Schalltechnische Immissionsprognose zur geplanten Errichtung von 5 Windenergieanlagen südlich von Sien

AUFTRAGGEBER:

juwi Energieprojekte GmbH Energie-Allee 1 55286 Wörrstadt

AUFTRAG VOM:

29.07.2013

AUFTRAG – NR.:

15882 / 0813 / 1

FERTIGSTELLUNG:

07.08.2013

BEARBEITER:

A. Stumpf

SEITENZAHL:

19

ANHÄNGE:

INHALTSVERZEICHNIS

	·	Seite
1.	Aufgabenstellung	3
2.	Grundlagen	3
2.1	Beschreibung der örtlichen Verhältnisse	3
2.2	Anlagenbeschreibung	4
2.3	Nutzungszeiten	4
2.4	Verwendete Unterlagen	5
2.4.1	Vom Auftraggeber zur Verfügung gestellte Unterlagen	5
2.4.2	Richtlinien, Normen und Erlasse	5
2.4.3	Eigene Unterlagen	5
2.5	Anforderungen	6
2.6	Berechnungsgrundlagen	7
2.6.1	Berechnung der Geräuschimmissionen	7
2.6.2	Qualität der Prognose	8
2.7	Beurteilungsgrundlagen	11
2.8	Ausgangsdaten	12
2.8.1	Emissionsdaten der Windenergieanlagen	12
2.8.2	Standardabweichungen	13
2.8.3	Ermittlung des Zuschlages	13
2.8.4	Tieffrequente Geräusche und Infraschall	14
2.8.5	Meteorologische Korrektur	14
3.	Immissionsberechnung und Beurteilung	14
3.1	Ermittlung und Beurteilung der Zusatzbelastung	16
3.2	Ermittlung und Beurteilung der Vorbelastung	17
4.	Qualität der Prognose	18
5.	Zusammenfassung	18

1. Aufgabenstellung

Die juwi Energieprojekte GmbH beabsichtigt, südöstlich der Ortsgemeinde Sien die Errichtung und Inbetriebnahme von 5 Windenergieanlagen. Im Rahmen des Genehmigungsverfahrens sind die zu erwartenden Geräuschimmissionen an den nächstgelegenen Wohnhäusern nach den Kriterien der TA-Lärm zu ermitteln und zu beurteilen. Sollte die Untersuchung zeigen, dass die zulässigen Richtwerte nicht eingehalten werden können, sind geeignete schallmindernde Maßnahmen auszuarbeiten.

2. Grundlagen

2.1 Beschreibung der örtlichen Verhältnisse

Die geplanten Windenergieanlagen sollen südöstlich der Ortschaft Sienhachenbach, Sien bzw. westlich von Hoppstädten und nördlich von Merzweiler, Langweiler und Unterjeckenbach in einer Ost-/West-Achse errichtet werden. In Richtung Osten und Westen der Anlagen sind keine weiteren Ortschaften im Einwirkungsbereich vorhanden. Von den Ortslagen sind die geplanten Anlagen teilweise einzusehen. Im zu untersuchenden Bereich sind derzeit noch keine Windenergieanlagen vorhanden.

Einen Überblick über die örtlichen Gegebenheiten vermittelt der Lageplan im Anhang 1 des Gutachtens.

2.2 Anlagenbeschreibung

Geplant sind, 5 Windenergieanlagen der Firma Vestas vom Typ V112. In der nachstehenden Tabelle sind die technischen Daten und Standortkoordinaten aufgeführt:

Tabelle 1 - geplante Windenergieanlagen Sien

Kennzeich- nung	Anlagentyp	Leis- tung in kW	Naben- höhe in m	Rotor- durch- messer in m	Standortkoordinaten UTM 32 Rechtswert Hochwert		Standortko Gauß/ Rechtswert	STATE OF THE PARTY
WEA 01	Vestas V112	3 000	140	112	391856	5504106	3391888	5505868
WEA 02a	Vestas V112	3 000	140	112	392536	5503955	3392568	5505717
WEA 03	Vestas V112	3 000	140	112	392540	5504403	3392572	5506165
WEA 04	Vestas V112	3 000	140	112	393320	5504813	3393353	5506575
WEA 05	Vestas V112	3 000	140	112	393182	5504462	3393214	5506224

Die Standorte der Anlagen können dem Lageplan im Anhang 1 des Gutachtens entnommen werden.

2.3 Nutzungszeiten

Da die geplanten Windenergieanlagen über die gesamte Tages- und Nachtzeit betrieben werden sollen, erfolgte die nachstehende Bewertung des Planvorhabens im Wesentlichen für die aus schalltech-nischer Sicht ungünstigste "lauteste" Nachtstunde.

2.4 Verwendete Unterlagen

2.4.1 Vom Auftraggeber zur Verfügung gestellte Unterlagen

- Topografische Standortkarte, Maßstab 1:15 000
- Standortkoordinaten der geplanten Windenergieanlagen
- Auszüge aus der deutschen Grundkarte, Maßstab 1:5 000

2.4.2 Richtlinien, Normen und Erlasse

- Technische Richtlinie für Windenergieanlagen, Revision 18
 Stand 10.02.2008 Teil 1
 "Bestimmung der Schallemissionskennwerte"
 Herausgeber: Fördergesellschaft für Windenergie e.V.
- DIN EN 61400-11 Windenergieanlagen, Teil 11 "Schallmessverfahren"
- DIN ISO 9613-2
 "Dämpfung des Schalls bei der Ausbreitung im Freien"
- TA-Lärm
 "Technische Anleitung zum Schutz gegen Lärm"

2.4.3 Eigene Unterlagen

- Tagungsunterlagen; Kötter Consulting Engineers.
- Messbericht der Anlagen
- LAI-Hinweise zum Schallimmissionsschutz bei Windenergieanlagen; 2005

2.5 Anforderungen

Auf Grundlage einer Ortsbegehung und Rücksprache mit den Verbandsgemeindeverwaltungen Herrstein und Lauterecken wurden folgende Immissionsorte und auch die zugehörigen Gebietseinstufungen zugrunde gelegt:

Tabelle 2 - Immissionsorte

10	Ortslage	Straße/Haus-Nr.	Nutzungsein- stufung	Quelle
1	Sienhachenbach	Baugebiet "Maiwiese"	WA	B-Plan
2	Sien	Baugebiet "Am Rimmelbach"	WA	B-Plan
3	Hoppstädten	"Am Mannenberg" 17	WA	FN-Plan (W)
4	Hoppstädten	"Im Krötenpfuhl" 3	WA	FN-Plan (W)
5	Merzweiler	Gartenweg 17	WA	B-Plan
6	Langweiler	Aussiedler "Auf der Hardt"	MI	FN-Plan (Außenbe- reich)
7	Langweiler	Hardter Weg 10	WA	B-Plan
8	Langweiler	Zeinerhof	MI	FN-Plan (M)
9	Unterjeckenbach	Baugebiet "Auf`m Berg"	MI	FN-Plan (M)

Liegt für einen Bereich mit einer Wohnbebauung nur ein Flächennutzungsplan vor, so wurde die o. a. Nutzungseinstufung entsprechend den Angaben der Verwaltung herangezogen. Nach der TA-Lärm gelten für die o. g. Nutzungseinstufungen folgende Immissionsrichtwerte:

Mischgebiet (MI)/Dorfgebiet (MD):

tags

60 dB(A)

nachts

45 dB(A)

Allgemeines Wohngebiet (WA:

tags

55 dB(A)

nachts

40 dB(A)

Diese sollen 0,5 m vor dem vom Lärm am stärksten betroffenen Fenster eines schutzbedürftigen Raumes eingehalten werden. Ferner soll vermieden werden, dass einzelne Pegelspitzen den Tagesimmissionsrichtwert um mehr als 30 dB(A) und den Nachtimmissionsrichtwert um mehr als 20 dB(A) überschreiten.

2.6 Berechnungsgrundlagen

2.6.1 Berechnung der Geräuschimmissionen

Gemäß der DIN ISO 9613-2 berechnet sich der äquivalente A-bewertete Dauerschalldruckpegel bei Mitwind nach folgender Gleichung:

$$L_{AT} (DW) = L_W + D_c - A_{div} - A_{atm} - A_{gr} - A_{bar} - A_{misc}$$

Dabei ist:

L_W - Schallleistungspegel einer Punktschallquelle in Dezibel (A)

D_c - Richtwirkungskorrektur in Dezibel

A_{div} - die Dämpfung aufgrund geometrischer Ausbreitung (siehe 7.1 der DIN ISO 9613-2)

A_{atm} - die Dämpfung aufgrund von Luftabsorption (siehe 7.2 der DIN ISO 9613-2)

Agr - die Dämpfung aufgrund des Bodeneffekts (siehe 7.3 der DIN ISO 9613-2)

A_{bar} - die Dämpfung aufgrund von Abschirmung (siehe 7.4 der DIN ISO 9613-2)

A_{misc} - die Dämpfung aufgrund verschiedener anderer Effekte (siehe Anhang A der DIN ISO 9613-2)

Die Berechnungen nach obiger Gleichung können zum einen in den 8 Oktavbändern mit Bandmittenfrequenzen von 63 Hz bis 8 kHz erfolgen. Zum anderen, insbesondere, wenn die Geräusche keine bestimmenden hoch- bzw. tieffrequenten Anteile aufweisen, kann die Berechnung auch für eine Mittenfrequenz von 500 Hz durchgeführt werden.

Sind mehrere Punktschallquellen vorhanden, so wird der jeweilige äquivalente A-bewertete Dauerschalldruckpegel nach obiger Gleichung oktavmäßig bzw. mit einer Mittenfrequenz berechnet und dann die einzelnen Werte energetisch addiert.

Aus dem äquivalenten A-bewerteten Dauerschalldruckpegel bei Mitwind L_{AT} (DW) errechnet sich unter Berücksichtigung der nachstehenden Beziehung der A-bewertete Langzeitmittelungspegel $L_{AT}(LT)$:

$$L_{AT}(LT) = L_{AT}(DW)-C_{met}$$

C_{met} entspricht dem meteorologischen Korrekturmaß gemäß dem Abschnitt 8 der DIN ISO 9613-2.

2.6.2 Qualität der Prognose

Die TA-Lärm sieht unter Punkt A. 2.6 vor, dass die Geräuschimmissionsprognose Aussagen über die Qualität der Prognose enthalten soll.

Bei Windenergieanlagen bestimmen folgende Faktoren die Qualität der Prognose:

- Ungenauigkeit der Schallemissionsvermessung der WEA (σ_R)
- Produktionsstreuung der WEA (σ_P)
- prinzipielle Unsicherheit des der Ausbreitungsberechnung zugrunde liegenden Prognosemodels (σ_{Prog})
- Unsicherheit bei Verwendung von Abschirmeffekten (σ_{Schirm})

Dabei sind:

 $\sigma_{\text{Prog}} = 1,5 \, \text{dB}$

σ_P = 1,2 dB bei einer einfachen Vermessung, errechnet aus Sicherheitszuschlag 2 dB

 $\sigma_{Schirm} = 1,5 dB als Abschätzung aus VDI 2720$

σ_R = 0,5 dB, wenn die WEA gemäß DIN 61400–11 vermessen wird

 σ_R = 3 dB bei nicht vermessenen WEA

 σ_R = 1,5 dB wenn die Messung nicht nach der DIN 61400-11 erfolgte

Zur Bestimmung des Sicherheitszuschlages für die Serienstreuung σ_P einer 3-fach vermessenen Windenergieanlage wird der Arbeitsentwurf der EN 50376 "Declaration of sound power level and tonality values of wind turbines" herangezogen.

Danach soll zur Bestimmung der Produktionsstreuung aus der Mehrfachmessung des Schallleistungspegels folgende Abschätzung für σ_P angewendet werden:

 $\sigma_P = s$

Die Standardabweichung s berechnet sich nach EN 50376 wie folgt:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (L_{w_i} - \overline{L_w})^2}$$

mit

$$\overline{L}_W = \sum_{i=1}^n \frac{L_{Wi}}{n}$$

Die Gesamtunsicherheit der Schallimmissionsprognose berechnet sich dann:

$$\sigma_{\text{ges}} = \sqrt{\sigma_R^2 + \sigma_p^2 + \sigma_{prog}^2 + \sigma_{Schirm}^2}$$

In einer statistischen Betrachtung ergibt sich die obere Vertrauensbereichsgrenze L_0 :

mit

L_r = Beurteilungspegel

K = Zuschlag

Der Richtwert nach TA-Lärm gilt als eingehalten, wenn L_{\circ} unter dem Richtwert nach TA-Lärm liegt.

2.7 Beurteilungsgrundlagen

Nach der 6. Allgemeinen Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm – TA-Lärm) vom 26. August 1998 erfolgt die Beurteilung eines Geräusches bei nicht genehmigungsbedürftigen bzw. genehmigungsbedürftigen Anlagen anhand eines sog. Beurteilungspegels. Dieser berücksichtigt die auftretenden Schallpegel, die Einwirkzeit, die Tageszeit des Auftretens und besondere Geräuschmerkmale (z. B. Töne).

Das Einwirken des vorhandenen Geräusches auf den Menschen wird dem Einwirken eines konstanten Geräusches während des gesamten Bezugszeitraumes gleichgesetzt.

Zur Bestimmung des Beurteilungspegels wird die tatsächliche Geräuscheinwirkung (Wirkpegel) während des Tages auf einen Bezugszeitraum von 16 Stunden (06.00 bis 22.00 Uhr) und zur Nachtzeit (22.00 bis 06.00 Uhr) auf eine volle Stunde ("lauteste" Nachtstunde z. B. 01.00 bis 02.00 Uhr) bezogen.

Treten in einem Geräusch Einzeltöne und Informationshaltigkeit deutlich hörbar hervor, dann sind in den Zeitabschnitten, in denen die Einzeltöne bzw. Informationshaltigkeiten auftreten, dem maßgebenden Wirkpegel 3 dB(A) bzw. 6 dB(A) hinzuzurechnen.

Die nach dem oben beschriebenen Verfahren ermittelten Beurteilungspegel sollen bestimmte Immissionsrichtwerte, die in der TA-Lärm, Abschnitt 6.1 festgelegt sind, nicht überschreiten.

Zur Berücksichtigung der erhöhten Störwirkung von Geräuschen wird ein Zuschlag von 6 dB(A) für folgende Teilzeiten berücksichtigt:

An Werktagen	06.00 - 07.00 Uhr
	20.00 – 22.00 Uhr
An Sonn- und Feiertagen	06.00 – 09.00 Uhr
	13.00 – 15.00 Uhr
	20.00 - 22.00 Uhr

Die Berücksichtigung des Zuschlages von 6 dB(A) gilt nur für Wohn-, Kleinsiedlungs- und Kurgebiete; jedoch nicht für Kern-, Dorf-, Misch-, Gewerbe- und Industriegebiete.

Einzelne kurzzeitige Geräuschspitzen dürfen die Immissionsrichtwerte, wie sie in Abschnitt 6.1 der TA-Lärm aufgeführt sind, am Tage um nicht mehr als 30 dB(A) und in der Nacht um nicht mehr als 20 dB(A) überschreiten.

2.8 Ausgangsdaten

2.8.1 Emissionsdaten der Windenergieanlagen

In den nachstehenden Tabellen ist der immissionsrelevante Schallleistungspegel der Windenergieanlage unter Referenzbedingungen aufgeführt:

Tabelle 3 - Schallleistungspegel

Anlagentyp	immissionsrelevanter Schallleistungspegel L _W in dB(A)	Quelle
Vestas V112	104,9	3 Messberichte

Zuschläge für eine immissionsrelevante Ton- und Impulshaltigkeit sind nach den vorliegenden Unterlagen nicht zu beachten.

Eine Zusammenfassung der Vermessungsberichte kann dem Anhang 2 zum Gutachten entnommen werden.

2.8.2 Standardabweichungen

Zur Ermittlung des oberen Vertrauensbereiches und somit zur Berechnung des Zuschlages K wurden folgende Standardabweichungen berücksichtigt.

Tabelle 4 -Standardabweichungen

Anlagentyp	Messunsicherheit σ_R in dB(A)	Produktions- standardabweichung σ _P in dB(A)	Prognose- standardabweichung σ _{proq} in dB(A)
Vestas V112	0,5	0,1	1,5

2.8.3 Ermittlung des Zuschlages

Im Zusammenhang mit Windenergieanlagen ist eine Prognose auf der sicheren Seite zu erstellen. Hierzu ist ein entsprechender Zuschlag in die Berechnung einzustellen.

Dieser errechnet sich aus den oben aufgeführten Standardabweichungen für eine Vertrauenswahrscheinlichkeit von 90 %. So ergeben sich aus den o. g. Standardabweichungen folgende Zuschlag:

Vestas V112
$$\qquad \qquad K = 2,0 \text{ dB}$$

Der o. a. Zuschlag wurde unmittelbar emissionsseitig in die Berechnung eingestellt, sodass die Berechnungsergebnisse bereits den oberen Vertrauensbereich L_{o} wiedergeben.

2.8.4 Tieffrequente Geräusche und Infraschall

Im Zusammenhang mit Infraschall ergaben bisher durchgeführte Untersuchungen, dass die Infraschallanteile die Wahrnehmungsschwelle deutlich unterschreiten. Im Zusammenhang mit tieffrequenten Geräuschen (≤ 80 Hz) werden solche von Windenergieanlagen abgestrahlt, jedoch liegen bis heute keine Erkenntnisse vor, dass diese tieffrequenten Geräuschanteile zu Überschreitungen der Anforderungen der TALärm in Verbindung mit der DIN 45 680 "Messung und Bewertung tieffrequenter Geräuschimmissionen in der Nachbarschaft" führen.

2.8.5 Meteorologische Korrektur

Gemäß der DIN ISO 9613-2 ist zur Ermittlung des Langzeitmittelungspegels der Korrekturfaktor C_{met} in die Berechnung einzustellen. Unter Berücksichtigung der Erstellung einer Immissionsprognose auf der sicheren Seite wurde dieser Faktor nicht betrachtet.

3. <u>Immissionsberechnung und Beurteilung</u>

Die Berechnung der Geräuschimmissionen erfolgte mit Hilfe der Software SoundPLAN Version 7.2. Die erforderlichen Ausgangsdaten, wie z. B. Höheninformationen, Lage der Immissionsorte und Geräuschquellen wurden in einem digitalen Geländemodell erfasst.

Im Zusammenhang mit Reflexionen können solche an Wohnhäusern durch z. B. benachbarte Gebäude auftreten. Eigene Berechnungen zeigten jedoch, dass bei Wahl eines Immissionsortes am Ortsrand, mit freier Sichtverbindung auf die Anlagen, dies die ungünstigste Betrachtung darstellt.

Anhand dieses Modells erfolgte anschießend eine detaillierte Ausbreitungsberechnung für die nachstehenden Immissionsorte:

Tabelle 5 - Immissionsorte

10	Bezeichnung	Koordinate	n (UTM32)	Immissionsrichtwerte in dB(A)	
		Rechtswert	Hochwert	Tag	Nacht
01	Sienhachenbach; Maiwiese	390714	5505998	55	40
02	Sien; Am Rimmelbach	391651	5505189	55	40
03	Hoppstädten; Am Mannenberg 17	394164	5505287	55	40
04	Hoppstädten, Im Krötenpfuhl 3	394266	5505143	55	40
05	Merzweiler, Gartenstraße 17	394196	5502834	55	40
06	Langweiler; Auf der Hardt	393832	5502955	60	45
07	Langweiler, Hardter Weg 10	393733	5502788	55	40
08	Langweiler; Zeinerhof	393043	5502953	60	45
09	Unterjeckenbach; Auf`m Berg	391121	5502590	60	45

Die Immissionsorte sind im Lageplan im Anhang 1 gekennzeichnet.

Zur Wahl der Immissionsorte ist anzumerken, dass davon auszugehen ist, dass, wenn an diesen die Anforderungen der TA-Lärm erfüllt werden, diese auch an allen weiteren vorhandenen Wohnhäusern eingehalten werden.

Die Ermittlung der zu erwartenden Geräuschimmissionen wurde entsprechend den Anforderungen zur Erstellung einer Prognose auf der sicheren Seite nach dem alternativen Verfahren der DIN ISO 9613-2 "Dämpfung des Schalls bei der Ausbreitung im Freien" durchgeführt.

Als Beurteilungskriterium wurden die Anforderungen der TA-Lärm herangezogen.

Nach der TA-Lärm ist die Untersuchung unter Berücksichtigung aller gewerblichen Geräuschimmissionen durchzuführen und somit zu gliedern in die Betrachtung der:

- Zusatzbelastung (zusätzliche gewerbliche Geräuschimmissionen durch das Planvorhaben)
- Vorbelastung (bestehende gewerbliche Geräuschsituation durch z. B. vorhandene WEA)
- Gesamtbelastung (Vorbelastung + Zusatzbelastung)

3.1 Ermittlung und Beurteilung der Zusatzbelastung

Davon ausgehend, dass die geplanten Windenergieanlagen unter ungünstigsten Ausbreitungsbedingungen betrieben werden, errechnen sich an den Immissionsorten folgende Beurteilungspegel für den oberen Vertrauensbereich:

Tabelle 6 - Zusatzbelastung

10	Bezeichnung	Oberer Vertra		Immissionsrichtwerte in dB(A)	
		Tag	Nacht	Tag	Nacht
1	Sienhachenbach; Maiwiese	32	29	55	40
2	Sien; Am Rimmelbach	41	38	55	40
3	Hoppstädten; Am Mannenberg 17	41	37	55	40
4	Hoppstädten, Im Krötenpfuhl 3	40	37	55	40
5	Merzweiler, Gartenstraße 17	33	30	55	40
6	Langweiler; Auf der Hardt	34	34	60	45
7	Langweiler, Hardter Weg 10	34	30	55	40
8	Langweiler; Zeinerhof	36	36	60	45
9	Unterjeckenbach; Auf m Berg	31	31	60	45

Die detaillierte Ausbreitungsberechnung zeigt der Anhang 3 des Gutachtens.

Zur weiteren Veranschaulichung der von den geplanten Anlagen zu erwartenden Geräuschimmissionen wurde eine Rasterlärmkarte für die aus schalltechnischer Sicht ungünstigste "lauteste" Nachtstunde gerechnet. Das Ergebnis zeigen die Isolinien in einer Abstufung von 2,5 dB für das 1. OG. Die sog. Rasterlärmkarte kann dem Anhang 4 des Gutachtens entnommen werden.

Diese flächenhafte Ergebnisdarstellung dient dem Überblick der Schallverteilung und ersetzt nicht die detaillierte Einzelpunktberechnung aus dem Anhang 3.

Wie die Berechnungsergebnisse zeigen, werden an allen Aufpunkten die Richtwerte der TA-Lärm sowohl zur Tages- als auch zur Nachtzeit teils deutlich unterschritten. Jedoch wird zur Nachtzeit an einigen Aufpunkten das sog. Irrelevanzkriterium der TA-Lärm (Unterschreitung der Richtwerte um ≥ 6 dB(A)) nicht erfüllt, sodass eine Betrachtung der Vorbelastung durchzuführen ist.

3.2 Ermittlung und Beurteilung der Vorbelastung

Wie bereits in Abschnitt 2.1 beschrieben, sind im Einwirkungsbereich der gewählten Immissionsorte keine weiteren Windenergieanlagen, aber auch keine sonstigen Betriebe vorhanden, welche als gewerbliche Vorbelastung zur Nachtzeit im Sinne der TA-Lärm zu berücksichtigen sind. Aus diesem Grund können die Richtwerte ausgeschöpft werden.

4. Qualität der Prognose

Nach der gültigen Rechtsprechung ist für Windenergieanlagen eine Prognose auf der sicheren Seite zu erstellen. Dies beinhaltet, dass das Ausbreitungsberechnungsverfahren der DIN ISO 9613-2 "alternatives Verfahren" bei einer Mittenfrequenz von 500 Hz anzuwenden ist. Zudem sind Zuschläge in die Berechnung einzustellen, die nach einem anerkannten Verfahren ermittelt wurden.

Die o. a. Punkte wurden bei der vorliegenden Immissionsprognose umgesetzt, sodass die Anforderungen an die Qualität der Prognose erfüllt sind.

Zusammenfassung

Die Energieprojekte GmbH beabsichtigt, südöstlich der Ortsgemeinde Sien die Errichtung und Inbetriebnahme von 5 Windenergieanlagen der Firma Vestas, Typ V112 mit einer Anlagennennleistung von je 3 MW zu errichten und zu betreiben. Im Rahmen des Genehmigungsverfahrens sind die zu erwartenden Geräuschimmissionen an den nächstgelegenen Wohnhäusern nach den Kriterien der TA-Lärm zu ermitteln und zu beurteilen.

Die schalltechnische Immissionsprognose geht davon aus, dass die geplanten Anlagen unter Nennleistungsbedingungen und somit mit den höchsten Schallleistungspegel kontinuierlich betrieben werden. Die Berechnung erfolgte für die aus schalltechnischer Sicht ungünstigst gelegene Wohnbebauung der angrenzenden Ortschaften.

D.h., werden an diesen Immissionsorten die Anforderungen der TA-Lärm erfüllt, so ist davon auszugehen, dass auch an allen weiteren Wohnhäusern diese eingehalten werden. Die Standorte der Windenergieanlagen und die gewählten Immissionsorte können dem Lageplan im Anhang 1 des Gutachtens entnommen werden.

Die Berechnungsergebnisse (s. Anhang 3 und 4) der Untersuchung zeigen, dass die jeweils geltenden Immissionsrichtwerte zur Tages- und Nachtzeit an den nächstgelegenen Wohnhäusern deutlich unterschritten werden. Jedoch wird das Irrelevanzkriterium der TA-Lärm (Unterschreitung der Richtwerte um ≥ 6 dB(A)) an drei Immissionsorten zur Nachtzeit nicht erfüllt. Daher wurde eine Prüfung auf mögliche gewerbliche Geräuschvorbelastung zur Nachtzeit im Umfeld von maßgeblichen Immissionsorten durchgeführt. Diese ergab, dass eine Geräuschvorbelastung durch bereits bestehende Windenergieanlagen bzw. Gewerbebetriebe zur Nachtzeit nicht vorliegt, deswegen können die Immissionsrichtwerte ausgeschöpft werden.

Somit ist das Planungsvorhaben ohne eingeschränkte Betriebsweise der Windenergieanlagen aus schaltechnischer Sicht im Sinne der TA-Lärm umsetzbar.

Boppard-Buchholz, 07.08.2013

Vereidigter Sachverständiger Dipl.-Ing. Paul Pies

RESTRICTED

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V112 - 3.0 MW (Mode 0) aus mehreren Einzelmessungen für die Nabenhöhen 94 m, 119 m und 140 m über Grund

Berichtsnummer:

GLGH 4286 12 10112 258 A-0003-B

Art des Berichtes:

Bestimmung Schallleistungspegel aus mehreren

Einzelmessungen

Standorte:

Lem (DK) und Simonsberg (D)

Auftraggeber:

Vestas Wind Systems A/S 8940 Randers, Dänemark

Alsvej 21

GL Garrad Hassan Deutschland GmbH

Sommerdeich 14 b

25709 Kaiser-Wilhelm-Koog

Auftragsnummer:

Auftragnehmer:

4286 12 10112 258

Auftragsdatum:

2012-10-24

Verantwortl. Ersteller des Berichtes:

Dipl.-Ing. Ame Jensen

Prüfer des Berichtes:

Dipl.-Ing. Jörg Dedert

Stellv. Messstellenleiter §26 BlmSchG

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der GL Garrad Hassan Deutschland GmbH vervielfältigt werden. Er umfasst insgesamt 8 Seiten inkl. des Anhanges.

Seite 1 von 8

VESTAS PROPRIETARY NOTICE

RESTRICTED

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V112 - 3.0 MW (Mode 0) aus mehreren Einzelmessungen für die Nabenhöhen 94 m, 119 m und 140 m über Grund Kurzbericht GLGH 4286 12 10112 258 A-0003-B 2013-03-13

Ergebniszusammenfassung Vestas V112-3.0 MW (Mode 0), Nabenhöhe 94 m

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten							
Hersteller	Vestas Wind Systems A/S Anlagenbezeichnung		ng	V112-3.0 MW (Mode 0)			
	Alsvej 21	Nennleistung in kV	V	3075			
	8940 Randers, Dänemark	Nabenhöhe in m		94			
		Rotordurchmesser	in m	112			
Angaben zur Einzelmessung		Messu	ng-Nr.				
, g	1			2			
Seriennummer	V38500			V41431			
Standort	Lem (DK))		Simonsberg (D)			
Vermessene Nabenhôhe	94 m			84 m+2 m Fundamenthöhe			
Messinstitut	GL Garrad Hassan Deut	tschland GmbH		arrad Hassan Deutschland GmbH			
Prüfbericht	GLGH 4286 12 09780	258 A-0001-A	GLGH-4286 11 08778 258-A-0010-B				
Datum	2012-08-3	81 "	2012-12-06				
Getriebetyp	Winergy PZAB	3530,0	Winergy PZAB 3530,0				
Generatortyp	Vestas Wind Systems A	A/S, 3-ph PMG	Vestas Wind Systems A/S, 3-ph PMG				
Rotorblattyp	Vestas 5	5	Vestas 55				
Angaben zur Einzelmessung	Messung-Nr.						
	3		n				
Seriennummer	V41429			# ·:			
Standort	Simonsberg	(D)		•			
Vermessene Nabenhöhe	84 m + 2 m Funda	amenthöhe		•			
Messinstitut	GL Garrad Hassan Deu	itschland GmbH		-			
Prüfbericht .	GLGH 4286 12 10112	2 258 A-0001-A	-				
Datum	2013-01-2	28					
Getriebetyp	Winergy PZAB	3530,0	10	-			
Generatortyp	Vestas Wind Systems	A/S, 3-ph PMG					
Rotorblattyp	Vestas 5	55					

challleis	tungspegel Lwak [dB]:		1						
	Messung Windgeschwindigkeit in 10 m Höhe								
	Messurig	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s			
	1	104.0	105.0	103,2	101,7	101,4			
	2	103,6	104,9	104,7	103,8	102,9			
	3	103.4	104.8	103,9	102,2	101,4			
	4	•	-			-			
	Mittelwert \overline{L}_{W} [dB(A)]	103,7	104,9	103,9	102,6	101,9			
	Standard- Abweichung] s [dB]	0,3	0.1	0,8	1,1	0,9			
	K nach /2/ σ _R =0,5 dB /3/	1,1	1,0	1,7	2,3	1,9			

Bei einer 94 m hohen Anlage beträgt die der 95%-igen Nennleistung (2921 kW) entsprechende Windgeschwindigkeit 7,61 m/s.

Vordruck Urheberrechtlich geschützt. Nachdruck und Vervielfältigung nur mit Zustimmung der Herausgeber

GL Garrad Hassan Deutschland GmbH

Seite 3 von 8

VESTAS PROPRIETARY NOTICE

Bestimmung der Schallleistungspegel einer WEA des Typs Vestas V112 - 3.0 MW (Mode 0) aus mehreren Einzelmessungen für die Nabenhöhen 94 m, 119 m und 140 m über Grund

Kurzbericht GLGH 4286 12 10112 258 A-0003-B 2013-03-13

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Schalle	missionsparam	eter: Zus	chläge						9		
Tonzuschl	ag K _{TN} in.dB bei ver	messener N	abenhöhe:						-		
	Messung	1 2	Windgeschwindigkelt in 10 m Höhe								
	1	6	m/s	7	m/s	8	m/s	9	m/s	10	m/s
		0	- Hz	0	- Hz	0	- Hz	0	- Hz	0	- Hz
	2	1	122 Hz	0	- Hz	0	- Hz	0	- Hz	0	- Hz
	3	0	- Hz	0	- Hz	0	- Hz	0	-Hz	0	- Hz
	4	-	-	-				1 1		•	-112

mpulszuso	thlag K _{IN} in dB:				K 2/		
	Messung Windgeschwindigkeit in 10 m Höhe						
		6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	
	1	0	0	0	0	0	
	2	0	0	0	0	0	
1.0	3	0	0	0	0	. 0	
	4						

Aufgrund der baulichen Änderungen für WEA unterschiedlicher Nabenhöhen kann das akustische Verhalten in Bezug auf die Ton- und Impulshaltigkeit nicht durch Umrechnung bestimmt werden. Es treten jedoch im Allgemeinen keine erheblichen Änderungen auf. Die gemachten Angaben zur Ton- und Impulshaltigkeit sind den o. g. Prüfberichten entnommen.

Terz- Schallle	eistungspeg	el $L_{\scriptscriptstyle WA,ma}$	x (Mittel au	ıs 3 Messur	ngen), Refer	enzpunkt 1	7 ₁₀ = 7 m/s	in dB				
Frequenz	50	63	80	100	125	160	200	250	315	400	500	630
Lwa _{max}	75,7	78,8	82,4	85,4	89,6	89,8	91,5	93,8	95,0	95.0	95,1	95.0
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
Lwa,max	94,8	94,5	93,4	92,6	89,6	88,2	86,9	86,3	82,3	77.9	70,4	55.7

Oktav- Schallleistur	ngspegel $L_{\!\scriptscriptstyle W\!A,n}$	Mittel	aus 3 Messi	ingen), Refe	erenzpunkt	v ₁₀ = 7 m	s in dB		2	
Frequenz	63	125	250	500	1000	2000	4000	8000		
LWA _{max}	84,6	93,4	98,4	99,8	99,1	95,3	90,4	78,7		

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen)

T05 0037-3477 Ver 01 - Approved - Exported from DMS: 2013-04-02 by IRW

Vordruck Urheberrechtlich geschützt. Nachdruck und Vervielfältigung nur mit Zustimmung der Herausgeber

GL Garrad Hassan Deutschland GmbH

Seite 4 von 8

VESTAS PROPRIETARY NOTICE

WEA Sien Ausbreitungsberechnung Zusatzbelastung

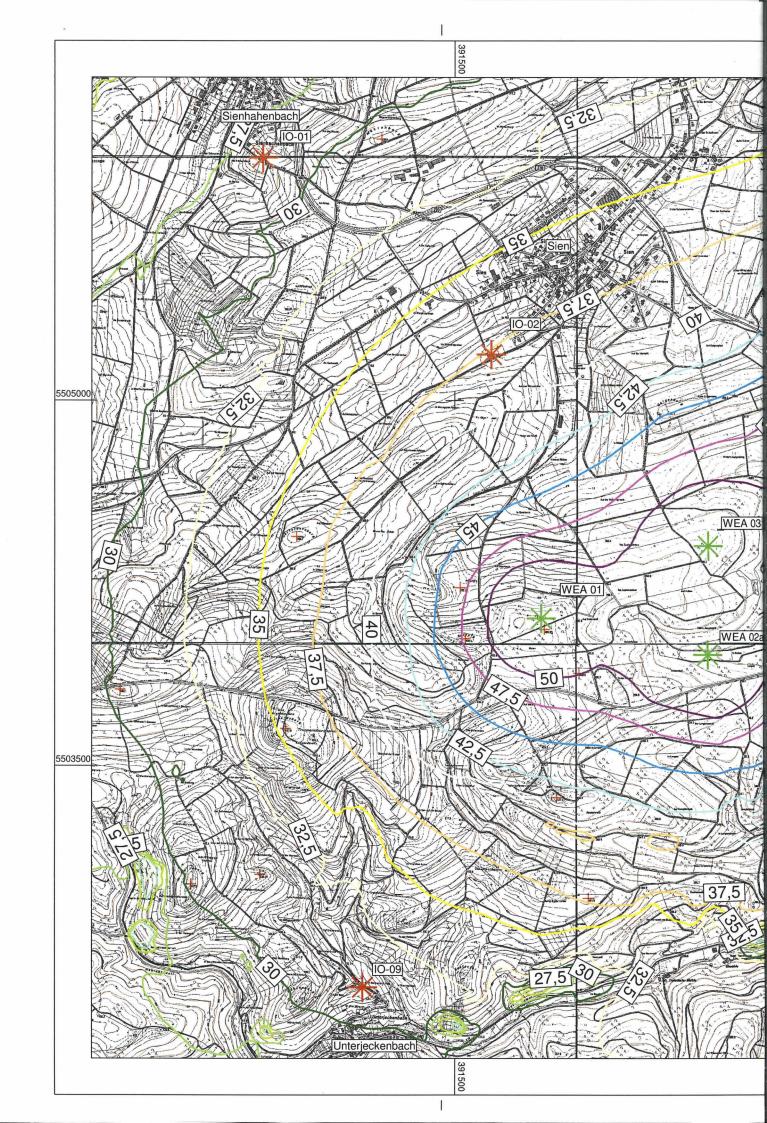
Name	Quelltyp	Lw	K	Ko	S	Adiv	Agnd	Abar	Aatm	dLrefl	ADI	Ls	LoT	LoN		
		dB(A)	dB	- dB	m	dB	dB	dB	dB	dB	dB	dB(A)	dB(A)	dB(A)		
IO 01 Sienhachenbac	IO 01 Sienhachenbach, EG RW,T 55 d					dB(A)	LrT 32	dB((A) Lr	N 29	dB(A)	dB(A)				
WEA 01	Punkt	104,9	2,0	3,0	2216,	-77,9	-3,6	0,0	-4,3	0,0	0,0	22,2	27,8	24,2		
WEA 02a	Punkt	104,9	2,0	3,0	2739,	-79,7	-4,1	-0,7	-5,3	0,0	0,0	18,1	23,8	20,1		
WEA 03	Punkt	104,9	2,0	3,0	2429,	-78,7	-3,7	0,0	-4,7	0,0	0,0	20,8	26,4	22,8		
WEA 04	Punkt	104,9	2,0	3,0	2865,	-80,1	-4,0	-0,8	-5,5	0,0	0,0	17,5	23,1	19,5		
WEA 05	Punkt	104,9	2,0	3,0	2910,	-80,3	-3,9	-0,6	-5,6	0,0	0,0	17,5	23,1	19,5		
IO 02 Sien, Baugebie		RW	T 55	dB(A)	RW,N 40	dB(A)	LrT 41	dB	(A) Lr	N 38	dB(A)					
WEA 01	Punkt	104,9	2,0	3,0	1118,	-72,0	-2,2	0,0	-2,2	0,0	0,0	31,5	37,2	33,5		
WEA 02a	Punkt	104,9	2,0	3,0	1524,	-74,7	-3,5	0,0	-2,9	0,0	0,0	26,8	32,5	28,8		
WEA 03	Punkt	104,9	2,0	3,0	1198,	-72,6	-2,5	0,0	-2,3	0,0	0,0	30,5	36,1	32,5		
WEA 04	Punkt	104,9	2,0	3,0	1717,	-75,7	-3,5	0,0	-3,3	0,0	0,0	25,4	31,0	27,4		
WEA 05	Punkt	104,9	2,0	3,0	1702,	-75,6	-3,3	0,0	-3,3	0,0	0,0	25,8	31,4	27,8		
IO 03 Hoppstädten, A	Am 1.00	a RW	,T 55	dB(A)	RW,N 4		LrT 41		. /	N 37	dB(A)					
WEA 01	Punkt	104,9	2,0	3,0	2600,	-79,3	-3,8	0,0	-5,0	0,0	0,0	19,8	25,4	21,8		
WEA 02a	Punkt	104,9	2,0	3,0	2108,	-77,5	-3,8	0,0	-4,1	0,0	0,0	22,6	28,2	24,6		
WEA 03	Punkt	104,9	2,0	3,0	1857,	-76,4	-3,5	0,0	-3,6	0,0	0,0	24,5	30,1	26,5		
WEA 04	Punkt	104,9	2,0	3,0	982,7	-70,8	-2,2	0,0	-1,9	0,0	0,0	33,0	38,6	35,0		
WEA 05	Punkt	104,9	2,0	3,0	1294,	-73,2	-2,7	0,0	-2,5	0,0	0,0	29,4	35,1	31,4		
IO 04 Hoppstädten, I	m EG	RW	,T 55	dB(A)	RW,N 4		LrT 40		(/	rN 37	dB(A)	10.7	04.0	00.7		
WEA 01	Punkt	104,9	2,0	3,0	2634,	-79,4	-3,9	-0,8	-5,1	0,0	0,0	18,7	24,3	20,7		
WEA 02a	Punkt	104,9	2,0	3,0	2106,	-77,5	-3,9	-0,5	-4,1	0,0	0,0	22,0	27,6	24,0		
WEA 03	Punkt	104,9	2,0	3,0	1889,	-76,5	-3,6	0,0	-3,6	0,0	0,0	24,1 32,4	29,8 38,0	26,1 34,4		
WEA 04	Punkt	104,9	2,0	3,0	1021,	-71,2	-2,4	0,0	-2,0	0,0	0,0	29,3	34,9	31,3		
WEA 05	Punkt	104,9	2,0	3,0	1296,	-73,2	-2,9	0,0	-2,5	0,0	0,0	-	34,5	31,3		
IO 05 Merzweiler,	2.00	_	/,T 55	dB(A)	RW,N 4		LrT 3		()	rN 30	dB(A)	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	04.0	00.4		
WEA 01	Punkt	104,9	2,0	3,0	2676,	-79,5	-4,1	-0,8	-5,2	0,0	0,0	18,4	24,0 26,7	20,4		
WEA 02a	Punkt	104,9	2,0	3,0	2014,	-77,1	-4,1	-1,7	-3,9	0,0	0,0	21,1		21,1		
WEA 03	Punkt	104,9	2,0	3,0	2293,	-78,2	-4,0	-2,1	-4,4	0,0	0,0	19,1	24,7	22,6		
WEA 04	Punkt	104,9	2,0	3,0	2176,	-77,7	-4,1	-1,2	-4,2	0,0	0,0	20,6	26,2 27,9	24,3		
WEA 05	Punkt	104,9	2,0	3,0	1932,	-76,7	-3,9	-1,2	-3,7	0,0		The second	21,5	24,5		
IO 06 Langweiler Au			V,T 60	dB(A)	RW,N 4		LrT 3	0,0	-4,4	.rN 34	0,0	21,7	23,7	23,7		
WEA 01	Punkt	104,9	2,0	3,0	2295,	-78,2	-3,5	(10)	-3,2	0,0	0,0	26,1	28,1	28,1		
WEA 02a	Punkt	104,9	2,0	3,0	1643,	-75,3	-3,3 -3,4	0,0	-3,2	0,0	0,0	24,0	26,0	26,0		
WEA 03	Punkt	104,9	2,0	3,0	1948, 1934,	-76,8 -76,7	-3,4	-1,2	-3,7	0,0	0,0	22,7	24,7	24,7		
WEA 04	Punkt	104,9	2,0	3,0	1650,	-76,7	-3,1	0,0	-3,2	0,0	0,0	26,3	28,3	28,3		
WEA 05	Punkt	104,9	V,T 55			10 dB(A)	LrT 3	Name of Street		rN 30	dB(A)		1000			
IO 07 Langweiler,	1.0	104,9	2,0	3,0	2307,	-78,3	-3,9	-2,3	-4,4	0,0	0,0	19,0	24,6	21,0		
WEA 01 WEA 02a	Punkt Punkt	104,9	2,0	3,0	1683,	-75,5	-3,9	-5,3	-3,2	0,0	0,0	20,0	25,6	22,0		
WEA 02a WEA 03	Punkt	104,9	2,0	3,0	2020,	-77,1	-3,8	-1,8	-3,9	0,0	0,0	21,3	26,9	23,3		
WEA 03	Punkt	104,9	2,0	3,0	2078.	-77,3	-3,9	-0,9	-4,0	0,0	0,0	21,8	27,4	23,8		
WEA 04 WEA 05	Punkt	104,9	2,0	3,0	1776,	-76,0	-3,5	-1,2	-3,4	0,0	0,0	23,7	29,4	25,7		
IO 08 Langweiler,	1.0		V,T 60	dB(A)	RW,N	The second second second			_	_rN 36	dB(A					
WEA 01	Punkt	104,9	2,0	3,0	1671,	-75,5	-3,3	0,0	-3,2	0,0	0,0	25,9	27,9	27,9		
WEA 01 WEA 02a	Punkt	104,9	2,0	3,0	1138,	-72,1	-2,6	0,0	-2,2	0,0	0,0	31,0	33,0	33,0		
WEA 02a WEA 03	Punkt	104,9	2,0	3,0	1549,	-74,8	-3,2	0,0	-3,0	0,0	0,0	27,0	29,0	29,0		
WEA 03	Punkt	104,9	2,0	3,0	1891,	-76,5	-3,7	-1,4	-3,6	0,0	0,0	22,7	24,7	24,7		
WEA 05	Punkt	104,9	2,0	3,0	1529,	-74,7	-3,2	-1,6	-2,9		0,0	25,5	27,5	27,5		
IO 09 Unterjeckenb	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN		N,T 60	-		45 dB(A)	The second name of the second	The second		LrN 31	dB(A)	Wille-			
10 09 Unterjeckenb	acii, i.C	G . IN	,,, 00	UD(M)	1111911	.5 35(7)								CONTRACTOR OF STREET		

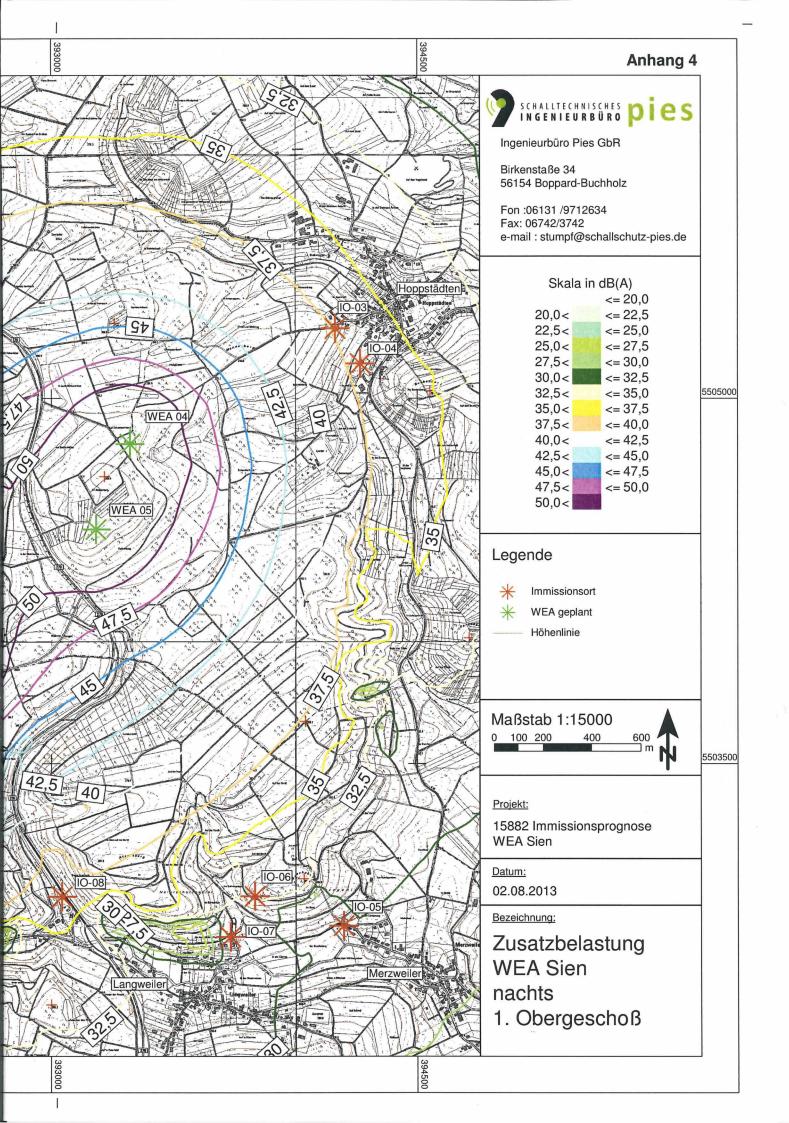
Ingenieurbüro Pies GbR Birkenstraße 34 56154 Boppard Tel.:06742/2299

WEA Sien Ausbreitungsberechnung Zusatzbelastung

Anhang 3.2

Name	Quelityp	Lw dB(A)	K dB	Ko dB	s m	Adiv dB	Agnd dB	Abar dB	Aatm dB	dLrefl dB	ADI dB	Ls dB(A)	LoT dB(A)	LoN dB(A)
WEA 01	Punkt	104.9	2,0	3,0	1693.	75.0	0.5	0.0	0.0					
	11 200000000	20000000		472	9.	-75,6	-3,5	0,0	-3,3	0,0	0,0	25,6	27,6	27,6
WEA 02a	Punkt	104,9	2,0	3,0	1969,	-76,9	-3,9	0,0	-3,8	0,0	0,0	23,4	25,4	25,4
WEA 03	Punkt	104,9	2,0	3.0	2306.	-78,3	-4,0	0,0	-4,4	0,0	0,0	21,3	23,3	23,3
WEA 04	Punkt	104.9	2.0	3,0	3129.	-80.9	-4,1	-0,5	-6,0	0,0	0,0	16,4	18,4	
WEA 05	Punkt	104,9	2,0	3,0	2787,	-79,9	-3,9	0,0	-5,4	0,0	0,0	18,8	20,8	18,4 20,8




WEA Sien Ausbreitungsberechnung Zusatzbelastung

<u>Legende</u>

Name Quelltyp Lw K Ko s Adiv Agnd Abar Aatm dLrefl ADI	dB(A) dB dB m dB dB dB dB dB	Name der Quelle Typ der Quelle (Punkt, Linie, Fläche) Anlagenleistung Zuschlag für Qualität der Prognose Zuschlag für gerichtete Abstrahlung Entfernung Emissionsort-IO Dämpfung aufgrund geometrischer Ausbreitung Dämpfung aufgrund Bodeneffekt Dämpfung aufgrund Abschirmung Dämpfung aufgrund Luftabsorption Pegelerhöhung durch Reflexionen Richtwirkungskorrektur Unbewerteter Schalldruck am Immissionsort
	-	Richtwirkungskorrektur
Ls	dB(A)	Unbewerteter Schalldruck am Immissionsort
LoT	dB(A)	oberer Vertrauensbereich Tag
LoN	dB(A)	oberer Vertrauensbereich Nacht

