Schallimmissionsprognose

zum Bauantrag

Windpark "Talling"

- Aktualisierung vom 02.06.04 -

Bearbeitung:

ABO WIND AG

Hirtenstraße 26

65193 Wiesbaden

Ansprechpartnerin:

Dipl.-Geogr. Christopher Kopp

Telefon:

(0 611) 26 76 5 - 15

Telefax:

(0 611) 26 76 5 - 99

E-Mail:

Kopp@abo-wind.de

Datum:

02. Juni 2004

Diese Schallimmissionsprognose wurde gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen erstellt.

ABO Wind AG

Wiesbaden, 02. Juni 2004

Christopher Kopp

e. Mys

Inhalt

1.	Einleitung	1
2.	Berechnung	2
2.1	Anlagenbeschreibung	2
2.2	Immissionspunkte	3
2.3	Vor-, Zusatz- und Gesamtbelastung	3
3.	Ergebnis der Gesamtbelastung	5
4.	Beurteilung der Prognoseunsicherheit	6
5.	Literatur	8
6.	Anhang	9

1. Einleitung

In dieser Aktualisierung des Schallgutachtens zum Bauantrag vom 12.03.04 wird der Tatsache Rechnung getragen, dass der Standort der geplanten WEA 2 geringfügig nach Südwesten verschoben wurde. Darüber hinaus werden die im Schreiben der SGD Nord vom 29.04.04 gestellten Anforderungen (eindeutige Definition der maßgeblichen Immissionsorte, Einstufung der geplanten Wohnbaufläche Talling, Aussage zur Prognoseunsicherheit) berücksichtigt.

Da sich weder an den Grenzwerten noch am Berechnungs- und Beurteilungsverfahren größere Änderungen ergeben haben (Ausnahme: in der Ausbreitungsrechnung wird ein meteorologisches Dämpfungsmaß von 2 dB(A) zugrunde gelegt) wird für diese Teile des Gutachtens auf die Fassung vom 09.03.04 verwiesen. Die vorliegende Aktualisierung des Gutachtens bezieht sich auf folgende Punkte:

- Anlagenbeschreibung
- Beschreibung der Immissionspunkte
- Darstellung der Ergebnisse (Vor-, Zusatz- und Gesamtbelastung)
- Angaben zur Prognoseunsicherheit

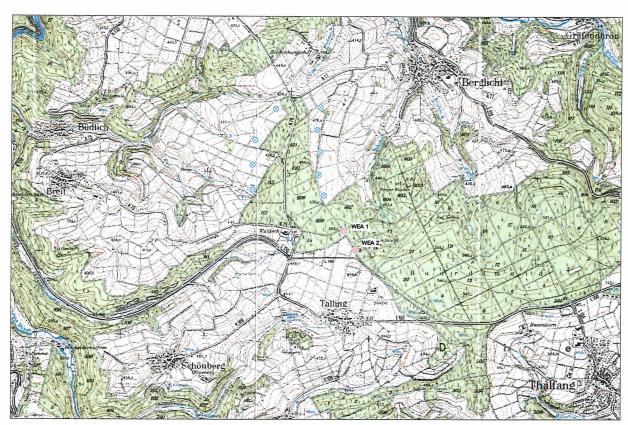


ABB. 1: Lage des geplanten Windparks () sowie die bestehenden Anlagen des Windparks Berglicht (

Die im Rahmen des Antrags nach dem Bundesimmissionsschutzgesetz erstellte Schallimmissionsprognose wird rechnerisch mit dem Modul DECIBEL des Softwarepaketes WindPRO der Firma Energi-og Miljodata, EMD, Aalborg ermittelt.

2. Berechnung

2.1 Anlagenbeschreibung

Bei den Anlagen handelt es sich um zwei Windenergieanlagen des Herstellers Nordex:

Anlagentyp: N 90

Nabenhöhe: 100 m

Rotordurchmesser: 90 m

Nennleistung: 2.300 kW

Schallleistungspegel: 103,6 dB(A)

Tonzuschlag (Fernfeld) K_T/dB : 0 dB(A)

Für die WKA des Typs Nordex N 90 liegen zurzeit zwei Schallvermessungen vor, deren Ergebnisse (103,6 dB(A) und 103,0 dB(A) - siehe auch die im Anhang beiliegenden Auszüge aus den Prüfberichten) darauf hindeuten, dass die Anlage deutlich leiser ist als der vom Hersteller gewährleistete Schallleistungspegel von 105,0 dB(A). In den folgenden Berechnungen wurde das höhere der beiden Messergebnisse verwendet (103,6 dB(A)). Die Verwendung eines durch eine Messung abgesicherten Schalleistungspegels wird zusätzlich durch einen erhöhten Sicherheitszuschlag für die Serienstreuung (siehe auch Kapitel 4) berücksichtigt. Da der Schallleistungspegel für die Nabenhöhe von 80 m vermessen wurde, ist eine Umrechnung des Pegels auf die geplante Nabenhöhe von 100 m erforderlich. Die Umrechnung des Schallleistungspegels wurde von der Fa. WIND-consult nach FGW-Richtlinie durchgeführt (Prüfbericht WICO 001SE104 liegt im Anhang bei). Der Schallleistungspegel von 103,6 dB(A) ist demnach auch bei einer Nabenhöhe von 100 m einzusetzen.

Für die bestehenden WEA des Typs Südwind S 77 liegen die Messberichte dreier Schallvermessungen vor, was die Verwendung der Messergebnisse zur Ermittlung der Vorbelastung durch diese Anlagen rechtfertigt. Der energetische Mittelwert dieser Vermessungen beträgt 102,3 dB(A).

2.2 Immissionspunkte

Für die vorliegende Berechnung wurden die in Tab. 1 näher bezeichneten Punkte in den Ortslagen von Talling und Berglicht sowie die Höfe Birkenhof, Waldeck und Heidenburger Hof als schallkritische Gebiete markiert.

Bei Immissionspunkt G ("Geplantes Wohngebiet Talling Nordwest") handelt es sich um eine Fläche, die im FNP der VG Thalfang als geplantes Wohngebiet ausgewiesen ist. Laut telefonischer Auskunft von Hr. Keuper (VG Thalfang) am 24.05.04 ist hier ein "Allgemeines Wohngebiet" geplant. Dieses Gebiet wurde flächenhaft in der Berechnung der Schallimmission berücksichtigt; für solche Flächen ermittelt das Programm den Immissionspunkt (IP) mit der höchsten zu erwartenden Schallbelastung.

Im Anhang ist eine TOPOGRAPHISCHE KARTE (1 : 20.000) mit Angaben zu den Standorten von Windenergieanlagen und Immissionspunkten sowie den Abständen zwischen Anlagen und Immissionspunkten beigefügt.

Für die Immissionspunkte gelten nach TA-Lärm folgende Richtwerte:

IP	Bezeichnung	Rechtswert	Hochwert	Immissionsricht- wert (nachts)
Α	Berglicht, Karsonick 3	2.569.328	5.517.165	40 dB(A)
В	Waldeck 1	2.567.982	5.515.252	45 dB(A)
С	Talling, Gartenstraße 4	2.568.506	5.514.351	45 dB(A)
D	Heidenburger Hof	2.568.243	5.517.350	45 dB(A)
Ε	Birkenhof 1	2.568.994	5.514.594	45 dB(A)
F	Talling, Birkenallee 7	2.568.891	5.514.352	45 dB(A)
G	Geplantes Wohngebiet Talling Nordwest	2.568.390	5.514.450	40 dB(A)
F	Talling, Zum Braunsfeld 3	2.568.762	5.514.346	45 dB(A)

TAB. 1: Immissionspunkte und Immissionsrichtwerte nach TA-Lärm

2.3 Vor-, Zusatz- und Gesamtbelastung

Die in der TA-Lärm festgesetzten Immissionsrichtwerte beziehen sich auf die Gesamtbelastung eines Immissionsortes. Diese Gesamtbelastung setzt sich zusammen aus der Vor- und der Zusatzbelastung.

Als Vorbelastung wird in der TA-Lärm die Belastung eines Ortes mit Geräuschimmissionen durch alle Anlagen, für die die TA-Lärm gilt, mit Ausnahme der zu beurteilenden Anlage be-

zeichnet. Es handelt sich hierbei um neun Anlagen des Windparks Berglicht. Die Windenergieanlagen vom Hersteller Nordex, Typ S 77 mit 100 m NH und 77 m Rotordurchmesser liegen auf dem Gebiet der Verbandsgemeinde Thalfang am Erbeskopf (s. Karte im Anhang). Der Standort liegt ca. 500 m nordwestlich vom geplanten Windpark Talling entfernt.

Für diese Anlagen wurde ein Schallleistungspegel von 102,3 dB(A) bei der Berechnung verwendet. Dies ist der energetische Mittelwert aus drei Schallvermessungen (siehe Auszug aus Prüfbericht WICO 404SEC02 im Anhang dieses Schreibens).

Die durch diese Anlagen verursachte Vorbelastung (Lv) an den einzelnen Immissionspunkten wurde gem. DIN ISO 9613-2 bestimmt und kann TABELLE 2 entnommen werden.

IP	Bezeichnung	Immissionsricht- wert (nachts)	Belastung in dB(A)
Α	Berglicht, Karsonick 3	40 dB(A)	33,6 dB(A)
В	Waldeck 1	45 dB(A)	39,5 dB(A)
С	Talling, Gartenstraße 4	45 dB(A)	30,0 dB(A)
D	Heidenburger Hof	45 dB(A)	40,1 dB(A)
Е	Birkenhof 1	45 dB(A)	30,7 dB(A)
F	Talling, Birkenallee 7	45 dB(A)	28,8 dB(A)
G	Geplantes Wohngebiet Talling Nordwest	40 dB(A)	31,4 dB(A)
Н	Talling, Zum Braunsfeld 3	45 dB(A)	29,2 dB(A)

Tab. 2: Berechnungsergebnisse der Vorbelastung durch die bestehenden Anlagen des Windparks "Berglicht"

Unter Zusatzbelastung (TAB. 3) werden die Immissionen durch die geplanten Anlagen verstanden (ohne die Anlagen der Vorbelastung). Aus dieser Berechnung (Ergebnisse s. Anhang) ergeben sich folgende Werte:

	IP	Bezeichnung	Immissionsricht- wert (nachts)	Belastung in dB(A)
	Α	Berglicht, Karsonick 3	40 dB(A)	23,6 dB(A)
}	В	Waldeck 1	45 dB(A)	> 36,8 dB(A)
5	С	Talling, Gartenstraße 4	45 dB(A)	^X 35,0 dB(A)
	D	Heidenburger Hof	45 dB(A)	21,7 dB(A)
2	Е	Birkenhof 1	45 dB(A)	39,8 dB(A)
4	F	Talling, Birkenallee 7	45 dB(A)	35,7 dB(A)
1	G	Geplantes Wohngebiet Talling Nordwest	40 dB(A)	35,7 dB(A)
ħ	Н	Talling, Zum Braunsfeld 3	45 dB(A)	35,7 dB(A)

Tab. 3: Berechnungsergebnisse der Zusatzbelastung durch geplante Anlagen "Talling"

3. Ergebnis der Gesamtbelastung

Die in der TA-Lärm festgesetzten Immissionsrichtwerte beziehen sich auf die Gesamtbelastung eines Immissionsortes. Diese Gesamtbelastung setzt sich zusammen aus den Beurteilungspegeln der Vor- und der Zusatzbelastung (Berechnung s. Anhang). Die Vor- und die Zusatzbelastung an den entsprechenden Immissionsorten wurde in Kapitel 4.3 ermittelt.

Die Gesamtbelastung wurde nach TA-Lärm ermittelt:

$$L_G = 10 lg (10^{0.1 Lv} + 10^{0.1 Lz})$$

Die zu erwartende Gesamtbelastung durch die bestehenden und geplanten Windenergieanlagen ist in der folgenden TABELLE 4 dargestellt. Ein Kartenausschnitt im Anhang (Maßstab 1 : 20.000) zeigt den Verlauf der Isophonen für die Gesamtbelastung.

IP	Bezeichnung	Immissionsricht- wert (nachts)	Belastung in dB(A)
Α	Berglicht, Karsonick 3	40 dB(A)	34,0 dB(A)
В	Waldeck 1	45 dB(A)	41,4 dB(A)
С	Talling, Gartenstraße 4	45 dB(A)	36,2 dB(A)
D	Heidenburger Hof	45 dB(A)	40,2 dB(A)
Е	Birkenhof 1	45 dB(A)	40,3 dB(A)
F	Talling, Birkenallee 7	45 dB(A)	36,5 dB(A)
G	Geplantes Wohngebiet Talling Nordwest	40 dB(A)	37,0 dB(A)
Н	Talling, Zum Braunsfeld 3	45 dB(A)	36,5 dB(A)

Tab. 4: Berechnungsergebnisse der Gesamtbelastung durch die geplanten Windenergieanlagen "Talling" und den bestehenden Windpark "Berglicht"

Aus den Ergebnissen der Berechnung der Gesamtbelastung geht hervor, dass an allen untersuchten Immissionspunkten die jeweils zulässigen Immissionsrichtwerte deutlich unterschritten werden. Aufgrund der Ergebnisse der Schallimmissionsberechnung kann festgestellt werden, dass die zwei geplanten Windenergieanlagen aus Sicht des Schallimmissionsschutzes als genehmigungsfähig einzustufen sind.

Die Berechnung der Immissionen nach dem alternativen Verfahren nach DIN ISO 9613-2 (frequenzunabhängig) führt in der Regel zu Immissionswerten, die etwas oberhalb der tatsächlich gemessenen Werte liegen. Dämpfungen durch Bebauung und Bewuchs werden bei diesem Berechnungsverfahren nicht berücksichtigt. Auch dies führt zu höheren Ergebnissen

als sie in der Realität zu erwarten sind. Weiterhin ist zu berücksichtigen, dass die Bedingungen der Berechnung (Windgeschwindigkeiten von 10 m/s) nur selten erreicht werden.

4. Beurteilung der Prognoseunsicherheit

Der TA-Lärm [3] entsprechend sind bei Geräuschimmissionsprognosen auch Aussagen über die Qualität der Prognose zu treffen. Die Unsicherheit der Prognose wird bestimmt durch

- die Unsicherheit, mit der die Emissionsdaten erhoben wurden (σ_R),
- die möglichen Schwankungen der Emission aufgrund von Serienstreuungen (σ_P),
- die Unsicherheit des Prognosemodells (σ_{Progn.}).

Die Gesamtunsicherheit der Prognose σ_{ges} berechnet sich wie folgt:

$$\sigma_{\text{ges}} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{\text{Pr}\,\text{ogn.}}^2}$$

hierbei ist

$$\sigma_{R} = 0.5$$
 dB(A) (da WEA nach DIN EN 61400-11 vermessen)
 $\sigma_{P} = 1.2$ dB(A) (nach DIN EN 50376, siehe [7], [8])
 $\sigma_{Progn} = 1.5$ dB(A) (nach DIN ISO 9613-2)

oprogn = 1,0 db(A) (Hach bill 130 s

also

$$\sigma_{\text{ges}}$$
 = 1,997 \approx 2,0 dB(A)

Die Gesamtunsicherheit der Prognose wird bei der Beurteilung durch einen Sicherheitsaufschlag berücksichtigt. Dieser Sicherheitsaufschlag ergibt sich aus einer statistischen Größe sowie der Gesamtunsicherheit der Prognose (σ_{ges}).

In einer statistischen Betrachtung ergibt sich die obere Vertrauensbereichsgrenze L₀ des Beurteilungspegels für eine Sicherheit von 90 % nach:

$$L_0 = L_m + 1,28 \cdot \sigma_{aes}$$

wobei L_m = prognostizierter Immissionswert

Für die Berechnung der Gesamt- und Vorbelastung ergibt sich somit eine obere Vertrauensbereichsgrenze von:

$$L_0 = L_m + 1,28 \cdot 2,0 = L_m + 2,56 \approx L_m + 2,6 \text{ dB(A)}$$

Der Richtwert der TA Lärm gilt als eingehalten, wenn:

L₀ ≤ Richtwert nach TA Lärm

In TABELLE 5 sind die prognostizierten Schallimmissionswerte nochmals inklusive des eingerechneten Sicherheitszuschlags von 2,6 dB(A) dargestellt.

	IP	Bezeichnung	Immissionsricht- wert (nachts)	Belastung It. Prog- nose inkl. Sicher- heitszuschlag in dB(A)
	Α	Berglicht, Karsonick 3	40 dB(A)	36,6 dB(A)
X.	В	Waldeck 1	45 dB(A)	44,0 dB(A)
7	С	Talling, Gartenstraße 4	45 dB(A)	38,8 dB(A)
	D	Heidenburger Hof	45 dB(A)	42,8 dB(A)
<	E	Birkenhof 1	45 dB(A)	42,9 dB(A)
1	F	Talling, Birkenallee 7	45 dB(A)	39,1 dB(A)
	G	Geplantes Wohngebiet Talling Nordwest	40 dB(A)	39,6 dB(A)
A L	Н	Talling, Zum Braunsfeld 3	45 dB(A)	39,1 dB(A)

Tab. 5: Berechnungsergebnisse der Gesamtbelastung durch die geplanten Windenergieanlagen "Talling" und den bestehenden Windpark "Berglicht" einschließlich 2,6 dB(A) Sicherheitszuschlag

Unter Berücksichtigung des o.g. Sicherheitszuschlags von 2,6 dB(A) auf die Prognoseergebnisse werden die Immissionsrichtwerte an allen Immissionspunkten eingehalten. Demnach sind die beiden geplanten Windenergieanlagen aus Sicht des Schallimmissionsschutzes als genehmigungsfähig einzustufen.

5. Literatur

- [1] Technische Richtlinien für Windenergieanlagen, Revision 13, Ausgabe 01.01.2000 Teil 1: Bestimmung der Schallemissionswerte, Fördergesellschaft Windenergie e.V.
- [2] Landesumweltamt Nordrhein-Westfalen (Hrsg.) (2002): Materialien Nr. 63. Windenergieanlagen und Immissionsschutz, Essen 2002.
- [3] Sechste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zum Schutz gegen Lärm TA-Lärm) vom 26.August 1998
- [4] DIN ISO 9613-2, Ausgabe Oktober 1999: Dämpfung des Schalls bei der Ausbreitung im Freien, Teil 2: Allgemeine Berechnungsverfahren.
- [5] Landesumweltamt Nordrhein-Westfalen (Hrsg.), Piorr, D. (2001): Zum Nachweis der Einhaltung von Geräuschimmissionsrichtwerten mittels Prognose. In: Zeitschrift für Lärmbekämpfung, 2001, Nr.5.
- [6] Staatliches Umweltamt Herten, Sicherheitszuschläge, Dez 23 / Ag Stand: 11.03.03 Sicherheitszuschläge bei Windenergieanlagen
- [7] Anhang zum WEA-Geräuschimmissionserlass vom 31.07.2003 des Ministeriums für Landwirtschaft, Umweltschutz und Raumordnung Brandenburg
- [8] Länderausschuss für Immissionsschutz: Beratungsunterlage und Niederschrift zu TOP A 1.4 der 99. Sitzung vom 10. bis 12. Mai 2000 in Lübbenau

6. Anhang

- Messberichte der WEA Nordex N 90 (Auszüge aus Prüfberichten WICO 132SE402/01 bzw. WICO 063SE204/01)
- Umrechnung des Schallleistungspegels auf andere Nabenhöhen der Windenergieanlage (WEA) des Typs NORDEX N90 (Prüfbericht WICO 001SE104)
- Messberichte der WEA Südwind S77 (Auszug aus dem Prüfbericht WICO 404SEC02)
- Topographische Übersichtskarte (Maßstab 1:20.000) mit den geplanten Anlagen "Talling" und dem bereits bestehenden Windpark "Berglicht" sowie den Anständen zwischen geplanten WEA und Immissionspunkten
- Berechnungsergebnisse (Vor-, Zusatz-, und Gesamtbelastung)
- Kartenausschnitt der topographischen Karte TK 6207 Beuren (Maßstab 1 : 20.000) mit Standortmarkierungen von Windenergieanlagen und Immissionspunkten (IP) sowie den Isophonen der Gesamtbelastung

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 14 vom 01. Juli 2003 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 132SE402/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: NORDEX Energy GmbH Nennleistung (Generator): 2300 kW Bornbarch 2 Rotordurchmesser: 90 m **D-22848 NORDERSTEDT** Nabenhöhe über Grund: 80 m Seriennummer: 8023 Turmbauart: Stahlrohrturm WEA-Standort (ca.): X: 5405515; Y: 5968180 Leistungsregelung: Pitch/Stall/Aktiv-Stall

Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator (Herstellerangaben)

Rotorblatthersteller: LM Glasfiber A/S

LM 43.8P

Variabel

3 9,6 - 16,9 U/min

Getriebehersteller: Flender Typenbezeichung Getriebe:

Generatorhersteller:

PZAB 3450 Loher

Typenbezeichung Generator: AFWA-630MD-06A Generatordrehzahlbereich: 744 - 1310 U/min

Prüfbericht zur Leistungskurve: -

Typenbezeichnung Blatt:

Blatteinstellwinkel:

Rotordrehzahlbereich:

Rotorblattanzahl

			Referenzpunkt				Schallemissions- Parameter				Bemerkungen			
			Standar Windgesch in 10 n		1	Elektrische Virkleistun								
Schalleistungs- Pegel L _{WA,P}			6 m 7 m 8 m 8,7 r	ıs ⁻¹	942 kW 1455 kW 1982 kW 2185 kW		101,8 dB(A) 102,8 dB(A) 103,4 dB(A) 103,6 dB(A)			/1				
Tonzuschlag für den Nahbereich K _{TN}			6 m 7 m 8 m 8,7 r	s ⁻¹ s ⁻¹ ns ⁻¹	942 kW 1455 kW 1982 kW 2185 kW		2 dB 2 dB 2 dB - dB	l l	bei 162 H bei 168 H bei 168 H	z), (2) (1)		
lmpulszuschlag für den Nahbereich K _{IN}			6 m 7 m 8 m 8,7 n	s ⁻¹ s ⁻¹	942 kW 1455 kW 1982 kW 2185 kW			0 dB 0 dB 0 dB 0 dB					(1)	
			Terz-Scha	lleistungsp	egel Re	ferenzpun	kt v ₁₀ =	8,7 ms			_1		(1)	
Frequenz -wa, p	50 72,8	63 77,1	80 79,5	100 82,4	125 84,8	160 94.0	200	2	50	315	400	50		630
requenz	800	1000	1250	1600	2000	2500	90,1 3150		00	92,1 5000	92,1 6300	90,	-	87,9
-WA. P	88,6	92,3	91,6	92,3	93,9	91,1	91,5	89	9,7	87,1	86.0	84.		10000 81,2
			Oktav-Scha	lleistungs	pegel Re	eferenzpur	nkt v ₁₀ =	= 8,7 m	s ⁻¹ in	dB(A) (3)				
requenz	63		125	250		500		000 2000			4000	Т		3000
-WA, P	82,0		94,7	95,4		95,1	95	5,9		97,4	94,6	-		89,2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 06.06.2003. Die Angaben ersetzen nicht den o.g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben Bemerkungen: (1) wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,7 ms⁻¹ in 10 m ü.G..

Extrapolierter Wert.

Ermittelt aus 5-Sekunden-Mittelwerten.

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Datum: 03.09.03

Interschrift Dipl.-Ing. R.Haevernick

Unterschrift Dipl.-Ing. J. Schwabe

Auszug aus dem Prüfbericht

Seite 1

JFWA-560MQ-06A

744 - 1310 U/min

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 063SE204/01
zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Technische Daten (Herstellerangaben) Allgemeine Angaben Anlagenhersteller: **Nordex Energy GmbH** Nennleistung (Generator): 2300 kW Bornbarch 2 Rotordurchmesser: 90 m D-22848 Norderstedt Nabenhöhe über Grund: 80 m Seriennummer: 8098 Turmbauart: Stahlrohrturm WEA-Standort (ca.): WP Gut Losten, WEA 4 Pitch/Stall/Aktiv-Stall Leistungsregelung: Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator (Herstellerangaben) Rotorblatthersteller: LM Glasfiber a/s Getriebehersteller: **Eickhoff** Typenbezeichnung Blatt: LM 43.8P Typenbezeichung Getriebe: CPNHZ-244 Blatteinstellwinkel: Generatorhersteller: Variabel (0 - 90°) Loher

Typenbezeichung Generator:

Generatordrehzahlbereich:

Rotordrehzahlbereich: 9,6 – 16,9 U/min

Rotorblattanzahl

Prüfberich	nt zur Leis	tungsk	urve: Risø -	1-2052										
		5 0	Referenzpunkt					Schallemissions- Parameter				Bemerkungen		
			Standar Windgesch in 10 m	windigkeit	0.000	lektrische /irkleistung								
			6 m			972 kW	1		100,9	dB(A)				
Schalleistu	ings-		7 m			1481 kW			102,0					
Pegel			8 m	is ⁻¹		2017 kW			102,9		1			
LWAP			8,4 r	ns ⁻¹		2185 kW			103,0	dB(A)		(1)		
			6 m			972 kW		-		ei - Hz				
Tonzuschla	•		7 m		1	1481 kW	- 1			oei - Hz				
den Nahbe	reich		8 m		1	2017 kW	- 1			oei - Hz	-			
K _{TN}			8,4 r		2185 kW		-	- dB bei - Hz		(1)				
Impularus	-LI	1	6 m		972 kW			0 dB						
Impulszuso für den Na			7 m 8 m		1481 kW			0 dB		1				
K _{IN}	nbereich	1	8,4 n					0 dB 0 dB			(1)			
M					2185 kW			$t v_{10} = 8.0 \text{ ms}^{-1} \text{ in dB(A)}$		_	(1)			
_							<u> </u>	1000						
Frequenz	50	63	80	100	125	160	200		250	315	400	500	630	
LWAP	77,3	80,4	82,9	86,5	89,9	89,4	90,7	<u>'</u>	92,3	93,1	92,4	90,3	91,1	
LWA P		85,5			93,6				96,9			96,1		
Frequenz	800	1000	1250	1600	2000	2500	3150		4000	5000	6300	8000	10000	
LWAP	89,6	90,0	90,7	91,1	91,5	90,1	87,0		84,4	80,8	75,6	72,3	70,3	
LWA P		94,9			95,7				89,5			78,1		
		1	Terz-/Oktav-	Schalleis:	tungspeg	el Referer	zpunkt	V10 =	= 8,4 ms	in dB(A)			
Frequenz	50	63	80	100	125	160	200		250	315	400	500	630	
L _{WA P}	77,1	80,8	83,4	86,6	91,0	89,6	91,0		92,5	93,3	92,5	90,2	91,1	
L _{WA, P}		85,9			94,2				97,1			96,1		
Frequenz	800	1000	1250	1600	2000	2500	3150		4000	5000	6300	8000	10000	
Lwa p	88,9	89,9	90,7	91,2	91,5	90,0	86,9		84,0	80,5	74,9	71,3	69,4	
L _{WA P}		94,7			95,7				89,3			77,3		

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 07.05.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: (1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Meßtag bei v₁₀= 8,4 ms⁻¹ in 10 m ü.G..

Gemessen durch:

WIND-consult GmbH

Reuterstraße 9

D-18211 Bargeshagen

Datum: 10.05.04

Unterschrift

Unterschrift
Dipl.-Ing. R.Haevernick
Dipl.-Ing. W. Wilke

DAP-PL-2756 00

WICO 001SE104

Umrechnung des Schalleistungspegels auf andere Nabenhöhen der Windenergieanlage (WEA) des Typs NORDEX N90

nach

FGW-Richtlinie /1/

Bargeshagen, 9. Januar 2004

Aufgabenstellung:	Abschätzung des Schalleistungspegels der Windenergieanlage (WEA) NORDEX N90 auf andere Nabenhöhen
Meß-/Prüfobjekt	NORDEX N90
Art der Messung / Prüfung	Umrechnung des Schalleistungspegels nach /1/ in die Nabenhöhen 100 m und 105 m
Auftraggeber	Nordex Energy GmbH
A STATE OF THE STA	Bornbarch 2
	D-22848 Norderstedt
Auftragsertellung /=	12.12.2003/
bestätigung 💮 🗱	06.01.2004
Auftragnehmer	WIND-consult GmbH
	Reuterstraße 9 D-18211 Bargeshagen
	Tel. +49 (0) 38203-507 25 Fax +49 (0) 38203-507 23

Bearbeitung

Dipl. byg. R. Haevernick

Prüfung

Dipt.-Ing. J. Schwabe

Bargeshagen, den 9. Januar 2004

Dieser Bericht darf nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Meß- / Prüfobjekt.

<u>Inhalt</u>

1	Aufgabenstellung	4
2	Methode	4
3	Ergebnisse	6
3.1	Umrechnung der Schalleistungspegel auf andere Nabenhöhen auf Basis des Prüfberichts WICO 132SE402/01	6

Verzeichnis der verwendeten Formelzeichen und Abkürzungen

Verzeichnis der verwendeten Literatur

Anlage 1 Prüfberichtsauszug WICO 132SE402/01

1 Aufgabenstellung

Die Windenergieanlage (WEA) NORDEX N90 wurde mit einer Nabenhöhe $h_N = 80$ m akustisch nach /1/ vermessen. Der vollständige Meßbericht liegt vor /2/.

Auf Basis dieser Vermessung erfolgt die Umrechnung der Schalleistungspegel auf die Nabenhöhen $h_N = 100 \text{ m}$ und $h_N = 105 \text{ m}$. Anlage 2 enthält die jeweiligen Prüfberichtsauszüge, die die relevanten Emissionsparameter enthalten.

2 Methode

Die Richtlinie /1/ ermöglicht die Umrechnung des Schalleistungspegels auf andere Nabenhöhen, wenn die Regressionsparameter für den Zusammenhang Schalleistungspegel - Windgeschwindigkeit bekannt sind (vgl. /1/, Anhang C).

Anhand des Prüfberichtes (Auszug: Anlage 1) wurde die rechnerische Zu- bzw. Abnahme der Schalleistungspegel für jeden ganzzahligen Wert in den entsprechenden Windklassen bestimmt und gemäß (1) berechnet.

$$L_{WA,P,neu}(v_{10,ref}) = L_{WA,P,vermessen}(v_{10,i}) = L_{Acq,c,vermessen}(v_{10,i}) - 6 + 10\lg\left[\frac{4\pi R_1^2}{S_0}\right]$$
(1)

mit

$$L_{Aeq,c,vermessen}(v_{10,i}) = 10 * \lg \left(10^{L_{Aeq,vermessen(v_{10,i})}^{*0,1}} - 10^{L_{backgr,vermessen(v_{10,i})}^{*0,1}} \right)$$
 (2)

und

$$v_{10,i} = v_{10,ref} \bullet \left(\frac{\ln \frac{h_{N,neu}}{z_0}}{\ln \frac{h_{N,vermessen}}{z_0}} \right)$$
(3)

V_{10,ref}:

Referenzwindgeschwindigkeit in 10 m Höhe

V_{10,i}:

ermittelte Windgeschwindigkeit in 10 m Höhe bei der die vermessenen WEA die gleiche Leistung produziert wie die WEA mit neuer Nabenhöhe bei der

Referenzwindgeschwindigkeit (v_{10,ref}) in 10 m Höhe produzieren würde

L_{WA,P,neu} (v10,ref):

umgerechneter Schalleistungspegel bei v_{10,ref} und neuer Nabenhöhe

L_{WA,P,vermessen (v10,i)}: Schallleistungspegel bezogen auf die Windgeschwindigkeit in 10 m Höhe

(vermessene WEA)

L_{Aeq,vermessen (v10,i)}: Schalldruckpegel des Betriebsgeräusches bezogen auf die Windgeschwindig-

keit in 10 m Höhe (vermessene WEA)

L_{backg,vermessen (v10,i)}: Schalldruckpegel des Hintergrundgeräusches bezogen auf die Wind-

geschwindigkeit in 10 m Höhe (vermessene WEA)

L_{Aeq,c,vermessen (v10,i)}: Hintergrundkorrigierter Schalldruckpegel des Anlagengeräusches bezogen auf

die Windgeschwindigkeit in 10 m Höhe (vermessene WEA)

h_{N,neu}: neue Nabenhöhe der WEA

h_{N,vermessen}: Nabenhöhe der akustisch vermessenen WEA

 z_0 : Referenzrauhigkeitslänge, $z_0 = 0.05 \text{ m}$

 S_0 : die Bezugsfläche $S_0 = 1 \text{ m}^2$

R_i: der schräge Abstand vom Rotormittelpunkt zum Mikrifon

Der maximale Schalleistungspegel wird für den Referenzpunkt $v_{10} = 10 \text{ ms}^{-1}$ in 10 m ü.G. bzw., sofern dieser Betriebspunkt früher erreicht wird, für den Referenzpunkt der 95%igen Nennleistung angegeben.

3 Ergebnisse

3.1 Umrechnung der Schalleistungspegel auf andere Nabenhöhen auf Basis des Prüfberichts WICO 132SE402/01

Kenngröl	Be Referenzpunkt in 10 hau G	$h_{\rm N} = 80 { m m}^{1}$	$h_N = 100 \cdot m$	$h_N=105\mathrm{m}$	Einheit
L _{WA, P}	6 ms ⁻¹	101,8	102,1	102,1	dB(A)
L _{WA, P}	7 ms ⁻¹	102,8	103,0	103,0	dB(A)
L _{WA, P}	8 ms ⁻¹	103,4	103,5	103,6	dB(A)
L _{WA, P}	V _{10(95% PNenn)}	103,6 ²⁾	103,6 ³⁾	103,6 ⁴⁾	dB(A)

Tab. 1

- 1) Nabenhöhe der Vermessung
- 2) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve, der meteorologischen Rahmenbedingungen am Meßtag und der Nabenhöhe der vermessenen WEA bei v₁₀ = 8,7 ms⁻¹ in 10m ü.G.
- 3) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei $v_{10} = 8,3 \text{ ms}^{-1}$ in 10 m ü.G.
- 4) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀ = 8,2 ms⁻¹ in 10m ü.G.

Hinweise:

- Die in Tab. 1 gegebene Abschätzung unterstellt eine akustisch baugleiche Anlage!

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch erstellt.

Verzeichnis der verwendeten Formelzeichen und Abkürzungen

Bezeichnung	Symbol	Einheit
Tonpegeldifferenz	ΔL	dB
Änderung des Schalleistungspegels durch die Umrechnung	$\Delta L_{WA.P}$	dB
Regressionskoeffizient	a	dB(A)
Bestimmtheitsmaß	r	
Regressionskoeffizient	b	dB(A)/x
untere Grenzfrequenz der Gruppe	f_1	Hz
obere Grenzfrequenz der Gruppe	f_2	Hz
Akustisch beanspruchte Fläche	Faku	ha
Tonfrequenz	f _T	Hz
Nabenhöhe ü.G.	h _N	m
Gesamtnabenhöhe (ü.G.)	h _{N, ges.}	
Neue Nabenhöhe der WEA	h _{N, neu}	m
Nabenhöhe der akustisch vermessenen WEA		
Referenzhöhe	h _{N, vermessen}	<u>m</u>
Vertrauensbereichsgrenze	h _{ref.}	m dD(A)
Impulszuschlag nach DIN 45645 ("N" f. Nahbereich)	K _{IN}	dB(A)
Tonzuschlag nach DIN 45681 ("N" für Nahbereich)	K _{IN}	dB
AF-bewerteter Schalldruckpegel	L _{AF}	
äquivalenter Dauerschallpegel [Perzentil]		dB(A)
äquivalenter Dauerschallpegel (für Referenz)	L _{AFeq, [xx]}	dB(A)
äquivalenter Dauerschallpegel (für Referenz korrigiert)	L _{AFeq, ref.}	dB(A)
Perzentilpegel x %	L _{AFeq, ref., k}	dB(A)
Frequenzgruppenpegel des verdeckten Geräusches	L_{AFx}	dB(A)
Tonpegel	$L_{\rm G}$	dB
Schalleistungspegel bezogen auf v _{10, ref.}		dB
Schalleistungspegel bezogen auf Pref.	L _{WA}	dB(A)
Umgerechneter Schalleistungspegel bei v _{10, ref} und neuer Nabenhöhe	L _{WA, P}	dB(A)
vermessener Schalleistungspegel bei v _{10, ref} und alter Nabenhöhe	L _{WA} , P,neu(v10, ref)	dB(A)
Wirkleistung [95%]	L _{WA, P,vermessen(v10, ref)}	dB(A)
Wirkleistung, korrigiert auf Normalatmosphäre	P _[95]	kW
Referenzwirkleistung	P_k	kW
Abstand Rotationsebene-Gondeldrehachse	P _{ref.}	kW
Abstand Schallquellenmitte-Aufpunkt (IEA)	r _e	m
Meßentfernung (Meßpunkt - Turmaußenhaut)	R _i	m
Standardabweichung	R _{om}	m
Meßunsicherheit	S	-
Windgeschwindigkeit in 10 m ü.G.	$U_{ges.}$	dB
Referenzwindgeschwindigkeit in 10 m ü. G. bei 95% der Nennleistung	V ₁₀	m s ⁻¹
Referenzwindgeschwindigkeit in x m über Grund	V _{10(95% PNenn)}	m s ⁻¹
Referenzrauhigkeitslänge	V _{x, ref.}	m s ⁻¹
00-	Zo, ref.	m

Verzeichnis der verwendeten Literatur

- /1/ FÖRDERGESELLSCHAFT WINDENERGIE E.V. (FGW): Technische Richtlinien für Windenergieanlagen. Rev. 14 Stand 01.07.2003. Kiel (D)
- WIND-CONSULT GMBH: Messung der Schallemission der Windenergieanlage (WEA) des Typs NORDEX N90. Berichts-Nr. WICO 132SE402/01. Bargeshagen (D), 03.09.2003.

Anlage 1

Prüfberichtsauszug WICO 132SE402/01

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 14 vom 01. Juli 2003 (Flerausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 132SE402/01 zur Schallemission der Windenergieanlage vom Typ NORDEX N90

Aligemeine Angaben Technische Daten (Herstellerangaben)

NORDEX Energy GmbH Nennleistung (Generator):

2300 kW

Bornbarch 2 **D-22848 NORDERSTEDT**

X: 5405515; Y: 5968180

Rotordurchmesser: Nabenhöhe über Grund:

90 m 80 m

Seriennummer:

8023

Turmbauart:

Stahlrohrturm

WEA-Standort (ca.):

Anlagenhersteller:

Leistungsregelung:

Pitch/Stall/Aktiv-Stall

Ergänzende Daten zum Rotor (Herstellerangaben)

Erg. Daten zu Getriebe und Generator (Herstellerangaben)

Flender

Rotorblatthersteller: Typenbezeichnung Blatt:

Rotordrehzahlbereich:

LM Glasfiber A/S LM 43.8P

Getriebehersteller: Typenbezeichung Getriebe:

PZAB 3450

Blatteinstellwinkel:

Variabel

9,6 - 16,9 U/min

Generatorhersteller:

Loher

Rotorbiattanzahl

3

Typenbezelchung Generator: Generatordrehzahlbereich:

AFWA-630MD-06A 744 - 1310 U/min

Prüfbericht zur Leistungskurve: -

				Referenzpunkt Standardislerte						nissions- meter		Beme	rkur	ngen
			Windgesch	rdislerte nwindigkelt n Höhe		Elektrische Virkleistun						·		
Schalleisti Pegel Lwap	ungs-		6 n 7 n 8 n 8,7 ı	าร ⁻¹ าร ⁻¹ ทร ⁻¹		942 kW 1455 kW 1982 kW 2185 kW			102,8 103,4	dB(A) dB(A) dB(A) dB(A)		·), (2)	
Tonzuschl den Nahbe K _{TN} Impulszuse für den Na K _{IN}	ereich 		7 m 8 m 8,7 r 6 m 7 m 8 m	6 ms ⁻¹ 942 kW 7 ms ⁻¹ 1455 kV 8 ms ⁻¹ 1982 kV 8,7 ms ⁻¹ 2185 kV 6 ms ⁻¹ 942 kW 7 ms ⁻¹ 1455 kW 8 ms ⁻¹ 1982 kW 8,7 ms ⁻¹ 1982 kW				2 d 2 d 2 d - di	B 18 B 18	pel 162 H pel 168 H pel 168 H pei - Hz IB IB	iz		(1)	
			Terz-Scha	lleistungs	egel Re	ferenzpun	kt v ₁₀ =	8,7 m	s ¹ in	dB(A) (3)			(1)	
Frequenz Lwa, p	50 72,8	63 77,1	80 79,5	100 82,4	125 84,8	160 94,0	200) :	250 9,0	315 92,1	400 92,1	50		630
Frequenz -wa. p	800 88,6	1000 92,3	1250 91,6	1600 - 92,3	2000 93,9	2500 91,1	315 91,5	0 4	000 5000		6300 86.0	0008 00		87,9 10000
Oktav-Schalleistung				lielstungs	pegel Re					87,1 dB(A) (3)	00,0	84,	1	81,2
Frequenz 63 125 250								000		2000	4000		1	8000
-WA.P 82,0 94,7 95,4			95,4	,4 95,1			5,9		97,4	94.6	-+		89.2	

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 06.06.2003. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Der Betriebspunkt der 95%igen Nennlelstung, für den der maximale Schalleistungspegel angegeben Bemerkungen: (1) wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA bei v₁₀= 8,7 ms⁻¹ in 10 m ü.G..

Extrapolierter Wert.

Ermittelt aus 5-Sekunden-Mittelwerten.

Gemessen durch:

WIND-consult GmbH

Reuterstraße 9

D-18211 Bargeshagen

Datum: 03.09.03

DAP-PL-2756.00

Unterschrift Dipl.-Ing. R.Haevernick Dipl.-Ing. J. Schwabe

Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

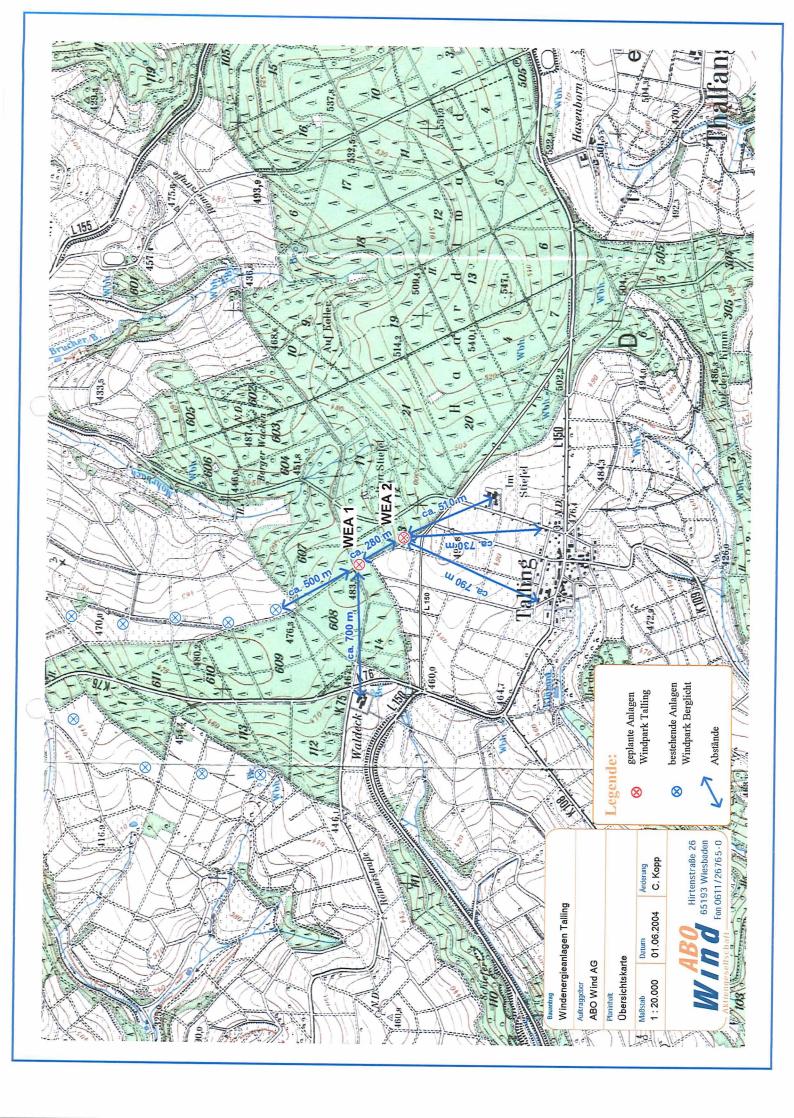
Auf der Basis von **mindestens drei** Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten	\$ \$ 6	ğ.			THE STATE OF			a l				
Hersteller	Südwin Bornba D-2284	rch 2 ¯	y GmbH rstedt			Ne Na	nnleist benhöl	ung ie	chnung esser		Südwir 1500 kV 100 m 77 m	
			1.Messung*		2.Me	ssung*			3.Mes	sung*		
Seriennummer Standort vermessene Nabe	enhöhe		70049 Hohen Pritz 85 m		Hohe	0044 en Pritz 5 m		XXX	700 Hoher 85	Pritz		
Meßinstitut		V	VIND-consult			-consult			WIND-		-	
Prüfbericht		WIC	O 013SE102	/02	WICO 01		03	W		37SE302		
Meßdatum			08.02.2002			2.2002		•	04.10.			
Getriebe		1	PEAB 4390			B 4390			PEAB		1	
Generator			JFRA-580		JFR	A-580			JFRA		-	
Rotorblatt		NOI 37.5				37.5			NOI:			
Schallemissionsp	THE THE PARTY OF T					. Y. J	7.24		liit.			1 10 10 10 10 10 10 10 10 10 10 10 10 10
Wind- geschwindigkeit in 10m		Schalleistungsp L _{WAP} :				ene examente			ischer wert	Stand Abweid		K nach /2/
Höhe	1. Me	ssung	2. Mess	sung	3. Mes	sung		Lw	,	s		$\sigma_R = 0.5 \text{ dB}$
6 m/s 7 m/s	99,4 101.0	dB(A) dB(A)	99,7 102,0	dB(A)	99,7 101,4	dB(A)			dB(A)			1,0 dB(A)
7,6 m/s		dB(A)	102,6	dB(A)	102,5				dB(A)	0,5 0,4	dB(A)	1,3 dB(A) 1,3 dB(A)
			Tonzusc KTN				Energetischer Mittelwert		scher			K AL nach /2/
								ΔL		s		
6 m/s	0 dB	Hz	0 dB	Hz	0 dB	Hz	-3	3,6	dB			
7 m/s	1 dB	180 Hz	1 dB	180 Hz	0 dB	Hz	-1	0,1	dB	-		_
7,6 m/s	1 dB	190 Hz	1 dB	190 Hz	0 dB	Hz	-0),2	dΒ			
			impulszus KIN						scher vert			
6 m/s	0	dB	0	dB	0	dB		0	dB			
7 m/s	0	ďΒ	0	dB	0	dB		0	dB		i	
7,6 m/s	0 dB 0 dB			dB	0 (dB		0	dB			

	Terz-Sc	halleis	tungsp	egel (eı	nergeti	sches M	/littel au	ıs 3 Me	ssunge	n) Refe	erenzpu	nkt v ₁₀	= 7,6 m	s ⁻¹ in di	B(A)	
Frequenz	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315	400	500
L _{WA, P}	61,5	62,6	65,5	70,8	73,8	76,8	80,3	84,5	86,4	87,4	89,1	93.2	92.1	92.9	92.5	90.8
Frequenz	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	12500		
L _{WA, P}	90,5	90,3	90,0	89,5	88,5	87,4	85,9	83,1	79,6	75,7	70,8	65.9	63.4	61.6	57.0	47.9

Die Angaben ersetzen nicht den o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: * Die Schalleistungspegel sind auf die Nabenhöhe von h_N= 100 m entsprechend den Prüfberichtsauszügen umgerechnet worden.


** Es wird darauf hingewiesen, daß die Werte für die Tonhaltigkeit <u>nicht</u> bei der Nabenhöhe h_N= 100 m bestimmt wurden und so nicht unmittelbar auf umgerechnete Nabenhöhen übertragbar sind.

Ausgestellt durch: WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Unterschrift Dipl.-Ing. R. Haevernick

Unterschrift Dipl.-Ing. W. Wilke

Projekt:

Standort Talling

Ausdruck/Seite
02.06.2004 12:49 / 1
Lizensierter Anwender:

ABO Wind AG
Oberdorfstrasse 10
DE-55262 Heidesheim
+49 6132 8988 00
C. Kopp
Berechnet:
02.06.2004 12:48/2.3.0.125

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung Schall durch bestehende Anlagen Berglicht

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm "ISO 9613-2 Acoustics - Attenuation of sound during propagation outdoors"

Windgeschwindigkeit in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischer Dämpfungskoeffizient, C0: 2,0 dB

Die derzeit gültigen Immissionsrichtwerte richten sich nach der TA-Lärm jeweils für die entsprechenden Nachtwerte:

Industriegebiet: 70 dB(A) Gewerbegebiet: 50 dB(A) Dorf- und Mischgebiet: 45 dB(A) Allgemeines Wohngebiet: 40 dB(A) Reines Wohngebiet: 35 dB(A) Kur- und Feriengebiet: 35 dB(A)

Liegen Einzeltöne (Ton-/Impulshaltigkeit) bei einzelnen WEA vor, wird für die WEA ein Zuschlag je nach Auffälligkeit von 0 dB, 3 dB oder 6 dB angesetzt.

Maßstab 1:75.000

★ Existierende WEA

Maßstab 1:75.000

Schallkritisches Gebiet

WEA

GK Zone: Ost	2 Nord	Z Reihendate Beschreibur		yp Hersteller	Тур	Leistung	Rotord.	Höhe	Kreis- E	Schallwe Erzeuger		LWA,Ref.	Einzeltöne	Oktavbandabh.
1 0 567 566		[m]				[kW]	[m]	[m]	[m]			[dB(A)]		Daten
		436 WEA 1 439 WEA 2	Ja	SÜDWIND			77,0	100,0	68,0 L	JSER	Energetischer Mittelwert aus drei Vermessungen	102.3	Nein	Nein
		439 WEA 2 424 WEA 3	Ja	SÜDWIND			77,0	100,0	68,0 L	JSER	Energetischer Mittelwert aus drei Vermessungen	102,3		Nein
		438 WEA 4	Ja Ja	SÜDWIND			77,0	100,0	68,0 L		Energetischer Mittelwert aus drei Vermessungen	102,3	Nein	Nein
		461 WEA 5	Ja	SÜDWIND SÜDWIND			77,0	100,0	68,0 L		Energetischer Mittelwert aus drei Vermessungen	102,3	Nein	Nein
		470 WEA 6	Ja	SÜDWIND			77,0 77.0	100,0	68,0 L		Energetischer Mittelwert aus drei Vermessungen		Nein	Nein
		470 WEA 7	Ja	SÜDWIND			77.0	100,0	68,0 L		Energetischer Mittelwert aus drei Vermessungen	102,3	Nein	Nein
		477 WEA 8	Ja	SÜDWIND			77.0	100,0	68,0 U		Energetischer Mittelwert aus drei Vermessungen	102,3	Nein	Nein
9 2.568.431	5.515.739	475 WEA 9	Ja	SÜDWIND			77,0	100,0	68,0 U		Energetischer Mittelwert aus drei Vermessungen Energetischer Mittelwert aus drei Vermessungen	102,3	Nein	Nein

Berechnungsresultate

Beurteilungspegel

	ches Gebiet	GK Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nein	Name	Ost	Nord	Z	Schall	Berechnet	Schall
	4 B			[m]	[dB(A)]	[dB(A)]	
	A Berglicht, Karsonick 3	2.569.328	5.517.165	380	40.0	33,6	Ja
	B Waldeck 1	2.567.982	5.515.252	464	45.0		Ja
	C Talling, Gartenstraße 4		5.514.351			,-	Ja Ja
[D Heidenburger Hof	2.568.243	5.517.350	408		,-	Ja
E	E Birkenhof 1	2.568.994					Ja
	F Talling, Birkenallee 7	2.568.891	5.514.352	475	45.0	,.	Ja
(G Geplantes Wohngebiet Talling Nordwest	2.568.303	5.514.487	467	40.0	,-	
)	H Talling, Zum Braunsfeld Nr. 3		5.514.346				Ja Ja

Abstände (m)

Schallkritisches Gebiet

√EΑ	Α	В	C	D	E	F	G	Н
1	2237	688	1726	1698	1871	1963	1504	1882
2	2067	950	1991	1425	2083	2200	1778	2129
3	1907	1216	2248	1158	2293	2431	2044	2369
4	1550	1537	2523	705	2479	2652	2342	2608
5	1021	1605	2461	555	2301	2511	2323	2493
6	1173	1335	2194	816	2053	2256	2052	2234
7	1310	1088	1918	1093	1781	1981	1779	1957
8	1526	826	1642	1367	1531	1719	1501	1690
9	1685	663	1390	1621	1276	1461	1258	1431

Projekt:

Standort Talling

Ausdruck/Seite

02.06.2004 12:52 / 1

Lizensierter Anwender:

ABO Wind AG

Oberdorfstrasse 10

DE-55262 Heidesheim
+49 6132 8988 00

C. Kopp
Berechnet:

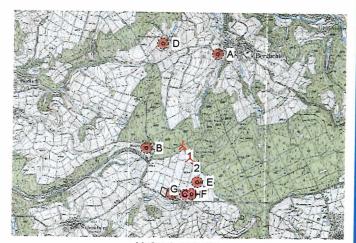
02.06.2004 12:50/2.3.0.125

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung Schall Talling

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm "ISO 9613-2 Acoustics - Attenuation of sound during propagation outdoors"


Windgeschwindigkeit in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischer Dämpfungskoeffizient, C0: 2,0 dB

Die derzeit gültigen Immissionsrichtwerte richten sich nach der TA-Lärm jeweils für die entsprechenden Nachtwerte:

Industriegebiet: 70 dB(A) Gewerbegebiet: 50 dB(A) Dorf- und Mischgebiet: 45 dB(A) Allgemeines Wohngebiet: 40 dB(A) Reines Wohngebiet: 35 dB(A) Kur- und Feriengebiet: 35 dB(A)

Liegen Einzeltöne (Ton-/Impulshaltigkeit) bei einzelnen WEA vor, wird für die WEA ein Zuschlag je nach Auffälligkeit von 0 dB, 3 dB oder 6 dB angesetzt.

Neue WEA

Maßstab 1:75.000 ■ Schallkritisches Gebiet

WEA

Ost	Nord	z	Reihendaten/ Beschreibung	 Typ Hersteller	Тур	Leistung	Rotord.	Höhe	Schallwe Kreis- Erzeuger radius		LWA,Ref.	Einzeltöne	Oktavbandabh.
2.568.680 2.568.829				NORDEX NORDEX			[m] 90,0 90,0	[m] 100,0 100,0	[m] 75,2 USER	Vermessener Schallleistungspegel Vermessener Schallleistungspegel		Nein Nein	Daten Nein Nein

Berechnungsresultate

Beurteilungspegel

Schallkritisches Gebiet	GK Zone: 2	2		Anforderungen	Beurteilungsnegel	Anforderungen erfüllt?
Nein Name	Ost	Nord	Z	Schall	Berechnet	Schall
A D			[m]	[dB(A)]	[dB(A)]	Contain
A Berglicht, Karsonick 3	2.569.328	5.517.165	380	40,0		Ja
B Waldeck 1	2.567.982	5.515.252	464	45,0		Ja
C Talling, Gartenstraße 4	2.568.506	5.514.351	473		,-	Ja
D Heidenburger Hof	2.568.243	5.517.350	408			Ja
E Birkenhof 1	2.568.994	5.514.594	492			Ja
F Talling, Birkenallee 7	2.568.891	5.514.352	475	45.0	,-	Ja
G Geplantes Wohngebiet Talling Nordwest	2.568.413	5.514.440	467	40,0	35,7	Ja
H Talling, Zum Braunsfeld Nr. 3	2.568.762				35.7	Ja Ja

Abstände (m)

	WEA	
SKG	1	2
Α	1969	2149
В	700	865
C	970	793
D	2090	2349
Ε	778	509
F	977	725
G	901	759
Н	963	732

Projekt:

Standort Talling

Ausdruck/Seite

02.06.2004 12:53 / 1

Lizensierter Anwender:

ABO Wind AG

Oberdorfstrasse 10

DE-55262 Heidesheim

+49 6132 8988 00

C. Kopp

Berechbeit

01.06.2004 14:52/2.3.0.125

DECIBEL - Hauptergebnis

Berechnung: Gesamtbelastung Schall Talling und bestehende Anlagen Berglicht

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm "ISO 9613-2 Acoustics - Attenuation of sound during propagation outdoors"

Windgeschwindigkeit in 10 m Höhe: 10,0 m/s Faktor für Meteorologischer Dämpfungskoeffizient, C0: 2,0 dB

Die derzeit gültigen Immissionsrichtwerte richten sich nach der TA-Lärm jeweils für die entsprechenden Nachtwerte:

Industriegebiet: 70 dB(A) Gewerbegebiet: 50 dB(A) Dorf- und Mischgebiet: 45 dB(A) Allgemeines Wohngebiet: 40 dB(A) Reines Wohngebiet: 35 dB(A) Kur- und Feriengebiet: 35 dB(A)

Liegen Einzeltöne (Ton-/Impulshaltigkeit) bei einzelnen WEA vor, wird für die WEA ein Zuschlag je nach Auffälligkeit von 0 dB, 3 dB oder 6 dB angesetzt.

Neue WEA

Maßstab 1:75.000 ★ Existierende WEA

Schallkritisches Gebiet

WEA

GK Zone: 2 Ost Nord Z Reihen Beschr		г Тур	Leistung	Rotord.	Höhe	Schallwe Kreis- Erzeuger		LWA,Ref.	Einzeltöne	Oktavbandabh.
1 2.568.680 5.515.306 482 Talling 2 2.568.6829 5.515.075 488 Talling 3 2.567.560 5.515.795 436 WEA 1 4 2.567.556 5.516.101 439 WEA 2 5 2.567.581 5.516.400 424 WEA 3 6 2.567.827 5.516.781 438 WEA 4 7 2.568.371 5.516.809 470 WEA 6 9 2.558.375 5.516.265 470 WEA 7 10 2.558.336 5.515.987 477 WEA 8 11 2.568.431 5.515.739 475 WEA 9	1 Ja NORDE. 2 Ja NORDE. 3 SÜDWIN 3 SÜDWIN 4 SÜDWIN 4 SÜDWIN 5 SUDWIN 5 SUDW	N90 D S 77 D S 77 D S 77 D S 77 D S 77 D S 77 D S 77	2.300 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500	[m] 90,0 90,0 77,0 77,0 77,0 77,0 77,0 77,0	[m] 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0	radius [m] 75,2 USER 75,2 USER 68,0 USER 68,0 USER 68,0 USER 68,0 USER 68,0 USER 68,0 USER 68,0 USER 68,0 USER	Vermessener Schallleistungspegel Vermessener Schallleistungspegel Energelischer Mittelwert aus drei Vermessungen	[dB(A)] 103,6 103,6 102,3 102,3 102,3 102,3 102,3 102,3 102,3 102,3	Nein Nein Nein Nein Nein Nein Nein Nein	Nein Nein Nein Nein Nein Nein Nein Nein

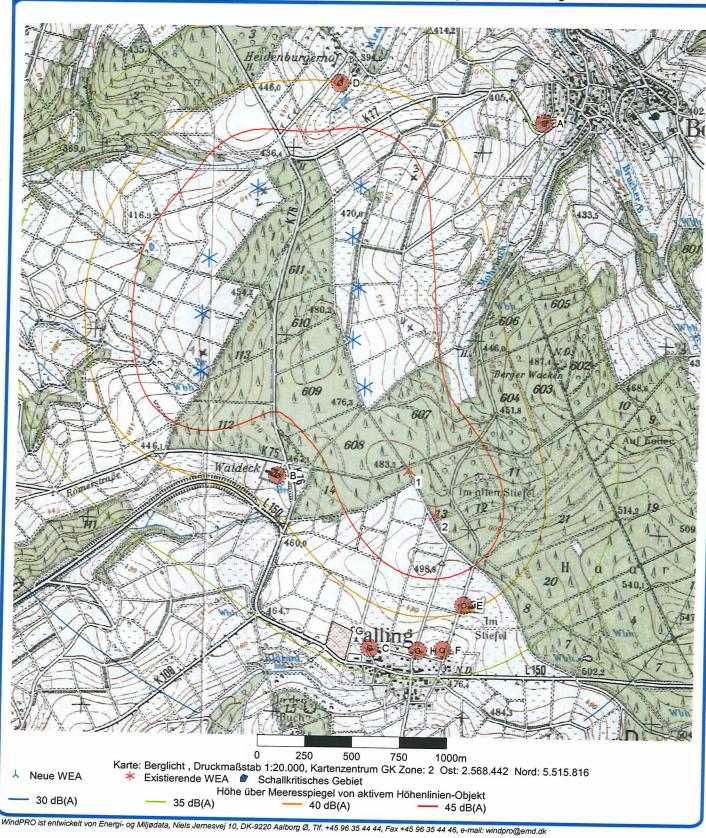
Berechnungsresultate

Beurteilungspegel

Schallkritisches Gebiet Nein Name	GK Zone: 2 Ost	2 Nord	Z [m]	Anforderungen Schall [dB(A)]	Berechnet	Anforderungen erfüllt? Schall
A Berglicht, Karsonick 3	2 569 328	5.517.165			[dB(A)]	•
B Waldeck 1		5.515.252		.0,0		Ja
C Talling, Gartenstraße 4		5.514.351		.0,0	7.14.1	Ja
D Heidenburger Hof		5.517.350		,.	,-	Ja
E Birkenhof 1				.0,0		Ja
F Talling, Birkenallee 7		5.514.594			,-	Ja
	2.568.891	5.514.352	475	45,0	36,5	Ja
G Geplantes Wohngebiet Talling Nordwest				40,0	37,0	Ja
H Talling, Zum Braunsfeld Nr. 3	2.568.762	5 514 346	474	45.0	36.5	I-

Abstände (m)

Schallkritisches Gebiet


WEA	Α	В	С	D	Ε	F	G	Н
1	1969	700	970	2090	778	977	901	963
	2149	865	793	2349	509	725	759	732
- 17	2237		1726					
4	2067	950	1991	1425	2083	2200	1778	2129
5	1907	1216	2248	1158	2293	2431	2044	2369
6	1550					2652		
7	1021	1605	2461	555	2301	2511	2323	2493
8	1173	1335	2194	816	2053	2256	2052	2234
9	1310	1088	1918	1093	1781	1981	1779	1957
10	1526	826	1642	1367	1531	1719	1501	1690

Standort Talling

02.06.2004 12:55 / 1 **ABO Wind AG** Oberdorfstrasse 10 DE-55262 Heidesheim +49 6132 8988 00 C. Kopp 01.06.2004 14:52/2.3.0.125

DECIBEL - TK Berglicht

Berechnung: Gesamtbelastung Schall Talling und bestehende Anlagen Berglicht Datei: Berglicht.bmi

