

Gan bH

Schallimmissionsberechnung

für den Standort

Fohren-Linden

in der Verbandsgemeinde

Baumholder

im Kreis

Birkenfeld

im Bundesland

Rheinland-Pfalz

erstellt von:

EEG ENERGIE EXPERTISE GMBH Wismarsche Straße 51 18236 Kröpelin

im Auftrag von:

NPV Planung und Vertrieb GmbH Bornweg 28 49152 Bad Essen

GmbH

Erklärung

Das vorliegende Gutachten wurde unparteiisch auf Basis einer sorgfältigen Datenerfassung angefertigt. Sämtliche Kalkulationen wurden mit Hilfe der Software "WindPro" von EMD erstellt.

Die dargestellten Ergebnisse beziehen sich nur auf den in diesem Bericht zu Grunde gelegten Standort und sind auf andere Windkraftanlagenstandorte nicht übertragbar.

Kröpelin, den 04.12.2003

EEG Energie Expertise GmbH Wismarsche Straße 51 1823 Arapelin Tel: 038292 / 82 68 30 Fax 038292 / 82 68 40

Dipl.- Ing. Holger Hämel

Gan bH

Inhaltsverzeichnis

1	Beschreibung des Vorhabens	. 1
2	Immissionspunkte	. 1
3	Immissionsrelevante Daten der Windkraftanlagen	. 2
4	Berechnungsmethode	4
	.1 Theoretische Grundlagen	.4
5		
An	hang	8

EEG ENERGIE EXPERTISE

GmbH.

1 Beschreibung des Vorhabens

Der zu begutachtende Standort Fohren-Linden befindet sich in der Verbandsgemeinde Baumholder im Kreis Birkenfeld. Etwa 1,5 km südwestlich des Ortskerns von Fohren-Linden plant der Auftraggeber die Errichtung von drei Windkraftanlagen des Typs NORDEX N90 mit 105 m Nabenhöhe. Das Gelände ist sehr stark strukturiert und wird von vielen großen Waldflächen dominiert. Unmittelbar westlich der Windkraftanlagen befindet sich die Grenze zum Saarland.

Auf saarländischer Seite befinden sich in Grenznähe bereits 13 Windkraftanlagen im Betrieb. Vier weitere Anlagen sind südwestlich des geplanten Standortes vorgesehen.

Zur Beurteilung der Schallimmissionen wurde die EEG Energie Expertise GmbH von der NPV Planung und Vertrieb GmbH beauftragt, eine Berechnung nach TA- Lärm / DIN ISO 9613-2 durchzuführen. Dazu werden für alle relevanten Immissionspunkte die bestehenden Immissionen durch die vorhandenen Windkraftanlagen mit berücksichtigt.

Der Berechnung liegt eine Windgeschwindigkeit von 10 m/s in 10 m Höhe zu Grunde.

2 Immissionspunkte

Als Immissionspunkte wurden sämtliche Wohnbebauungen in einem Umkreis von bis zu 3.000 m zu den geplanten und errichteten Windkraftanlagen in die Berechnung integriert. Wenn es sich um Siedlungen oder Ortschaften handelt, wurden die, den Windkraftanlagen räumlich am nächsten gelegenen Wohnhäuser als repräsentative schallkritische Gebiete ausgewählt.

Wohnbebauungen, die sich weiter als 3.000 m von einer Windkraftanlage des Windparks bzw. alle Häuser, die sich nicht in der Nähe eines bereits ausgewählten repräsentativen Immissionspunktes befinden, sind nicht relevant für dieses Gutachten. Folgende Immissionspunkte wurden ausgewählt:

Bez.	Name	Grenzwert [dB(A)]	Grenzabstand (m)
Α	Plaßwicher Hof	45	entfällt
В	Reckersberger Hof	45	entfällt
С	Leitzbacher Hof	45	entfällt
D	Trautzberger Hof	45	entfällt
E	Eckersweiler NW	45	entfällt
F	Eckersweiler Mitte	45	entfällt
G	Berschweiler SW	45	entfällt
Н	Berschweiler Mitte	45	entfällt
1	Tannenhof	45	entfällt
J	Freisen NO	45	entfällt
K	Zollhaus	45	entfällt
L	Birkenhof	45	entfällt
М	Eckersweiler S	45	entfällt
N	Reichweiler	45	entfällt
0	Grasbach	45	entfällt

Tabelle 1: Übersicht der Immissionspunkte

Sämtliche Immissionspunkte befinden sich aut Angaben des Auftraggebers in Dorfund Mischgebieten. Gemäß der derzeit gültigen Richtlinie VDI 2058 liegt der Immissionsrichtwert für Mischgebiete bei 45 dB(A).

Die Koordinaten der Immissionspunkte sind dem Anhang zu entnehmen. Zur Übersicht ist eine Karte im Maßstab 1:25.000 angefügt. Auf dieser wurden sowohl die geplanten als auch die bestehenden Windkraftanlagen zusammen mit den Immissionspunkten eingetragen.

3 Immissionsrelevante Daten der Windkraftanlagen

Eine Windkraftanlage setzt sich bei einer akustischen Betrachtung aus mehreren Schallquellen zusammen. Es können zwei prinzipiell verschiedene Emissionsquellen in die Betrachtung einbezogen werden.

Zum einen stellen aerodynamisch bedingte Geräusche eine permanente Schallquelle dar. Die Intensität des stetigen Geräusches ist in erster Linie von der Blattspitzengeschwindigkeit abhängig. Neben dem gleichmäßigen Blattrauschen können zudem impulshaltige Geräuschkomponenten (Blattdurchgang durch Turmvorstau) auftreten, die als besonders störend empfunden werden können.

Zum anderen bilden die durch den Maschinenstrang erzeugten Geräusche (Getriebe, Generator, Pumpen, etc.) eine weitere Emissionsquelle. Diese Geräusche werden zum Teil direkt über Austrittsöffnungen oder indirekt durch Körperschallübertragung aus dem Maschinenhaus an die Umwelt abgegeben. Das Getriebe- und Generatorgeräusch kann tonhaltig sein und starke Tonhaltigkeit wird gemäß TA Lärm durch Zuschläge berücksichtigt.

EEG ENERGIE EXPERTISE

GmbH

Für den projektierten Anlagentyp NORDEX N90 liegt bislang eine Schallvermessung der Firma Wind Consult mit einem Schalleistungspegel von 103,6 dB(A) vor. Auf Grund der noch ausstehenden weiteren Vermessungen dieses Anlagentyps und gemäß den Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen" (sh. Anhang) wurde der Garantiewert mit einem Sicherheitszuschlag von 2,0 dB(A) versehen. Ton- und Impulszuschläge sind laut Anlagenhersteller nicht zu erwarten. Die vorliegende Immissionsprognose für die NORDEX N90 wurde daher mit dem, sich durch den empfohlenen Sicherheitszuschlag ergebenden Wert von 105,6 dB(A) berechnet.

Da sich die gesamte Wohnbebauung in einer Entfernung größer als 300 m zu jeder einzelnen neuen Schallquelle befindet, wird in dieser Berechnung der Wert für den Tonhaltigkeitszuschlag K_{TN} =0 gesetzt.

In der folgenden Übersicht sind weitere immissionsrelevante technische Daten der geplanten Windkraftanlage aufgeführt:

I I a made all some	
Hersteller	NORDEX AG
Anlagentyp	NORDEX N90
Nabenhöhe	105 m
Turmbauart	Gittermast
Blattzahl	3
Rotordurchmesser	90 m
Rotordrehzahl bei min. Drehzahl / Nennleistung	9,6 bis 16,9 U/min
Rotorblattyp	LM 43.8
Schalleistungspegel L _{WA}	105,6 dB(A)*
Tonhaltigkeitszuschlag K _{TN}	0 dB**
Impulshaltigkeitszuschlag K _{IN}	0 dB**
Toballa 2. Übereitele in er er er	

Tabelle 2: Übersicht über die immissionsrelevanten technischen Daten einer NORDEX N90

Alle weiteren technischen Daten zu den geplanten Windkraftanlagen sind dem Anhang zu entnehmen. Sämtliche Daten zu den bereits bestehenden Windkraftanlagen wurden uns durch den Betreiber zur Verfügung gestellt.

^{*} Für N-90: Garantierter Schalleistungspegel, inklusive 2 dB(A) Sicherheitszuschlag

^{**} Herstellerangaben

GmbH.

4 Berechnungsmethode

4.1 Theoretische Grundlagen

Die Berechnung der Schalldruckpegel an den ausgewählten Immissionspunkten sowie der Iso-Schallinien wird mit Hilfe der Software "WindPro" Version 2.3. der dänischen Firma EMD durchgeführt.

Grundlage zur Berechnung der Lärmimmissionen ist die ISO-Norm 9613-2 für die "Dämpfung des Schalls bei der Ausbreitung im Freien". Jede Windkraftanlage wird als hochgelegene Punktschallquelle angesehen. In diesem Gutachten wird für jede Windkraftanlage der A- bewertete (Dämpfungswerte bei 500 Hz) Schalleistungspegel zu Grunde gelegt. Im Gegensatz zur Bewertung des Schalldruckpegels unter Berücksichtigung der Oktavbanddaten, weist in der Regel der A-bewertete Schalleistungspegel leicht höhere Pegelwerte auf. Der Dauerschalldruckpegel jeder einzelnen Quelle am Immissionspunkt berechnet sich danach wie folgt:

$$L_{AT}(DW)=L_{WA}+D_{C}-A$$

L_{WA} - Schalleistungspegel der WKA (A-bewertet)

D_c - Richtwirkungskorrektur für die Quelle ohne Richtwirkung (0 dB) aber

unter Berücksichtigung der Reflexion am Boden D?:

$$D_C=D_? + 0$$

Zusätzlich bedingt durch die Reflexion am Boden gilt:

$$D_2 = 10 lg(1+[d_p^2+(h_s-h_r)^2)/(d_p^2+(h_s+h_r)^2])$$

Mit

h_s - Höhe der Quelle über dem Grund (Nabenhöhe)
 h_r - Höhe des Immissionspunktes über Grund (=5 m)

d_p - Abstand zwischen Schallquelle und Empfänger, projiziert auf die

Bodenebene. Der Abstand bestimmt sich aus den x und y Koordinaten

der Quelle (Index s) und des Immissionspunktes (Index r):

$$d_p = [x_s - x_r)^2 + (y_s - y_r)^2]^{0.5}$$

 Dämpfung zwischen der Punktquelle (WKA-Gondel) und dem Immissionspunkt, die während der Schallausbreitung vorhanden ist. Sie bestimmt sich aus den folgenden Dämpfungsarten:

$$A=A_{div}+A_{atm}+A_{gr}+A_{bar}+A_{misc}$$

A_{div} - Dämpfung aufgrund der geometrischen Ausbreitung

GmbH

$A_{div}=20 \text{ lg}(d/1\text{m}) + 11 \text{ dB}$

d - Abstand zwischen Quelle und Immissionspunkt A_{atm} - Dämpfung durch die Luftabsorption

Aatm=? 500 d / 1000

? 500 - Absorptionskoeffizient der Luft (1,9 dB/km) Dieser Wert für ? 500 bezieht sich auf die günstigsten Schallausbreitungsbedingungen bei einer Temperatur Von 10? C und einer relativen Luftfeuchte von 70 %.

Agr - Bodendämpfung

 $A_{gr}=(4,8-(2h_m)/d[17+300/d])$ Wenn $A_{gr}<0$ dann ist $A_{gr}=0$

h_m - mittlere Höhe (in m) des Schallausbreitungsweges über dem Boden

 $h_m = (h_s + h_r)/2$

h_s - Höhe der Quelle über dem Grund (Nabenhöhe)
 h_r - Höhe des Immissionspunktes über Grund (=5 m)

A_{bar} - Dämpfung aufgrund der Abschirmung (Schallschutz), da jedoch kein Schallschutz besteht ist hier A_{bar}=0

A_{misc} - Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung, Industrie). Diese Werte gehen nicht in die Prognose ein. Daher gilt: A_{misc}=0

Für die Berechnung der Immissionspegel wird bei allen Quellen von Mitwindbedingungen ausgegangen. Jede Quelle geht somit zu 100 % in die Berechnung ein, so dass es für bestimmte Windrichtungen zur Überschätzung des Beurteilungspegels kommen kann. Zudem wird die Schallpegelminderung durch die meteorologische Korrektur C_{met} nicht berücksichtigt, d.h. meteorologische Standortbegebenheiten wie die Häufigkeitsverteilung der Windrichtung und die Windgeschwindigkeit gehen in die Berechnung nicht ein. Diese Annahmen unterstützen eine zusätzliche Sicherheit zu einer konservativen Bewertung der Ergebnisse.

Liegen den Berechnungen mehrere Schallquellen, d.h. mehrere Windkraftanlagen in einem Windpark zu Grunde, so überlagern sich die einzelnen Schallwellen entsprechend der Abstände zum betrachteten Immissionspunkt und werden energetisch addiert. In der Bewertung der Lärmimmission nach der o.g. Richtlinie wird der aus allen Schallquellen resultierende Schalldruckpegel ermittelt.

EEG ENERGIE EXPERTISE

GmbH

Die Ermittlung der Entfernungen zwischen Emissionsquellen und Immissionspunkten sowie der Orographie erfolgt über eine digitalisierte Grundkarte.

4.2 Berücksichtigung bestehender Windkraftanlagen

Um die Schallbelastung an den ausgewählten Immissionspunkten ausreichend beurteilen zu können, ist eine Integration der Vorbelastung durch die bestehenden Windkraftanlagen notwendig. Im Rahmen dieses Gutachtens wurde daher zunächst die Vorbelastung an den Immissionspunkten separat ermittelt.

Zur Beurteilung der Gesamtbelastung war es notwendig sowohl die bestehenden als auch die neuen Windkraftanlagen in die Berechnung mit einzubeziehen. Gemäß Absatz 3.2.1 der TA-Lärm darf die Genehmigung für die zu beurteilende Anlage – also die neuen Anlagen – auch bei einer Überschreitung der Immissionsrichtwerte aufgrund der Vorbelastung aus Gründen des Lärmschutzes nicht versagt werden, wenn der von der zu beurteilenden Anlage verursachte Immissionsbeitrag im Hinblick auf den Gesetzeszweck als nicht relevant anzusehen ist. Das ist in der Regel der Fall, wenn die von der zu beurteilenden Anlage ausgehende Zusatzbelastung die Immissionsrichtwerte am maßgeblichen Immissionspunkt um mindestens 6 dB(A) unterschreitet.

Um das Vorliegen eines derartigen Falles zu prüfen, wurde daher eine Berechnung der Schallbelastung durchgeführt, die ausschließlich auf den Emissionen der neuen geplanten Windkraftanlagen basiert (Zusatzbelastung).

5 Bewertung der Ergebnisse

Im Anhang sind sämtliche Ergebnisse der einzelnen Schallimmissionsberechnungen aufgezeichnet. Ein Teil des Ergebnispapiers ist eine detaillierte Analyse der Schalleinwirkungen an jedem einzelnen Immissionspunkt. An dieser Stelle wird die Schalleinwirkung jeder einzelnen Windkraftanlage unter Berücksichtigung der Dämpfungsfaktoren auf jeden Immissionspunkt tabellarisch aufgelistet.

Weiterhin wird anhand einer ISO-Schalliniengraphik eine flächenhafte Darstellung der Schalleinwirkungen auf die Umwelt ermöglicht. Es ergeben sich in dieser Darstellung geschlossene Kurvenzüge, die als Linien gleicher Lautstärke zu verstehen sind. Die ISO-Schallinien berücksichtigen jedoch nicht die topographischen Verhältnisse des Standortes, beziehen sich daher im Gegensatz zu der o.g. Analyse nur auf eine Ebene und sind daher nur qualitativ wertbar.

Auf Basis der uns vom Betreiber der bestehenden Parks zur Verfügung gestellten Schalldaten der bestehenden Windkraftanlagen werden die Grenzwerte an zwei Immissionspunkten (A, B und C) bereits ohne die neue Belastung überschritten. Nach Aussage des Auftraggebers sind die vorhandenen Windparks dennoch zum Betrieb berechtigt.

Can bill

Aufgrund dieser Konstellation werden daher auch in der Gesamtbetrachtung die Grenzwerte an den Immissionspunkten A, B und C überschritten. Um ein Maß für die zusätzliche Belastung durch die neuen Anlagen zu erhalten, ist es erforderlich die Berechnung unter Ausschluss der Vorbelastung heranzuziehen: Hier ist zu erkennen, dass die Grenzwerte durch die Lärmemissionen der neuen Anlagen an keinem Immissionspunkt überschritten werden. Am Punkt I (Tannenhof) wird mit 42,0 dB(A) die größte Belastung berechnet. Die Lärmbelastung durch die neuen Windkraftanlagen an den kritischen Immissionspunkten A, B und C liegt jeweils bei unter 39 dB(A).

Da an allen kritischen Punkten (Immissionsorte, an denen der Grenzwert von 45 dB(A) in der Gesamtbetrachtung überschritten wird) der Grenzwert bei Betrachtung lediglich der Zusatzbelastung um mehr als 6 dB(A) unterschritten wird, kann gemäß Absatz 3.2.1 der TA-Lärm die Zusatzbelastung an diesen Punkten als nicht immissionsrelevant betrachtet werden.

In der folgenden Tabelle ist dieser Sachverhalt zur Übersicht dargestellt:

Immissionspunkt	Vorbelastung	Zusatz- belastung	Gesamt- belastung	Unterschreitung des Grenzwertes von 45 dB(A) durch die neuen WKA
A Plaßwicher Hof	48,9 dB(A)	33,3 dB(A)	49,0 dB(A)	11,7 dB(A)
B Reckersberger Hof	47,8 dB(A)	31,9 dB(A)	47,9 dB(A)	13,1 dB(A)
C Leitzbacher Hof	46,0 dB(A)	27,7 dB(A)	46,0 dB(A)	17,3 dB(A)

Tabelle 3: Detailbetrachtung zur Belastung an kritische Immissionspunkten

Dennoch sollte aufgrund der Komplexität dieses Falles – insbesondere durch den noch nicht dreimal vermessenen Schalleistungspegel der NORDEX N90 und durch die bereits starke Vorbelastung bedingt – eine weitergehende Diskussion dieser Ergebnisse mit den entsprechenden Behörden folgen.

Die Ergebnisse der Berechnungen beziehen sich ausschließlich auf die oben genannten Windkraftanlagen an dem angegebenen Standort.

EEG ENERGIE EXPERTISE

GmbH

Anhang

- > Ergebnisse für die Vorbelastung
- > Ergebnisse für die Gesamtbelastung
- > Ergebnisse für die Zusatzbelastung
- > Schalleistungspegel N90
- > Datenblatt der geplanten Windkraftanlage
- Schallimmissionsschutz in Genehmigungsverfahren Windenergieanlagen Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen"

Projekt:

Fohren-Linden

Ausdruck/Seile 03.12.2003 11:45 / 1

izensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle

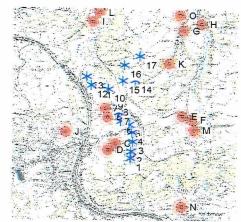
DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:32/2.3.0.211

DECIBEL - Hauptergebnis

Berechnung: Schallimmissionsberechnung (Vorbelastung)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm "ISO 9613-2 Acoustics - Attenuation of sound during propagation outdoors"

Windgeschwindigkeit in 10 m Höhe: 10,0 m/s Faktor für Meteorologischer Dämpfungskoeffizient, C0: 0,0 dB

Die derzeit gültigen Immissionsrichtwerte richten sich nach der TA-Lärm jeweils für die entsprechenden Nachtwerte:

Industriegebiet: 70 dB(A) Gewerbegebiet: 50 dB(A) Dorf- und Mischgebiet: 45 dB(A) Allgemeines Wohngebiet: 40 dB(A) Reines Wohngebiet: 35 dB(A) Kur- und Feriengebiet: 35 dB(A)

Liegen Einzeltöne (Ton-/Impulshaltigkeit) bei einzelnen WEA vor, wird für die WEA ein Zuschlag je nach Auffälligkeit von 0 dB, 3 dB oder 6 dB angesetzt.

Maßstab 1:75.000

★ Existierende WEA Schallkritisches Gebiet

WEA

	GK Zone: 2			WEA Typ						Schallwerte					
	Ost	Nord	Z	Reihendaten/ Beschreibung	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	(0) (0) (0) (0)	10.00	LWA,Ref.	Einzeltöne	Oktavbandabh. Daten
	0.500.447		[m]					[kW]	[m]	[m]			[dB(A)]		Daten
,	2.592.147	5.491.391		WKA 2	Nein	VESTAS	V27	225/50	27,0	31,5	USER	Benutzerdefiniert	100.0	Nein	Nein
2	2.592.149	5.491.533		WKA 13	Nein	VESTAS	V44	600	44,0	53,0	USER	Benutzerdefiniert	103.0	Nein	Nein
3				WKA 3	Nein	VESTAS	V39	500	39,0	53,0	USER	Benutzerdefiniert	103.0	Nein	Nein
4		5.491.943		WKA 4	Nein	VESTAS	V39	500	39,0	53,0	USER	Benutzerdefiniert	103,0	Nein	Nein
6				WKA 5	Nein	VESTAS	V39	500	39,0	53,0	USER	Benutzerdefiniert	103,0	Nein	Nein
7	2.00				Ja	DEWIND	D4/48	600	48,0	60,0	USER	Benutzerdefiniert	101,0	Nein	Nein
ν ο		5.492.365 5.492.566			Ja	DEWIND	D4/46	600	46,0	60,0	USER	Benutzerdefiniert	101,0	Nein	Nein
٥	2.591.727	5.492.693	7.00	25555 1 1 1 1	Ja	DEWIND	D4/46	600	46,0	70,0	USER	Benutzerdefiniert	101,0	Nein	Nein
10		5.492.859		WKA 9	Nein	NORDTANK		500	41,0	50,0	USER	Benutzerdefiniert	103,0	Nein	Nein
11	2.591.472			WKA 10	Nein	NORDTANK		500	41,0	50,0	USER	Benutzerdefiniert	103,0	Nein	Nein
12		5.492.943			Nein	NORDTANK		500	41,0	50,0	USER	Benutzerdefiniert	103,0	Nein	Nein
13	2.001.204	5.493.128			Nein	NORDTANK		500	41,0	50,0	USER	Benutzerdefiniert	103,0	Nein	Nein
14	2.001.102			Berschweiler WKA1	Nein	NEG MICON	NM1500/64	1.500/400	64,0	0,08	USER	Benutzerdefiniert	106,0	Nein	Nein
15				Berschweiler WKA2	Nein	SÜDWIND	S-77	1.500	77,0	85,0	USER	Benutzerdefiniert	103,1	Nein	Nein
16				Berschweiler WKA3	Nein Nein	SÜDWIND SÜDWIND	S-77	1.500	77,0	100,0	USER	Benutzerdefiniert	103,1	Nein	Nein
17	2.001.010			Berschweiler WKA4			S-77	1.500	77,0	85,0	USER	Benutzerdefiniert	103,1	Nein	Nein
4.6	2.002.200	0.455.567	011	Delactiweller WKA4	Nein	SÜDWIND	S-77	1.500	77,0	85,0	USER	Benutzerdefiniert	103,1	Nein	Nein

Berechnungsresultate

Beurteilungspegel

- sandingopogoi											
Schallkritisches Gebiet	GK Zone:	2		Anforde	rungen	Beurteilungspegel Anforderungen erfüllt?					
Nein Name	Ost	Nord	Z	Schall	Abstand	Berechnet		Abstand			
			[m]	[dB(A)]	[m]	[dB(A)]					
A Plaßwicher Hof		5.492.447	560	45,0	200	48,9	Nein	Ja	Nein		
B Reckersberger Hof				45,0	200	47,8	Nein	Ja	Nein		
C Leitzbacher Hof		5.491.685		45,0	200	46,0	Nein	Ja	Nein		
D Trautzberger Hof	2.591.625	5.491.552	555	45,0	200	42,8	Ja	Ja	Ja		
E Eckersweiler NW	2.593.180	5.492.307	515	45,0	200		Ja	Ja	Ja		
F Eckersweiler Mitte	2.593.372	5.492.232	510	45,0	200		Ja	Ja	Ja		
G Berschweiler SW	2.593.168	5.494.147	445	45,0	200		Ja	Ja	Ja		
H Berschweiler Mitte	2.593.533	5.494.296	430	45,0	200		Ja	Ja	Ja		
I Tannenhof	2.591.250	5.494.304	480	45,0	200	36,7	Ja	Ja	Ja		
J Freisen NO	2.590.731	5.491.928	465	45,0	200	37,6	Ja	Ja	Ja		
K Zollhaus	2.592.882	5.493.428	480	45,0	200	40,6	Ja	Ja	Ja		
L Birkenhof	2.591.380	5.494.494	469	45,0	200	35,5	Ja	Ja	Ja		
M Eckersweiler S	2.593.436	5.492.011	510	45,0	200	34,7	Ja	Ja	Ja		
N Reichweiler	2.593.210	5.490.362	400	45,0	200	30,5	Ja	Ja	Ja		
O Grasbach	2.593.086	5.494.480	440	45,0	200	33,3	Ja	Ja	Ja		
						, -			Ju		

WindPRO version 2.3.0.211 Feb 2003

Fohren-Linden

03.12.2003 11:45 / 2

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle

+49 (0)5226 593 556

Berechnet: 03.12.2003 11:32/2.3.0.211

DECIBEL - Hauptergebnis

Berechnung: Schallimmissionsberechnung (Vorbelastung)

Abstände (m)

Schallkritisches Gebiet

WEA	Α	В	С	D	Ε	F	G	Н	1	J	K	ī	М	N	0
1	1211	1018	465	546	1381	1486	2939	3219	3048	1514		3196			
2	1090	902	393	524	1289	1409	2805	3091	2913	1471	2032	3050	1373	1590	3003
3	948	776	407	595	1140	1280	2595	2885	2728	1469	1822	2867	1276	1718	2880
4	789	638	456	664	1081	1244	2422	2724	2531	1431	1651	2668	1276	1807	2700
5	647	524	535	739	1090	1269	2294	2608	2354	1389	1527	2491	1332	2068	2562
6	456	330	517	699	1260	1447	2323	2655	2226	1222	1570	2375	1520	2228	2573
7	331	294	686	850	1306	1503	2201	2545	2037	1224	1464	2186	1601	2407	2437
8	312	395	883	1037	1362	1565	2063	2419	1836	1282	1350	1983	1687	2594	2282
9	300	458	1010	1145	1504	1708	2047	2415	1680	1256	1369	1834	1840	2763	2245
10	421	609	1183	1307	1635	1841	1997	2376	1497	1302	1365	1656	1986	2949	2172
11	484	685	1279	1380	1816	2022	2091	2476	1398	1241	1497	1573	2166	3096	2242
12	565	761	1355	1432	2000	2205	2236	2625	1361	1156	1670	1554	2345	3221	2368
13	776	972	1565	1637	2160	2366	2232	2625	1178	1282	1726	1380	2516	3430	2335
14	900	1014	1443	1621	1231	1429	1446	1808	1568	1865	764	1653	1616	2881	1665
15	722	872	1377	1534	1438	1641	1638	2014	1435	1658	1005	1551	1815	2971	1825
16		1198	1716	1871	1621	1814	1413	1803	1167	1920	908		2009		1556
17	1358	1503	1968	2141	1558	1732	1039	1429	1266	2279	610	100 000 000	1947		1194
														N 1000 (500 (500)	CONTRACT IN

Projekt:

Fohren-Linden

usdruck/Seite

03.12.2003 11:46 / 1

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet:

03.12.2003 11:32/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Vorbelastung)

Voraussetzungen

Beurteilungspegel L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist <math>Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr: die Dämpfung aufgrund von Luftabsorption die Dämpfung aufgrund des Bodeneffekts

Abar:

die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsresultate

Schallkritisches Gebiet: A Plaßwicher Hof

٧	٧	E	F	١

ivein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.211	1.213	22,7	Ja	23,87	100,0	3,01				0,00			0.00
2	1.090	1.094	33,7	Ja	28,41	103,0	3.01	71,78			0,00		77.60	0.00
3	948	950	23,2	Ja	29,69	Control of the Control	555 . 35 . 35	70.56			0.00		76.32	0.00
4	789	792	21,9	Ja	31,68			68.98	, , -		0.00	-,	74.32	0.00
5	647	650	22,4	Ja	33,90			67,27			0.00		72,11	0.00
6	456	462	28,3	Ja	36,17			64,30			0.00	-,	67.82	0.00
7	331	339	29,6	Ja	40,02			61,63					63.96	0.00
8	312	319	34,9	Ja	41,40			61,10				2.50	62.59	0.00
9	300	305	24,1	Ja	42,72			60,72	0,58				63.27	0.00
10	421	426	22,1	Ja	38,63			63,59	0,81				67.37	0.00
11	484	488	25,4	Ja	37,32			64,78	0,93				68,68	- 3.00 (533)
12	565	568	28,4	Ja	35,79			66.09	1,08				70.21	0,00
13	776	780	37,1	Ja	35,53			68.85		3,15			73.48	0,00
14	900	902	35,9	Ja	30.87			70.10		3,42			75,48	0,00
15	722	728	39,7	Ja	33,57			68.24	1,38				0.00	0,00
16	1.032	1.034	29,3	Ja	29.03	103,1			1,96				72,53	0,00
17	1.358	1.358	29,8	Nein	25,07	103,1			2,58		COLOROS MOS		77,08	0,00
			20,0	.40111	20,07	103, 1	3,01	13,00	2,58	4,80	0,00	0,00	81,04	0,00

Summe 48,87

Schallkritisches Gebiet: B Reckersberger Hof

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.018	1.020	24,8	Ja	25,94	100,0				3.96				0,00
2	902	906	36,3	Ja	30,73			70,15			0,00			
3	776	779	27,0	Ja	32,11			68,83			0.00		73,20	-,
4	638	642	24,0	Ja	34,14			67.15			0,00		71.86	-,
5	524	528	23,5	Ja	36,31			65,45			0,00		69,69	-,
6	330	338	29,0	Ja	40,02			61,59			0,00		Company of the Company	
7	294	303	29,4	Ja	41,44			60.65	0,58		0.00			, -
8	395	401	31,9	Ja	38,19			63,06	0,76		0.00		65,80	
9	458	462	28,7	Ja	38,23			64.29	0,76	3-01-6-1-0-0	0.00			
10	609	612	28,1	Ja	34,92			66,73		3,19			67,77	0,00
11	685	688	30,4	Ja	33,69			67.75			0,00	,		-,
12	761	763	34,2	Ja	32,66						-,	1000	72,32	0,00
13	972	975	43.0	Ja	33,10			68,66		3,24			,	0,00
14	1.014	1.015	39.3		20,000 0000			70,78		3,27		200	75,91	0,00
15	872	876	0.000	Ja	29,58		10 mm	71,13		3,46			76,52	0,00
16	1.198		45,1	Ja	31,57	103,1		69,85		3,02	0,00	0,00	74,54	0,00
17		1.199	34,6	Ja	27,45	103,1			2,28		0,00	0,00	78,66	0,00
17	1.503	1.503	33,9	Ja	24,69	103,1	3,01	74,54	2,86	4,02	0,00	0,00	81,42	0,00

Ausdruck/Seite 03.12.2003 11:46 / 2 Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:32/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Vorbelastung)

Summe 47,77

Schallkritisches Gebiet: C Leitzbacher Hof

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA, Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	465	470	, .	Ja	33,86	100,0								
2	393	402	, .	Ja	39,55	103,0	3.00			2,59				0.00
3	407	412	23,1	Ja	39,09	103,0	3.00	63,31		2.81		-,		0.00
4	456	461	25,0	Ja	37,97	103,0	3,00	64,27		2,89		-,		0.00
5	535	539	1.	Ja	36,35	103,0	3,00	65,63		2,99		-,	,_	0,00
6	517	523		Ja	35,24	101,0	3,00	65,37			0,00		68.76	
7	686	690	00,0	Ja	31,81	101,0	3,00	67,78			0,00		72,19	0,00
8	883	886	30,0	Ja	28,75	101,0	3,01	69,95			0.00		75.25	0,00
9	1.010	1.012	, .	Ja	29,16	103,0	3,01	71,10	1,92	3.83	0,00	*	76.85	0,00
10	1.183	1.185	31,4	Ja	27,40	103,0	3,01	72,47	2,25				78.61	0,00
11	1.279	1.280	34,1	Ja	26,55	103,0	3,01	73,15	2,43				79.46	0,00
12	1.355	1.356	38,7	Ja	25,97	103,0	3,01	73,65	2,58				80.04	0,00
13	1.565	1.567	48,5	Ja	27,40	106,0	3,01	74,90	2,98				81,61	0.00
14	1.443	1.444	35,6	Ja	25,22	103,1	3,01	74,19	2,74				80.89	0,00
15	1.377	1.380	43,4	Ja	25,97	103,1	3,01	73,80	2,62				80.13	0.00
16	1.716	1.717	34,0	Ja	23,03	103,1	3,01	75,69	3,26				83.07	0.00
17	1.968	1.969	31,2	Nein	20,68	103,1	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0,00

Summe 45,97

Schallkritisches Gebiet: D Trautzberger Hof

V	٧	EΑ	

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	546	551	11,7	Ja	32,08	100,0	3.01			•				
2	524	532	24,7	Ja	36,30			65,52			0.00	-,	69.70	-,
3	595	599		Ja	34,83			66,56			0.00	-,	71.17	0.00
4	664	668	,-	Ja	33,79			67,50			0,00		72.21	0.00
5	739	743		Ja	32,77			68,42			0.00		73.23	
6	699	703		Ja	31,86			67.95			0,00		72.14	-,
7	850	854	37,3	Ja	29,47	101,0	3.01	69,63			0,00		74.54	- 1
8	1.037	1.039	33,9	Ja	27,03			71.34			0.00		76.98	-,
9	1.145	1.147	31,9	Ja	27,80	103,0	3,01	72,19	2,18				78,21	0.00
10	1.307	1.309	34,4	Ja	26,29	103,0	3,01	73,34	2,49				79.72	
11	1.380	1.382	39,1	Ja	25,75	103,0	3,01	73,81	2,63				80.26	
12	1.432	1.433	43,3	Ja	25,40			74,13	2,72				80,61	0.00
13	1.637	1.639	53,4	Ja	26,92			75.29	3,11				82,09	0.00
14	1.621	1.622	33,6	Ja	23,74	103,1	3,01	75.20	3.08				82.37	0,00
15	1.534	1.537	44,1	Ja	24,64	103,1	3.01	74,73	2,92				81,47	0.00
16		1.872	33,3	Ja	21,92	103,1		76,45	3,56				84.19	0.00
17	2.141	2.142	27,9	Nein	19,63	103,1		77,62	4,07		0.00	,	86.48	0.00
						(5)	1.50		0.00 E		.,	-,00	, 10	0,00

42,82

Schallkritisches Gebiet: E Eckersweiler NW

V	A		: /	٩
٠	٧	٠	••	•

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.381	1.385	22,2	Ja	22,30	100,0	3,01	73,83					80.71	0.00
2	1.289	1.296	37,2	Ja	26,49	103,0	3,01	73,25					79.52	0.00
3	1.140	1.146	36,0	Ja	27,94	103,0	3,01	72,18					78.07	0.00
4	1.081	1.087	41,6	Ja	28,74	103,0	3,01	71,72	2,07	3,48	0.00	0.00	77,27	0.00
5	1.090	1.096	43,5	Ja	28,71			71,79					77,30	
6	1.260	1.266	44,1	Ja	24,96	101,0	3,01	73,05	2,40	3,60	0.00		79.05	0.00
7	1.306	1.312	47,8	Ja	24,61								79.40	0.00
8	1.362	1.367	50,3	Ja	24,17	101,0	3,01	73,71					79.84	0.00
9	1.504	1.507	44,5	Ja	24,80	103,0	3,01	74.56			(CO. 1000 CO.)	0.000	81,21	0.00
10	1.635	1.639	47,4	Ja	23,80	St. 77 555 557	200 CO	75,29	-,		,		82,21	0,00

03.12.2003 11:46 / 3

Lizensierter Anwender:

EEG Energie Expertise GmbH

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:32/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Vorbelastung)

1	WEA														
ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA.Ref.	Dc	Adiv	Aatm	Δar	Ahar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	11	1.816	1.820	42,4	Ja	22.35			76,20			ը որ	0.00	83,66	[dB]
ı	12	2.000	2.003	34,0	Ja	20,96	103,0	3.01	77.03	3.80	4 22	0,00	0,00	85,05	
ı	13	2.160	2.164	43,5	Ja	23,08	106.0	3.01	77,70	4 11	4 11	0,00		85,93	
ı	14	1.231	1.235	63,5	Ja	27.90	103.1	3.01	72,83	2 35	3 03	0,00	0,00		
ı	15	1.438	1.444	69,6	Ja	26.03			74,19					80.08	-,
ı	16	1.621	1.624	61,5	Ja	24,32								81.79	0.00
ı	17	1.558	1.560	59,8	Ja	24,80							A980 P 150 11 10	81,30	-,
- 1												-,00	-,00	0.,00	0,00

Summe 37,94

Schallkritisches Gebiet: F Eckersweiler Mitte

V	N	F	Δ

AALM														
Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.486	1.490		Nein	20,90	100,0		74,47		4,80		-		0.00
2	1.409	1.415	27,5	Ja	25,16	103,0					0,00			0.00
3	1.280	1.285	26,7	Nein	25,58			73,19			0.00		,-	0.00
4	1.244	1.249	32,5	Ja	26,79			72,94			0,00			0.00
5	1.269	1.275	35,0	Ja	26,61			73,12	, -				79.39	0.00
6	1.447	1.452	35,7	Ja	23,05			74.24					80,96	0,00
7	1.503	1.508	40,1	Ja	22,68			74,57			0.00		81,32	0.00
8	1.565	1.569	42,9	Nein	21,31			74,92					82.70	0.00
9	1.708	1.711	37,6	Nein	22,29	103,0			3,25				83,72	0.00
10	1.841	1.844	41,0	Nein	21,38			76.32					84.62	0.00
11	2.022	2.025	36,3	Nein	20,23			77,13	3,85		0.00		85.78	0.00
12	2.205	2.208	28,0	Nein	19,13			77.88	4,20		0,00		86.88	0.00
13	2.366	2.369	37,7	Nein	21,21			78,49	4.50	0.00			87.80	0.00
14	1.429	1.433	56,9	Ja	25,82			74.13	2,72		-,	200	80.29	0.00
15	1.641	1.647	62,8	Ja	24,15			75,34	3,13				81.96	0.00
16	1.814	1.817	56,1	Ja	22,72			76.19	3,45	,	-,	G - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	83.39	0,00
17	1.732	1.734	53,0	Ja	23,28			75.78	3,29				82,83	0.00
							1000			-,	-,00	0,00	02,00	0,00

Summe

Schallkritisches Gebiet: G Berschweiler SW

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.939	2.944	25,2	Nein	12,24	100.0		80.38						0.00
2	2.805	2.812	37,1	Ja	16,34	103,0	3.01	79.98			0.00		89.67	0.00
3	2.595	2.602	33,2	Ja	17,40			79,31			0.00		88,61	0,00
4	2.422	2.429	34,7	Ja	18,37			78,71			0.00	-,	87.64	0.00
5	2.294	2.301	36,6	Ja	19,14			78,24			0,00		86,87	0.00
6	2.323	2.331	37,1	Ja	16,97			78,35			0.00		87.04	0,00
7	2.201	2.210	39,6	Ja	17,74			77.89			0,00		86.27	0.00
8	2.063	2.071	37,0	Ja	18,56			77,32			0,00		85.44	0.00
9	2.047	2.054	27,1	Ja	20,51			77.25	12000		0.00		85,50	0.00
10	1.997	2.006	29,6	Ja	20,86			77.05			0,00		85,15	0,00
11	2.091	2.098	26,0	Ja	20,21			77,44			0,00		85.80	0,00
12	2.236	2.242	16,8	Ja	19,19			78.01			0.00		86.82	0,00
13	2.232	2.240	29,8	Ja	22,40			78,01		0.00	0.00			0.00
14	1.446	1.456	47,6	Ja	25.40			74,26			0.00		80.71	0.00
15	1.638	1.650	53,8	Ja	23,94			75,35	3,14				82.17	0.00
16	1.413	1.423	46,8	Ja	25,67	103,1			2,71		0.00			0,00
17	1.039	1.049	44,9	Ja	29,38			71,42	1,99				76.73	0,00

Summe 34,58

03.12.2003 11:46 / 4

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:32/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Vorbelastung)

Schallkritisches Gebiet: H Berschweiler Mitte

1A		_	A	
A.	и	ᆮ	м	

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	3.219	3.225	33,3	Ja	11,27	100,0	3,01	81,17		4,45		•		
2	3.091	3.098	45,2	Ja	15,00	103,0	3,01	80.82			0,00	200	91.01	0.00
3	2.885	2.892	41,1	Ja	15,98	103,0	3,01	80.22			0.00		90,03	
4	2.724	2.731	43,7	Ja	16,85	103,0	3,01	79.72			0.00		89.16	
5	2.608	2.616	45,6	Ja	17,49	103,0	3,01	79,35			0.00		88.52	-,
6	2.655	2.663	44,8	Ja	15,22	101,0	3,01	79,50			0.00		88.79	0.00
7	2.545	2.554	47,7	Ja	15,86	101,0	3,01	79,14	4.85				88.15	0.00
8	2.419	2.427	46,6	Ja	16,56	101,0	3,01	78,70	4,61	4.14		500 - 100 000	87.45	0.00
9	2.415	2.422	37,6	Ja	18,46	103,0	3,01	78,68	4,60				87.55	0.00
10	2.376	2.384	40,1	Ja	18,71	103,0	3,01	78,54	4.53	4.22	0.00	1550	87.30	0.00
11	2.476	2.484	35,7	Ja	18,08	103,0	3,01	78,90	4.72	4.31	0.00		87.93	0.00
12	2.625	2.632	26,6	Ja	17,15	103,0	3,01	79,40	5,00	4.45	0.00		88.86	0.00
13	2.625	2.634	39,3	Ja	20,31	106,0	3,01	79,41	5,00				88.70	0.00
14	1.808	1.818	56,9	Ja	22,75	103,1	3,01	76,19	3,45				83.36	0,00
15	2.014	2.025	63,8	Ja	21,42			77,12	3,85				84.69	0.00
16	1.803	1.813	55,4	Ja	22,76			76,16	3,44				83.35	0.00
17	1.429	1.438	52,8	Ja	25,70	103,1	3,01	74,15	2,73				80,41	0,00

Summe 31,93

Schallkritisches Gebiet: I Tannenhof

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA, Ref.	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	1	3.048	3.052	5,9	Nein	11,72	100,0	3,01	80.69				0,00	91,29	0.00
ı	2	2.913	2.918	17,1	Nein	15,36	103,0	3,01	80,30		100	0,00		90.65	0.00
	3	2.728	2.732	11,8	Nein	16,29	103,0	3,01	79,73			0.00		89.72	0.00
	4	2.531	2.535	15,4	Nein	17,31	103,0	3,01	79.08	0.00	50.00	0.00		88.70	
ı	5	2.354	2.359	18,4	Nein	18,27	103,0	3,01	78,45			0,00	-,	87,74	0.00
ı	6	2.226	2.232	21,5	Nein	17,00	101,0	3,01	77,97			0.00		87.01	0.00
	7	2.037	2.043	25,0	Nein	18,12	101,0	3,01	77.21			0.00		85.89	0.00
ı	8	1.836	1.842	25,2	Ja	19,87	101,0	3,01	76,31	100	(2)	0.00		84,14	0,00
ı	9	1.680	1.686	23,4	Ja	22,95	103,0	3,01	75,54	3,20	4.32	0.00		83.06	0,00
ı	10	1.497	1.504	34,0	Ja	24,58	103,0	3,01	74,55	2,86				81.43	0.00
ı	11	1.398	1.405	41,3	Ja	25,59	103,0	3,01	73,96			0,00		80.41	0.00
ı	12	1.361	1.368	38,3	Ja	25,85	103,0	3,01	73,72			0,00		80,16	0.00
ı	13	1.178	1.188	56,5	Ja	31,09	106,0	3,01	72,50	2,26				77,92	0,00
ı	14	1.568	1.574	37,6	Ja	24,20	103,1	3,01	74,94	2,99				81,91	0,00
ı	15	1.435	1.444	47,7	Ja	25,51	103,1	3,01	74,19	2,74	3,66	0,00		80,60	0.00
	16	1.167	1.175	46,5	Ja	28,04	103,1	3,01	72,40			0,00		78.07	0.00
ı	17	1.266	1.271	37,5	Ja	26,83	103,1	3,01	73,08	2,41				79,28	0,00
													200000000000000000000000000000000000000		000000000000000000000000000000000000000

Summe 36,70

Schallkritisches Gebiet: J Freisen NO

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
e/ii	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.514	1.522	25,8	Ja	21,26	100,0	3,01		2,89				81.75	
2	1.471	1.482	37,2	Ja	24,85	103,0	3,01	74,41	2,81				81.16	-,
3	1.469	1.478	30,8	Ja	24,74	103,0	3,01	74,39		3.5		3.0	81.27	0.00
4	1.431	1.440	31,2	Ja	25,07	103,0	3,01	74,16				-,	80.94	0.00
5	1.389	1.398	30,2	Ja	25,40	103,0	3,01	73,90	2,65	4,05	0.00	0.00	80.61	0.00
6	1.222	1.233	40,7	Ja	25,20	101,0	3,01	72,81	2,34	3.66	0.00	0.00	78,81	0.00
7	1.224	1.236	39,0	Ja	25,13			72,83				1004.2.5.	78.88	0.00
8	1.282	1.292	38,8	Ja	24,58	101,0	3,01	73,21	2,45	3.76	0.00		79,43	0.00
9	1.256	1.265	33,3	Ja	26,69	103,0	3,01	73,03					79.32	0.00
10	1.302	1.312	33,8	Ja	26,26	103,0	3,01	73,34	2,49				79.74	0.00
11	1.241	1.252	38,4	Ja	26,96	103,0	3,01	72,94	2,37				79.05	0.00
12	1.156	1.166	38,1	Ja	27,81	103,0	3,01	72,32	2,21				78,20	0,00

Schallkritisches	Gebiet:	M	Eckersweiler	S

WEA

Nein Abstand Schallweg Mittlere Höhe Sichtbar Beurteilungspegel LWA,Ref. Dc Adiv Aatm Agr Abar Amisc Cmet [m][dB(A)][m][dB] [m] [dB(A)] [dB][dB] [dB] [dB] [dB] [dB] [dB] 1.431 1 436 100,0 3,01 74,14 7.6 Nein 2,73 4,80 0,00 0,00 81,67 0.00

03.12.2003 11:46 / 6

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle

+49 (0)5226 593 556

Berechnet: 03.12.2003 11:32/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Vorbelastung)

ı	WEA														
ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	2	1.373	1.380	23,8	Nein	24,79	103.0		73.80		4,80		0.00	81.22	0,00
ı	3	1.276	1.281	24,8	Nein	25,62	103,0	3.01	73,15	2,43			200		0.00
ı	4	1.276	1.282	29,9	Nein	25,62	103,0	3,01	73,16			0,00		80.39	0.00
ı	5	1.332	1.338	33,6	Nein	25,14	103,0	3,01	73,53					80.87	0.00
ı	6	1.520	1.525	33,8	Nein	21,64	101,0	3,01	74,67			0.00		82.37	0.00
ı	7	1.601	1.606	37,9	Nein	21,04	101,0	3,01	75,11	3,05	4,80	0.00		82.97	0.00
ı	8	1.687	1.691	41,1	Nein	20,43	101,0	3,01	75,56	3,21	4,80	0,00		83.58	0.00
ı	9	1.840	1.844	36,4	Nein	21,39	103,0	3,01	76,31	3,50	4,80	0,00	0,00	84.62	0,00
ı	10	1.986	1.989	40,7	Nein	20,46	103,0	3,01	76,97	3,78	4,80	0,00	0,00	85.55	0.00
ı	11	2.166	2.169	36,4	Nein	19,36	103,0	3,01	77,73	4,12	4,80	0,00	0,00	86.65	0,00
ı	12	2.345	2.348	28,4	Nein	18,34	103,0	3,01	78,41	4,46	4,80	0,00	0,00	87,67	0,00
ı	13	2.516	2.519	38,5	Nein	20,40	106,0	3,01	79,03	4,79	4,80	0,00	0,00	88,61	0,00
ı	14	1.616	1.620	57,1	Nein	23,04	103,1	3,01	75,19	3,08	4,80	0,00	0,00	83,07	0,00
ı	15	1.815	1.820	64,6	Nein	21,65	103,1	3,01	76,20	3,46	4,80	0,00	0,00	84,46	0,00
1	16	2.009	2.012	56,2	Nein	20,41	103,1		77,07	3,82	4,80	0,00	0,00	85,70	0,00
1	17	1.947	1.949	54,6	Nein	20,81	103,1	3,01	76,79	3,70	4,80	0,00	0,00	85,30	0,00

Summe 34,73

Schallkritisches Gebiet: N Reichweiler

10	V		
A	v	ᅜᄊ	

Nein			Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.479	1.497	-,-	Nein		100,0	3,01				0.00			
2	1.580	1.599	-0,7	Nein	23,09	103,0	3,01	75,08	3.04	4.80	0,00		82.92	0.00
3	1.718	1.733	-6,0	Nein	22,14	103,0	3,01	75.77			0.00		83.87	0.00
4	1.897	1.911	-7,0	Nein	20,96	103,0	3,01	76.62	3,63				85,05	10 Miles
5	2.068	2.081	-9,1	Nein	19,89	103,0	3,01	77,36					86.12	
6	2.228	2.241	-13,9	Nein	16,95	101,0	3.01	78,01	4,26				87.06	-,
7	2.407	2.419	-15,2	Nein	15,94			78,67	4,60				88.07	0.00
8	2.594	2.604	-18,4	Nein	14,95			79,31	4,95		-,		89.06	0.00
9	2.763	2.771	-26,5	Nein	16,09			79,85		200	0.00		89.92	0.00
10	2.949	2.958	-24,4	Nein	15,17			80,42					90.84	
11	3.096	3.104	-28,8	Nein	14,47			80.84	5,90				91.54	0.00
12	3.221	3.228	-33,9	Nein	13,90	103,0	3,01	81,18	6,13			650	92.11	0.00
13	3.430	3.438	-25,2	Nein	15,95			81,73	6,53				93.06	0,00
14	2.881	2.889	-2,5	Nein	15,60	103,1	3.01	80,22	5,49				90.51	0.00
15	2.971	2.981	1,8	Nein	15,16	103,1	3,01	80,49	5,66				90,95	0,00
16	3.270	3.278	-6,6	Nein	13,77	103,1		81,31	6,23				92,34	0.00
17	3.353	3.358	-10,6	Nein	13,41	103,1	3,01	81,52	6,38			2275.31.22	92,70	0.00

Summe 30,46

Schallkritisches Gebiet: O Grasbach

A	FA
AΑ	ဋ

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	3.229	3.234	26,3	Ja	11,15	100,0	3,01	81,19			0.00	227		
2	3.092	3.099	38,7	Ja	14,92	103,0	3,01	80,83	5,89	4.37	0,00		91.09	-,
3	2.880	2.886	35,1	Ja	15,93	103,0	3.01	80.21	30.00 D. D.		0.00	200	90.08	0.00
4	2.700	2.707	38,9	Ja	16,91	103,0	3.01	79.65	5.14	4.31	0.00		89.10	-,
5	2.562	2.569	41,3	Ja	17,68	103,0	3.01	79.20	4.88	4.25	0.00		88.33	0.00
6	2.573	2.581	39,7	Ja	15,60	101,0	3,01	79,23		,	0.00		88.41	0.00
7	2.437	2.445	41,2	Ja	16,38	101,0	3,01	78,77	4,65	4.22	0.00		87.63	0.00
8	2.282	2.290	38,5	Ja	17,24	101,0	3.01	78.20	4.35	4.22	0.00	,	86.77	0.00
9	2.245	2.252	30,9	Ja	19,35	103,0	3.01	78,05	60,000,000	1000	0.00		86.66	0.00
10	2.172	2.179	33,4	Ja	19,83			77.77	4.14		100		86.18	0.00
11	2.242	2.249	28,1	Ja	19,32	103.0	3.01	78.04	0.00		0.00		86.69	0.00
12	2.368	2.375	19,5	Ja	18,46			78.51		,	0.00		87,55	0.00
13	2.335	2.343	37,3	Ja	21,91	106.0	3.01	78.40	4.45	171.000			87.10	0.00
14	1.665	1.674	50,8	Ja	23,69	103,1	3,01	75,48	3,18		-,	,	82,42	0.00

Projekt: Fohren-Linden

03.12.2003 11:46 / 7 Lizensierter Anwender:

EEG Energie Expertise GmbH

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

03.12.2003 11:32/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Vorbelastung)

WEA Nein 15 16 17	Abstand [m] 1.825 1.556 1.194	Schallweg [m] 1.836 1.567 1.204	[m] 58,5	Ja Ja	24,53	LWA,Ref. [dB(A)] 103,1 103,1	3,01 3.01	[dB] 76,28 74,90	[dB] 3,49 2,98	[dB] 3,71 3,70	[dB] 0,00 0,00	0,00	A [dB] 83,47 81,58 78,28	0,00
-------------------------------	---	---	-------------	----------	-------	---------------------------------------	--------------	------------------------	----------------------	----------------------	----------------------	------	--------------------------------------	------

33,27 Summe

WindPRO version 2.3.0.211 Feb 2003 Fohren-Linden Ausdruck/Seite 03.12.2003 11:46 / 1 EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556 03.12.2003 11:32/2.3.0.211 **DECIBEL - Fohren-Linden TK25** Berechnung: Schallimmissionsberechnung (Vorbelastung) Datei: Berschweiler.bmi Enzel Raume hell il. Birken 10ⁿ Birken Eckersweiler Reichweiler 500 750 1000m Karte: Berschweiler , Druckmaßstab 1:25.000, Kartenzentrum GK Zone: 2 Ost: 2.592.132 Nord: 5.492.428 Existierende WEA Schallkritisches Gebiet Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt 45 dB(A)

03.12.2003 11:43 / 1 Lizensierter Anwender:

EEG Energie Expertise GmbH

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

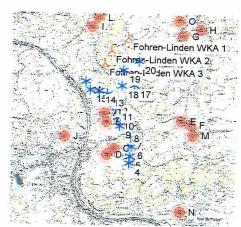
03.12.2003 11:31/2.3.0.211

DECIBEL - Hauptergebnis

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm "ISO 9613-2 Acoustics - Attenuation of sound during propagation outdoors"


Windgeschwindigkeit in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischer Dämpfungskoeffizient, C0: 0,0 dB

Die derzeit gültigen Immissionsrichtwerte richten sich nach der TA-Lärm jeweils für die entsprechenden Nachtwerte:

Industriegebiet: 70 dB(A) Gewerbegebiet: 50 dB(A) Dorf- und Mischgebiet: 45 dB(A) Allgemeines Wohngebiet: 40 dB(A) Reines Wohngebiet: 35 dB(A) Kur- und Feriengebiet: 35 dB(A)

Liegen Einzeltöne (Ton-/Impulshaltigkeit) bei einzelnen WEA vor, wird für die WEA ein Zuschlag je nach Auffälligkeit von 0 dB, 3 dB oder 6 dB angesetzt.

Maßstab 1:75.000

* Existierende WEA Schallkritisches Gebiet

WEA

ı	GK Zone: 2	2			WEA T	vn									
ı	Ost	Nord	Z	Reihendaten/		Hersteller	Тур	Leistung	Datard	Fig. :	Schallwe				
ı				Beschreibung		riorotolici	1 9 1	Leistung	Rotord.	Hone	Kreis- Erzeuger	Name	LWA,Ref.	Einzeltöne	Oktavbandabh.
ı			[m]					[kW]	[m]	[m]	radius				Daten
ı	1 2.592.018	5.494.096	507	Fohren-Linden WKA 1	Ja	NORDEX	N90	2.300	90,0	105,0	[m] 453,5 USER	D	[dB(A)]		
ı	2 2.591.666	5.493.810	527	Fohren-Linden WKA 2	Ja	NORDEX	N90	2.300	90,0	105,0	USER	Benutzerdefiniert	105,6		Nein
ı	3 2.591.540	5.493.528	536	Fohren-Linden WKA 3	Ja	NORDEX	N90	2.300	90,0	105,0	308,0 USER	Benutzerdefiniert	105,6		Nein
ı	4 2.592.147				Nein	VESTAS	V27	225/50	27.0	31,5	USER	Benutzerdefiniert	105,6		Nein
ı	5 2.592.149				Nein	VESTAS	V44	600	44.0	53,0	USER	Benutzerdefiniert Benutzerdefiniert	100,0	0.000000	Nein
ı	6 2.592.189				Nein	VESTAS	V39	500	39.0	53.0	USER	Benutzerdefiniert	103,0	Nein	Nein
ı	7 2.592.162				Nein	VESTAS	V39	500	39,0	53,0	USER	Benutzerdefiniert	103,0 103,0	Nein	Nein
ı	8 2.592.108 5 9 2.591.926 5				Nein	VESTAS	V39	500	39,0	53,0	USER	Benutzerdefiniert	103,0	Nein Nein	Nein
ı	10 2.591.875				Ja	DEWIND	D4/48	600	48,0	60,0	USER	Benutzerdefiniert	101,0	Nein	Nein Nein
ı	11 2.591.843 5					DEWIND	D4/46	600	46,0	60,0	USER	Benutzerdefiniert	101,0	Nein	Nein
ı	12 2.591.727 5	5.492.500	572	WKA 14		DEWIND	D4/46	600	46,0	70,0	USER	Benutzerdefiniert	101.0	Nein	Nein
ı	13 2.591.641 5					NORDTANK		500	41,0	50,0	USER	Benutzerdefiniert	103.0	Nein	Nein
ı	14 2.591.472 5					NORDTANK		500		50,0	USER	Benutzerdefiniert	103.0	Nein	Nein
	15 2.591.284 5					NORDTANK		500		50,0	USER	Benutzerdefiniert	103.0	Nein	Nein
	16 2.591.182 5					NORDTANK	h1144 500104	500		50,0	USER	Benutzerdefiniert	103,0	Nein	Nein
	17 2.592.210 5	5.493.064	536	State of the state	Nein	NEG MICON SÜDWIND	NM1500/64 S-77			80,0		Benutzerdefiniert	106,0	Nein	Nein
	18 2.591.950 5	5.493.052	551			SÜDWIND	S-77	1.500		85,0		Benutzerdefiniert	103,1	Nein	Nein
	19 2.591.975 5	5.493.390	540 I	Berschweiler WKA3		SÜDWIND	S-77	1.500 1.500		100,0		Benutzerdefiniert	103,1	Nein	Nein
	20 2.592.293 5	.493.587	511 I			SÜDWIND	S-77	1.500		85,0		Benutzerdefiniert	103,1	Nein	Nein
ı.	_						3-77	1.500	77,0	85,0	USER	Benutzerdefiniert	103,1	Nein	Nein

Neue WEA

Berechnungsresultate

Beurteilungspegel

Cala III . iii									
Schallkritisches Gebiet	GK Zone:	2		Anforde	rungen	Beurteilungspegel	Anforde	riinaen e	rfüllt2
Nein Name	Ost	Nord	Z	Schall	Abstand		Schall		Gesamt
			[m]	[dB(A)]	[m]	[dB(A)]	Ochali	Austanu	Gesami
A Plaßwicher Hof		5.492.447	560	45.0			Nein	Ja	Main
B Reckersberger Hof	2.591.603	5.492.252	562	45,0	200	, -	Nein		Nein
C Leitzbacher Hof		5.491.685		45.0	200	,.	Nein	Ja	Nein
D Trautzberger Hof		5.491.552		45.0	200			Ja	Nein
E Eckersweiler NW		5.492.307		45.0	200	,0	Ja	Ja	Ja
F Eckersweiler Mitte	2.593.372			45,0	200	38,4	Ja	Ja	Ja
G Berschweiler SW	2.593.168			45,0		36,5	Ja	Ja	Ja
H Berschweiler Mitte	2.593.533				200	37,0	Ja	Ja	Ja
I Tannenhof	2.591.250			45,0	200	34,2	Ja	Ja	Ja
J Freisen NO			480	45,0	200	43,1	Ja	Ja	Ja
K Zollhaus	2.590.731			45,0	200	38,1	Ja	Ja	Ja
L Birkenhof	2.592.882		480	45,0	200	41,6	Ja	Ja	Ja
	2.591.380		469	45,0	200	41,9	Ja	Ja	Ja
M Eckersweiler S	2.593.436		510	45,0	200	35,2	Ja	Ja	Ja
N Reichweiler	2.593.210		400	45,0	200	30,8	Ja	Ja	Ja
O Grasbach	2.593.086	5.494.480	440	45,0	200	36,3	Ja	Ja	Ja

WindPRO version 2.3.0.211 Feb 2003

Fohren-Linden

03.12.2003 11:43 / 2

Lizensierter Anwender

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

03.12.2003 11:31/2.3.0.211

DECIBEL - Hauptergebnis

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

Abstände (m)

1198 1716 1871 1621

Schallkritisches Gebiet WEA D Ε M N 2422 2574 2134 2303 1151 1528 1713 1890 796 2521 1092 752 2522 3920 1135 2129 2258 2134 2323 1539 1367 1560 646 2102 741 2524 1977 2045 2244 1742 2136 829 1793 1346 2428 3580 1486 2939 1514 2166 3196 1431 1479 524 1289 1409 2805 3091 2032 3059 595 1140 1280 2595 2885 2728 1276 1718 664 1081 1244 2422 2724 2294 2608 1332 2068 2562 699 1260 1503 2201 1464 2186 1601 2407 883 1037 1565 2063 2419 1836 1282 1708 2047 1680 1256 1369 1834 1840 2763 609 1183 1307 1841 1997 1986 2949 685 1279 1816 2022 2091 2476 1398 1241 1573 2166 761 1355 1432 2000 2205 2236 1554 2345 3221 972 1565 1637 2160 2366 2232 2625 1178 1282 1380 2516 3430 900 1014 1443 1621 1446 1808 1653 1616 2881 872 1377 1534 1438 1641 1638 2014 1435 1658 1005 1551 1815 2971

1803 1167

908 1254 2009 3270

610 1287 1947 3353

1814 1413

20 1358 1503 1968 2141 1558 1732 1039 1429 1266 2279

03.12.2003 11:43 / 1 Lizensierter Anwender:

EEG Energie Expertise GmbH

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

03.12.2003 11:31/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

Voraussetzungen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

die Dämpfung aufgrund von Luftabsorption

die Dämpfung aufgrund des Bodeneffekts

Abar:

die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsresultate

Schallkritisches Gebiet: A Plaßwicher Hof

w	FΔ
•••	

ivein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
1	1.713	1.713		Nein	24,88	105,6					0,00		83.73	
2	1.367	1.369	1 -	Nein	27,48			73,73	,		0,00		81.13	0.00
3	1.081	1.084	, .	Ja	31,07			71,70			0,00		77.54	
4	1.211	1.213	22,7	Ja	23,87			72,68		4,15		50.00	79.14	-,
5	1.090	1.094	33,7	Ja	28,41			71,78		3,74			77.60	0.00
6	948	950	23,2	Ja	29,69			70,56			0.00	1000	76.32	
7	789	792	21,9	Ja	31,68			68,98		3,84		-,	74,32	-,
8	647	650	22,4	Ja	33,90			67,27		3,60			72,11	0.00
9	456	462	28,3	Ja	36,17			64,30		2,64			67,82	0,00
10	331	339	29,6	Ja	40,02			61.63		N			63,96	
11	312	319	34,9	Ja	41,40			61,10	0,61		-,		62.59	0,00
12	300	305	24,1	Ja	42,72			60,72					63,27	0,00
13	421	426	22,1	Ja	38,63			63,59	0,81					0,00
14	484	488	25,4	Ja	37,32			64,78		2,90		100.00	67,37	0,00
15	565	568	28,4	Ja	35,79			66,09		3,05			68,68	0,00
16	776	780	37,1	Ja	35,53			68,85		3,15			70,21	0,00
17	900	902	35,9	Ja	30,87			70,10		3,42			73,48	0,00
18	722	728	39,7	Ja	33,57	103,1				2,90			75,24	0,00
19	1.032	1.034	29,3	Ja	29,03	103,1				3,82			72,53	0,00
20	1.358	1.358	29,8	Nein	25,07	103,1							77,08	0,00
			_0,0	. 10111	20,07	103,1	5,01	13,00	2,58	4,80	0,00	0,00	81,04	0,00

Summe 48,99

Schallkritisches Gebiet: B Reckersberger Hof

INEIII	Abstand			Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.890	1.891	35,6	Ja	24,33	105.6	3.01	76,53	3 59		0,00		84.28	
2	1.560	1.561	34,1	Ja	26,72			74,87			0.00	,	81.88	-,
3	1.278	1.280	34,8	Ja	29,17			73,15			0,00	-,	79.44	
4	1.018	1.020	24,8	Ja	25,94			71.17			0.00	-,	77.07	
5	902	906	36,3	Ja	30,73			70.15	, -		0.00			-,
6	776	779		Ja	32,11								75,28	-,
7	638		,-		The second secon			68,83	. ,		0,00	0,00	73,90	0,00
,		642	,-	Ja	34,14	103,0	3,00	67,15	1,22	3,49	0,00	0.00	71,86	0.00
8	524	528	23,5	Ja	36,31	103.0	3.00	65.45			0,00		69.69	
9	330	338	29.0	Ja	40.02			61.59	0,64				63,97	-,
10	294	303	29,4	Ja	41,44			60.65						0,00
11	395	401	31.9						-,				62,54	0,00
(,0,0,0)				Ja	38,19			63,06	0,76	1,97	0,00	0,00	65,80	0.00
12	458	462	28,7	Ja	38,23	103,0	3.00	64,29	0,88	2.60	0.00	0.00	67.77	0.00
13	609	612	28,1	Ja	34.92			66.73	1,16				71.09	-,
14	685	688	30,4	Ja	33.69			67.75					,	0,00
-		000	50,4	Ja	33,09	103,0	3,01	01,15	1,31	3,26	0,00	0,00	72,32	0,00

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:31/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

ı	WEA														
ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	I WA Ref	Dc	Adiv	A atm	۸	۸ ۱۰			_
ı		[m]	[m]	[m]		[dB(A)]							Amisc		Cmet
ı	15	761	763	34,2	Ja		[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	16	972	975	43.0		32,66	103,0	3,01	68,66	1,45	3,24	0,00	0,00	73,35	0,00
ı	17	1.014			Ja	33,10	106,0	3,01	70,78	1,85	3,27	0,00	0.00	75.91	0.00
ı	(0.75)		1.015	39,3	Ja	29,58	103,1	3,01	71,13	1.93	3.46	0.00	100.		0.00
ı	18	872	876	45,1	Ja	31,57	103.1	3.00	69,85	1.67	3.02	0.00			0.00
ı	19	1.198	1.199	34,6	Ja	27,45	103 1	3.01	72,58	2 28	3 91	0,00			
ı	20	1.503	1.503	33.9	Ja	24.69									0,00
П				00,0	ou	27,03	103, 1	3,01	74,54	2,86	4.02	0.00	0.00	81 42	0.00

Summe 47,88

Fohren-Linden

Schallkritisches Gebiet: C Leitzbacher Hof

٧	٧	EA

	•													
Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
140	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.422	2.423	35,9	Nein	20,52	105,6				4,80			88.09	-
2	2.129	2.130	34,9	Ja				77,57		4,24				-,
3	1.860	1.861	36,1	Ja				76,40				,	85,85	517.5
4	465	470		Ja				64,44			0,00		84,07	
5	393	402		Ja	39,55					3,82		-,	69,15	6237460.67
6		412	,.					63,09		2,59			66,44	0,00
7	456	461	,.	Ja	39,09			63,31		2,81		0,00	66,90	0,00
8	535		25,0	Ja	37,97			64,27	0,88	2,89	0,00	0,00	68,03	0.00
9		539	27,7	Ja	36,35	103,0	3,00	65,63	1,02	2,99	0,00	0.00	69.65	0.00
	517	523	35,7	Ja	35,24	101,0	3,00	65,37	0,99	2,40	0,00	0.00	68.76	0.00
10	686	690	33,6	Ja	31,81	101,0	3,00	67.78			0,00		72,19	0.00
11	883	886	30,0	Ja	28,75	101.0	3.01	69,95			0,00		75.25	0.00
12	1.010	1.012	28,4	Ja	29,16			71,10			0,00		76.85	
13	1.183	1.185	31,4	Ja	27,40			72,47			0,00	(5)		0,00
14	1.279	1.280	34,1	Ja	26,55			73,15				1 -9.0	78,61	0,00
15	1.355	1.356	38,7	Ja	25,97				2,43				79,46	0,00
16	1.565	1.567	48,5	Ja	27,40			73,65	2,58			10000	80,04	0,00
17	1.443	1.444	35,6					74,90			0,00		81,61	0,00
18	1.377	1.380		Ja	25,22	103,1			2,74			0,00	80,89	0,00
19	1.716	1.717	43,4	Ja	25,97	103,1			2,62			0,00	80,13	0,00
20	1.968		34,0	Ja	23,03	103,1			3,26	4,12	0,00	0,00	83,07	0.00
20	1.908	1.969	31,2	Nein	20,68	103,1	3,01	76,88	3,74	4.80	0.00	0.00	85.42	0.00

Summe 46,04

Schallkritisches Gebiet: D Trautzberger Hof

	 8
w	 ١.

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA.Ref.	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.574	2.574	32,9	Nein		105,6			4,89					
2	2.258	2.259	34,3	Ja	21,96			78,08		4,28			86.65	
3	1.977	1.979	37,9	Ja	23,77			76,93		4,14			84,83	
4	546	551	11,7	Ja	32,08			65,82		4,05			70.93	
5	524	532	24,7	Ja	36,30			65,52			0,00	-,	69.70	-,
6	595	599	22,7	Ja	34,83			66,56			0.00		71.17	
7	664	668	25,9	Ja	33,79			67,50			0,00	-,	72,21	0,00
8	739	743	29,8	Ja	32,77	103,0		68,42			0,00	,	73.23	
9	699	703	39,1	Ja	31,86	101,0					0,00	100000000000000000000000000000000000000	72,14	
10	850	854	37,3	Ja	29,47	101,0		69,63			0,00		74.54	0.00
11	1.037	1.039	33,9	Ja	27,03			71,34				5.45.00	76,98	0.00
12	1.145	1.147	31,9	Ja	27,80			72.19			0.00	,	78,21	0,00
13	1.307	1.309	34,4	Ja	26,29			73,34			0,00		79.72	0.00
14	1.380	1.382	39,1	Ja	25,75	103,0	45.4536 53	73,81			0,00		80.26	0,00
15	1.432	1.433	43,3	Ja	25,40			74,13	2,72				80,61	0,00
16	1.637	1.639	53,4	Ja	26,92			75.29	3,11				82,09	0,00
17	1.621	1.622	33,6	Ja	23,74			75,20	3,08				82.37	0,00
18	1.534	1.537	44,1	Ja	24,64			74,73	2,92				81.47	0.00
19	1.871	1.872	33,3	Ja	21,92	103,1		76,45	3,56		0,00		84.19	0,00
20	2.141	2.142	27,9	Nein	19,63	103,1	2000	77.62		4.80	0.00		86.48	
					100 M TO TO	.00,1	0,01	,02	4,07	7,00	0,00	0,00	00,40	0,00

03.12.2003 11:43 / 3

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:31/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

Summe 42,93

Schallkritisches Gebiet: E Eckersweiler NW

١	A	,	_	,	١
	Α	1		•	٩

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA.Ref.	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.134	2.136	66,7	Ja	23,23			77,59			0.00		85,38	
2	2.134	2.137	61,0	Ja	23,13			77,59			0,00		85,47	0,00
3		2.049	57,7	Ja	23,65			77,23			0,00		84.96	0,00
4		1.385	22,2	Ja	22,30			73,83			0.00		80,71	0,00
5		1.296	37,2	Ja	26,49	103,0					0,00	-,	79,52	0,00
6		1.146	36,0	Ja	27,94		000000000000000000000000000000000000000	72.18			0,00		78.07	0,00
7	1.081	1.087	41,6	Ja	28,74			71,72	2,07			,	77.27	0,00
8	1.090	1.096	43,5	Ja	28,71			71,79	2,08				77,30	0.00
9	1.260	1.266	44,1	Ja	24,96			73.05	2,40				79.05	0.00
10		1.312	47,8	Ja	24,61			73,36	2,49				79,40	0.00
11	1.362	1.367	50,3	Ja	24,17			73,71	2,60				79.84	0.00
12	1.504	1.507	44,5	Ja	24,80			74,56	2,86			0.274	81,21	0.00
13	1.635	1.639	47,4	Ja	23,80			75,29	3,11				82,21	0,00
14	1.816	1.820	42,4	Ja	22,35			76,20	3,46				83,66	0.00
15	2.000	2.003	34,0	Ja	20,96			77.03	3,80				85,05	0.00
16	2.160	2.164	43,5	Ja	23,08	106,0			4,11		0.00		85.93	0.00
17	1.231	1.235	63,5	Ja	27,90			72,83	2,35				78.21	0,00
18	1.438	1.444	69,6	Ja	26,03	103,1			2,74				80.08	0.00
19	1.621	1.624	61,5	Ja	24,32	103,1	The second second	75,21	3,09				81.79	0.00
20	1.558	1.560	59,8	Ja	24,80			74,86	2,96				81.30	0.00

Summe 38,37

Schallkritisches Gebiet: F Eckersweiler Mitte

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA.Ref.	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	2.303	2.305	60,0	Ja		105,6					0,00		86,55		
2	2.323	2.326	55,5	Ja	21,87	105,6	(C. A.) (C.)				0,00		86.74		
3	2.244	2.247	52,1	Ja	22,30			78,04	.,		0,00		86.31	0,00	
4	1.486	1.490	12,3	Nein	20,90			74,47					82,10		
5	1.409	1.415	27,5	Ja	25,16			74,02					80,84	. ,	
6	1.280	1.285	26,7	Nein	25,58			73,19			0.00		80.43	0.00	
7	1.244	1.249	32,5	Ja	26,79			72,94					79.22	0.00	
8	1.269	1.275	35,0	Ja	26,61			73,12					79,39	0.00	
9	1.447	1.452	35,7	Ja	23,05			74,24			0.00	555 S S S S S S S S S S S S S S S S S S	80.96	0.00	
10	1.503	1.508	40,1	Ja	22,68			74,57	2,87			,	81,32	0,00	
11	1.565	1.569	42,9	Nein	21,31			74,92	2,98				82,70	0.00	
12	1.708	1.711	37,6	Nein	22,29			75,67	3,25				83,72	0.00	
13	1.841	1.844	41,0	Nein	21,38			76,32	3,51				84.62	0,00	
14	2.022	2.025	36,3	Nein	20,23		and the same	77,13	3,85				85.78	0,00	
15	2.205	2.208	28,0	Nein	19,13			77.88	4,20				86.88	0.00	
16	2.366	2.369	37,7	Nein	21,21			78,49	4,50				87.80	0,00	
17	1.429	1.433	56,9	Ja	25,82			74,13	2,72				80.29	0,00	
18	1.641	1.647	62,8	Ja	24,15	103,1	3,01	75,34	3,13				81,96	0,00	
19	1.814	1.817	56,1	Ja	22,72	103,1	3,01	76,19	3,45				83.39	0.00	
20	1.732	1.734	53,0	Ja	23,28			75,78	3,29				82.83	0.00	

Summe

Schallkritisches Gebiet: G Berschweiler SW

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA.Ref.	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Δ	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]		[dB]				[dB]	[dB]
1	1.151	1.162		Ja	31,04	105,6	3,01					0,00		
2	1.539	1.550	.,.	Ja	27,21	105,6								0.00
3	1.742	1.752	,_		25,51	105,6	3,01	75,87	3,33	3,90	0,00	50.00.00.00		0.00
4	2.939	2.944	25,2	Nein	12,24	100,0	3,01	80,38	5,59	4,80	0,00		90.77	

03.12.2003 11:43 / 4

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:31/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

ı	WEA															
ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmat	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	Cmet	
ı	5	2.805	2.812	37,1	Ja		103.0				4,35		0.00		[dB]	
ı	6	2.595	2.602	33,2	Ja	17,40		-,-	79,31			0,00		88,61	0,00	
ı	7	2.422	2.429	34,7	Ja	18.37			78,71			0,00	,	87,64	0,00	
ı	8	2.294	2.301	36,6	Ja	19,14			78,24			0.00		86,87		
ı	9	2.323	2.331	37,1	Ja	16,97			78,35			0,00	,	87,04	0,00	
ı	10	2.201	2.210	39,6	Ja	17,74			77,89		4,19			86,27		
ı	11	2.063	2.071	37,0	Ja	18,56	101,0				4,19			85.44	0,00	
ı	12	2.047	2.054	27,1	Ja	20,51			77.25		4,35			85.50	0,00	
ı	13	1.997	2.006	29,6	Ja	20,86			77,05		4.29	0.00		85.15	0.00	
ı	14	2.091	2.098	26,0	Ja	20,21			77,44	3,99				85.80	0.00	
ı	15	2.236	2.242	16,8	Ja	19,19			78.01	4,26				86,82	0,00	
ı	16	2.232	2.240	29,8	Ja	22,40	106.0	335- 1 3.31.11				0,00			0,00	
ı	17	1.446	1.456	47,6	Ja	25,40	103,1		74.26	2,77				80.71	0.00	
ı	18	1.638	1.650	53,8	Ja	23,94	103,1			3,14		0.00	,	82,17	0.00	
ı	19	1.413	1.423	46,8	Ja	25,67	103.1		74.07	2,71		0.00		80,44	0.00	
ı	20	1.039	1.049	44,9	Ja	29,38			71,42	1,99				76,73	0,00	

Summe 37,01

Schallkritisches Gebiet: H Berschweiler Mitte

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Δhar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.528	1.539	67,0	Ja		105,6				3,30				
2	1.930	1.940	61,4	Ja	24,46		100000000000000000000000000000000000000	76,75	V 1 - 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	3,71		-,	84.15	
3	2.136	2.146	55,7	Ja	22,99	105,6					0.00	-,	85,62	
4	3.219	3.225	33,3	Ja	11,27			81,17			0.00	-,	91,74	
5	3.091	3.098	45,2	Ja	15,00			80,82			0.00	-,	91.01	0,00
6	2.885	2.892	41,1	Ja	15,98			80,22			0,00	-,	90.03	
7	2.724	2.731	43,7	Ja	16,85			79,72			0.00		89,16	0.00
8	2.608	2.616	45,6	Ja	17,49			79,35			0.00		88,52	
9	2.655	2.663	44,8	Ja	15,22			79,50			0,00		88,79	
10	2.545	2.554	47,7	Ja	15,86			79,14			0.00			0.00
11	2.419	2.427	46,6	Ja	16,56			78,70			0,00		87.45	0.00
12	2.415	2.422	37,6	Ja	18,46			78,68			0,00		87,55	
13	2.376	2.384	40,1	Ja	18,71			78,54	4,53				87.30	0,00
14	2.476	2.484	35,7	Ja	18,08			78,90	4,72				87.93	0,00
15	2.625	2.632	26,6	Ja	17,15			79,40	5,00				88.86	0,00
16	2.625	2.634	39,3	Ja	20,31			79,41	5,00				88.70	0.00
17	1.808	1.818	56,9	Ja	22,75	S 6000		76,19	3,45				83,36	0,00
18	2.014	2.025	63,8	Ja	21,42			77,12	3,85				84,69	0,00
19	1.803	1.813	55,4	Ja	22,76			76,16	3,44				83.35	0.00
20	1.429	1.438	52,8	Ja	25,70			74,15	2,73			V	80.41	0.00

Summe 34,19

Schallkritisches Gebiet: I Tannenhof

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	796	806	68,6	Ja	36,10	105,6	3.00	69,13			0.00		72,50	
2	646	663	75,1	Ja	39,07			67,42			0,00		69,53	
3	829	843	69,2	Ja	35,53			69,52			0.00	,	73.07	0.00
4	3.048	3.052	5,9	Nein	11,72			80,69					91,29	-,
5	2.913	2.918	17,1	Nein	15,36			TOTAL STREET				-,	90.65	
6	2.728	2.732	11,8	Nein	16,29			79,73					89.72	
7	2.531	2.535	15,4	Nein	17,31			79,08				. ,	88.70	-,
8	2.354	2.359	18,4	Nein	18,27			78,45			2200	-,	87.74	-,
9	2.226	2.232	21,5	Nein	17,00			77.97	4,24				87.01	0.00
10	2.037	2.043	25,0	Nein	18.12			77,21	3,88		CO. 100 100 100 100 100 100 100 100 100 10	0.000	85.89	0.00
11	1.836	1.842	25,2	Ja	19,87	101,0			3,50				84,14	0.00
						, .	-,	. 0,01	0,00	1,00	0,00	0,00	07,14	0,00

03.12.2003 11:43 / 5

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:31/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

ı	WEA															
ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA Ref	Dc	Adiv	Aatm	Δar	Ahar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	12	1.680	1.686	23,4	Ja	22,95			75,54			0.00	0.00	83,06		
ı	13	1.497	1.504	34,0	Ja	24,58			74,55					81,43		
ı	14	1.398	1.405	, -	Ja	25,59			73,96					80,41		
ı	15	1.361	1.368	,-	Ja	25,85			73,72				1.100.000.000.000	80,16		
ı	16	1.178	1.188	,-	Ja	31,09			72,50					77,92		
ı	17	1.568	1.574	37,6	Ja	24,20								81.91	0.00	
ı	18	1.435	1.444	47,7	Ja	25,51	103,1	3,01	74,19	2,74	3,66	0,00	0,00	80,60	0.00	
ı	19	1.167	1.175	46,5	Ja	28,04	103,1	3,01	72,40	2,23	3,43	0,00	0,00	78,07	0.00	
ı	20	1.266	1.271	37,5	Ja	26,83	103,1	3,01	73,08	2,41	3,78	0,00	0,00	79,28	0.00	

Summe 43,10

Schallkritisches Gebiet: J Freisen NO

Λ	J	F	Δ
4		_	•

N	ein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	2.521	2.525	14,2	Nein	19,97	105.6				4,80			88,64	
	2	2.102	2.108	27,5	Nein	22,33	105.6	3.01	77,47	S. 400000	4,80		-,	86,27	
	3	1.793	1.801	32,2	Ja	24,90			76,10			0,00		83.71	0.00
	4	1.514	1.522	,-	Ja	21,26			74,64			0.00		81,75	
	5	1.471	1.482		Ja	24,85			74,41			0,00	-,	81,16	
	6	1.469	1.478	,-	Ja	24,74	103,0	3,01	74,39			0,00	,	81,27	0.00
	7	1.431	1.440	,-	Ja	25,07			74,16			0,00		80.94	
	8	1.389	1.398	30,2	Ja	25,40	103,0	3,01	73,90			0.00		80,61	0.00
	9	1.222	1.233	40,7	Ja	25,20	101,0	3,01	72,81			0,00		78,81	0,00
	10	1.224	1.236	39,0	Ja	25,13	101,0	3,01	72,83	2,34	3,71	0,00		78,88	0.00
	11	1.282	1.292	38,8	Ja	24,58	101,0	3,01	73,21			0.00	200	79.43	0.00
	12	1.256	1.265	33,3	Ja	26,69	103,0	3,01	73,03	2,40	3,89	0,00		79,32	0,00
	13	1.302	1.312	33,8	Ja	26,26	103,0	3,01	73,34	2,49	3,91	0,00		79.74	0.00
	14	1.241	1.252	38,4	Ja	26,96	103,0	3,01	72,94	2,37				79.05	0.00
	15	1.156	1.166	38,1	Ja	27,81	103,0	3,01	72,32	2,21	3,67	0,00	0,00	78.20	0,00
	16	1.282	1.294	40,6	Ja	29,61	106,0	3,01	73,22	2,45	3,72	0,00	0,00	79,39	0,00
	17	1.865	1.871	22,1	Nein	21,32	103,1	3,01	76,44	3,55	4,80	0,00	2007	84,79	0.00
	18	1.658	1.668	34,4	Ja	23,42	103,1	3,01	75,44	3,17	4,09	0,00	0,00	82,69	0,00
	19	1.920	1.926	19,8	Nein	20,97	103,1	3,01	76,69	3,66	4,80	0,00		85,14	0.00
	20	2.279	2.282	7,9	Nein	18,81	103,1	3,01	78,16	4,33	4,80	0,00		87,30	0,00

38,05

Schallkritisches Gebiet: K Zollhaus

MAI	E A
AA	ᄄᄱ

Nein	Abstand		Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.092	1.099	55,7	Ja	31,65	105,6	3,01	71,82	2,09				76.96	
2	1.274	1.283	46,9	Ja	29,47	105,6	3.01	73,16			0,00		79.14	-,
3	1.346	1.355	45,8	Ja	28,76	105,6	3,01				0.00		79.84	0,00
4	2.166	2.171	26,5	Ja	16,77	100,0	3,01	77.73			0.00		86.24	0.00
5	2.032	2.039	38,8	Ja	20,80	103,0	3,01	77.19			0.00	-,	85.21	0.00
6	1.822	1.828	35,4	Ja	22,16	103,0	3,01	76,24			0,00		83,85	0,00
7	1.651	1.657	37,3	Ja	23,45			75,39			0.00		82,56	
8	1.527	1.534	39,5	Ja	24,46			74,72			0.00		81.55	0.00
9	1.570	1.578	38,3	Ja	22,09			74.96	3,00	1000	-,	-,	81.92	0.00
10	1.464	1.473	41,7	Ja	23,02	101,0	3,01	74,36	2,80				80.99	0.00
11	1.350	1.358	40,8	Ja	24,00			73,66	2,58				80.01	0.00
12	1.369	1.376	28,5	Ja	25,54			73,77	2,61				80,47	0,00
13	1.365	1.373	29,5	Ja	25,59	100000000000000000000000000000000000000	22 PH 12	73.75	2,61				80.42	0.00
14	1.497	1.504	26,5	Ja	24,41	103,0	3.01	74,55	2,86			50 m 50 m	81.60	0.00
15	1.670	1.676	18,9	Ja	22,93			75,48	3,18				83.08	0.00
16	1.726	1.733	30,2	Ja	25,74			75,78	3,29			100.00	83,27	0.00
17	764	776	47,6	Ja	33,16	103.1	CO. * CSES. (A)		1,48				72.95	0.00
18	1.005	1.019	55,3	Ja	30,09	103,1		71,16	1,94			- C	76.02	0.00
					7/	2 2 6 2		0.00	.,	_,	-,00	0,00	. 0,02	0,00

03.12.2003 11:43 / 6

Lizensierter Anwender:

EEG Energie Expertise GmbH

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:31/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

٦	A	_	
٠,	n	_	Δ

Nein	Abstand [m]	Schallweg [m]	Mittlere Höhe	Sichtbar	Beurteilungspegel [dB(A)]	LWA,Ref. [dB(A)]	Dc	Adiv	Aatm	Agr	Abar	Amisc	A	
19	908		10.5				լսեյ	[ub]	[db]	[dD]	[ab]	[dB]	[dB]	[dB]
19	900	918	49,5	Ja	31,17	103,1	3.01	70.26	1 74	2 93	0.00	0.00	74 04	0.00
20	610	620	40.0	1.0		, .	0,01	10,20	1,77	2,33	0,00	0,00	14,94	0,00
20	010	020	48,0	Ja	35,99	103.1	3.00	66.84	1.18	2 09	0.00	0.00	70 11	0.00

Summe 41,61

Schallkritisches Gebiet: L Birkenhof

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA.Ref.	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	752	764	72,0	Ja				68,67			0,00	•	71,64	0,00
2	741	758	70,6	Ja				68,59			0,00		71,59	
3	979	993	66,6	Ja				70.94			0.00		75.31	0.00
4	3.196	3.200	3,5	Nein				81,10			0,00		91.98	0,00
5	3.059	3.064	15,7	Nein				80,73			0,00		91.35	0.00
6	2.867	2.872	11,6	Nein				80,16			0,00		90.42	0,00
7	2.668	2.673	15,5	Nein	16,59		2014 11020	79,54			0,00		89.42	0.00
8	2.491	2.496	18,4	Nein	17,52			78,94					88.49	0.00
9	2.375	2.380	19,6	Nein	16,15			78,53	4,52				87,86	0,00
10	2.186	2.192	23,2	Nein				77,82	4,16				86.78	0.00
11	1.983	1.989	23,7	Ja	18,86		SEC. 100 AC	76.97	3,78				85.14	
12	1.834	1.840	19,9	Ja	21,79			76,30	3,50				84.22	0,00
13	1.656	1.663	29,8	Ja	23,25			75,42	3,16				82.76	0,00
14	1.573	1.580	38,5	Ja	24,07			74.98	3,00			V-0-18-0-19-0	81.94	0,00
15	1.554	1.561	41,7	Ja	24,29	3 DOMANN	200	74,87	2,97				81.72	0,00
16	1.380	1.391	59,1	Ja	29,17	106,0			2,64			10000	79.84	0,00
17	1.653	1.660	34,3	Ja	23,46	103,1			3,15		0.00		82.64	0,00
18	1.551	1.561	47,7	Ja	24,53	103,1			2,97				81,58	0,00
19	1.254	1.263	42,1	Ja	27,03	103,1			2,40				79.08	0,00
20	1.287	1.293	40,7	Ja	26,71	103,1			2,46		0,00		79,00	0,00

Summe 41,95

Schallkritisches Gebiet: M Eckersweiler S

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichthan	Beurteilungspegel	LMA Def	Da	۸ اند ۱	A -4				72	_
	[m]	[m]	[m]	Cicinbai	[dB(A)]	[dB(A)]	Dc [dB]	Adiv				Amisc		Cmet
1	2.522			Ja				[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
2		2.527	,-			105,6	M0000000000000000000000000000000000000	AL DOM: \$1.000 1.00		3,95			87,79	
3		2.432		Nein	,			79,05		4,80		, , , ,	88,65	
4				Nein	,		5204000 0	78,72		4,80			88,14	0,00
	0.01001000 50	1.436	.,-	Nein				74,14		4,80	0,00	0,00	81,67	0,00
5		1.380		Nein		103,0	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
6	1.276	1.281	24,8	Nein		103,0	3,01	73,15	2,43	4,80	0,00	0.00	80.39	
7	1.276	1.282	29,9	Nein	25,62	103,0	3,01	73,16			0,00		80,39	0,00
8	1.332	1.338	33,6	Nein	25,14	103.0	3.01	73,53			0,00	8.00	80,87	0,00
9	1.520	1.525	33,8	Nein	21,64			74.67	7.5		0,00		82.37	0.00
10	1.601	1.606	37,9	Nein				75,11			0,00		82,97	0,00
11	1.687	1.691	41,1	Nein				75,56			0,00		83.58	
12	1.840	1.844	36,4	Nein	21,39			76,31			0,00			0,00
13	1.986	1.989	40,7	Nein	20,46			76,97			0,00	25.	84,62	0,00
14	2.166	2.169	36,4	Nein	19,36								85,55	0,00
15	2.345	2.348	28,4	Nein	18,34			77,73			0,00		86,65	0,00
16	2.516	2.519	38,5	Nein	and the second second		Ser. Commence	78,41			0,00		87,67	0,00
17	1.616	1.620			20,40			79,03		23.6	0,00	0,00	88,61	0,00
			57,1	Nein	23,04			75,19			0,00	0,00	83,07	0,00
18	1.815	1.820	64,6	Nein	21,65			76,20			0,00	0,00	84,46	0,00
19	2.009	2.012	56,2	Nein	20,41	103,1	3,01	77,07	3,82	4,80	0,00	0,00	85,70	0,00
20	1.947	1.949	54,6	Nein	20,81	103,1	3,01	76,79	3,70	4,80	0,00	0,00	85.30	0.00

Summe 35,18

03.12.2003 11:43 / 7

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:31/2.3.0.211

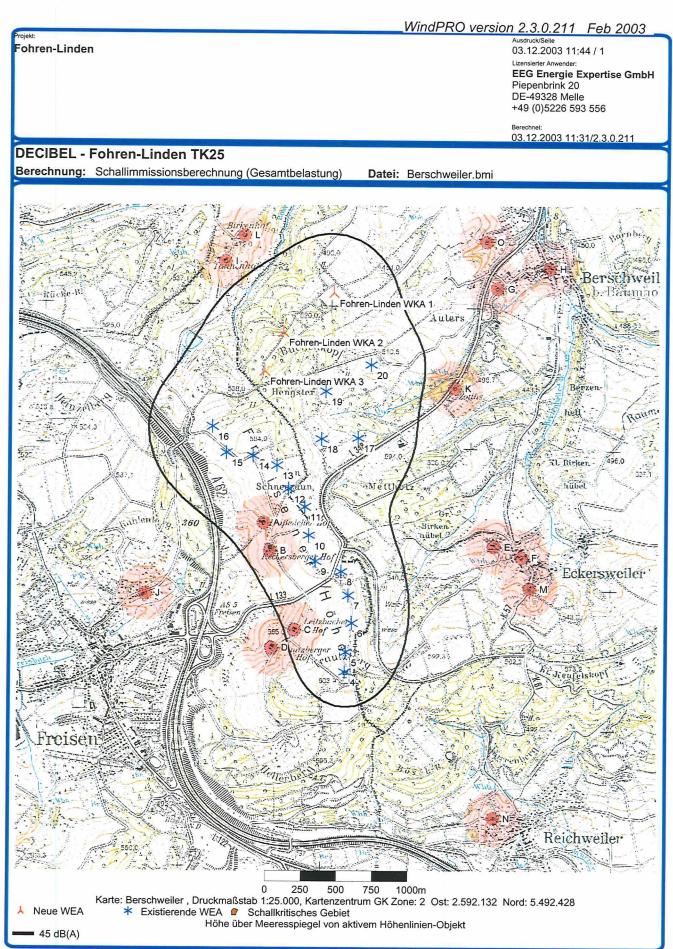
DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Gesamtbelastung)

Schallkritisches Gebiet: N Reichweiler

۱A	.,_	A
w	v -	Δ.

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA, Ref.	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
ı	1	ĮШJ	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
	1	3.920	3.925	-5,5	Nein	13,47	105,6			7,46				95,14	
ı	2	3.778	3.785	-9,6	Nein	14,06			82,56			0,00		94,55	
ı	3	3.580	3.587	-13,8	Nein	14,90			82,10		4,80			93,71	0,00
ı	4	1.479	1.497	-6,8	Nein	20,86			74,50			0.00		82,15	
	5	1.580	1.599	-0,7	Nein	23,09			75.08			0,00	-,	82,92	
	6	1.718	1.733	-6,0	Nein	22,14			75,77			0,00		83,87	0.00
ı	7	1.897	1.911	-7,0	Nein	20,96			76,62			0.00		85,05	0,00
ı	8	2.068	2.081	-9,1	Nein	19,89			77,36			0.00		86,12	
	9	2.228	2.241	-13,9	Nein	16,95			78,01			0,00		87.06	0.00
	10	2.407	2.419	-15,2	Nein	15,94			78,67			0,00		88.07	0,00
	11	2.594	2.604	-18,4	Nein	14,95			79,31			0,00		89,06	0.00
ı	12	2.763	2.771	-26,5	Nein	16,09			79.85		4,80			89.92	0,00
ı	13	2.949	2.958	-24,4	Nein	15,17			80,42	5,62				90,84	0.00
ı	14	3.096	3.104	-28,8	Nein	14,47			80,84	5,90				91,54	0,00
ı	15	3.221	3.228	-33,9	Nein	13,90			81,18	6,13				92,11	0.00
ı	16	3.430	3.438	-25,2	Nein	15,95			81,73	6,53				93.06	0.00
ı	17	2.881	2.889	-2,5	Nein	15,60			80,22	5,49			10000	90,51	0,00
	18	2.971	2.981	1,8	Nein	15,16	103,1			5,66				90.95	0.00
	19	3.270	3.278	-6,6	Nein	13,77	103,1			6,23				92,34	0,00
	20	3.353	3.358	-10,6	Nein	13,41			81,52	6,38				92,70	0,00
								0.54			., -	-,00	-,00	0-,10	0,00


30,76

Schallkritisches Gebiet: O Grasbach

WEA

	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Δar	Ahar	Amisc	Α	Cmet
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ı	1	1.135	1.147	61,0	Ja		105,6				2,97			77,34	
	2	1.570	1.581	54,9	Ja			5207	74,98			0,00		81.59	-,
ı	3	1.815	1.826	51,9	Ja	25,08			76,23			0.00		83.53	-,
ı	4	3.229	3.234	26,3	Ja	11,15			81,19			0,00	-,	91,86	
ı	5	3.092	3.099	38,7	Ja	14,92			80,83			0.00		91.09	0.00
	6	2.880	2.886	35,1	Ja	15,93			80,21			0,00	-,	90,08	
	7	2.700	2.707	38,9	Ja	16,91			79,65			0,00		89.10	0.00
	8	2.562	2.569	41,3	Ja	17,68			79,20			0,00		88.33	0.00
	9	2.573	2.581	39,7	Ja	15,60			79.23			0,00		88,41	0,00
	10	2.437	2.445	41,2	Ja	16,38			78,77			0,00		87,63	0,00
	11	2.282	2.290	38,5	Ja	17,24			78,20			0,00		86,77	0,00
ı	12	2.245	2.252	30,9	Ja	19,35			78,05			0,00		86,66	0,00
ı	13	2.172	2.179	33,4	Ja	19,83	103,0	3,01	77,77	4,14				86,18	0.00
ı	14	2.242	2.249	28,1	Ja	19,32	103,0	3,01	78,04			0.00		86.69	0.00
	15	2.368	2.375	19,5	Ja	18,46	103,0	3,01	78,51	4,51				87,55	0.00
	16	2.335	2.343	37,3	Ja	21,91	106,0	3,01	78.40			0.00	20.00	87.10	0.00
	17	1.665	1.674	50,8	Ja	23,69	103,1	3,01	75,48	3,18				82,42	0.00
	18	1.825	1.836	58,5	Ja	22,63	103,1	3,01	76,28	3,49				83,47	0,00
	19	1.556	1.567	50,1	Ja	24,53			74,90			0,00		81.58	0.00
I	20	1.194	1.204	49,6	Ja	27,83	103,1	3,01	72,61	2,29			100 mm	78.28	0.00

Summe 36,33

Ausdruck/Seite 03.12.2003 11:47 / 1

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet:

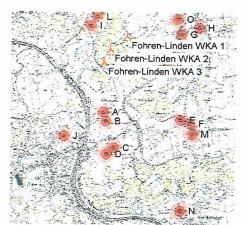
03.12.2003 11:34/2.3.0.211

DECIBEL - Hauptergebnis

Berechnung: Schallimmissionsberechnung (Zusatzbelastung)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm "ISO 9613-2 Acoustics - Attenuation of sound during propagation outdoors"


Windgeschwindigkeit in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischer Dämpfungskoeffizient, C0: 0,0 dB

Die derzeit gültigen Immissionsrichtwerte richten sich nach der TA-Lärm jeweils für die entsprechenden Nachtwerte:

Industriegebiet: 70 dB(A) Gewerbegebiet: 50 dB(A) Dorf- und Mischgebiet: 45 dB(A) Allgemeines Wohngebiet: 40 dB(A) Reines Wohngebiet: 35 dB(A) Kur- und Feriengebiet: 35 dB(A)

Liegen Einzeltöne (Ton-/Impulshaltigkeit) bei einzelnen WEA vor, wird für die WEA ein Zuschlag je nach Auffälligkeit von 0 dB, 3 dB oder 6 dB angesetzt.

WEA

ı	GK Zone: 2				WEA T	ур					Schallwe	rte			
	Ost	Nord	Z	Reihendaten/	Aktuell	Hersteller	Тур	Leistung	Rotord.	Höhe	Kreis- Erzeuger	Name	LWA,Ref.	Einzeltöne	Oktavbandabh.
				Beschreibung							radius				Daten
I.			[m]					[kW]	[m]	[m]	[m]		[dB(A)]		
				Fohren-Linden WKA 1		NORDEX	N90	2.300	90,0	105,0	453,5 USER	Benutzerdefiniert	105.6	Nein	Nein
2	2.591.666	5.493.810	527	Fohren-Linden WKA 2	Ja	NORDEX	N90	2.300	90,0	105.0	USER	Benutzerdefiniert	105.6	Nein	Nein
3	2.591.540	5.493.528	536	Fohren-Linden WKA 3	Ja	NORDEX	N90	2.300	90,0	105,0	308,0 USER	Benutzerdefiniert	105,6	Nein	Nein

Neue WEA

Berechnungsresultate

Beurteilungspegel

5.5									
Schallkritisches Gebiet	GK Zone:	2		Anforde	rungen	Beurteilungspege	l Anforde	runaen e	rfüllt?
Nein Name	Ost	Nord	Z	Schall	Abstand		Schall		
			[m]	[dB(A)]	[m]	[dB(A)]			
A Plaßwicher Hof	2.591.555	5.492.447	560	45,0	200		Ja	Ja	Ja
B Reckersberger Ho	f 2.591.603	5.492.252	562	45,0	200	31,9	Ja	Ja	Ja
C Leitzbacher Hof	2.591.787	5.491.685	560	45,0	200	27,7	Ja	Ja	Ja
D Trautzberger Hof	2.591.625	5.491.552	555	45,0	200	26,9	Ja	Ja	Ja
E Eckersweiler NW		5.492.307		45,0	200	28,1	Ja	Ja	Ja
F Eckersweiler Mitte	2.593.372	5.492.232	510	45,0	200	26,9	Ja	Ja	Ja
G Berschweiler SW		5.494.147	445	45,0	200	33,3	Ja	Ja	Ja
H Berschweiler Mitte		5.494.296		45,0	200	30,3	Ja	Ja	Ja
I Tannenhof	2.591.250	5.494.304	480	45,0	200	42,0	Ja	Ja	Ja
J Freisen NO	2.590.731	5.491.928	465	45,0	200	27,6	Ja	Ja	Ja
K Zollhaus	2.592.882	5.493.428	480	45,0	200	34,9	Ja	Ja	Ja
L Birkenhof	2.591.380	5.494.494	469	45,0	200	40,8	Ja	Ja	Ja
M Eckersweiler S	2.593.436	5.492.011	510	45,0	200	25,2	Ja	Ja	Ja
N Reichweiler	2.593.210	5.490.362	400	45,0	200	19,0	Ja	Ja	Ja
O Grasbach	2.593.086	5.494.480	440	45,0	200	33,4	Ja	Ja	Ja

Abstände (m)

۱AI	

	AALV		
SKG	1	2	3
Α	1713	1367	1081
В	1890	1560	1278
С	2422	2129	1860
D	2574	2258	1977
E	2134	2134	2045
	2303		
	1151		
Н	1528	1930	2136

WindPRO version 2.3.0.211 Feb 2003

Fohren-Linden

03.12.2003 11:47 / 2

Lizensierter Anwender:

EEG Energie Expertise GmbH

Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:34/2.3.0.211

DECIBEL - Hauptergebnis

Berechnung: Schallimmissionsberechnung (Zusatzbelastung)

WEA SKG 1 2 3 I 796 646 829 J 2521 2102 1793 K 1092 1274 1346 L 752 741 979 M 2522 2524 2428 N 3920 3778 3580 O 1135 1570 1815

Projekt:

Fohren-Linden

Ausdruck/Seite 03.12.2003 11:48 / 1

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

D-----

03.12.2003 11:34/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Zusatzbelastung)

Voraussetzungen

Beurteilungspegel L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist <math>Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr:

die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Abar: Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsresultate

Schallkritisches Gebiet: A Plaßwicher Hof

WEA

	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]							[dB]		[dB]
١	1	1.713	1.713	32,0	Nein	24,88			75,68					83.73	
١	2	1.367	1.369	31,8	Nein	27,48	105,6	3,01	73,73	2.60	4.80	0.00	0.00	81.13	0.00
ı	3	1.081	1.084	32,1	Ja	31,07	The second secon	Committee of	The second secon			2004	0,00	100000000000000000000000000000000000000	

Summe 33,32

Schallkritisches Gebiet: B Reckersberger Hof

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]			[dB]					[dB]	[dB]
ı	1	1.890	1.891	35,6	Ja	24,33	105,6	3,01	76,53	3,59	4,15	0,00	0,00	84,28	0.00
ı	2	1.560	1.561	34,1	Ja	26,72	105,6	3,01	74,87	2,97	4,05	0.00	0,00	81.88	0.00
۱	3	1.278	1.280	34,8	Ja	29,17							0,00		

Summe 31,95

Schallkritisches Gebiet: C Leitzbacher Hof

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]								
1	2.422	2.423	35,9	Nein	20,52	105,6	3,01	78,69	4,60	4,80	0,00	0,00	88.09	0.00
2	2.129	2.130	34,9	Ja	22,76	105,6	3,01	77,57	4,05	4,24	0,00	0,00	85,85	0.00
3	1.860	1.861	36,1	Ja	24,54	105,6	3,01	76,40	3,54	4,13	0,00	0,00	84,07	0,00

Summe 27,68

Schallkritisches Gebiet: D Trautzberger Hof

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]				[dB]					[dB]
1	2.574	2.574	32,9	Nein	19,71	105,6	3,01	79,21	4,89	4,80	0,00	0,00	88,90	0,00
2	2.258	2.259	34,3	Ja	21,96	105,6	3,01	78,08	4,29	4,28	0,00	0,00	86,65	0,00
3	1.977	1.979	37,9	Ja	23,77	105,6	3,01	76,93	3,76	4,14	0,00	0,00	84,83	0,00

Summe 26,89

EEG Energie Expertise GmbH Piepenbrink 20 DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:34/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Zusatzbelastung)

			_
Schallkritisches	Gebiet:	E Eckersweiler NW	1

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]									
ı	1	2.134	2.136	66,7	Ja	23,23	105,6	3,01	77,59	4,06	3,73	0,00	0,00	85,38	0,00	
١	2	2.134	2.137	61,0	Ja	23,13	105,6	3,01	77,59	4,06	3,82	0.00	0,00	85,47	0.00	
١	3	2.045	2.049	57.7	Ja	23.65				20.00			0.00			

Summe 28,12

Fohren-Linden

Schallkritisches Gebiet: F Eckersweiler Mitte

WEA

П	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
1		[m]	[m]	[m]		[dB(A)]			[dB]					[dB]	[dB]
	1	2.303	2.305	60,0	Ja	22,06	105,6	3,01	78,26	4,38	3,91	0,00	0,00	86,55	0,00
	2	2.323	2.326	55,5	Ja	21,87	105,6	3,01	78,34	4,42	3,98	0,00	0,00	86,74	0,00
	3	2.244	2.247	52,1	Ja	22,30	105,6	3,01	78,04	4,27	4,01	0,00	0,00	86,31	0,00

Summe 26,85

Schallkritisches Gebiet: G Berschweiler SW

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]						[dB]			
ı	1	1.151	1.162	59,1	Ja	31,04	105,6	3,01	72,31	2,21	3,04	0,00	0,00	77,56	0,00	
	2	1.539	1.550	51,9	Ja	27,21	105,6	3,01	74,81	2,95	3,65	0,00	0,00	81,40	0,00	
ı	3	1.742	1.752	46,2	Ja	25,51	105,6	3,01	75.87	3.33	3.90	0.00	0.00	83.10	0.00	

Summe 33,33

Schallkritisches Gebiet: H Berschweiler Mitte

WEA

Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.528	1.539	67,0	Ja	27,65	105,6	3,01	74,74	2,92	3,30	0,00	0,00	80,96	0,00
2	1.930	1.940	61,4	Ja	24,46	105,6	3,01	76,75	3,68	3,71	0,00	0,00	84,15	0,00
3	2.136	2.146	55,7	Ja	22,99	105,6	3,01	77,63	4,08	3,91	0,00	0,00	85,62	0,00

Summe 30,26

Schallkritisches Gebiet: I Tannenhof

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]						[dB]	[dB]	[dB]	[dB]
	1	796	806	68,6	Ja	36,10	105,6	3,00	69,13	1,53	1,84	0,00	0,00	72,50	0,00
ı	2	646	663	75,1	Ja	39,07	105,6	3,00	67,42	1,26	0,84	0,00	0,00	69,53	0,00
	3	829	843	69,2	Ja	35,53	105,6	3,00	69,52	1,60	1,95	0,00	0,00	73,07	0,00

Summe 41,97

Schallkritisches Gebiet: J Freisen NO

WEA

	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]								[dB]
	1	2.521	2.525	14,2	Nein	19,97	105,6	3,01	79,04	4,80	4,80	0,00	0,00	88,64	0,00
	2	2.102	2.108	27,5	Nein	22,33	105,6	3,01	77,47	4,00	4,80	0,00	0,00	86,27	0,00
ı	3	1.793	1.801	32.2	Ja	24.90	105.6	3.01	76.10	3.42	4.19	0.00	0.00	83.71	0.00

Summe 27,63

03.12.2003 11:48 / 3

Lizensierter Anwender:

EEG Energie Expertise GmbH Piepenbrink 20

DE-49328 Melle +49 (0)5226 593 556

Berechnet: 03.12.2003 11:34/2.3.0.211

DECIBEL - Detaillierte Ergebnisse

Berechnung: Schallimmissionsberechnung (Zusatzbelastung)

Schallkritisches Gebiet: K Zollhaus

	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]			[dB]					[dB]	[dB]	
	1	1.092	1.099	55,7	Ja	31,65	105,6	3,01	71,82	2,09	3,05	0,00	0,00	76,96	0,00	
	2	1.274	1.283	46,9	Ja	29,47	105,6	3,01	73,16	2,44	3,54	0,00	0,00	79,14	0,00	
١	3	1.346	1.355	45.8	Ja	28.76	105.6	3.01	73.64	2.57	3.63	0.00	0.00	79.84	0.00	

Summe 34,91

Schallkritisches Gebiet: L Birkenhof

١	WEA														
	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	752	764	72,0	Ja	36,96	105,6	3,00	68,67	1,45	1,52	0,00	0,00	71,64	0,00
	2	741	758	70,6	Ja	37,01	105,6	3,00	68,59	1,44	1,56	0,00	0,00	71,59	0,00
	3	979	993	66,6	Ja	33,30	105,6	3,01	70,94	1,89	2,48	0,00	0,00	75,31	0,00

Summe 40.84

Schallkritisches Gebiet: M Eckersweiler S

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	1	2.522	2.523	62,5	Ja	20,82	105,6	3,01	79,04	4,79	3,95	0,00	0,00	87,79	0,00	
ı	2	2.524	2.527	57,0	Nein	19,96	105,6	3,01	79,05	4,80	4,80	0,00	0,00	88,65	0,00	
ı	3	2.428	2.432	54,2	Nein	20,47	105,6	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00	

Summe 25,20

Schallkritisches Gebiet: N Reichweiler

WEA

ı	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
ı	1	3.920	3.925	-5,5	Nein	13,47	105,6	3,01	82,88	7,46	4,80	0,00	0,00	95,14	0,00	
ı	2	3.778	3.785	-9,6	Nein	14,06	105,6	3,01	82,56	7,19	4,80	0,00	0,00	94,55	0,00	
ı	3	3.580	3.587	-13,8	Nein	14,90	105,6	3,01	82,10	6,82	4,80	0,00	0,00	93,71	0,00	

Summe 18,95

Schallkritisches Gebiet: O Grasbach

WEA

	Nein	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LWA,Ref.	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]								[dB]	
	1	1.135	1.147	61,0	Ja	31,27	105,6	3,01	72,19	2,18	2,97	0,00	0,00	77,34	0,00	
ı	2	1.570	1.581	54,9	Ja	27,02	105,6	3,01	74,98	3,00	3,61	0,00	0,00	81,59	0,00	
	3	1.815	1.826	51,9	Ja	25.08	105.6	3.01	76.23	3.47	3.83	0.00	0.00	83.53	0.00	

Summe 33,36

Schallleistungspegel N90

Nabenhöhe	Messung 1	Messung 2	Messung 3	Garantie bei v ₁₀ = 10 m/s
80 m	103,6 dB(A), K _{TN} = 0 dB			105,0 dB(A), K _T = 0 dB
100 m				105,0 dB(A), K _T = 0 dB

Die Ergebnisse und Schallgarantien beziehen sich auf eine Windgeschwindigkeit von v_{10} = 8,7 m/s in 10 m Höhe (Erreichung von 95 % der Nennleistung). Die garantierten Tonzuschläge K_T sind immissionsrelevante Zuschläge im Fernfeld (im Abstand von mehr als 300 m zur Anlage).

Die Schallleistungspegelvermessungen sowie die Ermittlung der Tonhaltigkeit beruhen auf den Technischen Richtlinien der Fördergesellschaft Windenergie e.V. (FGW). Die angegebenen Tonzuschläge K_{TN} sind die maximal gemessenen Werte in den Bins 6 bis 10 m/s. Die garantierten Tonzuschläge K_{T} sind immissionsrelevante Zuschläge im Fernfeld (im Abstand von mehr als 300 m zur Anlage).

Die Werte der Schallleistungspegel für andere Nabenhöhen, als bei den vermessenen Anlagen, ergeben sich aus einer Hochrechnung der Messung.

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 14 vom 01. Juli 2003 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 132SE402/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Allgemeine Angaben		Technische Daten (Herstellera	ngahen)
Anlagenhersteller:	NORDEX Energy GmbH Bornbarch 2	Nennleistung (Generator):	2300 kW
	D-22848 NORDERSTEDT	Rotordurchmesser:	90 m
Seriennummer:	8023	Nabenhöhe über Grund:	80 m
WEA-Standort (ca.):	X: 5405515; Y: 5968180	Turmbauart:	Stahlrohrturm
Ergänzende Daten zum Ro		Leistungsregelung:	Pitch/Stall/Aktiv-Stall
· · · · · · · · · · · · · · · · · · ·		Erg. Daten zu Getriebe und Ge	nerator (Herstellerangaben)
Rotorblatthersteller:	LM Glasfiber A/S	Getriebehersteller:	Flender
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichung Getriebe:	PZAB 3450
Blatteinstellwinkel:	Variabel	Generatorhersteller:	Loher
Rotorbiattanzahi	3	Typenbezeichung Generator:	AFWA-630MD-06A
Rotordrehzahlbereich:	9,6 – 16,9 U/min	Generatordrehzahlbereich:	744 – 1310 U/min

Prüfbericl	nt zur Leis	tungs	kur	ve: -									·····			
		Refere				enzp	enzpunkt			Schallemissions- Parameter			1	Bernerkungen		
			٧	Standar Vindgesch In 10 m	windigkeit			lektrische /irkleistung	J							
Schalleistungs- Pegel LwAP				6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,7 ms ⁻¹			942 kW 1455 kW 1982 kW 2185 kW			101,8 dB(A) 102,8 dB(A) 103,4 dB(A) 103,6 dB(A)				(1), (2)		
Tonzuschlag für den Nahbereich K _{TN} Impulszuschlag für den Nahbereich K _{IN}				6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,7 ms ⁻¹ 6 ms ⁻² 7 ms ⁻¹ 8 ms ⁻¹			942 kW 1455 kW 1982 kW 2185 kW 942 kW 1455 kW 1982 kW 2185 kW			2 dB bei 162 Hz 2 dB bei 168 Hz 2 dB bei 168 Hz 2 dB bei 168 Hz - dB bei - Hz 0 dB 0 dB 0 dB			z	(1)		
			1	erz-Scha	lleistungs	pege			kt v ₁₀ =	8,7	ms				(1)	
Frequenz	50	63		80	100		25	160	200		25		315	400	500	630
LWA, P	72,8	77,	_	79,5	82,4	84	1,8	94,0	90,1	_	89		92,1	92,1	90,1	87.9
Frequenz	800	100	_	1250			000	2500	3150	2	40	00	5000	6300	8000	10000
LWAP 88.5 92.3 91.6 92.3 93.0 04.4 04.5 05.5 05.5							84,7	81,2								
Frequenz	63			125	250		I	500		000	1112		2000	4000		8000

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 06.06.2003. Die Angaben ersetzen

Dieser Auszug aus dem Prüidencht gilt nur in Verdindung mit der merstellerbescheinigung vom ub.ub.2003. Die Angaben erset nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: (1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berückslichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,7 ms² in 10 m ü.G.

95,9

97 4

Extrapolierter Wert.
Ermittelt aus 5-Sekunden-Mittelwerten.

94,7

Gemessen durch:

WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

95,4

Datum: 03.09.03

Ønterschrift | Dipl.-Ing. R.Haevernick

Unterschrift Dipl.-Ing. J. Schwabe

89,2

DAP-PL-2756.00

Schallleistungspegel N90

Unverbindliche Extrapolation auf den Windgeschwindigkeitsbereich 3...12 m/s

Standardisierte Windgeschwindigkeit (in 10 m Höhe) V ₁₀ [m/s]	Schall- leistungs- pegel L _{WA} [dB(A)]	Gemessene Tonhaltigkeit im Nahfeld K _{TN} [dB]	Tonzuschlag im Fernfeld (> 300 m) K _T [dB]	Bemerkung
3	97,0	-	0	extrapoliert
4	99,0	-	0	extrapoliert
5	100,5	-	0	extrapoliert
6	101,8	2	0	gemessen
7	102,8	2	0	gemessen
8	103,4	2	0	gemessen
8,7	103,6	-	0	gemessen (entspricht 95 % P _N)
9	104,0	-	0	extrapoliert
10	104,3	-	0	extrapoliert
11	104,5	-	0	extrapoliert
12	104,5	-	0	extrapoliert

Die Werte von v_{10} = 6...8,7 m/s sind dem Messbericht WICO 132SE402/01 entnommen.

Die Vermessung der Schallemissionswerte beruht auf folgenden Richtlinien:

- Technischen Richtlinie für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 14, 2003-07-01.
- IEC 61400-11 ed.2: Wind Turbine Generator Systems; Part 11: Acoustic Noise Measurement Techniques, 2003-02
- E DIN 45681: Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen, 2002-11

Der immissionsrelevante Tonzuschlag im Fernfeld K_T wurde entsprechend den Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen" vom Oktober 1999 bestimmt.

Da die Schallleistungspegel oberhalb 95 % der Nennleistung P_N mit einem Messverfahren schlechterer Güte ermittelt werden müssen (Auswertung über gemessene Windgeschwindigkeit anstatt über gemessene Leistung), ist hier mit größeren Unsicherheiten zu rechnen.

Die Darstellung der Ergebnisse der Schallemissionsmessung sowie die Extrapolation auf den Windgeschwindigkeitsbereich 3...12 m/s hat lediglich informativen Charakter. Die Werte können nicht garantiert werden!

27.11.2003 10:55 / 1 Lizensierter Anwender:

27.11.2003 10:54/

NORDEX N90 2300 90.0 !-!

Datei F:\##_EEG\#_GUTACHTEN_Wind\Fohren-Linden\WindPro\NORDEX N90 2300 90.0 !-!.wtg

Firma Typ/Version Nennleistung zweiter Generator

NORDEX N90 2.300,0 kW 0,0 kW 90,0 m

Rotordurchmesser

Andere/Unbekann

Herkunftsland Blatt-Typ Generatortyp

DE LM 43.8

Nenndrehzahl Einschaltdrehzahl Standard-Nabenhöhe Alternative Nabenhöhen 80,0 m

Ein-Generatorsyst 16,9 U/min 9,6 U/min 100,0 m

Aktuell Bearbeiter

105,0 m **EMD**

Erzeugt Bearbeitet

17.09.2001 00:00 17.09.2001 00:00 80, 100m tubular tower 105 m lattice tower

Schallwerte: Man. 09/01 10m/s Quelle Manufacturer

Lwa,ref Quelldaten

Bearbeiter Erzeugt

Bearbeitet

Standard Windgeschwindigkeit Nabenhöhe Einzeltöne Zuschlag [m/s]

10,0

[m]

Unabhängig Nein

[dB(A)] 105,0 06.09.2001 00:00 EMD 22.11.2001 10:41 24.09.2002 16:03 Ja

Official noise emission level from Nordex as of 25-07-2002.

Schallimmissionsschutz in Genehmigungsverfahren von Windenergieanlagen Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen", Oktober 1999

An der Erstellung der Empfehlungen haben Vertreter folgender Institutionen mitgearbeitet: Niedersächsisches Landesamt für Ökologie, Niedersächsisches Umweltministerium, Staatliches Gewerbeaufsichtsamt Kiel, Landesumweltamt NRW, Landesamt für Umwelt und Natur MV, Hessische Landesanstalt für Umwelt, Staatliches Amt für Umweltschutz Magdeburg, Landesumweltamt Brandenburg, Bayerisches Landesamt für Umwelt, Windtest-Kaiser-Wilhelm Koog GmbH, Deutsches Windenergie-Institut (DEWI), Wind-consult GmbH.

Der Länderausschuss für Immissionsschutz (LAI) hat auf seiner 99. Sitzung im Mai 2000 die Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen" zustimmend zur Kenntnis genommen und den Immissionsschutzbehörden der Bundesländern empfohlen, nach diesen Empfehlungen zu verfahren.

Windenergieanlagen (WEA) sind nicht genehmigungsbedürftige Anlagen nach § 22 BImSchG und bedürfen einer Baugenehmigung. Sie sind so zu errichten und zu betreiben, dass

- 1. schädliche Umwelteinwirkungen verhindert werden, die nach dem Stand der Technik vermeidbar sind, und
- 2. nach dem Stand der Technik unvermeidbare schädliche Umwelteinwirkungen durch weitergehende Maßnahmen auf ein mit verhältnismäßigem Aufwand nicht zu unterschreitendes Mindestmaß beschränkt werden.

Im Baugenehmigungsverfahren ist durch die zuständige Baubehörde zu prüfen, ob die WEA den Anforderungen aus § 22 Abs. 1 BImSchG entsprechen, ggf. ist die Baugenehmigung nur mit entsprechenden Auflagen zu erteilen. Im Rahmen dieser Prüfung wird die Baubehörde in der Regel eine Stellungnahme der zuständigen Immissionsschutzbehörde einholen.

Zur immissionsschutzrechtlichen Bewertung, insbesondere der nachbarlichen Belange, sind die Verfahrensregelungen und Anforderungen der TA Lärm zu beachten. In den nachfolgenden Hinweisen werden die Anforderungen der TA Lärm an die Ermittlung der Emissionen und die Durchführung von Immissionsprognosen im Rahmen der Errichtung und des Betriebs von WEA konkretisiert.

Die Hinweise wenden sich sowohl an die Bau- und Immissionsschutzbehörden als auch an die Planer von WEA.

1. Emissionsmessungen

Die Anforderungen an die Schallmessung und Auswertung sind in den Technischen Richtlinien für Windenergieanlagen, Teil 1 "Bestimmung der Schallemissionswerte" (Herausgeber: FGW,

Fördergesellschaft für Windenergie e.V., Weidestraße 126, 22083 Hamburg, unter Mitwirkung des Arbeitskreises "Geräusche von Windenergieanlagen" der Immissionsschutzbehörden und Messinstitute), beschrieben. Diese Richtlinie enthält - in der jeweils aktuellen Fassung - die gültigen nationalen und internationalen Normen, die entsprechend konkretisiert worden sind. Emissionsmessungen sollten nach den Mess- und Auswertevorschriften dieser Technischen Richtlinie durchgeführt werden.

Es muss gewährleistet sein, dass die Anlage während der Schallmessungen wie während der Vermessung der Leistungskurve betrieben wird. Die Genauigkeit des elektrischen Wirkleistungssignals zum Zwecke der Schallmessung sollte nachgewiesen bzw. angegeben werden. Dabei soll die Windgeschwindigkeit in Nabenhöhe aus der gemessenen elektrischen Leistung bestimmt werden und auf die standardisierte Windgeschwindigkeit in 10 m Höhe bezogen werden. Schallmessungen nach Inbetriebnahme der WEA sollten aus Vergleichbarkeitsgründen ebenfalls nach der Technischen Richtlinie erfolgen.

Ergänzend zu den Vorgaben der Technischen Richtlinie werden auch akustische Vermessungen durch Messstellen anerkannt, die ihre Kompetenz z.B. durch die Teilnahme an regelmäßigen Ringversuchen zur akustischen Vermessung von Windenergieanlagen nach Technischer Richtlinie nachweisen.

2. Schallimmissionsprognosen

Die Schallimmissionsprognose ist nach Nr. A. 2 der TA Lärm durchzuführen. Für die Immissionsprognose ist grundsätzlich der Schallleistungspegel zu verwenden, der gemäß Technischer Richtlinie bei einer Windgeschwindigkeit von 10 m/s in 10 m Höhe über Boden, aber bei nicht mehr als 95 % der Nennleistung ermittelt wurde. Bei üblichen Nabenhöhen von 40 m bis 70 m liegt die Windgeschwindigkeit in Nabenhöhe dann bei etwa 12 bis 14 m/s, so dass bei den meisten Anlagen die Leistungsabgabe im Bereiche der Nennleistung liegt.

Wenn infolge ständig vorherrschender Fremdgeräusche (z.B. windinduzierte Geräusche) keine zusätzlichen schädlichen Umwelteinwirkungen durch die zu beurteilende Anlage zu berücksichtigen sind, kann in Anlehnung an die Regelungen der Nr. 3.2.1 Abs. 5 der TA Lärm verfahren werden.

Bei der Fremdgeräuschmessung ist darauf zu achten, dass Abrissgeräusche am Mikrofon vermieden werden. Der Vertrauensbereich für den LAF95-Pegel des Fremdgeräusches ist nach der VDI-Richtlinie 3723 Bl. 1 (Mai 1993) zu berechnen und soll höchstens 1,5 dB betragen. Dabei ist z.B. nach Windgeschwindigkeit zu schichten.

Hinsichtlich der zu berücksichtigenden Tonzuschläge wird die bisherige Verfahrensweise (KTN: Tonhaltigkeit bei Emissionsmessungen im Nahbereich nach der Technischen Richtlinie gemessen, KT: Tonzuschläge, die bei Entfernungen über 300 m für die Immissionsprognose zu verwenden sind) festgelegt:

0 <= KTN <= 2 Tonzuschlag KT von 0 dB 2 < KTN <= 4 Tonzuschlag KT von 3 dB KTN > 4 Tonzuschlag KT von 6 dB

Die der Schallimmissionsprognose zu Grunde gelegten Emissionswerte sind im Sinne der Statistik Schätzwerte, die den wahren Wert innerhalb eines Vertrauensbereiches eingrenzen. Bei der Prognose ist daher die obere Vertrauensbereichsgrenze für den Schätzwert heranzuziehen. Da diese

Vertrauensbereichsgrenze in der Regel nicht bekannt ist, wird für die Immissionsprognose der Emissionswert um 2 dB erhöht (Sicherheitszuschlag im Sinne der oberen Vertrauensbereichsgrenze). Wird danach der Immissionsrichtwert - rechnerisch - um bis zu 2 dB überschritten, kann die Anlage dennoch genehmigt werden, wenn sich der Betreiber in Eigenbindung bereit erklärt, den Nachweis der Einhaltung der Immissionsrichtwerte durch eine Nachmessung nach Technischer Richtlinie auf eigene Kosten zu erbringen (in Anlehnung an Nr. A. 3.4 TA Lärm).

Auf die Möglichkeit nachträglicher Anordnungen im Einzelfall gem. Nr. 5.2 der TA Lärm sollte im Baugenehmigungsbescheid hingewiesen werden.

Sind mehrere Anlagen gleichen Typs vermessen worden (nach DIN ISO 4871, s. IEA-Empfehlung, Anh. 7), ist der Sicherheitsabstand zum Immissionsrichtwert durch die Differenz (oberer Vertrauensbereichswert - Mittelwert) des Emissionswertes gegeben.

¹ Die derzeit aktuelle Fassung ist diejenige vom 1.1.2000

^{*)} Der Termin bedarf einer landesspezifischen Regelung