 05                                                                   | WEA_ZB                                                      | 33,3                                                                      | 0,0                                               | 0,0                                                | 0                            | 0                          | 0                                       | 1291,6                                          | 0                                         | 0,0                                     |                                            |                                         |                                  |                                     |                                                                     |
| 30.0 H I / 10.00 S                                     |                                                                                    |                                                             |                                                                           |                                                   | 100.000                                            |                              | 500                        | 0                                       | 1291,6                                          | 0                                         | 0,0                                     |                                            |                                         |                                  |                                     |                                                                     |
| 30.0 H I / 10.00 S                                     |                                                                                    | WEA_ZB                                                      | 33,3                                                                      |                                                   | 100.000                                            |                              | 500                        | 0                                       | 1291,6                                          | 0                                         | 0,0                                     | ,                                          |                                         |                                  |                                     |                                                                     |
| 30.0 H I / 10.00 S                                     | WEA 05                                                                             | WEA_ZB                                                      | 33,3                                                                      |                                                   | 100.000                                            |                              | 500                        | 0                                       | 1291,6                                          | 0                                         | 0,0                                     | 1                                          |                                         |                                  |                                     |                                                                     |
| VEA 05                                                 | WEA 05                                                                             | WEA_ZB<br>Sum                                               | 33,3<br>40,6                                                              | 0,0                                               | 0,0                                                | 0                            | 0                          |                                         |                                                 |                                           |                                         |                                            |                                         |                                  |                                     |                                                                     |
| VEA 05                                                 | WEA 05                                                                             | WEA_ZB                                                      | 33,3<br>40,6                                                              |                                                   | 100.000                                            |                              | 500                        | Cmet                                    | 1291,6<br>d(p)                                  | DI                                        | 0,0                                     | Adiv                                       | Aatm                                    | Agr                              | Refl                                | Lw/Lm                                                               |
| /EA 05                                                 | WEA 05                                                                             | WEA_ZB<br>Sum                                               | 33,3<br>40,6                                                              | 0,0<br>DC                                         | 0,0<br>DT                                          | 0<br>MM                      | O<br>KT/KI                 | Cmet<br>N                               | d(p)                                            | DI                                        | Abar                                    | Adiv                                       | Aatm                                    |                                  | Ant                                 | N                                                                   |
| VEA 05                                                 | IO-08 Kommentar                                                                    | WEA_ZB<br>Sum                                               | 33,3<br>40,6<br>LAT<br>N<br>dB(A)                                         | DC dB                                             | DT dB                                              | 0<br>MM<br>dB                | KT/KI                      | Cmet<br>N<br>dB                         | d(p)                                            | DI<br>dB                                  | Abar<br>dB                              | Adiv<br>dB                                 | Aatm<br>dB                              | dB                               | Ant<br>dB                           | N<br>dB(A)                                                          |
| VEA 05                                                 | IO-08 Kommentar WEA 01                                                             | WEA_ZB Sum Gruppe WEA_ZB                                    | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2                                 | 0,0<br>DC<br>dB                                   | 0,0<br>DT<br>dB                                    | MM<br>dB                     | KT/KI<br>dB                | Cmet<br>N<br>dB                         | d(p)<br>m<br>1303,3                             | DI<br>dB                                  | Abar<br>dB                              | Adiv<br>dB<br>73,3                         | Aatm<br>dB<br>3,3                       | dB<br>-3,0                       | Ant<br>dB                           | N<br>dB(A)                                                          |
| /EA 05<br>/EA 01<br>/EA 02                             | IO-08 Kommentar WEA 01 WEA 02                                                      | WEA_ZB Sum Gruppe WEA_ZB WEA_ZB                             | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8                         | 0,0<br>DC<br>dB<br>0,0                            | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0           | KT/KI dB 0                 | Cmet<br>N<br>dB                         | d(p)<br>m<br>1303,3<br>1608,3                   | DI<br>dB<br>0                             | Abar dB 0,0 0,0                         | Adiv<br>dB<br>73,3<br>75,1                 | Aatm dB 3,3 3,9                         | dB<br>-3,0<br>-3,0               | Ant<br>dB<br>-<br>28,6              | N<br>dB(A)<br>106,8                                                 |
| r /EA 01 /EA 02 ew_Lieg_N                              | IO-08 Kommentar WEA 01 WEA 02 Gew_Lieg_N                                           | WEA_ZB Sum Gruppe WEA_ZB WEA_ZB VB_Gew                      | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6                 | 0,0<br>DC<br>dB<br>0,0<br>0,0                     | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0<br>0      | 0<br>KT/KI<br>dB<br>0<br>0 | Cmet<br>N<br>dB<br>0<br>0               | d(p)<br>m<br>1303,3<br>1608,3<br>109,7          | DI dB 0 0 0                               | Abar<br>dB<br>0,0<br>0,0                | Adiv<br>dB<br>73,3<br>75,1<br>51,8         | Aatm dB 3,3 3,9 0,2                     | dB<br>-3,0<br>-3,0<br>2,7        | Ant<br>dB<br>-<br>28,6<br>12,4      | N<br>dB(A)<br>106,8<br>106,8<br>99,4                                |
| r /EA 01 /EA 02 ew_Lieg_N                              | IO-08 Kommentar WEA 01 WEA 02                                                      | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB VB_Gew VB_Gew      | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5         | 0,0<br>DC<br>dB<br>0,0                            | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0           | KT/KI dB 0                 | Cmet<br>N<br>dB                         | d(p)<br>m<br>1303,3<br>1608,3                   | DI<br>dB<br>0                             | Abar dB 0,0 0,0                         | Adiv<br>dB<br>73,3<br>75,1                 | Aatm dB 3,3 3,9                         | dB<br>-3,0<br>-3,0               | Ant<br>dB<br>-<br>28,6              | N<br>dB(A)<br>106,8                                                 |
| VEA 05  VEA 01 VEA 02  VEA 02                          | IO-08 Kommentar WEA 01 WEA 02 Gew_Lieg_N                                           | WEA_ZB Sum Gruppe WEA_ZB WEA_ZB VB_Gew                      | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6                 | 0,0<br>DC<br>dB<br>0,0<br>0,0                     | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0<br>0      | 0<br>KT/KI<br>dB<br>0<br>0 | Cmet<br>N<br>dB<br>0<br>0               | d(p)<br>m<br>1303,3<br>1608,3<br>109,7          | DI dB 0 0 0                               | Abar<br>dB<br>0,0<br>0,0                | Adiv<br>dB<br>73,3<br>75,1<br>51,8         | Aatm dB 3,3 3,9 0,2                     | dB<br>-3,0<br>-3,0<br>2,7        | Ant<br>dB<br>-<br>28,6<br>12,4      | N<br>dB(A)<br>106,8<br>106,8<br>99,4                                |
| VEA 05  VEA 01 VEA 02  VEA 02                          | IO-08 Kommentar WEA 01 WEA 02 Gew_Lieg_N                                           | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB VB_Gew VB_Gew      | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5         | 0,0<br>DC<br>dB<br>0,0<br>0,0                     | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0<br>0      | 0<br>KT/KI<br>dB<br>0<br>0 | Cmet<br>N<br>dB<br>0<br>0               | d(p)<br>m<br>1303,3<br>1608,3<br>109,7          | DI dB 0 0 0                               | Abar<br>dB<br>0,0<br>0,0                | Adiv<br>dB<br>73,3<br>75,1<br>51,8         | Aatm dB 3,3 3,9 0,2                     | dB<br>-3,0<br>-3,0<br>2,7        | Ant<br>dB<br>-<br>28,6<br>12,4      | N<br>dB(A)<br>106,8<br>106,8<br>99,4                                |
| VEA 05  VEA 01 VEA 02  VEA 02                          | WEA 05  IO-08  Kommentar  WEA 01  WEA 02  Gew_Lieg_N  Gew_Lieg_S                   | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB VB_Gew VB_Gew      | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5         | 0,0<br>DC<br>dB<br>0,0<br>0,0                     | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0<br>0      | 0<br>KT/KI<br>dB<br>0<br>0 | Cmet<br>N<br>dB<br>0<br>0               | d(p)<br>m<br>1303,3<br>1608,3<br>109,7          | DI dB 0 0 0                               | Abar<br>dB<br>0,0<br>0,0                | Adiv<br>dB<br>73,3<br>75,1<br>51,8         | Aatm dB 3,3 3,9 0,2                     | dB<br>-3,0<br>-3,0<br>2,7        | Ant<br>dB<br>-<br>28,6<br>12,4      | N<br>dB(A<br>106,8<br>106,8<br>99,4                                 |
| VEA 05  VEA 01  VEA 01  VEA 02  vew_Lieg_N  vew_Lieg_S | WEA 05  IO - 08  Kommentar  WEA 01  WEA 02  Gew_Lieg_N  Gew_Lieg_S                 | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB VB_Gew VB_Gew Sum         | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5<br>37,1 | 0,0<br>DC<br>dB<br>0,0<br>0,0<br>3,0<br>3,0       | 0,0<br>DT<br>dB<br>0,0<br>0,0<br>0,0               | MM dB 0 0 0 0 0              | 0 KT/KI dB 0 0 0 0         | Cmet<br>N<br>dB<br>0<br>0<br>0,4<br>1,7 | d(p)<br>m<br>1303,3<br>1608,3<br>109,7<br>601,6 | DI dB 0 0 0 0 0 0                         | Abar<br>dB<br>0,0<br>0,0<br>16,7<br>3,3 | Adiv<br>dB<br>73,3<br>75,1<br>51,8<br>66,6 | Aatm dB 3,3 3,9 0,2 1,1                 | dB<br>-3,0<br>-3,0<br>2,7<br>4,5 | Ant<br>dB<br>-<br>28,6<br>12,4<br>- | N<br>dB(A)<br>106,8<br>106,8<br>99,4<br>97,4                        |
| VEA 05  VEA 01  VEA 01  VEA 02  vew_Lieg_N  vew_Lieg_S | WEA 05  IO-08  Kommentar  WEA 01  WEA 02  Gew_Lieg_N  Gew_Lieg_S                   | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WEA_ZB VB_Gew VB_Gew      | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5<br>37,1 | 0,0<br>DC<br>dB<br>0,0<br>0,0                     | 0,0<br>DT<br>dB<br>0,0<br>0,0                      | 0<br>MM<br>dB<br>0<br>0      | 0<br>KT/KI<br>dB<br>0<br>0 | Cmet N dB 0 0 0,4 1,7 Cmet              | d(p)<br>m<br>1303,3<br>1608,3<br>109,7          | DI dB 0 0 0                               | Abar<br>dB<br>0,0<br>0,0                | Adiv<br>dB<br>73,3<br>75,1<br>51,8         | Aatm dB 3,3 3,9 0,2                     | dB<br>-3,0<br>-3,0<br>2,7        | Ant dB - 28,6 12,4 - Refl           | N<br>dB(A)<br>106,8<br>106,8<br>99,4<br>97,4                        |
| VEA 05  VEA 01  VEA 01  VEA 02  vew_Lieg_N  vew_Lieg_S | WEA 05  IO - 08  Kommentar  WEA 01  WEA 02  Gew_Lieg_N  Gew_Lieg_S                 | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB VB_Gew VB_Gew Sum         | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5<br>37,1 | 0,0<br>DC<br>dB<br>0,0<br>0,0<br>3,0<br>3,0       | 0,0<br>DT<br>dB<br>0,0<br>0,0<br>0,0               | MM dB 0 0 0 0 0              | 0 KT/KI dB 0 0 0 0 0       | Cmet<br>N<br>dB<br>0<br>0<br>0,4<br>1,7 | d(p)<br>m<br>1303,3<br>1608,3<br>109,7<br>601,6 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Abar<br>dB<br>0,0<br>0,0<br>16,7<br>3,3 | Adiv dB 73,3 75,1 51,8 66,6                | Aatm  dB  3,3  3,9  0,2  1,1            | dB -3,0 -3,0 2,7 4,5             | Ant dB - 28,6 12,4 - Refl Ant       | N<br>dB(A)<br>106,8<br>106,8<br>99,4<br>97,4                        |
| VEA 05  VEA 01  VEA 01  VEA 02  vew_Lieg_N  vew_Lieg_S | WEA 05  IO-08  Kommentar  WEA 01  WEA 02  Gew_Lieg_N  Gew_Lieg_S  IO-09  Kommentar | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB WB_Gew VB_Gew Sum  Gruppe | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>29,6<br>23,5<br>37,1         | 0,0<br>dB<br>0,0<br>0,0<br>3,0<br>3,0<br>DC<br>dB | 0,0<br>DT<br>dB<br>0,0<br>0,0<br>0,0<br>0,0<br>0,0 | 0<br>MM<br>dB<br>0<br>0<br>0 | 0                          | Cmet<br>N dB<br>0 0<br>0,4<br>1,7       | d(p)<br>m<br>1303,3<br>1606,3<br>109,7<br>601,6 | DI dB 0 0 0 0 0 0 0 DI dB                 | Abar dB 0,0 0,0 16,7 3,3 Abar dB        | Adiv dB 73,3 75,1 51,8 66,6 Adiv dB        | Aatm dB 3,3 3,9 0,2 1,1                 | dB -3,0 -3,0 -2,7 4,5 Agr dB     | Ant dB - 28,6 12,4 - Refl Ant dB    | N<br>dB(A)<br>106,8<br>106,8<br>99,4<br>97,4<br>Lw/Lm<br>N<br>dB(A) |
| VEA 05  VEA 01 VEA 02  VEA 02  VEW_Lieg_N  VEW_Lieg_S  | WEA 05  IO - 08  Kommentar  WEA 01  WEA 02  Gew_Lieg_N  Gew_Lieg_S                 | WEA_ZB Sum  Gruppe  WEA_ZB WEA_ZB VB_Gew VB_Gew Sum         | 33,3<br>40,6<br>LAT<br>N<br>dB(A)<br>33,2<br>32,8<br>29,6<br>23,5<br>37,1 | 0,0<br>DC<br>dB<br>0,0<br>0,0<br>3,0<br>3,0       | 0,0<br>DT<br>dB<br>0,0<br>0,0<br>0,0<br>0,0        | 0<br>MM<br>dB<br>0<br>0<br>0 | 0                          | Cmet<br>N dB<br>0 0<br>0,4<br>1,7       | d(p)<br>m<br>1303,3<br>1608,3<br>109,7<br>601,6 | DI dB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Abar<br>dB<br>0,0<br>0,0<br>16,7<br>3,3 | Adiv dB 73,3 75,1 51,8 66,6                | Aatm  dB  3,3  3,9  0,2  1,1            | dB -3,0 -3,0 2,7 4,5             | Ant dB - 28,6 12,4 - Refl Ant       | N<br>dB(A)<br>106,8<br>106,8<br>99,4<br>97,4                        |

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg



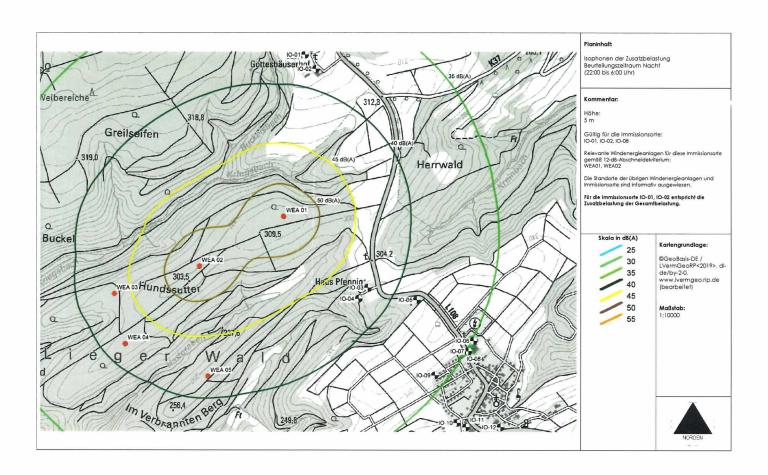
| Nr                                 | IO-11<br>Kommentar   | Gruppe                     | LAT<br>N<br>dB(A)                  | DC<br>dB                | DT<br>dB                | MM<br>dB     | KT/KI<br>dB  | Cmet<br>N<br>dB   | d(p)<br>m                       | DI<br>dB     | Abar<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adiv<br>dB                 | Aatm<br>dB                     | Agr<br>dB                         | Refl<br>Ant<br>dB   | Lw/LmE<br>N<br>dB(A)                          |
|------------------------------------|----------------------|----------------------------|------------------------------------|-------------------------|-------------------------|--------------|--------------|-------------------|---------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------------------|---------------------|-----------------------------------------------|
| WEA 05                             | WEA 05               | WEA_ZB                     | 32,6                               | 0,0                     | 0,0                     | 0            | 0            | 0                 | 1528,9                          | 0            | 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 74,7                       | 3,8                            | -3,0                              | 26,7                | 106,8                                         |
| Gew_Lieg_N                         | Gew_Lieg_N           | VB_Gew                     | 8,9                                | 3,0                     | 0,0                     | 0            | 0            | 1,8               | 584,8                           | 0            | 19,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66,3                       | 1,1                            | 4,6                               | -6,8                | 99,4                                          |
| Gew_Lieg_S                         | Gew_Lieg_S           | VB_Gew                     | 42,6                               | 3,0                     | 0,0                     | 0            | 0            | 0,6               | 111,8                           | 0            | 0,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52,0                       | 0,2                            | 3,7                               | 10,2                | 97,4                                          |
|                                    |                      | Sum                        | 43,0                               |                         |                         |              |              |                   |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                |                                   |                     |                                               |
|                                    | January Consus       |                            | 14,42                              |                         |                         |              |              |                   | 1.                              |              | ¥ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | . 6                            |                                   |                     | - 57                                          |
|                                    | 10-12                |                            |                                    |                         |                         |              | Letie        | 0                 | 4/=\                            | I DI         | Abor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Adiv                       | A stm                          | Agr                               | Refl                | I I w/I mF                                    |
| Nr                                 | IO-12<br>Kommentar   | Gruppe                     | LAT<br>N<br>dB(A)                  | DC dB                   | DT<br>dB                | MM<br>dB     | KT/KI        | Cmet<br>N<br>dB   | d(p)                            | DI<br>dB     | Abar<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adiv<br>dB                 | Aatm<br>dB                     | Agr<br>dB                         | Refl<br>Ant<br>dB   | Lw/LmE<br>N<br>dB(A)                          |
|                                    | Kommentar            | Gruppe<br>WEA ZB           | N                                  |                         |                         |              |              | N                 |                                 |              | Name of the last o |                            |                                |                                   | Ant                 | N                                             |
| WEA 01                             |                      |                            | N<br>dB(A)                         | dB                      | dB                      | dB           | dB           | N<br>dB           | m                               | dB           | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | dB                         | dB                             | dB<br>-3,0<br>-3,0                | Ant<br>dB           | N<br>dB(A)<br>106,8<br>106,8                  |
| WEA 01<br>WEA 02                   | Kommentar<br>WEA 01  | WEA_ZB                     | N<br>dB(A)<br>29,7                 | <b>dB</b> 0,0           | dB<br>0,0               | dB<br>0      | dB<br>0      | N<br>dB           | m<br>1758,5                     | dB<br>0      | dB<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dB<br>75,9                 | dB<br>4,2                      | dB<br>-3,0<br>-3,0<br>-3,0        | Ant<br>dB<br>-<br>- | N<br>dB(A)<br>106,8<br>106,8                  |
| Nr WEA 01 WEA 02 WEA 05 Gew_Lieg_N | WEA 01 WEA 02        | WEA_ZB<br>WEA_ZB           | N<br>dB(A)<br>29,7<br>28,3         | dB<br>0,0<br>0,0        | dB<br>0,0<br>0,0        | dB<br>0      | dB<br>0<br>0 | N<br>dB<br>0      | m<br>1758,5<br>1986,0           | dB<br>0<br>0 | dB<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dB<br>75,9<br>77,0         | dB<br>4,2<br>4,6<br>4,1<br>1,2 | dB<br>-3,0<br>-3,0<br>-3,0<br>4,3 | Ant dB              | N<br>dB(A)<br>106,8<br>106,8<br>106,8<br>99,4 |
| WEA 01<br>WEA 02<br>WEA 05         | WEA 01 WEA 02 WEA 05 | WEA_ZB<br>WEA_ZB<br>WEA_ZB | N<br>dB(A)<br>29,7<br>28,3<br>29,9 | dB<br>0,0<br>0,0<br>0,0 | dB<br>0,0<br>0,0<br>0,0 | dB<br>0<br>0 | dB 0 0 0     | N<br>dB<br>0<br>0 | m<br>1758,5<br>1986,0<br>1725,4 | dB 0 0 0     | dB<br>0,0<br>0,0<br>0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dB<br>75,9<br>77,0<br>75,7 | dB<br>4,2<br>4,6<br>4,1        | dB<br>-3,0<br>-3,0<br>-3,0        | Ant<br>dB<br>-<br>- | N<br>dB(A)<br>106,8<br>106,8                  |

Anhang Seite 85 von 107

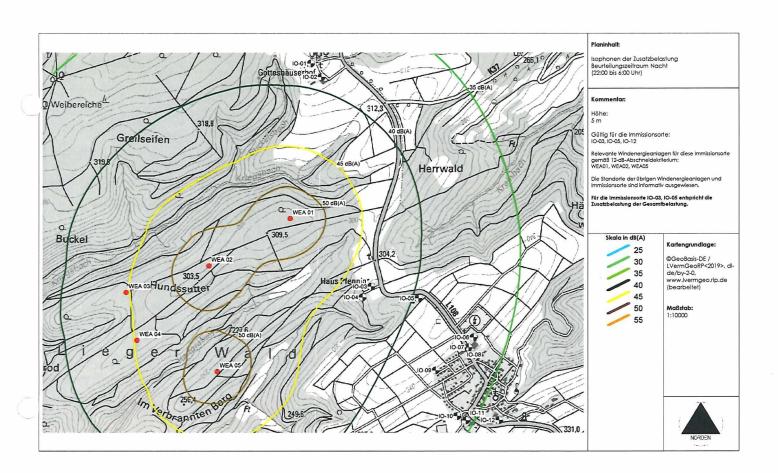


# **Immissionspläne**

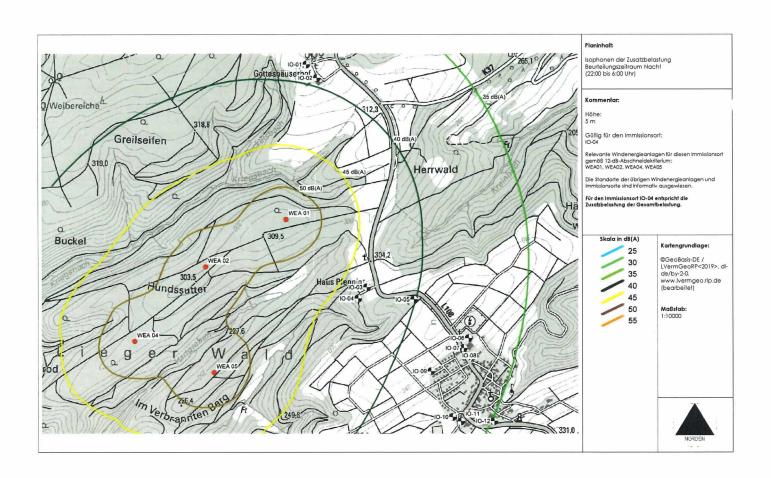
Beim Vergleich von Schallimmissionsplänen mit den Immissionsorten ermittelten an Beurteilungspegeln ist Folgendes zu beachten:


Die Immissionspläne liefern im vorliegenden Fall nur einen groben Überblick über die Immissionssituation, da die Berechnungen nach dem Interimsverfahren noch nicht flächenhaft abgebildet werden können. Sie dienen lediglich der groben Orientierung. Abweichend von den punktuellen Berechnungen sind sowohl die Abschirmung durch topografische Strukturen als auch die Dämpfung aufgrund des Bodeneffektes berücksichtigt.

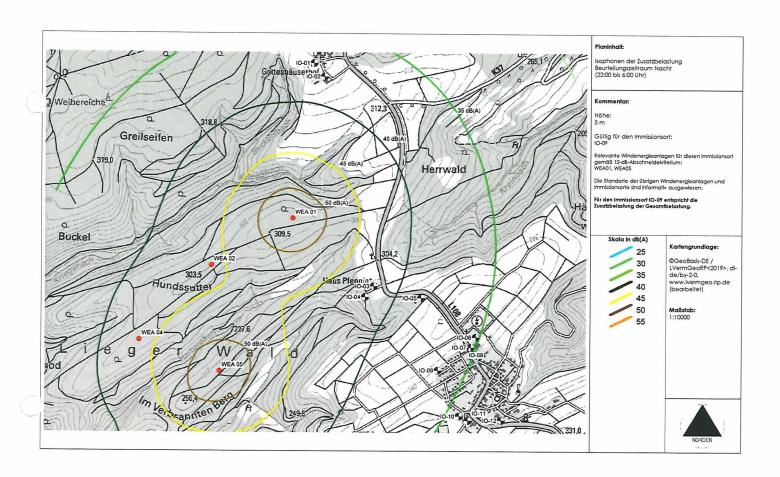
Maßgeblich sind ausschließlich die punktuell ermittelten Ergebnisse im Kapitel 6.


Gutachten-Nr.: 114 0614 18R-1

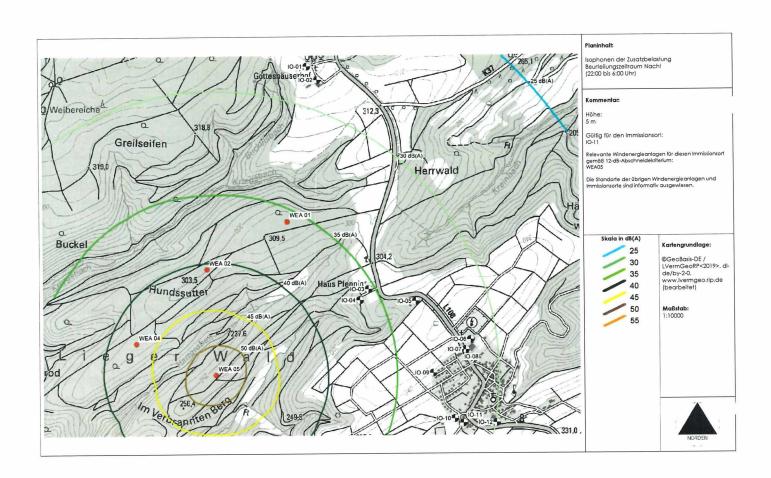
Projekt:


Schallimmissionsprognose WEA Lieg

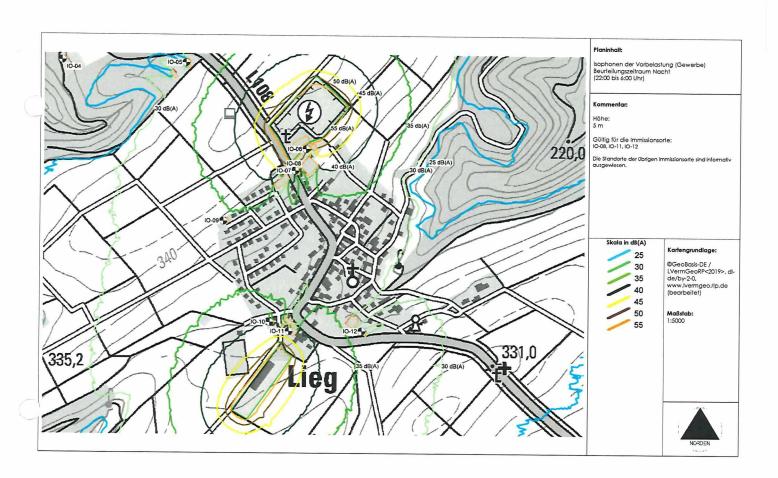



Anhang Seite 87 von 107




Anhang Seite 88 von 107




Anhang Seite 89 von 107



Anhang Seite 90 von 107



Anhang Seite 91 von 107



Anhang Seite 92 von 107



Anhang Seite 93 von 107



Anhang Seite 94 von 107



Anhang Seite 95 von 107



# Angaben zur VB (IO-01 bis IO-05)

Gutachten-Nr.: 114 0614 18R-1 Projekt:

Schallimmissionsprognose WEA Lieg



#### Justus Engelen

Von: Ortsgemeinde Lieg <Lieg@vgcochem.de>

Gesendet: Freitag, 1. Februar 2019 19:46
An: Elke Knopf-Wellstein
Cc: a.ehringhausen@t-online.de

Betreff: AW: Stellungnahme der SGD Nord zum Änderungsantrag gem. § 16

BImSchG zu BIM-CL 0199/2016 zus. Nachtbetrieb von 5 WKA in der

Gemarkung Lieg

Sehr geehrte Frau Knopf-Wellstein,

Bezug nehmend auf u. a. Email teile ich Ihnen mit, wie viele Personen zurzeit an den jeweiligen Adressen gemeldet sind:

- Auf dem Stich 1: 2 Personen:
- Auf dem Stich 2: 1 Person;
- Auf dem Stich 4: 4 Personen.

Es handelt sich dabei um reine Wohnstätten, ohne Betriebsstätte.

#### Auf dem Stich 4

hier war vor Jahrzehnten mal ein kleiner Schrotthandel, der nach dem Tod des Inhabers damals komplett aufgelöst und veräußert wurde. Seit dieser Zeit ist es eine rein private Wohnbehausung mit neuen Eigentümern.

Der Gotteshäuserhof liegt in der Gemarkung Treis. Hier gibt es insgesamt nur 2 Wohngebäude. Nach meiner Kenntnis wohnt in einem Haus eine Familie mit 3 Personen (Fam. Gilles). Im anderen Gehöft wohnt 1 Person (Herr Nick).

Frau Gilles hat vor ein paar Jahren eine kleine Bio-Landwirtschaft ohne Tierhaltung mit reinem Ackerbau aktiviert. Die ehemalige Scheune diente und dient wohl heute noch als Unterstellplatz für Wohnwagen usw..

Gerne stehe ich für weitere Fragen und Informationen zur Verfügung.

Mit freundlichen Grüßen

Heinz Zilles Ortsbürgermeister

Ortsgemeinde Lieg Birkenweg 16 56290 Lieg Tel. 0 2672/8718 Mobil 0 160/93002231 eMail Lieg@vgcochem.de www.Lieg.de

[Seite]

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 97 von 107



Von: Elke Knopf-Wellstein <ekn@windworkspower.com>

Gesendet: Freitag, 1. Februar 2019 12:04

An: Ortsgemeinde Lieg Cc: 'Arndt Ehringhausen'

Betreff: WG: Stellungnahme der SGD Nord zum Änderungsantrag gem. § 16 BlmSchG zu BIM-CL 0199/2016 zus.

Nachtbetrieb von 5 WKA in der Gemarkung Lieg

Hallo Herr Zilles.

unten anhängend sende ich Ihnen eine Mail des den Antrag auf Nachtbetrieb bearbeitenden Schallgutachters, Herrn Engelen, weiter. Im Anhang finden Sie die besagten Anhänge, wenn auch mit anderer Nummerierung. Könnten Sie kurzfristig Ihre damaligen Aussagen noch einmal bestätigen (gerne per Mail, die wir dann zusammen mit der Nachricht von Herrn Engelen - wie damals - an das Schallgutachten anhängen würden) oder hat sich an der Situation evtl. etwas geändert?

"Es wäre also zu klären, ob an den Immissionsorten

IO-01/ Gotteshäuserhof 2 (Treis-Karden) IO-02/ Gotteshäuserhof 1 (Treis-Karden) IO-03/ Auf dem Stich 2 (Lieg) 10-04/ Auf dem Stich 1 (Lieg) 10-05/ Auf dem Stich 4 (Lieg)

schutzbedürftige Räume durch Dritte genutzt werden, die durch betriebliche Lärmemissionen (vor-)belastet werden.

Weiterhin wäre zu klären, ob von den genannten Standorten betriebliche Lärmemissionen ausgehen, die ggf. eine wechselseitige Belastung hervorrufen (IO-01 führt zu Lärmbelastungen an IO-02)."

Für Rückfragen stehe ich gern zur Verfügung. Mit freundlichen Grüßen,

# WINDWORKS POWER

Elke Knopf-Wellstein Wind Works Development GmbH

Büro Uplengen/Wacholderstr. 6/26670 Uplengen

Tel: +49 (4956) 912003 Mobil: +49 173 / 90 58 113 Mail: ekn@windworkspower.com Web: www.windworkspower.com Amtsgericht Duisburg HRB 22704 Geschäftsführer: Dr. Ingo Stuckmann



Die Wind Works Development GmbH ist klimaneutral. Wir haben vom Zero Emission Product e. V. die Zertifizierung als CO<sub>2</sub>-freies Unternehmen erhalten. Weitere Informationen unter: www.ZeroEmissionProduct.de

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 98 von 107



Diese E-Mail und mögliche Anhänge enthalten vertrauliche Informationen, die rechtlich besonders geschützt sein können. Wenn Sie nicht der beabsichtigte Empfanger bzw. Adressat dieser E-Mail sind und diese E-Mail etwa aufgrund eines technischen Fehlers oder eines Versehens erhalten haben, informieren Sie uns bitte sofort und löschen Sie anschließend die E-Mail. Das unbefugte Kopieren dieser E-Mail, etwaiger Anhänge sowie die unbefugte Weitergabe der enthalteren Informationen an Dritte ist nicht gestattet.

This e-mail message is confidential and is intended solely for the recipient(s) listed in the header. If you are not the intended recipient and have received this e mail in error please notify the sender immediately and destroy this e mail.

Von: Justus Engelen [mailto:JEngelen@uppenkamp-partner.de]

Gesendet: Freitag, 1. Februar 2019 10:54

An: Elke Knopf-Wellstein <ekn@windworkspower.com> Cc: Matthias Brun < mbrun@uppenkamp-partner.de>

Betreff: AW: Stellungnahme der SGD Nord zum Änderungsantrag gem. § 16 BImSchG zu BIM-CL 0199/2016 zus.

Nachtbetrieb von 5 WKA in der Gemarkung Lieg

Sehr geehrte Frau Knopf-Wellstein,

wie zuvor telefonisch besprochen, könnte für den ersten Pkt. der Stn. der SGD Nord eine Bestätigung seitens der Gemeinde (Hr. Zilles ist im ehem. Gutachten genannt) nützlich sein, die – ähnlich wie im damaligen Gutachten (s. Anhang 13 und 14) – eine ggf. zu berücksichtigende betriebliche Vorbelastungssituation schildert.

Es wäre also zu klären, ob an den Immissionsorten

IO-01/ Gotteshäuserhof 2 (Treis-Karden) 10-02/ Gotteshäuserhof 1 (Treis-Karden) IO-03/ Auf dem Stich 2 (Lieg) IO-04/ Auf dem Stich 1 (Lieg) 10-05/ Auf dem Stich 4 (Lieg)

schutzbedürftige Räume durch Dritte genutzt werden, die durch betriebliche Lärmemissionen (vor-)belastet werden.

Weiterhin wäre zu klären, ob von den genannten Standorten betriebliche Lärmemissionen ausgehen, die ggf. eine wechselseitige Belastung hervorrufen (IO-01 führt zu Lärmbelastungen an IO-02).

#### Bei Rückfragen stehe ich Ihnen gerne zur Verfügung.

Mit freundlichen Grüßen

i. A. M.Eng. Justus Engelen Qualitätsmanagementbeauftragter

Hauptsitz Ahaus

Fon +49 2561 44915-32 Mobil +49 170 9298274 Fax +49 2561 44915-50

info@uppenkamp-partner.de Dipling Peter Wenzel Ust-ID-Nr.: DI 39 26 53 648

Handlessegister:
HRP 14729 Antropolicht Coesteid
Meise elle nach 529 i BlimSinC
für Gerausche und Gereiche

 
 uppenkamp und partner
 Hauphink

 Sachverständige für Immissionsschutz GmbH
 Kabe kanweg 8

 48833 Anauk
 48833 Anauk

 www.uppenkamp-partner de
 Fon 448 256 14915-0

 156 Ruppenkamp-partner, de
 Fox 43 256 14915-0
 Hauptsitz Ahaus Niederlassung Berlin Kodemicker Streffe 14° 10997 Berlin Fon +49 St 6958699-60 Niederlassung Hamburg

#### Fehler! Es wurde kein Dateiname angegeben.

Nachhald acd underligte. We toricining oder Ferngung diner Koole at threalassig. Da will nicht die Echthart oder Vollstandigkeit der ni dieser Nachricht enhaltenen informationen garanteren Konec schreiße auf die reter iche Verbindlichkeit der vorstallenden filde ing und Außerlagen aus.

[Seite]

Gutachten-Nr.: 114 0614 18R-1

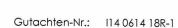
Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 99 von 107

Akkreditiert nach

DIN EN ISO/IEC 17025


für die Ermittlung von Erussionen/Immissionen Niederlassung Rheinland von Geräuschen
und Gerühen zowie Immissionsprognasen
nach TA Luft und GIRL

Fon 449 40 43910762-10

für die Ermittlung von Erussionsprognasen
nach TA Luft und GIRL

Fon 449 2175 89576-0
Fax 449 2175 89576-10

[Seite]





#### **Justus Engelen**

Von:

Ortsgemeinde Lieg < Lieg@vgcochem.de>

Gesendet:

Freitag, 8. Februar 2019 09:22 Elke Knopf-Wellstein

An: Betreff:

AW: Statistische Informationen zu Immissionspunkten in Lieg und Treis-

Karden

Sehr geehrte Frau Knopf-Wellstein,

nach heutiger Rücksprache mit dem Einwohnermeldeamt bei der Verbandsgemeindeverwaltung Cochem (Frau Süß) teile ich folgendes mit:

die u. a. übersandte Auflistung von Frau Süß ist etwas irreführend gestaltet, da die an den jeweiligen Adressen gemeldeten, aber nicht als Grundeigentümer geführten Personen (= mit abweichendem Namen) als Mieter "vermutet" wurden. Das ist jedoch nicht korrekt.

Definitiv wohnen aktuell folgende Personen an den jeweiligen Adressen:

Gotteshäuserhof 1. Treis-Karden; Gilles/ Ries: 3 Personen;

Gotteshäuserhof 2, Treis-Karden; Nick: 1 Person;

Auf dem Stich 1, Lieg: keine Personen; abgemeldet seit August '18;

Auf dem Stich 2, Lieg; Ehringhausen; 1 Person; Auf dem Stich 4, Lieg; Katzenbach/ Zehr: 4 Personen.

Es gibt an vorgenannten Adressen keine Mieter.

Mit freundlichen Grüßen

Heinz Zilles Ortsbürgermeister

Ortsgemeinde Lieg Birkenweg 16 56290 Lieg Tel. 0 2672/8718 Mobil 0 160/93002231 eMail Lieg@vgcochem.de www.Lieg.de

Von: Elke Knopf-Wellstein <ekn@windworkspower.com>

Gesendet: Donnerstag, 7. Februar 2019 18:16

An: Ortsgemeinde Lieg

Betreff: WG: Statistische Informationen zu Immissionspunkten in Lieg und Treis-Karden

[Seite]

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 101 von 107



Von: Michele Süß [mailto:Michele.Suess@vgcochem.de]

Gesendet: Donnerstag, 7. Februar 2019 16:09

An: 'Elke Knopf-Wellstein' <ekn@windworkspower.com>

Betreff: AW: Statistische Informationen zu Immissionspunkten in Lieg und Treis-Karden

Sehr geehrte Frau Knopf-Wellstein,

nachstehend die Einwohnerzahlen der jeweiligen Adressen:

Gotteshäuserhof 1, Treis-Karden:

Eigentümer 3 Personen

1 Person

Mieter

Gotteshäuserhof 2, Treis-Karden:

1 Person

Eigentümer 0 Personen

Mieter

Auf dem Stich 1, Lieg: Auf dem Stich 2, Lieg: Auf dem Stich 4, Lieg:

1 Person 3 Personen

Eigentümer

1 Person Mieter

Ich hoffe, dass ich Ihnen mit diesen Angaben weiterhelfen kann.

Mit freundlichen Grüßen

Michele Suß Einwohnermeldeamt Verbandsgemeindeverwaltung Cochem

> Telefon: 02671/608-172 Telefax: 02671/608-88172

Von: Elke Knopf-Wellstein [mailto:ekn@windworkspower.com]

Gesendet: Montag, 4. Februar 2019 15:38 An: Michele Süß < Michele.Suess@vgcochem.de>

Betreff: Statistische Informationen zu Immissionspunkten in Lieg und Treis-Karden

Sehr geehrte Frau Süß,

wie gerade telefonisch berichtet, benötigen wir im Rahmen der Überarbeitung des Schallgutachtens für den in der Umsetzung befindlichen Windpark in der OG Lieg statistische Angaben zu folgenden Adressen:

IO-01/ Gotteshäuserhof 2 (Treis-Karden)

IO-02/ Gotteshäuserhof 1 (Treis-Karden)

10-03/ Auf dem Stich 2 (Lieg)

IO-04/ Auf dem Stich 1 (Lieg)

IO-05/ Auf dem Stich 4 (Lieg)

Können Sie mir bitte mitteilen, wie viele Menschen unter der jeweiligen Adresse leben und ob es sich um die Eigentümer oder um Dritte (z.B. Mieter) handelt?

Für Rückfragen stehe ich gern zur Verfügung. Mit freundlichen Grüßen,

[Seite]

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 102 von 107



### WINDWORKS POWER

Elke Knopf-Wellstein Wind Works Development GmbH Büro Uplengen/Wacholderstr. 6/26670 Uplengen

Tel: +49 (4956) 912003

Mobil: +49 173 / 90 58 113

Mail: ekn@windworkspower.com

Web: www.windworkspower.com

Amtsgericht Duisburg HRB 22704

Geschäftsführer: Dr. Ingo Stuckmann



Zero Emission Product e. V.

Die Wind Works Development GmbH ist klimaneutral Wir haben vom **Zero Emission Product e. V.** die Zertifizierung als CO<sub>2</sub> freies Unternehmen erhalten. Weitere Informationen unter <a href="https://www.zeroEmissionProduct.de">www.zeroEmissionProduct.de</a>

Diese E-Mail und mögliche Anhänge enthalten vertrauliche Informationen, die rechtlich besonders geschützt sein können. Wenn Sie nicht der beabsichtigte Empfänger bzw. Adressat dieser E-Mail sind und diese E-Mail etwa aufgrund eines technischen Fehlers oder eines Versehens erhalten haben, informieren Sie uns bitte Sofort und löschen Sie anschließend die E-Mail. Das unbefügte Kopieren dieser E-Mail, etwaiger Anhänge sowie die unbefügte Weitergabe der enthaltenen Informationen an Dritte ist richt gestattet.

This e-mail message is confidential and is intended solely for the recipient(s) listed in the header. If you are not the intended recipient and have received this e-mail in error please notify the sender immediately and destroy this e-mail.

[Seite]

Gutachten-Nr.: 114 0614 18R-1
Projekt: Schallimmissionsprognose WEA Lieg





#### Justus Engelen

Von:

Elke Knopf-Wellstein <ekn@windworkspower.com>

Gesendet:

Donnerstag, 21. Februar 2019 15:29

An:

Justus Engelen

Betreff:

WG: Nutzung am Gotteshäuserhof

Von: Thönnes Philipp [mailto:Philipp.Thoennes@cochem-zell.de]

Gesendet: Donnerstag, 21. Februar 2019 12:43

An: 'Elke Knopf-Wellstein' <ekn@windworkspower.com>

Betreff: AW: Nutzung am Gotteshäuserhof

Sehr geehrte Frau Knopf-Wellstein,

die Angaben meines Kollegen Zilles kann ich den Gotteshäuserhof betreffend soweit bestätigen. Es handelt sich um zwei Höfe die jeweils vom Eigentümer (Nick und Gilles) und der jeweiligen Familie bewohnt werden. Landwirtschaft findet dort allenfalls noch im Nebenerwerb statt. Eine Betriebsstätte, von der Lärmemissionen ausgehen, ist nicht vorhanden.

Mit freundlichen Grüßen

Philipp Thönnes Ortsbürgermeister 56253 Treis-Karden

Von: Elke Knopf-Wellstein [mailto:ekn@windworkspower.com]

Gesendet: Donnerstag, 21. Februar 2019 12:16

An: Thönnes Philipp

Betreff: Nutzung am Gotteshäuserhof

Sehr geehrter Herr Thönnes,

wie soeben telefonisch vereinbart, finden Sie im Anhang die Nachricht, die ich von Herrn Zilles erhalten habe, mit der Bitte mir die Angaben zum Gotteshäuserhof 1 und 2 noch einmal von Ihrer Seite zu bestätigen, da diese Adresse in Ihrer Gemeinde liegt.

Ich bedanke mich im Voraus und wünsche Ihnen einen schönen Skiurlaub!

Für Rückfragen stehe ich gern zur Verfügung. Mit freundlichen Grüßen,

#### WINDWORKS POWER

Elke Knopf-Wellstein Wind Works Development GmbH

Büro Uplengen/Wacholderstr. 6/26670 Uplengen

Tel: <u>+49 (4956) 912003</u> Mobil: <u>+49 173 / 90 58 113</u>

[Seite]

Gutachten-Nr.: 114 0614 18R-1

Projekt: Schallimmissionsprognose WEA Lieg

Anhang Seite 104 von 107



Mail: ekn@windworkspower.com Web: www.windworkspower.com Amtsgericht Duisburg HRB 22704 Geschäftsführer: Dr. Ingo Stuckmann



Zero Emission Product e V

Die Wind Works Development GmbH ist klimaneutral. Wir haben vom Zero Emission Product e. V. die Zertifizierung als CO2 freies Unternehmen erhalten. Weitere Informationen unter: www.ZeroEmissionProduct.de

Diese E-Mail und mögliche Anhänge enthalten vertrauliche Informationen, die rechtlich besonders geschützt sein können. Wenn Sie nicht der beabsichtigte Empfänger bzw. Adressat dieser E-Mail sind und diese E-Mail etwa aufgrund eines technischen Fehlers oder eines Versehens erhalten haben, informieren Sie uns bitte sofort und löschen Sie anschließend die E-Mail. Das unbefugte Kopieren dieser E-Mail, etwaiger Anhänge sowie die unbefugte Weitergabe der enthaltenen Informationen an Dritte ist nicht gestattet.

This e-mail message is confidential and is intended solely for the recipient(s) listed in the header. If you are not the intended recipient and have received this e-mail in error please notify the sender immediately and destroy this e-mail.

[Seite]

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 105 von 107



# M Konformitätserklärung MAPANDGIS

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 106 von 107



# 7 Declaration of conformity (DOC)

#### Producer's declaration

Kramer Schalltechnik GmbH

(producer's name)

Otto-von-Guericke-Str. 8, 53757 Sankt Augustin

(address)

declare under our sole responsibility that the product

#### MAPANDGIS 1.2.0.0

(company name, trade mark/software name, software or update package, version No File description: Major version . Minor version. Release. Build, release date)

to which this declaration relates is in conformity with the cal-culation method

ISO 9613-2:1996

following the provisions of ISO 17534-1:201X and ISO/TR 17534-3 :201X

The declared conformity applies to situations covered by the above calculation method except the situations specified in the enclosed Test Case Results Comparison Form (TRC-Form) and with limitations according to the enclosed "Grade of Implementation Form (GOI-Form).

St. Augustin, 02.11.2018

Table 69 is an example for a completed TRC-form based on test case 1.

52

© ISO 2015 - All rights reserved

Gutachten-Nr.: 114 0614 18R-1

Projekt:

Schallimmissionsprognose WEA Lieg

Anhang Seite 107 von 107