

Schallprognose für 5 neue (N-90) und 7 bestehende Windenergieanlagen am Standort

Gebhardshain

(Rheinland-Pfalz)

Datum: 25.11.2005

Bericht Nr. GEB5-051125-3NR

Auftraggeber:

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe

Bearbeiter:

CUBE Engineering GmbH

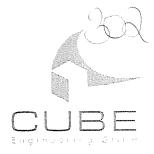
Dipl.-Ing. Peter Ritter

Ludwig-Erhard-Straße 4

DE-34131 Kassel

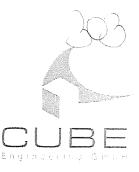
Tel 0561 / 34337

Fax 0561 / 34339


Die vorliegende Schallprognose für den Standort Gebhardshain (Rheinland-Pfalz) wurde der CUBE Engineering GmbH im Oktober 2005 von der Firma wat Wasser- und Abfalltechnik in Auftrag gegeben und gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteilisch erstellt.

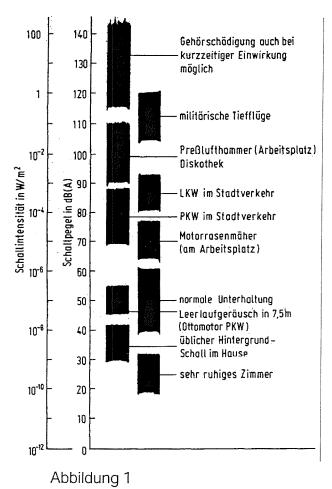
Für die Einhaltung der prognostizierten Ergebnisse der Schallprognose werden seitens des Gutachters keine Garantien übernommen. Sie basieren auf den Berechnungen nach der TA-Lärm /1/ und der Norm DIN ISO 9613-2 /2/ sowie den vom Auftraggeber und der Firma Nordex gestellten Standort- und Anlagendaten.

Kassel, 25.11.2005


Dipl.-Ing. Peter Ritter

Dipl.-Ing. Robin Funk

Inhalt:


1	Einleitu	ng	4
2	Theore	tische Grundlagen	5
	2.1 All	lgemeines zur Schallproblematik	5
	2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	J G	5 7 8 9
		nmissionsprognose	10
	2.2.1 2.2.2 2.2.3 2.2.4	Grundlage Zuschläge für Einzeltöne (Tonhaltigkeit) K _T	10 13 13 14
3	Stando	rtdaten	15
	3.1 Au	ufgabenstellung	15
	3.2 lm	nmissionsorte	15
	3.3 Vo	orbelastung	19
	3.4 Pc	otentielle Schallreflektionen	20
	3.5 Sc	challeistungspegel Windenergieanlagen	20
4	Ergebn	is der Immissionsberechnung nach DIN ISO 9613-2	23
		nmissionsberechnung für die Immissionsorte A-F und H-K für die kistierenden WEA (nicht relevante Fremdbelastung)	23
		nmissionsberechnung für die Immissionsorte A-F und H-K für die kistierenden WEA (relevante Vorbelastung)	24
		nmissionsberechnung für die Immissionsorte A-F und H-K für geplante WEA lusatzbelastung)	25
		nmissionsberechnung für die Immissionsorte A-F und H-K für alle zu erücksichtigenden WEA (Gesamtbelastung)	26
		nmissionsberechnung für den Immissionsort G für die existierenden WEA /orbelastung)	27
		nmissionsberechnung für den Immissionsort G für geplante WEA (usatzbelastung)	27
5	Zusam	menfassung	29
6	Qualită	ät der Prognose	31
7	Literat	ur	34
8	Anhan	ın	35

1 Einleitung

Die Nutzung der Windkraft gewinnt bei der elektrischen Energieversorgung zunehmend an Bedeutung. Im Gegensatz zu konventionellen Stromerzeugungsanlagen bestehen bei Windenergieanlagen (WEA) wesentlich weniger negative Beeinträchtigungen (u. a. Flächenverbrauch, Schadstoffausstoß) auf unsere Umwelt. Eine der negativen Umwelteinwirkungen durch Windenergieanlagen besteht jedoch in der Geräuschentwicklung, die einerseits vom mechanischen Triebstrang (Getriebe, Generator, usw.) und anderseits vom sich drehenden Rotor verursacht wird. Dieser Schall wird aufgrund seiner Geräuschart von den meisten Menschen als unangenehm und lästig empfunden und somit als Lärm wahrgenommen. Da die Menschen alltäglich schon verschiedensten Arten von Lärm ausgesetzt sind (s. Abbildung 1), ist es gerade bei den "sanften Energien" wichtig, dass der Mensch durch sie nicht auch noch zusätzlichen Lärmbelästigungen ausgesetzt wird. Durch eine Schallprognose wird im Vorfeld

der Planung untersucht, ob die einzuhaltenden Schallgrenzwerte (Immissionsrichtwerte) überschritten werden könnten. So kann im Vorfeld eine Beeinträchtigung der Nachbarn durch die Anlagengeräusche ausgeschlossen werden. Zur Untersuchung und Darstellung der Schallproblematik wurden von den Behörden und verschiedenen Gremien genaue Vorschriften und Richtlinien erarbeitet, die als Grundlage für die Schallprognose dienen. Die wesentliche Vorschrift für die Erstellung von Schallprognosen ist die Technische Anleitung zum Schutz gegen Lärm (TA Lärm, /1/). Nach TA Lärm Berechnungen sind die Schallausbreitung im Freien nach der DIN ISO 9613-2 /2/ durchzuführen.

2 Theoretische Grundlagen

2.1 Allgemeines zur Schallproblematik

2.1.1 Grundlagen

Der Schall besteht aus Luftdruckschwankungen, die das menschliche Ohr wahrnimmt. Abbildung 2 zeigt den Hörbereich des menschlichen Ohrs in einem logarithmischen Maßstab.

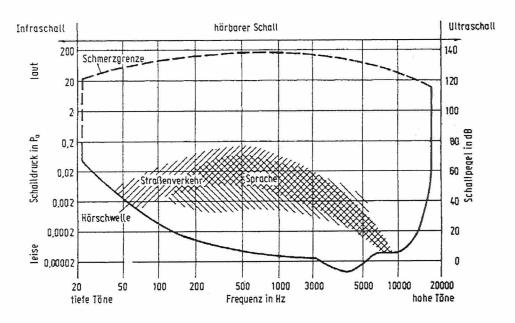


Abbildung 2 Hörbereich des Menschen

Der hörbare Bereich liegt zwischen ca. 20 Hz (Hertz) und 16 000 Hz. Das Ohr nimmt Druckschwankungen ab 0,00002 Pascal (Pa) (=20 dB) wahr, ab 20 Pa (120dB) wird der Schall als schmerzhaft wahrgenommen. Der Schall unter 20 Hz wird als Infraschall (Körperschall), der Schall über 20.000 Hz als Ultraschall bezeichnet.

2.1.2 Begriffsbestimmung, Normen, gesetzliche Grundlagen

Abbildung 3 zeigt den Zusammenhang von Schallentwicklung, -ausbreitung und -immission sowie die entsprechenden Vorschriften und Richtlinien.

- Emissionen sind im Allgemeinen die von einer Anlage (Quelle) ausgehenden Luftverunreinigungen, *Geräusche*, Erschütterungen und ähnliche Erscheinungen.
- Transmission ist die Ausbreitung der von einer Quelle emittierten Umweltbelastungen, z.B. die Schallausbreitung. Die Umgebung wirkt dabei dämpfend auf die von der Quelle ausgestrahlten Belastungen.
- Immissionen sind die auf Natur, Tiere, Pflanzen und den Menschen einwirkenden Belastungen (Luftverunreinigung, *Lärm* etc.) sowie lebenswichtige Strahlung (Sonne, Licht, Wärme), die sich aus sämtlichen Quellen überlagert.

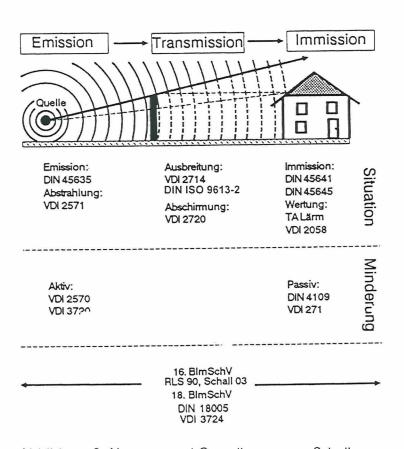


Abbildung 3: Normen und Grundlagen zum Schall

Die gesetzliche Grundlage für die Problematik 'Emission – Transmission – Immission' bildet das Bundesimmissionsschutzgesetz (BImSchG, 1974, 1990; /3/). Bauliche Anlagen müssen von den Gewerbeaufsichts- bzw. Umweltämtern auf Basis der 'Technischen Anleitung zum Schutz gegen Lärm' (kurz: TA-Lärm, 1998; /1/) auf ihre Verträglichkeit gegenüber der Umwelt und dem Menschen geprüft werden. Als Richtlinien für die Beurteilung (damit auch die Bemes-

sung) der Lärmproblematik gelten die in Abbildung 3 erwähnten Normen nach DIN und VDI. Die Immissionsschutzbehörde als Teil des Gewerbeaufsichtsamtes bzw. des Umweltamtes beurteilt die Lärmimmissionen baulicher Anlagen.

In der Baunutzungsverordnung (BauNVO, 1990; /4/) sind die Baugebietsarten festgelegt, denen nach der TA Lärm /1/ eine Immissionsschutz-Rangfolge zugeordnet ist. So gelten nachts folgende Immissionsrichtwerte außerhalb von Gebäuden:

35 dB (A)	für reines Wohn-, Erholungs- bzw. Kurgebiet
40 dB (A)	für allgemeines Wohngebiet und Kleinsiedlungsgebiet
	(vorwiegend Wohnungen)
45 dB (A)	für Kern-, Misch- und Dorfgebiete ohne Überwiegen einer
	Nutzungsart
50 dB (A)	für Gewerbegebiet (vorwiegend gewerbliche Anlagen).

2.1.3 Schalleistungs-, Schalldruck-, Mittelungs- und Beurteilungspegel

Die kennzeichnende Größe für die Geräuschemission einer Windenergieanlage wird durch den Schalleistungspegel L_{WA} beschrieben. Der *Schalleistungspegel* L_{WA} ist der maximale Wert in Dezibel / dB (A-bewertet), der von einer Geräusch- oder Schallquelle (Emissionsort, WEA) abgestrahlt wird. Eine Windenergieanlage verursacht im Bereich des hörbaren Frequenzbandes unterschiedlich laute Geräusche. Da das menschliche Gehör Schall mit unterschiedlicher Frequenz, bei gleichem Leistungspegel unterschiedlich stark wahrnimmt (siehe Abb. 2), wird in der Praxis der Schalleistungspegel über einen Filter gemessen, der der Hörcharakteristik des Menschen angepasst ist. So können verschiedenartige Geräusche miteinander verglichen und bewertet werden. Dieser über einen Filter (mit der Charakteristik "A" nach DIN IEC 651, Index A) gemessene Schalleistungspegel wird "A-bewerteter Schallpegel" genannt und ist der Wert der Schallquelle, der für die Berechnung der Schallausbreitung nach der DIN ISO 9613-2 /2/ verwendet wird.

November 05

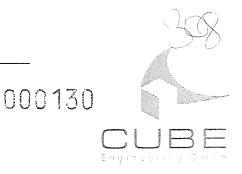
Die genaue Verfahrensweise zur Durchführung einer Schallemissionsmessung zur Ermittlung des Schalleistungspegels von WEA kann der Schrift der Fördergesellschaft Windenergie e. V (FGW) *Technische Richtlinien zur Bestimmung der Leistungskurve, der Schallemissionswerte und der elektrischen Eigenschaften von Windenergieanlagen /5/* entnommen werden.

Der Schall breitet sich kreisförmig um die Geräuschquelle aus und nimmt hörbar mit seinem Abstand zu ihr logarithmisch ab. Dabei wirken Bebauung, Bewuchs und sonstige Hindernisse dämpfend. Die Luft absorbiert den Schall. Reflexionen (z. B am Boden) und weitere Geräuschquellen wirken Lärm verstärkend. Die Schallausbreitung erfolgt hauptsächlich in Windrichtung.

Der *Schalldruckpegel* L_S ist der momentane Wert in dB, der an einem beliebigen Immissionsort (z.B. Wohngebäude) in der Umgebung einer oder mehrerer Geräusch- oder Schallquellen gemessen (z.B. mit Mikrofon, Schallmessung), berechnet (mit Immissionsprogrammen nach DIN ISO 9613-2, z.B. WindPRO Modul DECIBEL) oder wahrgenommen werden kann (z.B. durch das menschliche Ohr).

Der *Mittelungspegel* L_{Aeq} ist der zeitlich gemittelte Wert des Schalldruckpegels. Für die Schallprognose bei Windenergieanlagen wird vom ungünstigsten Fall ausgegangen, dass die Wetter- und Windbedingungen über einen längeren Zeitraum andauern, d.h. der Mittelungspegel wird dem Schalldruckpegel gleichgesetzt. Des Weiteren wird bereits bei der schalltechnischen Vermessung eine Mittelung vorgenommen.

Der Beurteilungspegel L_{rA} resultiert aus dem Mittelungspegel und den Zuschlägen aus der Ton- und Impulshaltigkeit aller Geräuschquellen. Die an den Immissionsorten einzuhaltenden Immissionsrichtwerte beziehen sich auf den Beurteilungspegel.


2.1.4 Vorbelastung, Zusatz- und Gesamtbelastung

Existieren an einem Standort bereits Geräuschquellen (z.B. Windenergieanlagen), so sind diese als Vorbelastung zu berücksichtigen und die neu geplante(n) Anlage(n) als Zusatzbelastung

CUBE Engineering GmbH – Ludwig-Erhard-Str. 4 – DE-34119 Kassel – Tel. 0561-34337 – Fax 0561-34339 – Email kassel@cube-engineering.com

November 05

Seite 8 von 71

zu bewerten. Die Gesamtbelastung ergibt sich dann aus den Geräuschen aller zu berücksichtigenden Anlagen.

2.1.5 Schallimmissionen von Windenergieanlagen

Die Schallabstrahlung einer WEA ist nie konstant, sondern stark von der Leistung und somit von der Windgeschwindigkeit abhängig. So rechnet man grob mit ca. 1 dB(A) Pegelzuwachs pro Zunahme der Windgeschwindigkeit in 10 m Höhe (v_{10}) um 1 m/s. Der immissionsrelevante Schalleistungspegel wurde früher bei v_{10} = 8 m/s angegeben. Ab dieser Windgeschwindigkeit übertönen im allgemeinen die durch Wind bedingten Umgebungsgeräusche (Rauschen von Blättern, Abrissgeräusche an Häuserkanten, Ästen usw.) die Anlagengeräusche, da sie mit der Windgeschwindigkeit stärker als die Anlagengeräusche zunehmen (ca. 2,5 dB(A) pro m/s Windgeschwindigkeitszunahme). Die Umgebungsgeräusche sind dann in der Regel lauter als die WEA d.h. die Geräuschimmission der WEA verliert an Bedeutung.

In Einzelfällen wurden jedoch geringere Geräuschabstände zwischen den Fremdgeräuschen und den Anlagengeräuschen gemessen. Dies tritt besonders an windgeschützten Orten auf, oder dann, wenn die WEA bei höheren Windgeschwindigkeiten eine Ton- oder Impulshaltigkeit besitzt. Daher hat sich die Vorgehensweise durchgesetzt (federführend der Arbeitskreis "Geräusche von Windenergieanlagen"), dass bei einem Immissionsrichtwert von 45 dB(A) die Prognose mit dem Schalleistungspegel bei v_{10} = 10 m/s oder, da viele Anlagen schon bei einer geringeren Windgeschwindigkeit ihre Nennleistung erreichen, mit dem Wert bei Erreichen von 95 % der Nennleistung, erstellt werden soll. Bei einem Immissionsrichtwert von 35 dB(A) kann unter Umständen die Berechnung dagegen mit dem Schalleistungspegel bei v_{10} = 8 m/s durchgeführt werden, da in diesem Fall die Umgebungs- und Fremdgeräusche die Schallimmission der WEA schon bei einer geringeren Windgeschwindigkeit überdecken.

2.2 Immissionsprognose

2.2.1 Grundlage

Die Prognosen sind nach TA-Lärm in ihrer jeweils gültigen Fassung bzw. anhand der DIN ISO 9613-2 /2/zu erstellen, wobei evtl. bestehende Vorbelastungen durch gewerbliche Geräusche an den Immissionsorten berücksichtigt werden müssen.

In der Regel wurde bei der schalltechnischen Vermessung von Windenergieanlagen der Abewertete Schalleistungspegel (inzwischen nach der FGW-Richtlinie /5/ auch oktavbandbezogene Werte) ermittelt. Daher werden die Dämpfungswerte bei 500 Hz verwendet, um die resultierende Dämpfung für die Schallausbreitung abzuschätzen. Der Dauerschalldruckpegel jeder einzelnen Quelle am Immissionsort berechnet sich nach der ISO 9613-2 /2/ dann wie folgt:

$$L_{AT}(DW) = L_{WA} + D_{C} - A \tag{1}$$

 L_{WA} : Schalleistungspegel der Punktschallquelle A-bewertet...

D_c: Richtwirkungskorrektur für die Quelle ohne Richtwirkung (0 dB) aber unter Berücksichtigung der Reflexion am Boden D:

$$D_{c} = D..+0 \tag{2}$$

Zusätzlich bedingt durch die Reflexion am Boden gilt:

$$D_{\cdot \cdot} = 10 \lg (1 + [d_p^2 + (h_s - h_r)^2] / [d_p^2 + (h_s + h_r)^2])$$
(3)

mit:

 h_s : Höhe der Quelle über dem Grund (Nabenhöhe)

 $\rm h_{r}$: Höhe des Immissionsorts über Grund (in der Regel 5m)

d_p: Abstand zw. Schallquelle und Empfänger, projiziert auf die Bodenebene. Der Abstand bestimmt sich aus den x- und y- Koordinaten der Quelle (Index s) und des Immissionsorts (Index r):

$$d_{p} = \sqrt{(x_{s}-x_{r})^{2} + (y_{s}-y_{r})^{2}}$$
(4)

A: Dämpfung zwischen der Punktquelle (WEA-Gondel) und dem Immissionsort, die bei der Schallausbreitung vorherrscht. Sie bestimmt sich aus den folgenden Dämpfungsarten:

$$A = A_{div} + A_{atm} + A_{or} + A_{bar} + A_{misc}$$
 (5)

A_{div}: Dämpfung aufgrund der geometrischen Ausbreitung:

$$A_{div} = 20lg (d / 1 m) + 11 dB$$
 (6)

d: Abstand zwischen Quelle und Immissionsort.

A_{atm}: Dämpfung durch die Luftabsorption

$$A_{atm} = \alpha_{500} \, d / 1000$$
 (7)

 α_{500} : Absorptionskoeffizient der Luft (= 1,9 dB/km)

Dieser Wert für α_{500} bezieht sich auf die günstigsten Schallausbreitungsbedingungen (Temperatur von 10° und relative Luftfeuchte von 70%).

A_{gr}: Bodendämpfung:

$$A_{gr} = 4.8 - (2 h_m / d [17 + 300 / d])$$
 (8)

Wenn $A_{qr} < 0$ dann $A_{qr} = 0$

h_m: mittlere Höhe (in m) des Schallausbreitungsweges über dem Boden:

Wenn keine Orographie vorhanden ist

$$h_{m} = \left(h_{s} + h_{r}\right)/2 \tag{9a}$$

Bei vorliegender Orographie wird die Fläche F zwischen dem Boden und dem Sichtstrahl zwischen Quelle (Gondel) und Aufpunkt in einer Auflösung von 100 Intervallen berechnet. Die mittlere Höhe berechnet sich dann mit:

$$h_{m} = F / d \tag{9b}$$

 h_s : Quellhöhe (Nabenhöhe); h_r : Aufpunkthöhe 5 m.

 A_{bar} : Dämpfung aufgrund der Abschirmung (Schallschutz); in der vorliegenden Berechnung wird ohne Schallschutz gerechnet: $A_{bar} = 0$.

 A_{misc} : Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung, Industrie). In der vorliegenden Berechnung werden diese Effekte nicht berücksichtigt: $A_{misc} = 0$.

In der Praxis dämpfen u. U. Bebauung und Bewuchs den Schall ($A_{misc} > 0$), so dass die tatsächlichen Immissionswerte unter jenen der Prognose liegen.

Liegen den Berechnungen mehrere n Schallquellen (u. a. Windpark) zugrunde, so überlagern sich die einzelnen Schalldruckpegel L_{ATi} entsprechend den Abständen zum betrachteten Immissionsort. In der Bewertung der Lärmimmission nach der TA-Lärm ist der aus allen n Schallquellen resultierende Schalldruckpegel L_{AT} unter Berücksichtigung der Zuschläge nach der folgenden Gleichung zu ermitteln:

$$L_{AT}(LT) = 10 Ig \sum_{i=1}^{n} 10^{0.1(L_{ATi} - C_{met} + K_{Ti} + K_{Ii})}$$
 (10)

L_{AT}: Beurteilungspegel am Immissionsort

L_{ATI}: Schallimmissionspegel am Immissionsort einer Emissionsquelle i

i: Index für alle Geräuschquellen von 1-n

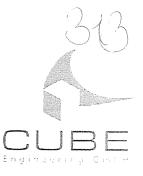
K_{Ti}: Zuschlag für Tonhaltigkeit einer Emissionsquelle i

 K_{ii} : Zuschlag für Impulshaltigkeit einer Emissionsquelle i

 C_{met} : Meteorologische Korrektur. Die Meteorologische Korrektur beschreibt die Dämpfung des Schalls durch meteorologische Einflüsse wie Wind und Temperatur über ein Jahr. Diese zusätzliche Dämpfung wird aber erst in größeren Entfernungen wirksam und ist u.a. von der Nabenhöhe der Anlage abhängig (siehe Formel 11). Bei den Prognosen kann mit dem Parameter $C_0 = 2$ dB gerechnet werden. Die Meteorologische Korrektur bestimmt sich nach den Gleichungen:

$$C_{met} = 0$$
 für dp < 10 (h_s+h_r)
 $C_{met} = C_0 [1-10(h_s+h_r)/dp]$ für dp > 10 (11)

2.2.2 Zuschläge für Einzeltöne (Tonhaltigkeit) K_T


Als Quellen für tonhaltige Geräusche sind in erster Linie Getriebe, Generatoren, Azimutgetriebe und eventuelle Hydraulikanlagen zu nennen. Tonhaltigkeiten im Anlagengeräusch sollten konstruktiv vermieden bzw. auf ein Minimum reduziert werden. Heben sich aus dem Anlagengeräusch einer oder mehrere Einzeltöne deutlich hörbar hervor, ist nach der TA Lärm für den Zuschlag K_T , je nach Auffälligkeit des Tons, ein Wert von 3 oder 6 dB(A) anzusetzen. Orientiert an der Tonhaltigkeit im Nahbereich K_{TN} (gemessen bei der Emissionsmessung) gilt für Entfernungen über 300 m folgender Zuschlag:

$$K_T = 0$$
 für $0 \cdot \cdot K_{TN} \cdot \cdot \cdot 2$
 $K_T = 3$ für $2 < K_{TN} \cdot \cdot \cdot 4$
 $K_T = 6$ für $K_{TN} > 4$

Die Zuschläge für Impuls- und Tonhaltigkeit der Anlagen werden für die entsprechenden Anlagentypen in der Regel bei Schalldruckpegelmessungen durch autorisierte Institute (in Deutschland u. a. DEWI, Windtest, Germanischer Lloyd) bewertet (s. z.B. Datenblätter zur Landesförderung) und werden in den Berichten zur schalltechnischen Vermessung dokumentiert. Sie werden ebenfalls in den technischen Unterlagen der WEA-Hersteller angegeben.

2.2.3 Zuschläge für Impulse (Impulshaltigkeit) K₁

Impulshaltige Geräusche können z.B. durch den Turmdurchgang des Rotorblatts entstehen und werden als besonders störend empfunden. Die Beurteilung, ob eine Impulshaltigkeit gegeben ist, kann nach DIN 45645 durchgeführt werden. Enthält das Anlagengeräusch (Abewerteter Schallpegel) öfter, d.h. mehrmals pro Minute, deutlich hervortretende Impulsgeräusche oder ähnlich auffällige Pegeländerungen (laut Messung), dann ist nach der TA Lärm die durch solche Geräusche hervorgerufene erhöhte Störwirkung durch einen Zuschlag zum Mittelungspegel zu berücksichtigen. Dieser Zuschlag K_I beträgt wie bei der Tonhaltigkeit, je nach Auffälligkeit des Tons 3 oder 6 dB(A). In der Praxis werden impulshaltige Geräusche konstruktiv vermieden; ihr auftreten entspricht somit nicht dem Stand der Technik.

2.2.4 Weitere Betrachtungen

Tieffrequente Geräusche und Infraschall (Körperschall) sind bei Windenergieanlagen messtechnisch nachweisbar, aber für den Menschen nicht hörbar. Nach den Untersuchungen der Infraschallwirkungen auf den Menschen (Ising /16/; Buhmann /17/) erwies sich unhörbarer (nicht wahrnehmbarer) Infraschall als unschädlich. Weiterhin werden die Windenergieanlagen infraschallentkoppelt fundamentiert, so dass sich der Infraschall nicht über den Boden ausbreiten kann. Der Körperschall ist daher nur in unmittelbarer Nähe um die WEA vorhanden, dabei aber nicht wahrnehmbar.

Einige Windenergieanlagen besitzen zwei Generatorstufen, um den Gesamtwirkungsgrad der Anlage über eine geringere Drehzahl bei niedrigen Windgeschwindigkeiten zu verbessern. Der Schalleistungspegel im Betrieb bei kleiner Generatorstufe liegt wegen der geringeren Drehzahl und der daraus folgenden geringeren Blattspitzengeschwindigkeit sowie der geringeren Leistungsübertragung wesentlich unter dem Schalleistungspegel der hohen Stufe. Eine gesonderte Schallberechnung bei kleiner Generatorstufe ist daher in der Regel nicht notwendig.

Seite 15 von 71

3 Standortdaten

3.1 Aufgabenstellung

Der Auftraggeber plant, am Standort Gebhardshain zwischen den Orten Fensdorf im Nordwesten, Mörsbach im Südwesten und Gebhardshain im Nordosten, fünf Windenergieanlagen des Typs Nordex N-90 mit 100m Nabenhöhe zu errichten. Um die Immissionsrichtwerte an der Nachbarbebauung einzuhalten wird die Anlage 6 auf 1600 kW/99,6 dB(A) sowie die WEA 3, 5 und 8 auf auf 2000kW/101,2 dB(A) in den Nachtstunden schallreduziert betrieben. Nur die WEA 3 mit läuft durchgängig im ertragsoptimierten Modus mit einem Schalleistungspegel von 103,3 dB(A). Es sollen die Schallimmissionen der Windenergieanlagen an der umliegenden Bebauung berechnet werden.

In direktem räumlichem Zusammenhang zu den neu geplanten WEA wurde bereits die Genehmigung zweier weiterer WEA des Typs Nordex N-90 beantragt. Für die Anlagen WEA T1 und T2 ist ebenfalls der schallreduzierte Betrieb bis 99,6 (A) in den Nachtstunden vorgesehen. Zudem wurden etwa 1000m südlich der geplanten WEA zwei WEA des Typs Enercon E-66/18.70 errichtet sowie eine weitere WEA des gleichen Typs und zwei Anlagen des Typs Vestas V52 genehmigt. Diese sieben WEA werden in Abhängigkeit ihrer Einwirkbereiche an den Immissionsorten berücksichtigt.

3.2 Immissionsorte

Für die Berechnung der Lärmimmissionen am Standort Gebhardshain wurden die in der Umgebung des Standorts liegenden Immissionsorte auf Basis einer Flurkarte im Maßstab 1:5.000 sowie im Rahmen einer Standortbegehung untersucht.

In der vorliegenden Prognose wurden vom Windpark weiter entfernt liegende Immissionsorte ebenfalls berücksichtigt, um, obgleich keine Gefahr einer Überschreitung der Immissionsrichtwerte besteht, das Maß der Belastung an diesen Punkten aufzuzeigen.

In Tabelle 1 sind die Immissionsorte mit ihren in der Prognose verwendeten Bezeichnungen und die dort jeweils relevanten Immissionsrichtwerte aufgeführt. Die genaue Lage der Immissionsorte lässt sich den Abbildungen 4 bis 7 entnehmen, die Koordinaten sowie die Abstände zwischen Immissionsorten und Windenergieanlagen (in Metern) werden auf den DECIBEL-Hauptergebnisausdrucken im Anhang angegeben.

Für die Beurteilung des Lärmpegels an den Immissionsorten wird der niedrigere Immissionsrichtwert (Grenzwert) für die Nachtzeit herangezogen, da die Anlagen in der Nacht und am Tag gleichermaßen in Betrieb sind.

Ю	Bezeichnung	Nacht-Imm
		richtwert
А	Landgut Tannenhof	45,0
В	Landgut Tannenhof	45,0
С	Landgut Tannenhof	45,0
D	Gebhardshain, Höhenweg 4	40,0
E	Hachenburger Str.41	40,0
F	Gewerbegebiet, Whs	50,0
G	Forsthaus Steinebach	45,0
Н	Fensdorf, Zum Heidorn 8	40,0
I	Fensdorf, Feldstrasse 11	40,0
J	Fensdorf, Erweiterungsfl. WA	40,0
K	Gewerbegebiet Südwest	50,0

Tabelle 1 [Alle Angaben in dB(A)]

Für die Immissionsorte A bis D und G wurde aufgrund ihrer städtebaulichen Gestalt und Nutzung bzw. aufgrund ihrer Lage im Außenbereich ein Immissionsrichtwert von 45 dB(A) (für Kern-, Misch- und Dorfgebiete ohne Überwiegen einer Nutzungsart) angenommen. Für die Immissionsorte E und G bis I wird ein Immissionsrichtwert von 40dB(A) angesetzt, sie sind Teil allgemeiner Wohngebiete am Ortsrand von Fensdorf und Gebhardshain. Für die beiden Im-

missionsorte, die im ausgewiesenen Gewerbegebiet Gebhardshain liegen, wird ein IRW von 50dB(A) angesetzt. Der Immissionsort K wurde an der Bebauungsgrenze entsprechend des Bebauungsplans platziert.

Aufgrund des geringen Abstandes zwischen Immissionsort G und den südlich des Standortes bereits errichteten bzw. genehmigten Anlagen nimmt dieser Immissionsort eine besondere Stellung ein und wird im Rahmen der Prognoseberechnungen deshalb separat betrachtet.

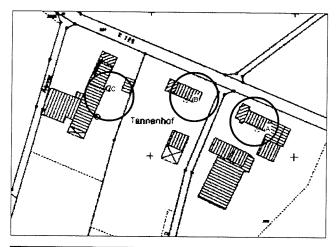


Abbildung 4 genaue Lage der IO 's A, B, C

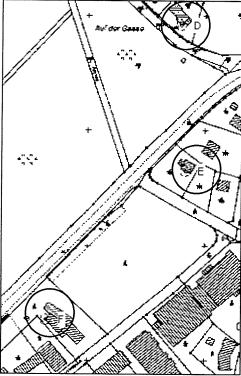


Abbildung 5 genaue Lage der IO 's D, E, F

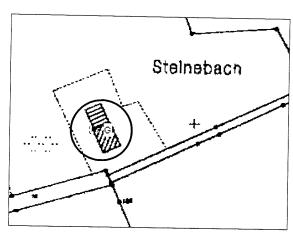


Abbildung 6 genaue Lage des IO G

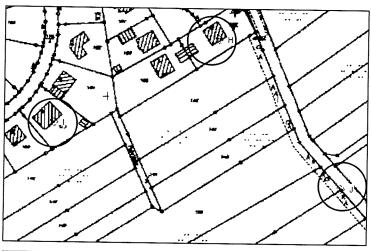


Abbildung 7 genaue Lage der IO´s H, I und J

Abbildung 8 genaue Lage von IO K

000140 SUBE

3.3 Vorbelastung

Im Vorfeld der Ortsbesichtigung wurde anhand von Kartenmaterial versucht, potentielle Quellen für Vorbelastungen zu identifizieren. Bei der Ortsbesichtigung am 19.12.2003 wurde an den entsprechenden Strukturen ein subjektiver Eindruck der Geräuschemissionen gewonnen. Zudem wurde an den definierten Immissionsorten auf Geräusche einer potentiellen Vorbelastung geachtet.

In direktem räumlichem Zusammenhang zu den neu geplanten WEA wurde bereits die Genehmigung zweier weiterer WEA des Typs Nordex N-90 beantragt. Zudem wurden etwa 1000m südlich der geplanten WEA zwei WEA des Typs Enercon E-66/18.70 errichtet sowie eine weitere WEA des gleichen Typs und zwei Anlagen des Typs Vestas V52 genehmigt. Diese sieben WEA werden in Abhängigkeit ihrer Einwirkbereiche an den Immissionsorten (nicht) berücksichtigt.

Explizit wurde an den Immissionsorten A-C Tannenhof im Verlaufe des Verfahrens genauer untersucht und die Bewohner befragt, ob sich dort technische Einrichtungen befinden, die als Vorbelastungen im Nachtzeitraum zu berücksichtigen sind. Dies ist nicht der Fall. Alle weiteren Geräusche des nicht genehmigungsbedürftigen landwirtschaftlichen Betriebs fallen nicht unter die TA-Lärm und sind daher nicht als Vorbelastung zu berücksichtigen.

Für das Gewerbegebiet Gebhardshain mit einem angrenzenden allgemeinen Wohngebiet sind keine nächtlich betriebenen Anlagen als Vorbelastung bekannt. Da dort jedoch der nächtliche Betrieb grundsätzlich zugelassen ist, muß in dem angrenzenden Wohnhaus im allgemeinen Wohngebiet (Hachenburger Str.41) in einzelnen Zeiträumen mit einer Vorbelastung gerechnet werden. Weitere Vorbelastungen an den relevanten Immissionsorten wurden nicht ermittelt.

3.4 Potentielle Schallreflektionen

Vereinfachend kann davon ausgegangen werden, dass sich die Lautstärke an einem Aufpunkt durch eine Reflektion an einer Gebäudefläche maximal verdoppelt (+ 3dB(A)). Daher sind Reflektionen nur an Aufpunkten relevant, an denen ein Beurteilungspegel von mehr als 3dB(A) unter dem Immissionsrichtwert berechnet wurde (hier: 40 / 45dB(A), also Punkte, an denen ein Beurteilungspegel von mehr als 37 / 42dB(A) berechnet wurde).

An den Immissionspunkten A, B und C, an denen diese Bedingung zutrifft, liegen die für eine Schallreflektion notwendigen Bedingungen nicht vor.

3.5 Schalleistungspegel Windenergieanlagen

Am Standort ist die Errichtung von fünf Windenergieanlagen des Typs Nordex N-90 geplant. Für eine der Anlagen (WEA 6) ist in den Nachtstunden der schallreduzierte Betrieb bis 99,6(A)) begrenzt auf 1600kW und für drei dieser Anlagen (WEA 4, 5 und 8) der Betrieb bis 101,2 dB(A) begrenzt auf 2000kW in den Nachtstunden von 22:00 bis 6:00 Uhr vorgesehen.

In direktem räumlichem Zusammenhang zu den neu geplanten WEA wurde bereits die Genehmigung zweier weiterer WEA des Typs Nordex N-90 beantragt. Für die Anlagen WEA T1 und T2 ist der schallreduzierte Betrieb bis 99,6 (A) in den Nachtstunden vorgesehen Zudem wurden etwa 1.000m südlich zwei WEA des Typs Enercon E-66/18.70 errichtet sowie eine weitere WEA des gleichen Typs und zwei Anlagen des Typs Vestas V52 genehmigt. Diese sieben Anlagen werden in Abhängigkeit ihrer Einwirkbereiche an den Immissionsorten als Vorbelastung berücksichtigt.

Die Kenndaten der bestehenden und der neu geplanten WEA-Typen sind Tabelle 2 zu entnehmen.

	Neu/parallel	Neu geplant	Neu geplant	Bestand/	Genehmigt
	geplant	g pane	gopiant	Genehmigt	Concinnige
Anzahl	1/2	3	1	3	2
Kennzeichnung	WEA 6,	WEA 4, 5, 8	WEA 3	F1, F2, F5	F3, F4
	T1, T2				
Hersteller	Nordex	Nordex	Nordex	Enercon	Vestas
Typenbezeichnung	N-90	N-90	N-90	E-66/18.70	V52
Leistungsbegrenzung	pitch	pitch	pitch	pitch	pitch
Rotordurchmesser \m	90	90	90	70	52
Nabenhöhe \m	100	100	100	114	74
Nennleistung /	2.300 /	2.300 /	2.300	1.800	850
Leistung Nachts \kW	1600	2000			
Rotordrehz.bei P _N nachts	12,4	14,0	16,9	22	26,0
\ U/min					
Verwendeter L _{wA} \dB(A)	99,6*	101,2*	103,3	103,0	102,7
Standardabw. L _{wA} \ dB(A)	0,78	1,84**	0,71	0,61	1,84
Ton-/Impulszuschi.\dB(A)	0	0	0	0	0

^{*}schallred.Betrieb in den Nachtstunden, am Tag leistungsoptimierter Betrieb bis 103,3dB(A)

Tabelle 3

Die Angaben zum Schalleistungspegel beziehen sich auf eine Windgeschwindigkeit von 10m/s bzw. 95% der Nennleistung der Anlage. Die Angaben zur Standardabweichung des Schallleistungspegels wurden entsprechend der Richtlinie DIN EN 50376 /18/ aus den vorliegenden Schallvermessungen berechnet. Die einzelnen Schallquellen aller WEA überlagern sich zu einem resultierenden Schalldruckpegel, der für die in Frage kommenden Immissionsorte (vgl. Kapitel 3.2) zu bewerten ist.

Für den WEA-Typ Nordex N-90 existieren drei unabhängige schalltechnische Vermessung nach der *Technischen Richtlinie zur Bestimmung der Leistungskurve, der Schallemissionswerte und*

^{**} typischer Wert entsprechend der prEN 50376 einmal vermessen

der elektrischen Eigenschaften von Windenergieanlagen (FGW-Richtlinie; /5/). Der energetische Mittelwert der drei Vermessungen beträgt 103,3dB(A).

Für den Schallreduzierten Betrieb mit 1600kW der N-90 liegen drei Schallmessberichte vor. Der den Berechnungen zugrunde gelegte Schalleistungspegel von 99,6 dB(A) für den schallreduzierten Betrieb in den Nachtstunden entspricht dem energetischen Mittelwert der gemessenen Werten.

Für den Schallreduzierten Betrieb mit 2000kW der N-90 liegt nur ein Schallmessbericht vor. Die Berechnungen der Qualität der Prognose berücksichtigt eine typische Serienstreuung des WEA-Typs von σ_P = 1,2dB(A) und eine Messunsicherheit von σ_R = 0,5 dB(A) entsprechend der EN 50376 /18/. Eine Zusammenfassung zu den Schallmessberichten sowie der Unsicherheit ist als Kopie der Anlage dieser Prognose beigefügt.

Für den WEA-Typ Enercon E-66/18.70 existieren drei unabhängige schalltechnische Vermessungen nach der Technischen Richtlinie zur Bestimmung der Leistungskurve, der Schallemissionswerte und der elektrischen Eigenschaften von Windenergieanlagen (FGW-Richtlinie; /5/). Der energetische Mittelwert der drei Vermessungen beträgt 102,9dB(A). Der den Berechnungen zugrunde gelegte Schalleistungspegel von 103,0dB(A) entspricht dem vom Hersteller garantierten Wert. Eine Zusammenfassung der drei Messberichte ist als Kopie der Anlage dieser Prognose beigefügt.

Für den WEA-Typ Vestas V52 existiert bislang eine unabhängige schalltechnische Vermessung nach der Technischen Richtlinie zur Bestimmung der Leistungskurve, der Schallemissionswerte und der elektrischen Eigenschaften von Windenergieanlagen (FGW-Richtlinie; /5/). Der den Berechnungen zugrunde gelegte Schalleistungspegel von 102,7dB(A) entspricht dem bei 95% der Nennleistung gemessenen Wert. Eine Zusammenfassung des Messberichtes ist als Kopie der Anlage dieser Prognose beigefügt.

November 05

Seite 23 von 71

4 Ergebnis der Immissionsberechnung nach DIN ISO 9613-2

Das Ergebnis der Immissionsprognose ist in fünf Abschnitte unterteilt:

- 4.1 Immissionsberechnung für die Immissionsorte A-F und H-K für die existierenden WEA (nicht relevante Fremdbelastung)
- 4.2 Immissionsberechnung für die Immissionsorte A-F und H-K für die existierenden WEA (Vorbelastung)
- 4.3 Immissionsberechnung für die Immissionsorte A-F und H-K für die neu geplanten WEA (Zusatzbelastung)
- 4.4 Immissionsberechnung für die Immissionsorte A-F und H-K für alle zu berücksichtigenden WEA (Gesamtbelastung)
- 4.5 Immissionsberechnung für den Immissionsort G für die existierenden WEA (Vorbelastung)
- 4.6 Immissionsberechnung für den Immissionsort G für die neu geplanten WEA (Zusatzbelastung)

4.1 Immissionsberechnung für die Immissionsorte A-F und H-K für die existierenden WEA (nicht relevante Fremdbelastung)

Die Fremdbelastung durch die südlich der geplanten WEA F1 bis F5 bereits errichteten bzw. genehmigten Windenergieanlagen an den untersuchten Immissionsorten wurde nach DIN ISO 9613-2 /2/ wie folgt berechnet:

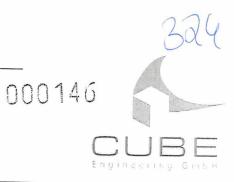
10	Bezeichnung	Fremdbelastung	Prognose-
			unsicherheit
Α	Landgut Tannenhof	31,6	1,1
В	Landgut Tannenhof	31,2	1,1
С	Landgut Tannenhof	31,0	1,1
D	Gebhardshain, Höhenweg 4	27,1	1,1
E	Hachenburger Str.41	27,9	1,1

 $CUBE\ Engineering\ GmbH-Ludwig-Erhard-Str.\ 4-DE-34119\ Kassel-Tel.\ 0561-34337-Fax\ 0561-34339-Email\ kassel@cube-engineering.com$

F	Gewerbegebiet, WH	29,1	1,1
Н	Fensdorf, Zum Heidorn 8	26,6	1,1
	Fensdorf, Feldstrasse 11	26,2	1,1
J	Fensdorf, Erweiterungsfl. WA	27,7	1,1
K	Gewerbegebiet Südwest	33,0	1,1

Tabelle 4 [Alle Angaben in dB(A)]

Die Fremdbelastung der beiden bereits errichteten sowie der drei bereits genehmigten WEA bleibt an den Immissionsorten A-F und H bis K auch unter Berücksichtigung der Unsicherheit der Prognose mehr als 10dB(A) unter den Immissionsrichtwerten und ist damit an diesen IO´s entsprechend der TA-Lärm als unrelevant einzustufen.


Im Anhang liegen für die oben genannten Berechnungsergebnisse Ausdrucke der Berechnungssoftware WindPRO vor (Hauptergebnis, Detaillierte Ergebnisse).

4.2 Immissionsberechnung für die Immissionsorte A-F und H-K für die existierenden WEA (relevante Vorbelastung)

Die Vorbelastung durch die beiden (in direkter Nachbarschaft zu den neu geplanten WEA) beantragten Windenergieanlagen an den untersuchten Immissionsorten wurde nach DIN ISO 9613-2 /2/ wie folgt berechnet:

IO	Bezeichnung	Vorbelastung
Α	Landgut Tannenhof	41,9
В	Landgut Tannenhof	40,6
С	Landgut Tannenhof	39,4
D	Gebhardshain, Höhenweg 4	21,6
E	Hachenburger Str.41	22,4
F	Gewerbegebiet, WH	23,8
Н	Fensdorf, Zum Heidorn 8	28,4

CUBE Engineering GmbH – Ludwig-Erhard-Str. 4 – DE-34119 Kassel – Tel. 0561-34337 – Fax 0561-34339 – Email kassel@cube-engineering.com

1	Fensdorf, Feldstrasse 11	27,8
J	Fensdorf, Erweiterungsfl. WA	29,8
K	Gewerbegebiet Südwest	27,2

Tabelle 5 [Alle Angaben in dB(A)]

Im Anhang liegen für die oben genannten Berechnungsergebnisse Ausdrucke der Berechnungssoftware WindPRO vor ("Vorbelastung an IO´s A-F, H-K": Hauptergebnis, Detaillierte Ergebnisse).

4.3 Immissionsberechnung für die Immissionsorte A-F und H-K für geplante WEA (Zusatzbelastung)

Die Zusatzbelastung durch die neu geplanten Windenergieanlagen an den untersuchten Immissionsorten wurde nach DIN ISO 9613-2 /2/ wie folgt berechnet:

IO	Bezeichnung	Zusatzbelastung
Α	Landgut Tannenhof	40,8
В	Landgut Tannenhof	40,1
С	Landgut Tannenhof	39,5
D	Gebhardshain, Höhenweg 4	31,1
E	Hachenburger Str.41	32,2
F	Gewerbegebiet, Whs	34,1
Н	Fensdorf, Zum Heidorn 8	32,3
I	Fensdorf, Feldstrasse 11	31,9
J	Fensdorf, Erweiterungsfl. WA	33,8
K	Gewerbegebiet Südwest	40,3

Tabelle 6 [Alle Angaben in dB(A)]

Im Anhang liegen für die oben genannten Berechnungsergebnisse Ausdrucke der Berechnungssoftware WindPRO vor (Zusatzbelastung an IO´s A-F, H-K: Hauptergebnis, Detaillierte Ergebnisse).

4.4 Immissionsberechnung für die Immissionsorte A-F und H-K für alle zu berücksichtigenden WEA (Gesamtbelastung)

Die Gesamtbelastung durch alle zu berücksichtigenden Windenergieanlagen an den untersuchten Immissionsorten wurde nach DIN ISO 9613-2 /2/ wie folgt berechnet:

10	Bezeichnung	Spalte I	Spalte II	Spalte III
		Gesamtbelas-	Prognose-	Summe I + II
		tung	genauigkeit ⁽¹⁾	
Α	Landgut Tannenhof	44,4	1,6	46,0
В	Landgut Tannenhof	43,4	1,6	45,0
С	Landgut Tannenhof	42,5	1,6	44,1
D	Gebhardshain, Höhenweg 4	31,6	1,5	33,1
E	Hachenburger Str.41	32,7	1,5	34,2
F	Gewerbegebiet, WH	34,5	1,4	35,9
Н	Fensdorf, Zum Heidorn 8	33,8	1,9	35,7
I	Fensdorf, Feldstrasse 11	33,3	1,9	35,2
J	Fensdorf, Erweiterungsfl. WA	35,2	1,9	37,1
K	Gewerbegebiet Südwest	40,5	1,4	41,9

⁽¹⁾ Resultierende Ungenauigkeit bei einer oberen Vertrauensbereichsgrenze von 90%

Tabelle 7 [Alle Angaben in dB(A)]

Im Anhang liegen für die oben genannten Berechnungsergebnisse Ausdrucke der Berechnungssoftware WindPRO vor (Gesamtbelastung an IO´s A-F, H-K: Hauptergebnis, Detaillierte Ergebnisse). Weiterhin ist im Anhang eine Isophonenkarte für die Berechnung der Gesamtbelastung wiedergegeben.

CUBE Engineering GmbH – Ludwig-Erhard-Str. 4 – DE-34119 Kassel – Tel. 0561-34337 – Fax 0561-34339 – Email kassel@cube-engineering.com

November 05

Seite 26 von 71

Seite 27 von 71

4.5 Immissionsberechnung für den Immissionsort G für die existierenden WEA (Vorbelastung)

Die Vorbelastung durch die südlich der geplanten WEA bereits errichteten bzw. genehmigten Windenergieanlagen an den untersuchten Immissionsorten wurde nach DIN ISO 9613-2 /2/ wie folgt berechnet:

10	Bezeichnung	Vorbelastung	Prognose-
			unsicherheit
G	Forsthaus Steinebach	44,8	1,5

Tabelle 8 [Alle Angaben in dB(A)]

Unter Berücksichtigung der Unsicherheit der Prognose überschreitet die Vorbelastung der beiden bereits errichteten sowie der drei bereits genehmigten WEA an Immissionsort G den Immissionsrichtwert. Auch die nach TA Lärm Abs. 3.2.1 zulässige Überschreitung um bis zu 1dB(A) wird ausgeschöpft.

An Immissionsort G ist somit jegliche weitere Beeinträchtigung durch neue WEA zu unterbinden.

Im Anhang liegen für die oben genannten Berechnungsergebnisse Ausdrucke der Berechnungssoftware WindPRO vor (Hauptergebnis, Detaillierte Ergebnisse).

4.6 Immissionsberechnung für den Immissionsort G für geplante WEA (Zusatzbelastung)

Die Zusatzbelastung durch die neu geplanten Windenergieanlagen an den untersuchten Immissionsorten wurde nach DIN ISO 9613-2 /2/ wie folgt berechnet:

10	Bezeichnung	Zusatzbelastung	Prognose-
			unsicherheit
G	Forsthaus Steinebach	33,3	1,51

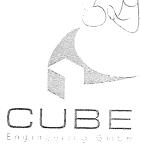
Tabelle 9 [Alle Angaben in dB(A)]

000149

Der Beurteilungspegel an Immissionsort G bleibt auch unter Berücksichtigung der Unsicherheit der Prognose mehr als 10dB(A) unter dem einzuhaltenden Immissionsrichtwert von 45dB(A). Damit ist gewährleistet, dass der Immissionsort G entsprechend der TA-Lärm außerhalb des Einwirkbereichs der WEA liegt und es dadurch zu keiner weiteren Beeinträchtigung durch die neu geplanten WEA kommt.

Im Anhang liegen für die oben genannten Berechnungsergebnisse Ausdrucke der Berechnungssoftware WindPRO vor (Hauptergebnis, Detaillierte Ergebnisse, Isophonenkarte).

November 05



5 Zusammenfassung

Für den Standort Gebhardshain wurde eine Immissionsprognose entsprechend der TA-Lärm nach der Berechnungsvorschrift DIN ISO 9613-2 /2/ für die Belastung durch 5 Windenergieanlagen des Typs Nordex N-90 an den dem Projekt benachbarten Immissionsorten durchgeführt. In direkter Nachbarschaft wurden parallel die Genehmigung zweier weiterer WEA des Typs Nordex N-90 beantragt. Zudem wurden südlich des Standortes zwei WEA des Typs Enercon E-66/18.70 errichtet sowie eine weitere WEA des gleichen Typs und zwei Anlagen des Typs Vestas V52 genehmigt. Diese sieben Anlagen wurden in Abhängigkeit ihrer Einwirkbereiche an den Immissionsorten als Vorbelastung (nicht) berücksichtigt.

Der Berechnung zugrunde gelegt wurden die nach FGW-Richtlinie /5/ schalltechnischen Vermessungen ermittelten Schallleistungspegel für die WEA des Typs Nordex N-90 sowie der bestehenden Anlagentypen.

Aufgrund des geringen Abstandes zwischen Immissionsort G und den südlich des Standortes bereits errichteten bzw. genehmigten Anlagen nimmt dieser Immissionsort eine besondere Stellung ein und wird deshalb separat betrachtet.

Seite 30 von 71

Die Ergebnisse der Schallprognose unter den o.g. Voraussetzungen sind in Tabelle 7 wiedergegeben.

In	nmissionsort	Zul. Nacht-	Vor-	I 7		T	T
				Zusatz-	Gesamt-	Prognose-	Gesamtbel.
		lmmissi-	belastung	belastung	belastung	unsicher-	Inkl. Unsi-
		onsricht-				heit	cherheit
		wert					
Α	3	45,0	41,9	40,8	44,4	1,6	46,0
В	3	45,0	40,6	40,1	43,4	1,6	45,0
С	Landgut Tannenhof	45,0	39,4	39,5	42,5	1,6	44,1
D	Gebhardsh., Höhenweg	40,0	21,6	31,1	31,6		
	4					1,5	33,1
E	Hachenburger Str.41	40,0	22,4	32,2	32,7	1,5	34,2
F	Gewerbegebiet, WH	50,0	23,8	34,1	34,5	1,4	35,9
Н	Fensdorf, Zum Heidorn 8	40,0	28,4	32,3	33,8	1,9	35,7
	Fensdorf, Feldstrasse 11	40,0	27,8	31,9	33,3	1,9	35,2
J	Fensdorf, Erweiterungsfl.	40,0	29,8	33,8	35,2		
	WA	40,0		The state of the s		1,9	37,1
K	Gewerbegebiet Südwest	50,0	27,2	40,3	40,5	1,4	41,9
G	Forsthaus Steinebach	45,0	44,8	33,3	n.b.	1,5.	n.b.

Tabelle 10 [Alle Angaben in dB(A)]

Die zulässigen Nacht-Immissionsrichtwerte werden unter Berücksichtigung der Unsicherheit der Prognose bis auf IP A an allen Immissionsorten eingehalten. Die geringfügige Überschreitung des Immissionsrichtwertes von ••1dB(A), die an IO A unter Berücksichtigung der Prognoseunsicherheit zu verzeichnen ist, ist entsprechend der TA Lärm Abs. 3.2.1 zulässig, da am Standort eine Vorbelastung zu berücksichtigen ist.

Immissionsort E repräsentiert das allgemeine Wohngebiet "Eckewieschen, Wolfsweg, Eichenweg und Hachenburger Strasse", das unmittelbar an das Gewerbegebiet Gebhardshain grenzt. Die zu erwartende Vorbelastung des Gewerbegebiets lässt sich im Rahmen der Prog-

000152 CUE

nose nicht erfassen, jedoch liegt der Beurteilungspegel der relevanten Zusatzbelastung durch die Windenergieanlagen inklusive der Prognoseunsicherheit mehr als 6 dB(A) unter dem Immissionsrichtwert. Diese Zusatzbelastung ist daher entsprechend der TA-Lärm 3.2.1 Absatz 2 als nicht relevant anzusehen. Eine Bestimmung der Vorbelastung durch andere Anlagen in dem Gewerbegebiet entsprechend der TA-Lärm 3.2.1 letzter Absatz ist daher in dem Gewerbegebiet nicht durchzuführen. Es ist sicher gestellt, dass es in den Nachtstunden durch die gleichförmigen Geräusche der WEA zu keiner relevanten Erhöhung der Schallbelastung kommt, die durch das Gewerbegebiet bestehen könnte.

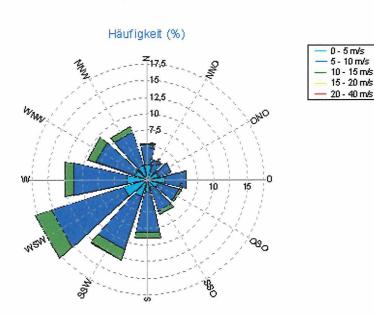
Die detaillierten, auf Grundlage der in Kapitel 3 beschriebenen Daten erzielten Ergebnisse für den Standort Gebhardshain sind in Kapitel 0 wiedergegeben. Änderungen an den Positionen der Anlagen, dem Anlagentyp, den im Schallvermessungsbericht des Anlagentyps genannten Anlagenspezifikationen oder sonstigen relevanten Einflussfaktoren für die Schallberechnung erfordern eine neue Prognose.

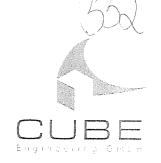
6 Qualität der Prognose

Die Prognoseunsicherheit wurde wahrscheinlichkeitsmathematisch ermittelt aus der Serienstreuung für den Anlagentyp nach /18/, der Unsicherheit der Schallvermessung des Anlagentyps und der Standardabweichung, die für die Ausbreitungsrechnung nach DIN ISO 9613-2 angenommen wird. Wenn mehrere WEA-Typen vorkommen, werden diese statistisch als unabhängig betrachtet und die resultierende Unsicherheit wird nach dem Fehlerfortpflanzungsgesetz (vgl. /19/) berechnet. Die resultierende Unsicherheit wurde im Sinne der Ermittlung der oberen Vertrauensbereichsgrenze bei 90%iger Wahrscheinlichkeit mit einem Faktor von 1,28 multipliziert, wodurch sich nach /19/ und /21/ die in Tabelle 9 aufgeführten Unsicherheiten ergeben.

Weitere, die Qualität der Prognose beeinflussende Faktoren sind:

Luftabsorption für Oktavbänder / 500Hz-Mittenpegel


Die Schallprognose nach DIN ISO 9613-2 erlaubt unterschiedliche Berechnungsverfahren bezüglich der Luftabsorption.


Die Luftabsorption kann für die einzelnen *Oktavbänder* eines breitbandigen Geräuschs ermittelt werden oder sie kann für den *500-Hz-Mittenpegel* berechnet werden. Die Berechnung für *Oktavbänder* ergibt exaktere und – im Fall von Windenergieanlagen – in der Regel niedrigere (leisere) Berechnungsergebnisse, daher kann die Berechnung für den *500-Hz-Mittenpegel* als konservative Herangehensweise (worst case) gewertet werden. Für die vorliegende Berechnung wurde diese konservative Herangehensweise gewählt.

Mitwindsituation

Die Schallprognose nach DIN ISO 9613-2 geht bei der Schallausbreitungsberechung grundsätzlich von einer Mitwindsituation aus. Da die Ermittlung der Windverhältnisse bei gewöhnlichen gewerblichen Vorhaben mit hohem Aufwand verbunden ist, stellt die Annahme der
Mitwindsituation für diese Fälle eine sinnvolle Vorgehensweise dar und hat worst-caseErgebnisse zur Folge. Bei der Planung von Windenergieanlagen ist jedoch die Ermittlung der
Windrichtungsverteilung eine wichtige Vorstufe, daher liegen diese Daten in der Regel vor,
können jedoch bei der Berechnung der Schallausbreitung nach DIN ISO 9613-2 nicht genutzt
werden.

Abbildung 4 zeigt die Windrichtungsverteilung (ermittelt anhand der Ertragsprognose). Die Hauptwindrichtung ist Südwest. Der Wind kommt hauptsächlich aus südwestlicher Richtung. Dadurch werden die Anlagengeräusche der WEA T1 und T2 vom Tannenhof weggetragen.

Eine weitere Besonderheit bei der Schallberechnung für Windenergieanlagen besteht darin, dass wenn wie hier mehrere Anlagen geplant sind, diese vom Immissionsort Tannenhof aus gesehen in verschiedenen Richtungen stehen. So ist im vorliegenden Fall, in dem die neu geplanten Anlagen gewährleistet, dass selbst wenn der Wind aus einer anderen als der Hauptwindrichtung kommt, jeweils nur ein Teil der geplanten Anlagen direkt in Mitwindrichtung liegen kann.

Verwendung des Alternativen Verfahrens zur Bodendämpfung

Die DIN ISO 9613-2 erlaubt zwei verschiedene Verfahren zur Ermittlung der Bodendämpfung, nämlich das Standardverfahren und das Alternative Verfahren, wobei letztgenanntes als konservative Annahme zu werten ist. In der vorliegenden Prognose wurde das Alternative Verfahren zur Berechnung der Bodendämpfung verwendet.

Zusätzliche Dämpfung durch den Waldbewuchs um die WEA

In der Prognose mit der Software WindPRO wird der Bewuchs um die WEA nicht als Dämpfunksfaktor berücksichtigt. Durch den in der Realität dämpfenden Bewuchs um die WEA ist die Prognose zusätzlich als konservative Herangehensweise zu Bewerten.

Alle hier die zu der Qualität der Prognose dargestellten Angaben zeigen die konservative Herangehensweise und stellt damit sicher, dass die prognostizierten Werte auf der sicheren Seite liegen.

7 Literatur

- /1/ TA Lärm: Technische Anleitung zum Schutz gegen Lärm
- /2/ DIN ISO 9613-2 : Dämpfung des Schalls bei Ausbreitung im Freien
- /3/ BlmSchG: Bundesimmissionsschutzgesetz
- /4/ BauNVO: Baunutzungsverordnung
- 75/ Technische Richtlinien zur Bestimmung der Leistungskurve, der Schallemissionswerte und der elektrischen Eigenschaften von Windenergieanlagen; Fördergesellschaft Windenergie e. V.,
- /6/ DIN 18005: Teil 1, Schallschutz im Städtebau, Berechnungsverfahren
- /7/ DIN 45681: Ermittlung Tonhaltigkeit, Schmalbandanalyse des unbewerteten Schalldruckpegels
- /8/ DIN 45645: Ermittlung Impulshaltigkeit, Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen.
- /9/ Innenministerium Baden-Württemberg, Städtebauliche Lärmfibel Hinweise für die Bauleitplanung, 1991, 193 Seiten.
- /10/ Workshop Immissionsschutz 24./25. Februar 1999, Tagungsband; Kötter Beratende Ingenieure Selbstverlag, Rheine 1999
- /11/ 'Viel Wind um wenig Lärm' von H. Klug, DEWI; In: Sonnenenergie 4/91
- /12/ Schallmessung an WEA von A. Petersen, Windtest; In: Windkraft Journal 3/93
- /13/ Windtest: Information Schallgutachten
- /14/ 0 Dezibel + 0 Dezibel = 3 Dezibel Einführung in die Grundbegriffe und quantitative Erfassung des Lärms, Hoffmann / von Lüpke; Erich Schmidt Verlag, 6. Auflage 1993
- /15/ Lärmbekämpfung '88: Tendenzen Probleme Lösungen, Umweltbundesamt, Erich Schmidt Verlag, 1988
- /16/ Infraschallwirkungen auf den Menschen, H. Ising, B. Markert, F. Shenoda, C. Schwarze, Bundesminister für Forschung und Technologie, VDI Verlag, 1982.
- /17/ Keine Gefahr durch Infraschall, A. Buhmann, In: Neue Energie 1/98
- /18/ DIN EN 50376: Angabe des Schallleistungspegels und der Tonhaltigkeitswerte bei Windenergieanlagen
- /19/ W. Probst, U. Donner, Die Unsicherheit des Beurteilungspegels bei der Immissionsprognose, Zeitschrift für Lärmbekämpfung
- /20/ Schallimmissionsschutz im Genehmigungsverfahren von Windenergieanlagen: Empfehlungen des Arbeitskreises "Geräusche von Windenergieanlagen" der Immissionsschutzbehörden und Meßinstitute,
- /21/ Zum Nachweis der Einhaltung von Geräuschimmissionswerten mittels Prognose; Detlef Piorr in: Zeitschrift für Lärmbekämpfung 48 (Sept. 2001)

Anhang

- Zusammenfassung aus drei Schalltechnischen Vermessungen der N-90 zum Schallleistungspegel des WEA-Typs Nordex N-90 und Berechnung der Streuung im Normalbetrieb
- 3 Auszüge aus den Messberichten zur Ermittlung des Schalleistungspegels der WEA Nordex N-90 und Berechnung der Streuung im schallreduzierten Betrieb mit 1600 kW
- Auszug aus den Messberichten zur Ermittlung des Schalleistungspegels der WEA Nordex N-90 und Berechnung der Streuung im schallreduzierten Betrieb mit 2000 kW
- Zusammenfassung der drei Messberichte zur Ermittlung des Schalleistungspegels der WEA Enercon E-66/18.70
- Berechnung der Serienstreuung des WEA-Typs Enercon E-66/18.70
- Auszug aus dem Messbericht zur Ermittlung des Schalleistungspegels der WEA Vestas V52
- Berechnung der Serienstreuung des WEA-Typs Vestas V52

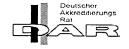
Berechnungsausdrucke für die IO 's A-F, H, I:

- nicht relevante Fremdbelastung (Hauptergebnis, Detaillierte Ergebnisse, Berechnung der Qualität der Prognose),
- relevante Vorbelastung (Hauptergebnis),
- Zusatzbelastung (Hauptergebnis),
- Gesamtbelastung (Hauptergebnis, Detaillierte Ergebnisse, Isophonenkarte und Berechnung der Qualität der Prognose)

Berechnungsausdrucke für IO G:

- Vorbelastung (Hauptergebnis, Detaillierte Ergebnisse, Berechnung der Qualität der Prognose)
- Zusatzbelastung (Hauptergebnis, Detaillierte Ergebnisse, Isophonenkarte und Berechnung der Qualität der Prognose)

000157 Seite 1 von


Bestimmung der Schallemissions-Parameter aus mehreren Einzelmessungen

Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" /1/ besteht die Möglichkeit, die Schallemissionswerte eines Anlagentyps gemäß /2/ anzugeben, um die schalltechnische Planungssicherheit zu erhöhen.

Anlagendaten							
Hersteller	NORDEX Energy GmbH Bornbarch 2			Anlagenbezeichnung Nennleistung		NORDEX N90 2300 kW	
	D-22848 Nor	derstedt		Nabenhöhe		100 m	
			Rotordurchmesser		90 m		
		1	Messung Nr. 2	3			
Seriennummer Standort Vermessene	Gut L	8098 osten, WEA 4	8107 Gut Losten, WEA 3	8127 Schliekum, WEA 5			
Nabenhöhe Meßinstitut		80 m ND-consult	80 m WIND-consult	100 m WINDTEST KWK			
Meßbericht Berichtsdatum	10	063\$E204/01 0.05.2004	WICO 274SE604/01 09.12.2004	WT 3989/05 14.02.2005			
Getriebetyp Generatortyp		PNHZ-244 A-560MQ-06A	PZAB 3450 JFWA-560MQ-06A	CPNHZ-244 JFWA-560MQ-06A			
Rotorblatt		M 43.8 P	LM 43.8 P	LM 43.8 P			

Schallleistungspegel L _{WA.P} [dB(A)]								
Messung Nr.	Standardisierte Windgeschwindigkeit in 10 m ü.G.							
	6 ms ⁻¹	7 ms ⁻¹	8 ms ⁻¹	8,11 ms ⁻¹				
1 2	101,0 dB(A) 101,7 dB(A)	102,2 dB(A) 102,9 dB(A)	103,0 dB(A) 103,7 dB(A)	103,0 dB(A) 103,7 dB(A)				
3	102,0 dB(A)	102,9 dB(A)	103,2 dB(A)	103,2 dB(A)				
Mittelwert L _w	101,6 dB(A)	102,7 dB(A)	103,3 dB(A)	103,3 dB(A)				
Standardabweichung s	0,51	0,40	0,36	0.36				
Gesamtstandardabweichung $(\sigma_R = 0.5 \text{ dB})$	0,83 dB	0,74 dB	0,71 dB	0,71 dB				
K _{90%}	1,1 dB	1,0 dB	0,9 dB	0.9 dB				

Messung Nr.	Standardisierte Windgeschwindigkeit in 10 m ü.G.					
	6 ms ⁻¹	7 ms ⁻¹	8 ms ⁻¹	V _{10.95%PNenn}		
1	0 dB bei - Hz	0 dB bei - Hz	0 dB bei - Hz	0 dB bei - Hz		
2	0 dB bei - Hz	0 dB bei - Hz	1 dB bei 106 Hz	0 dB bei - Hz		
3	0 dB bei - Hz	0 dB bei - Hz	0 dB bei - Hz	0 dB bei - Hz		

Messung Nr.		Standardisierte Windge	eschwindigkeit in 10 m ü	i.G.
	6 ms ⁻¹	7 ms ⁻¹	8 ms ⁻¹	V _{10.95%PNena}
1	0 dB	0 dB	0 dB	0 dB
2	0 dB	0 dB	0 dB	0 dB
3	0 dB	0 dB	0 dB	0 dB

		Terz	- und O	ktav-Sc	halleistu	ıngspeç	gel Refe	renzpui	nkt v ₁₀ =	8,11 m	s ⁻¹ in dE	3(A)			
Frequenz	12,5	16	20	25	31,5	40	50	63	80	100	125	160	200	250	315
L _{WA, P}	53,8	58,3	62,8	66,4	70,4	74,1	77,7	81,2	83.5	89.2	90.1	89.4	91.8	92.2	93
L _{WA, P}		64,5			76,1			86,2			94,4	00,.	01,0	97.1	1 00
Frequenz	400	500	630	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
L _{WA, P}	92,3	91,3	91,7	89,9	90,8	90,9	91,6	91,5	90.5	87.8	85.5	82.5	76.2	70.5	67.4
L _{WA. P}		96.6			95,3			96,0	, , , , , , , , , , , , , , , , , , , ,		90.6		. 0,2	77.7	1 51.4

Die Angaben ersetzen nicht den o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: * Es wird darauf hingewiesen, daß die Werte für die Tonhaltigkeit <u>nicht ausschließlich</u> bei der Nabenhöhe h_N= 100 m bestimmt wurden und so nicht unmittelbar auf umgerechnete Nabenhöhen übertragbar sind.

Ausgestellt durch: WIND-consult GmbH

Datum: 18.12.2004

Reuterstraße 9 D-18211 Bargeshagen

Unterschrift

Unterschrift Dipl.-Ing. R. Haevernick Dipl.-Ing. W. Wilke

717 FORDERGESELLSCHAFT WINDENERGIE E.V. (FGW): Technische Richtlinien für Windenergieanlagen. Rev. 15 Stand 01.01.2004. Kiel (D)

/2/ Wind turbines - Part 14: Declaration of apparent sound power level and tonality values of wind turbines. IEC 61400-14 Ed. 1 (CDV),2004

Berechnung von Standardabweichung, Qualität der Prognose einzelne WEA

WKA-Daten	က	1. Vermessung	2. Vermessung	3. Vermessund
Schalleistungspegel bei				
v10=10m/s od. 95% Pnenn	Lwa	103.0 dB(A)	103 7 dB(A)	103.2 JB(A)
Tonhaltigkeit	KTN		(1)	(A)CD 25001
Impulshaltigkeit	X			

Energetischer		
Mittelwert	Lwa	103,3 dB(A)

Standardabweichung

Serienstreuung und Reproduzierbarkeit

Schalleistungspegel

Anzahl Vermessungen	3
Standardabweichung aufgrund	
Serienstreuung	0,36 dB(A)
Standardabweichung aufgrund	
Reproduzierbarkeit/ Messgenauigkeit	0,50 dB(A)
Standardabweichung Gesamt	
(Reproduzierbarkeit und Serienstreuung)	0,71 dB(A)

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Januar 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kjel)

Auszug aus dem Prüfbericht WICO 063SE204/02 zur Schallemission der Windenergieanlage vom Typ NORDEX N90 (schallreduziert)

	groun	go vo /)p ivoid bex voo (onam cauzicit)		
Allgemeine Angaben		Technische Daten (Herstellera	ngaben)		
Anlagenhersteller:	Nordex Energy GmbH	Nennleistung (Generator):	1700 kW		
	Bornbarch 2	Rotordurchmesser:	90 m		
	D-22848 Norderstedt	Nabenhöhe über Grund:	80 m		
Seriennummer:	8098	Turmbauart:	Stahlrohrturm		
WEA-Standort (ca.):	WP Gut Losten, WEA 4	Leistungsregelung:	Pitch/Stall/Aktiv-Stall		
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)			
Rotorblatthersteller:	LM Glasfiber a/s	Getriebehersteller:	Eickhoff		
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichung Getriebe:	CPNHZ-244		
Blatteinstellwinkel:	Variabel (4 – 90°)	Generatorhersteller:	Loher		
Rotorblattanzahl	3	Typenbezeichung Generator:	JFWA-560MQ-06A		
Rotornenndrehzahl/-bereic	h: 12.4 / 9.6 – 16.9 U/min	Generatordrehzahlbereich:	744 - 1310 II/min		

Prüfbericht zur Leistungskurve: Risø -l-2052

				Referenzpunkt						nissions- neter		Bemerkun	gen	
			Standard Windgesch in 10 m	windigkeit Höhe	-	lektrische frkleistung								
			6 m	-		853 kW			97,1 c	, ,		(2)		
Schalleistu	ings-		7 m		1	1232 kW			98,6					
Pegel			8 m		1	1523 kW		İ	98,7					
LWAP			8,6 n			1615 kW			98,5			(1)		
	***	l	6 m		ı	853 kW		1		oei 486 H:	-			
Tonzuschla	•	ĺ	7 m	-	1	1232 kW		i		pei 978 H	1			
den Nahbe	reich	l	8 m		1	1523 kW		1		oei 982 H:	Z			
K _{TN}			8.6 n			1615 kW		(pei - Hz		(1)		
Impullativa	- -	-	6 m 7 m		1	853 kW			0.0	-				
Impulszuso	~				I .	1232 kW			0 0					
K _{IN}	noereich	l	8 m 8,6 n		1	1523 kW			0 0			(4)		
TOIN			···			1615 kW) dB (1)				
	r		Terz-/Oktav-	·		·				·	}			
Frequenz	50	63	80	100	125	160	200)	250	315	400	500	630	
Lwa, p	72,2	75,1	78,1	84,1	82,7	84,5	86		86,7	87,9	88,7	89,1	85,9	
L _{WA, P}		80,6			88,6			91,7				92,9		
Frequenz	800	1000	1250	1600	2000	2500	315	0	4000	5000	6300	8000	10000	
L _{WA, P}	85,6	88,1	86,8	87,6	86,8	84,8	81,5	5	78,8	75,8	72,6	70,4	68.7	
L _{WA, P}		91,7			91,3				84,1			75,6		
			Terz-/Oktav-	Schalleis	unaspea	el Referen	znunk	t van	= 8 6 m	s-1 in dR(A)			
Frequenz	50	63	80	100	125	160	200		250	315	400	500	630	
L _{WA, P}	74,2	76,1	78,9	83,8	82,9	84,1	85,5	5	86,4	87,4	86,9	87,9	87,8	
L _{WA, P}		81,6			88,4	·	·		91,3			92,3		
Frequenz	800	1000	1250	1600	2000	2500	315	0	4000	5000	6300	8000	10000	
L _{WA, P}	85,4	87,7	86,8	87,5	86,9	85	82,1	1	79,7	77,1	74,3	72,2	70.5	
L _{WA, P}		91,5			91,4				84,9			77,4		

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 07.05.2004. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

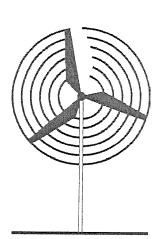
Bemerkungen: (1) Der Betriebspunkt der 95%igen Nennleistung, für den der maximale Schalleistungspegel angegeben wird, liegt unter Berücksichtigung der verwendeten Leistungskurve und der Nabenhöhe der vermessenen WEA sowie den meteorologischen Bedingungen am Meßtag bei v₁₀= 8,6 ms⁻¹ in 10 m ü.G..

(2) Mit 1,3 dB(A) korrigiert, da Störabstand unter 6 dB(A).

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen


Datum: 11.05.04

Unterschrift
Dipl.-Ing. R.Haevernick

Unterschrift
Dipl.-Ing. W. Wilke

DAP-PL-2756.00

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 3992/05 aus dem Prüfbericht WT 3991/05 zur Schallemission der Windenergieanlage vom Typ Nordex N90 1600 kW

Messdatum: 2005-01-13

Standort bzw. Messort:	Schliekum, Kre	Schliekum, Kreis Hildesheim								
Auftraggeber:	Nordex Energy Bornbarch 2 22848 Norders									
Auftragnehmer:	WINDTEST Ka Sommerdeich 25709 Kaiser-V		ρΗ							
Datum der Auftragserteilung:	2005-01-05	Auftragsnummer:	6020 04 02823 06							

Kaiser-Wilhelm-Koog, 2005-02-14

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 3992/05 aus dem Prüfbericht WT 3991/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90 1600 kW

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstelleran	Technische Daten (Herstellerangaben)				
Anlagenhersteller: Seriennummer WEA-Standort (ca.)	Nordex Energy GmbH Bornbarch 2 22848 Norderstedt 8127 Schliekum, WEA 5	Nennleistung (Generator): Rotordurchmesser: Nabenhöhe über Grund: Turmbauart: Leistungsregelung:	2500 kW 90 m 100 m konisches Rohr pitch				
Ergänzende Daten zum Ro	tor (Herstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerangaben)					
Rotorblatthersteller: Typenbezeichnung Blatt: Blatteinstellwinkel: Rotorblattanzahl Rotordrehzahlbereich:	LM Glasfiber LM 43.8P variabel 090 Grad 3 9,616.9 U/min	Getriebehersteller: Typenbezeichnung Getriebe: Generatorhersteller: Typenbezeichnung Generator: Generatordrehzahlbereich:	Eickhoff CPNHZ-244 Loher JFWA-560MQ-06A 744 - 1310 U/min				

			<u> </u>									***************************************				
					ferenzp	punkt			Schallemi	ssior	ıs-Pa	rameter		Beme	erkun	gen
			Wind	ndardisiert geschwind n 10 m Hö	lig-	Elektr Wirkle										
Schallleis Pegel L _{WA,P}	stungs-			6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹ 10 ms ⁻¹		920 1290 1505 1520 - k	kW kW kW		9: 10 10	8,8 dl 9,4 dl 00,0 d 00,0 d - dB(B(A) B(A) B(A)					
Tonzusch den Nahb K _{TN}				6 ms ⁻¹ 7 ms ⁻¹ 8 ms ⁻¹ 8,1 ms ⁻¹ 10 ms ⁻¹		920 1290 1505 1520 - k	kW kW kW		2 dB 1 dB 0 dB 0 dB - dB		be be b	i 479 Hz i 479 Hz pei - Hz pei - Hz pei - Hz				
impulszus für den Na K _{IN}				6 ms ¹ 7 ms ¹ 8 ms ¹ 8,1 ms ¹ 10 ms ¹		920 1290 1505 1520 - k\	kW kW kW		-	0 dE 0 dE 0 dE 0 dE - dE	3 3 3 3					
				Terz-	Schalll	eistungs	pegel R	eferenz	punkt v ₁₀ :	= 8 m	s in	dB(A)				
Frequenz L _{WA P}	50 72,9		53 7,1	80 79,2	100 82,5) 1:	25	160	200	2	50	315	400		00	630
Frequenz	800		000	1250	1600			84,9 2500	87,1 3150		7,4	87,5 5000	86,7 6300),3)00	88,6 10000
LWAP	89,4	90	0.8	89,3	88,9	9 87	7,5	86,6	84,4		2,1	80,2	74,1		3,6	58,8
			·	Oktav-	Schall	leistung:	spegel R	eferen	zpunkt v ₁₀	= 8 n	ns 1 ir	dB(A)		<u> </u>		
Frequenz	63			125	2	250	50	0	1000			2000	4000			8000
L _{WA} , p	81,9			88,3	9	2,1	93	,5	94,7			92,5	87,3			75,0

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-01-17. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,1 ms⁻¹.

Bei allen Windgeschwindigkeiten beträgt LAGG – Ln < 6 dB.

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

FGW Industrial Konformitätsstempel

Datum:

2005-02-14

Rugerown (M.Sc.)

Dipl.-Ing. J. Neubert

Auszug aus dem Prüfbericht

Seite 1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 296SEA05/02 zur Schallemission der Windenergieanlage vom Typ NORDEX N90 (schallreduziert 1600 kW)

Allgemeine Angaben Technische Daten (Herstellerangaben) Anlagenhersteller: Nordex Energy GmbH Nennleistung (Generator): 2300 kW ** Bornbarch 2 Rotordurchmesser: 90,0 m D-22848 NORDERSTEDT Nabenhöhe über Grund: 100 m Seriennummer: Turmbauart: Kon. Stahlrohr WEA-Standort (ca.): Altentreptow WEA 21 Leistungsregelung: Pitch/Stall/Aktiv-Stall

Ergänzende Daten zum Rotor (Herstellerangaben) Erg. Daten zu Getriebe und Generator (Herstellerangaben)

Rotorblatthersteller: Typenbezeichnung Blatt: NR 45

Blatteinstellwinkel: variabel

Rotorblattanzahl

Rotornenndrehzahl / -bereich:

14,9 / 9,6 ... 16,9 U/min**

Getriebehersteller:

Typenbezeichnung Getriebe:

Generatorhersteller:

VEM Typenbezeichnung Generator:

Generatordrehzahlbereich:

DAKAA6328-6U 744-1310 U/min

Eickhoff

CPNHZ-244

Prüfbericht zur Leistungskurve: berechnete Kurve

	Referer	nzpunkt	Schallemissions- Parameter	Bemerkungen
	Standardisierte Windgeschwindigkeit in 10 m Höhe	Elektrische Wirkleistung		
	5 ms ⁻	565 kW	97,6 dB(A)	
	6 ms ⁻¹	921 kW	98,3 dB(A)	
Schalleistungs-	7 ms ⁻¹	1291 kW	98,7 dB(A)	
Pegel L _{WA,P}	8 ms ⁻¹	1505 kW	99.5 dB(A)	
	9 ms ⁻¹	1594 kW	100,0 dB(A)	
	10 ms ⁻¹	1600 kW	100,1 dB(A)*	
	11 ms ⁻¹	1600 kW	100,0 dB(A)*	
	12 ms ⁻¹	1600 kW	100,1 dB(A)*	
	8,1 ms ⁻¹	1520 kW	99,6 dB(A)	95% der Nennleistung
	5 ms ⁻¹	565 kW	2 dB bei 94 Hz	
	6 ms ⁻¹	921 kW	1 dB bei 94 Hz	
Tonzuschlag für	7 ms ⁻¹	1291 kW	0 dB bei - Hz	
den Nahbereich K _{TN}	8 ms ⁻¹	1505 kW	0 dB bei - Hz	
	9 ms ⁻¹	1594 kW	0 dB bei - Hz	
	10 ms ⁻¹	1600 kW	0 dB bei - Hz	
	11 ms ⁻¹	1600 kW	0 dB bei - Hz	
	12 ms ⁻¹	1600 kW	0 dB bei - Hz	
	8,1 ms ⁻¹	1520 kW	0 dB bei - Hz	95% der Nennleistung
	5 ms `	565 kW	0 dB	
	6 ms ⁻¹	921 kW	0 dB	
Impulszuschlag	7 ms ⁻¹	1291 kW	0 dB	
für den Nahbereich K _{IN}	8 ms ⁻¹	1505 kW	0 dB	
	9 ms ⁻¹	1594 kW	0 dB	
	10 ms ⁻¹	1600 kVV	0 dB	
	11 ms ⁻¹	1600 kW	0 dB	
	12 ms ⁻¹	1600 kW	0 dB	
	8,1 ms ⁻¹	1520 kW	0 dB	95% der Nennleistung
	Terz-/Oktav-Schal	leistungspegel Referen	zpunkt v ₁₀ = 10 ms ⁻¹ in dB(A)

Frequenz 50 80 100 125 160 200 315 400 500 630 76,5 77,7 80,4 82,5 83,0 84.2 86,3 87,7 90,0 87,9 89.3 90,0 LWA P 83,3 88,1 93,9 LWA.P 93,0 Frequenz 800 1000 1250 1600 2000 2500 3150 5000 6300 8000 10000 4000 89,1 89,8 0,98 80,6 79,6 90,2 87,2 84,4 79,3 80,3 76,5 75,3 LWAP 84,9 82,3

LWA P Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 04.11.2005. Die Angaben ersetzen nicht den o g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

Hintergrundkorrigiert mit 1,3 dB(A), da Störabstand unter 6 dB(A)

Die Nennleistung im Betrieb schallreduziert 1600 kW beträgt 1600 kW (siehe Anlage 5). Die Maximale Rotordrehzahl liegt bei ca. 12,4 U/min (siehe Abschnitt 7).

Gemessen durch:

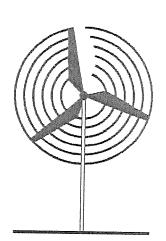
WIND-consult GmbH Reuterstraße 9 D-18211 Bargeshagen

Datum: 17.11.2005

Unterschrift Dipl.-Ing. R. Haevernick

Dipl.-Ing. W. Wilke

Berechnung von Standardabweichung, Qualität der Prognose einzelne WEA


WFA-Tyn	Nordey Mon	Jorday MOO Schollrod 1700MM	Corportio 404 FADVAV	
7 - 1 y 2	1401 CEN 1430	SCHAIII EU. I / DUKVV	Garanne 101,50B(A)	
Datum der letzten Aktualisierung	18.11.2005			
		Bericht-Nr.	Qualität der Verm.	vermessene Nh
Eingabedaten	Vermessung 1	1 WICO 063SE204/02		80,00
	Vermessung 2 WT 3992/05	WT 3992/05		100,00
	Vermessung 3	ermessung 3 WICO 296SEA05/02		100,00

WKA-Daten	3	1. Vermessung	2. Vermessung	3. Vermessung
Schalleistungspegel bei				
v10=10m/s od. 95% Pnenn	Lwa	98,7 dB(A)	100,0 dB(A)	100.1 dB(A)
Tonhaltigkeit	KTN	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)
Impulshaltigkeit	KIN	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)

Z	KIN	Γ	
l onnaitigkeit	Impulshaltigkeit	Schalleistungspegel	

Standardabweichung Serienstreuung und Reproduzierbarkeit

ဇ		0,78 dB(A)		(eit 0,50 dB(A)		euung) (1,07 dB(A)
Anzahl Vermessungen	Standardabweichung aufgrund	Serienstreuung	Standardabweichung aufgrund	Reproduzierbarkeit/ Messgenauigkeit	Standardabweichung Gesamt	(Reproduzierbarkeit und Serienstreuung)

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Auszug WT 4229/05 aus dem Prüfbericht WT 4228/05 zur Schallemission der Windenergieanlage vom Typ Nordex N90/2300 begrenzt auf 2000 kW

Messdatum: 2005-04-18/19

Standort bzw. Messort:	Høvsøre, Ring	ıkøbing Amt, Dänemark	
Auftraggeber:	Nordex Energy Bornbarch 2 22848 Norders Deutschland		
Auftragnehmer:	WINDTEST Ka Sommerdeich 25709 Kaiser-\ Deutschland		pΗ
Datum der Auftragserteilung:	2005-01-13	Auftragsnummer:	6020 04 02753 06

Kaiser-Wilhelm-Koog, 2005-05-13

Dieses Dokument darf auszugsweise nur mit schriftlicher Zustimmung der WINDTEST Kaiser-Wilhelm-Koog GmbH vervielfältigt werden. Es umfasst 2 Seiten.

Auszug WT 4229/05 aus dem Prüfbericht WT 4228/05

zur Schallemission der Windenergieanlage vom Typ Nordex N90/2300 begrenzt auf 2000 kW Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 15 vom 01. Jan. 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel)

Allgemeine Angaben		Technische Daten (Herstellerang	gaben)
Anlagenhersteller:	Nordex Energy GmbH	reduzierte Nennleistung:	2000 kW
	Bornbarch 2	Rotordurchmesser:	90 m
	22848 Norderstedt	Nabenhöhe über Grund:	80 m
Seriennummer	8047	Turmbauart:	konisches Rohr
WEA-Standort (ca.)	Høvsøre (DK), Stand 4	Leistungsregelung:	pitch
Ergänzende Daten zum Roto	r (Herstellerangaben)	Erg. Daten zu Getriebe und Gene	erator (Herstellerangaben)
Rotorblatthersteller:	LM Glasfiber A/S	Getriebehersteller:	Rexroth
Typenbezeichnung Blatt:	LM 43.8P	Typenbezeichnung Getriebe:	GPV510D
Blatteinstellwinkel:	variabel	Generatorhersteller:	Loher
Rotorblattanzahl	3	Typenbezeichnung Generator:	AFWA-630MD-06A
reduz. Rotornenndrehzahl:	14,0 U/min	reduz. Generatornenndrehzahl:	1080 U/min

	Referen	zpunkt	Schallemiss	sions-Parameter	Bemerkungen
	Standardisierte Windgeschwindig- keit in 10 m Höhe	Elektrische Wirkleistung			
	6 ms ⁻¹	906 kW	99,0	O dB(A)	
Schallleistungs-	7 ms ⁻¹	1348 kW		1 dB(Á)	
Pegel	8 ms ⁻¹	1726 kW		8 dB(A)	
LWA,P	8,8 ms ⁻¹	1900 kW		2 dB(A)	
	10 ms ⁻¹	- kW		dB(A)	
	6 ms ⁻¹	906 kW	0 dB	bei - Hz	
Tonzuschlag für	7 ms ⁻¹	1348 kW	0 dB	bei - Hz	
den Nahbereich	8 ms ⁻¹	1726 kW	0 dB	bei - Hz	
K_{TN}	8,8 ms ⁻¹	1900 kW	1 dB	bei 460 Hz	
	10 ms ⁻¹	- kW	- dB	bei - Hz	
	6 ms	906 kW) dB	
Impulszuschlag	7 ms ⁻¹	1348 kW	() dB	
für den Nahbereich	8 ms ⁻¹	1726 kW	Ċ) dB	
K _{IN}	8,8 ms ⁻¹	1900 kW	C) dB	
	10 ms ⁻¹	- kW		dB	

			Terz-S	Schallleistu	naspe	gel Referenzi	unkt v.c =	8 8 ms ⁻¹	in dR/Δ\			
Frequenz	50	63	80	100	125		200	250	315	400	500	630
LWA, P	76,4	86,1	82,1	84,0	84,9	86,9	88.9	91.4	90.6	91.2	91.4	89.9
Frequenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000
LWA. P	87,7	87,1	87,5	89,4	88,6	87,2	85,8	81,9	78,9	70,8	68,9	59.8
			Oktav-	Schallleistı	ungspe	gel Referenz	punkt v ₁₀ :	= 8.8 ms ⁻¹	in dB(A)			
Frequenz	63		125	250		500	1000		2000	4000		8000
L _{WA, P}	87,9		90,2	95,2		95,7	92,2		93,3	87.9		73.2

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 2005-05-10. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen),

Bemerkungen: Die der 95%igen Nennleistung entsprechende WG beträgt 8,8 ms⁻¹.

Berechnete Leistungskurve: Nordex N90 schallreduziert - 2000 kW

Gemessen durch: WINDTEST Kaiser-Wilhelm-Koog GmbH

Sommerdeich 14b

25709 Kaiser-Wilhelm-Koog

Fordergesellschaft Windenrigle Konformitätsstempel

Datum:

2005-05-13

Dipl.-Ing. A. Jensen

Dipl.-Ing. J. Neubert

Durch das DAP Deutsches Akkreditierungssystem Prufwesen nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prufverfahren.

Berechnung von Standardabweichung, Qualität der Prognose einzelne WEA

	102,5 dB(A) Garantie		Qualität der Verm. vermessene Nh	80,00		
	Nordex N90 schallred, 2000kW		Bericht-Nr.	WT 4228/05		
0014	Nordex N90	13.05.2005		Vermessung 1 WT 4228/05	Vermessung 2	Vermessung 3
	WEA-1yp	Datum der letzten Aktualisierung		Eingabedaten		

WKA-Daten				
	-	1. Vermessung	2. Vermessung	3. Vermessung
Schalleistungspegel bei				
v10=10m/s od. 95% Pnenn Lwa		101,2 dB(A)		
Tonhaltigkeit KTN				
Impulshaltigkeit KIN				

101.2 dB(A)	Energetischer Mittelwert
-------------	-----------------------------

Standardabweichung

Serienstreuung und Reproduzierbarkeit

Schalleistungspegel

Anzahl Vermessungen	_
Standardabweichung aufgrund	
Serienstreuung	1,20 dB(A)
Standardabweichung aufgrund	
Reproduzierbarkeit/ Messgenauigkeit	0,50 dB(A)
Standardabweichung Gesamt	
(Reproduzierbarkeit und Serienstreuung)	1,84 dB(A)

ENERCON Schalleistungspegel E-66/18.70

Seite 1 v. 1

Die Schalleistungspegel der ENERCON E-66 mit 1.800kW Nennleistung und 70m Rotordurchmesser werden wie folgt angegeben:

	Schalleistungspe Nennle	<u>Vermessener</u> gel und Tonhaltigkei eistung nach FGW-R	tszuschlag für 95% ichtlinie	ENERCON <u>Garantie</u>
Anzahl	1. Vermessung	2. Vermessung	3. Vermessung	
WEA	E-66/18.70 mit 65m NH	E-66/18.70 mit 98m NH	E-66/18.70 mit 86m NH	Garantierter
Institut	WINDTEST KWK	KÖTTER Consulting Engineers	KÖTTER Consulting Engineers	Schalleistungspegel und Tonhaltigkeitszuschlag für 95% Nennleistung
Bericht	WT1618/00 vom 21.12.2000	KÖTTER 25716 -1.001 vom 30.11.2001	KÖTTER 26207 -1.001 vom 28.05.2002	nach FGW-Richtlinie
65m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB
86m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB
98m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB
114m NH	102,7 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0 dB	103,0 dB(A) 0-1 dB

- 1. Die Schalleistungspegelvermessungen, sowie die Ermittlung der Tonhaltigkeit und der Impulshaltigkeit, wurden entsprechend den FGW-Richtlinien (Technische Richtlinien für Windenergieanlagen, Revision 13, Stand 01.01.2000, Hamburg, Fördergesellschaft Windenergie e.V., Teil1: Bestimmung der Schallemissionswerte), basierend auf der DIN EN61400-11 (Windenergieanlagen, Teil 11: Geräuschimmissionen) mit Stand Februar 2000 durchgeführt. Die Bestimmung der Impulshaltigkeit entspricht DIN 45645 (T1, "Einheitliche Ermittlung des Beurteilungspegels für Geräuschimmissionen", Stand Juli 1996). Zur Feststellung der Tonhaltigkeit wurde entsprechend der Technischen Richtlinie nach DIN 45681 (Entwurf, "Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages für die Beurteilung von Geräuschimmissionen", Stand Januar 1992) verfahren.
- 2. Der Schalleistungspegel für 95% der Nennleistung bezieht sich nach FGW-Richtlinie auf die Referenzwindgeschwindigkeit von 10 m/s in 10 m Höhe.
- 3. Aus den drei vorliegenden Meßberichten (WT1618/00, KCE 25716-1.001 und KCE 26207-1.001) lassen sich folgende energetische Mittelwerte bilden: Für den Schalleistungspegel ergibt sich ein Wert von $L_{WA,\ 95\%\ Nennleistung,\ Mittel} = 102,9dB(A)$. In bezug auf die Standardabweichung wurde ein Wert von $S_{95\%\ Nennleistung,\ Mittel} = 0,2db(A)$ ermittelt.
- 4. Umgerechnete Schalleistungspegelwerte für die genannten Nabenhöhen ergeben sich als Berechnung aus den Vermessungen der E-66/18.70 der jeweils vermessenen Nabenhöhe.
- 5. ENERCON Anlagen gewährleisten bei ordnungsgemäßer Wartung aufgrund ihres verschleißfreien Konzeptes und ihrer variablen Betriebsführung, daß vorgegebene Schallwerte während der gesamten Lebensdauer eingehalten werden.

	4-1 yp Enercon E-66/18.70 max Immulshaltinkeit max Immulshaltinkeit	20.02.2003	FGW Bericht-Nr. Qualität der Verm. Vermessene Nh m/s dB m/s dB		(1) (2) (2)	Kotter 25/16/1.001 0.50 dB(A) 65.00 dB(A)		1,50 dB(A) 65,00 dB(A)
+ < L/4.	WEA-1yp	Datum der letzten Aktualisierung	FC	Vermessung 1		vermessung z	Vermessing 3	s allicocalig o

WKA-Daten	က	1. Vermessung	2. Vermessuna	3. Vermessund
Schalleistungspegel bei v10=10m/s od. 95% Pnenn	Lwa	102,7 dB(A)	103,0 dB(A)	103,0 dB(A)
Tonhaltigkeit	KTN	0,0 dB(A)	0.0 dB(A)	0.0 dB/A)
Impulshaltigkeit	Ϋ́Ν	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)

Standardwert Serienstreuung	rienstreuung
bei < 3	
Vermessungen	1,2 dB

	102,9 dB(A)
	L-wa
	Energetischer Mittelwert
Schalleistungspegel	

	Berechnet nach CENELEC CLC/BTTF-2-WG4	Angabe laut Messbericht bzw. nimmt Vermessungsinstitut am Ringversuch teil		Berechnet nach CENELEC CLC/BTTF-2-WG4			T		T	
3	0,17 dB(A)	0,50 dB(A)		0,61 dB(A)		1,50 dB(A)		1,62 dB(A)		2,07 dB(A)
Anzahl Vermessungen	Standardabweichung aufgrund Serienstreuung	Standardabweichung aufgrund Reproduzierbarkeit/ Messgenauigkeit	resultierende Standardabweichung Emission	(Reproduzierbarkeit und Serienstreuung)	Standardabweichung Ausbreitungsrechnung nach	DIN ISO 9613-2	Gesamtstandardabweichung Immission einzelne	WEA (Emission und Ausbreitung)	Unsicherheit Immission einzelner WEA bei 90%	oberem Vertrauensbereich
Zusammenfassung	Standardabweichung und	Unsicherheit für den 90% oberen Vertrauensbereich								

4 Zusammenfassung und Bewertung

Im Auftrag der Vestas Wind Systems A/S, DK-6950 Ringkøbing, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA V52-850 kW 104,2 dB(A) mit einer Nabenhöhe von H_N = 49 m nach [FGW13] untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichtlich des Schallleistungspegels ist die [DIN EN 61400-11], für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die [EDIN 45681] bzw. für die Bewertung von Impulshaltigkeiten die [DIN 45645 T1]. Die Auswertung basiert auf der berechneten Windgeschwindigkeit. Eine gültige und für den verwendeten WG-Bereich vollständige Leistungskurve liegt vor (s. Anhang).

Die Messungen ergeben für die V52-850 kW 104,2 dB(A) die in Tabelle 8 dargestellten, immissionsrelevanten Schallleistungspegel und Zuschläge für das Nahfeld. Eine Übertragbarkeit auf das Fernfeld ist nicht unmittelbar möglich.

Tabelle 8: Schallleistungspegel, Ton- und Impulshaltigkeitszuschläge im Nahfeld

WG in 10 m Höhe [m/s]	6	7	8	9	10 1
Schallleistungspegel L _{WA,P} [dB]	100,3	102,2	102,7	102,7	102,7
bewerteter Impulshaltigkeitszuschlag [dB]	0	0	0	0	0
Tonhaltigkeitszuschlag [dB]	0	0	0	0	0

¹ bzw. die der 95%igen Nennleistung entsprechende WG

Bezüglich des Schallleistungspegels $L_{WA,P}$ ist für diese Messung eine Messunsicherheit inkl. aller Unsicherheiten und Zuschläge von 0,8 dB festgestellt worden.

Einzelereignisse, die den gemittelten Pegel um mehr als 10 dB überschreiten, wurden nicht festgestellt. Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches liegt bei dieser WEA nicht vor.

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

Berechnung von Standardabweichung, Qualität der Prognose einzelne WEA

WEA-Typ		Vestas V52-850kW			max. To	max. Tonhaltigkeit	max. Ir	nax. Impulshaltigkeit
Datum der letzten Aktualisierung	rung	19.05.2003			bei)	bei	-
	FGW	Bericht-Nr.	Qualität der Verm.	vermessene Nh	s/w	ф	s/m	dB
Vermessung 1		WT 2465/02	0,80 dB(A)	49,00		0,00 dB(A)		0.00 dB(A)
Vermessung 2								
Vermessung 3								

WKA-Daten	1	1. Vermessung	2. Vermessung	3. Vermessung
Schalleistungspegel bei v10=10m/s od. 95% Pnenn	Lwa	102,7 dB(A)		
Tonhaltigkeit	KTN	TANKS THE TANKS		
Impulshaltigkeit	KIN			

Standardwert Serienstreuung	rienstreuung
bei < 3	
Vermessungen	1,2 dB

	L _{wa} 102,7 dB(A)
	Energetischer Mittelwert
Schalleistungspegel	

Zusammenfassiind	Anzahl Vermessungen		
Standardabweichung und	Standardabweichung aufgrund Serienstreuung	1,20 dB(A)	Berechnet nach CENELEC CLC/BTTF-2-WG4
Unsicherheit für den 90% oberen Vertrauensbereich	Standardabweichung aufgrund Reproduzierbarkeith Messgenauigkeit	0.50 dB(A)	Angabe laut Messbericht bzw. nimmt Vermessungsinstitut am Ringversuch feil
	resultierende Standardahweichung Emission	/\	
		1	
	(Reproduzierbarkeit und Serienstreuung)	1,84 dB(A)	Berechnet nach CENELEC CLC/BTTF-2-WG4
	Standardabweichung Ausbreitungsrechnung nach		
	DIN ISO 9613-2	1,50 dB(A)	
	Gesamtstandardabweichung Immission einzelne		
	WEA (Emission und Ausbreitung)	2,37 dB(A)	
	Unsicherheit Immission einzelner WEA bei 90%		
	oherem Vertranenshereich	2 04 dB/A)	

WindPRO version 2.4.0.63 Mai 2004

Ausdruck/Seite

27.01.2005 15:01 / 1 Lizensierter Anwender:

CUBE Engineering GmbH Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

27.01.2005 15:01/2.4.0.63

Gebhardshain

Projekt:

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe

DECIBEL - Hauptergebnis

Berechnung: Fremdbelastung an IO's A-F, H-K

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"


Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 1,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A)

Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:40.000 * Existierende WEA Schall-Immissionsort

WEA

	GK (Besse Ost	I) Zone: 3 Nord		Beschreibung	WEA-	Гур I Hersteller	Тур	Leistung	Rotord.	Höhe		Schally Quelle		LwA,ref		Oktav- Bänder
_			[m]					[kW]	[m]	[m]	[m]			[dB(A)]		
				ENERCON E-66/		ENERCON	E-66/18.70	1.800		114,0	1.096.0	EMD	10m/s man, guaranteed all hub heights 09		Nein	Nein
				ENERCON E-66-		ENERCON	E-66/18.70	1.800	70,0	114,0	1.096,0		10m/s man, guaranteed all hub heights 09			
				VESTAS V52 850		VESTAS	V52	850	52,0	74,0	799,0		modus 104,2dB Windtest	102.7	Nein	Nein
				VESTAS V52 850		VESTAS	V52	850	52,0	74,0			modus 104,2dB Windtest	102.7	Nein	Nein
F5	3.415.840 5	5.621.875	416	ENERCON E-66/	IJa	ENERCON	E-66/18.70	1.800	70,0	114,0	1.096,0	EMD	10m/s man, guaranteed all hub heights 09	/02 103.0	Nein	Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-	Immissionsort	GK (Besse	el) Zone: 3		Anforderungen B	eurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Òst	Nord	Z	Schall	Von WEA	Schall
				[m]	[dB(A)]	[dB(A)]	
	A IP 1, Landgut Tannenhof	3.414.875	5.623.320	410	45,0	31,6	Ja
	B IP 2, Landgut Tannenhof	3.414.825	5.623.340	406	45,0	31,2	Ja
	C IP 3, Landgut Tannenhof	3.414.768	5.623.346	403	45,0	31.0	Ja
	D IP 4, Gebhardshain, Höhenweg 4	3.416.479	5.623.692	410	40.0	27,1	Ja
	E IP 5, Hachenburger Str.41	3.416.483	5.623.565	423	40.0	27.9	Ja
	F IP 6, Industriegebiet, WH	3.416.364	5.623.436	416		29,1	Ja
	H IP 8, Fensdorf, Zum Heidorn 8	3.414.065	5.623.534	349	,	26,6	Ja
	I IP 9, Fensdorf, Feldstrasse 11	3.413.969	5.623,484	347		26.2	Ja
	J IP 10 Fensdorf, Erweiterungsfl. WA					27.7	Ja
	K IP 11, Industriegebiet Südwest		5.623.085			33.0	.la

Abstände (m)

WEA										
Schall-Immissionsort	F5	F4	F3	F2	F1					
Α	1737	1559	1664	1503	1365					
В	1782	1585	1702	1544	1397					
С	1821	1600	1732	1579	1420					
D	1926	2410	2145	1919	2126					
E	1808	2312	2035	1809	2028					
F	1647	2137	1865	1639	1853					
H	2430	2012	2270	2162	1913					
1	2468	2017	2295	2197	1933					
J	2317	1900	2156	2049	1799					
K	1238	1699	1434	1206	1415					

Projekt:

Gebhardshain

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe 27.01.2005 15:02 / 1

CUBE Engineering GmbH Ludwig-Erhard-Str. 4-12 DE-34131 Kassel

+49 561 34338

Berechnet:
27.01.2005 15:01/2.4.0.63

DECIBEL - Detaillierte Ergebnisse

Berechnung: Fremdbelastung an IO's A-F, H-K

Annahmen

Beurteilungspegel L(DW) = LWA, ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist <math>Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar: die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A IP 1, Landgut Tannenhof

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	[111]	[111]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]		[dB]	[dB]	[dB]
F1	1.365		76,5	Ja	26,69	103,0							11	0.13
F2	1.503	1.506	67,4	Ja	25,12	103,0								0.21
F3	1.664	1.665	54,4	Ja	22,91	102,7								0.53
F4	1.559	1.560	62,5	Ja	23,97	102,7								0.49
F5	1.737	1.741	70,4	Ja	23,16				3.31				82 54	. , -

Summe 31,59

Schall-Immissionsort: B IP 2, Landgut Tannenhof

WEA

F1 F2 F3	1.397 1.544 1.702	1.400 1.548 1.703	[m] 74,5 66,2 53,6	Ja Ja Ja	Beurteilungspegel [dB(A)] 26,31 24,72 22,59	[dB(A)] 103,0 103,0 102,7	[dB] 3,01 3,01 3,01	[dB] 73,92 74,79 75,62	[dB] 2,66 2,94 3,24	[dB] 2,97 3,33 3,72	[dB] 0,00 0,00 0,00	[dB] 0,00 0,00 0,00	[dB] 79,55 81,06	Cmet [dB] 0,15 0,23 0,54
F4	1.585	1.586	60,4	Ja Ja	22,59 23,70	102,7 102,7	3,01	75,62 75,01	3,24 3,01	3,72 3,49	0,00	0,00	82,58 81.51	,
F5	1.782	1.786	69,0	Ja	22,77	103,0	3,01	76,04	3,39	3,47	0.00	0.00	82.91	0.33

Summe 31,24

Schall-Immissionsort: C IP 3, Landgut Tannenhof

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Λ	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]		[dB]	[dB]	[dB]
F1	1.420	1.423	73,4	Ja	26.06	103,0							F 7	F 1
F2	1.579	1.582	66,1	Ja	24,40	103,0								-, -
F3	1.732	1.733	54,2	Ja	22.37	102,7								-,
F4	1.600	1.601	59,2	Ja	23.54	102,7							81.66	- ,
F5	1.821	1.825	68.4	Ja	22.46	103,0							83.20	0,31

Summe 30,98

Schall-Immissionsort: D IP 4, Gebhardshain, Höhenweg 4 WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	friil	[m]	[m]		[dB(A)]	[dB(A)]	[dB]				[dB]		[dB]	[dB]
F1	2.126	2.128	47,5	Ja	19,93							0,00		
F2	1.919	1.921	50,2		21,40	103,0	3,01	76,67	3,65	3,90	0.00	0,00	84.23	0.38
F3	2.145	2.146	31,0		19,06	102,7								0.63
F4	2.410	2.411	35,9	Nein	17,01							0.00	88.02	0.67

Fortsetzung auf folgender Seite...

Projekt:

Gebhardshain

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe WindPRO version 2.4.0.63 Mai 2004

27.01.2005 15:02 / 2
Lizensierter Anwender:

CUBE Engineering GmbH Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

Berechnet: 27.01.2005 15:01/2.4.0.63

DECIBEL - Detaillierte Ergebnisse

Berechnung: Fremdbelastung an IO's A-F, H-K

...Fortsetzung von voriger Seite

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmat
C.E.	[m] 1.926	[111]	נווון		[qR(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
F-5	1.926	1.930	57,5	Ja	21,47	103,0	3,01	76,71	3,67	3.78	0.00	0.00	84 15	0.38

Summe 27,06

Schall-Immissionsort: E IP 5, Hachenburger Str.41 WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Δ	Cmet
	[mj	[m]	[m]		[dB(A)]	[dB(A)]		[dB]			[dB]	[dB]	[dB]	[dB]
F1	2.028	2.030	52,6	Ja	20,68	103,0							84.92	r 3
F2	1.809	1.812	52,9	Ja	22,26	103,0							83.40	. ,
F3	2.035	2.036	00,0	Ja	19,82	102,7	3,01	77,17	3,87	4,24	0,00		85.28	- ,
F4	2.312	2.313	40,7	Ja	18,18	102,7							86,87	0,66
F5	1.808	1.812	60,2	Ja	22,40	103,0	3,01	76,16	3,44	3,66	0,00	0,00	83,26	0,34

Summe 27,93

Schall-Immissionsort: F IP 6, Industriegebiet, WH

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
	fuil	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]		[dB]	[dB]	[dB]
F1	1.853	1.855	54,6	Ja	21,97	103,0	3,01	76,37					r 1	0.36
F2	1.639	1.641	53,7	Ja	23,64	103,0							82,10	- /
F3	1.865	1.866	0.,0	Ja	21,00	102,7							,	0.58
F4	2.137	2.138	,0	Nein	18,62	102,7						-	86.46	0.63
F5	1.647	1.650	59,2	Ja	23,68	103,0	3,01	75,35	3.14	3.57	0.00	0.00	82.05	0.28

Summe 29,14

Schall-Immissionsort: H IP 8, Fensdorf, Zum Heidorn 8

WE	Α	
Nr.	Abstand	Scha

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]		[dB]	[dB]	[dB]
F1	1.913	1.919	62,0	Ja	21,63	103,0								0.38
F2	2.162	2.168	58,3	Ja	19,84			77,72				•		0,45
F3	2.270	2.273	42,9	Nein	17,81			78,13				-,	,	0.65
F4	2.012	2.015	50,6	Nein	19,39			77,09				-,	85.72	-,
F5	2.430	2.436	58,8	Ja	18,16			78,73					87.34	-,

Summe 26,58

Schall-Immissionsort: I IP 9, Fensdorf, Feldstrasse 11

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	[III]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]		[dB]	[dB]	[dB]
F1	1.933	1.938	66,0	Ja	21,56	103,0	3,01	76,75	3.68	3.63	0.00	0,00	84 06	
F2	2.197	2.203	61,2	Nein	18,71				4,19					0.46
F3	2.295	2.298	46,2	Nein	17,66	102,7							/	0.66
F4	2.017	2.020	54,1	Nein	19.35	102,7							85.75	. ,
F5	2.468	2.474	61,3	Nein	17,12	103,0							88.37	-,

Summe 26,17

Schall-Immissionsort: J IP 10 Fensdorf, Erweiterungsfl. WA WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	А	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]				[dB]	[dB]
F1	1.799	1.805	66,9	Ja	22,59	103,0	3,01	76,13				0,00	83 08	0.34
F2	2.049	2.055	63,2	Ja	20,69	103,0							84.90	
F3	2.156	2.159	47,8	Ja	19,25	102,7						.,		0.63
F4	1.900	1.903	55,1	Ja	21,11	102,7								0,58

Fortsetzung auf folgender Seite...

000175 WindPRO version 2.4.0.63 Mai 2004

Projekt:

Gebhardshain

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe

Ausdruck/Seite 27.01.2005 15:02 / 3

Lizensierter Anwender:
CUBE Engineering GmbH Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

27.01.2005 15:01/2.4.0.63

DECIBEL - Detaillierte Ergebnisse

Berechnung: Fremdbelastung an IO's A-F, H-K

...Fortsetzung von voriger Seite

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Δ	Cmet
F5	funl	[m] 2.323	[mj	Ja	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
. •		2.020	00,7	Ja	10,93	103,0	3,01	78,32	4.41	3.86	0.00	0.00	86.59	0.49

Summe 27,71

Schall-Immissionsort: K IP 11, Industriegebiet Südwest WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]		[dB]	[dB]	[dB]	[dB]
F1	1.415		63,6	Ja	25,88	103,0	3,01	74,03	2,69				79.97	r 3
F2	1.206	1.209	58,6	Ja	27,92			72,65					78.08	0.01
F3	1.434	1.435	40,0	Ja	24,56	102,7	3,01	74,14	2,73	3,84	0.00	0.00	80.70	0.45
F4	1.699	1.699	51,3	Nein	21,54	102,7	3,01	75,61	3,23	4,80	0,00	0.00	83,63	0.53
F5	1.238	1.242	60,1	Ja	27,60	103,0							78,37	0.04

Summe 33,03

Berechnung der Qualität der Prognose an den einzelnen Immissionsorten

<u>જ</u>	Summe WEA Typ		Stand	Standardabweich	chung		Š	mmen	der Beu	rteiling	Special	ler einz	M nonla	EA TVE	Summen der Beurfeilungspegel der einzelnen MEA. Twas an den U. 2012				
			Serien-							-		1		χ Σ	פון שון חבו	Suz OI II	ammeng	erasst	
			-														_		
			streuung		Gesamt-														
Anzahl			inkl		standard-														
WEA			Messunge	Din-ISO	ab-														
Typ	Bezeichnung	WEA Typ	WEA Typ nauigkeit	9613-2	weichung	Eingabe	<		O	_	—			_					
-	Enercon E-66/18.70	1	0,61	1,5	1,62	송	26,69 26.31	26.31	1	9 94	19.94 20.68 21.97 21.63	97 21	33 21 56	22 50	25 20			1	T
,	Enercon E-66/18.70	2	0,61	1,5	1,62	š	25.12	25.12 24.72 24.41 21.40 22.26 23.64 10.84 10.71 20.60	04 41 2	1 40 2	20,000	6/ 10	20 7 07	2,44				-	T
1	Vestas V52	3	1,84	1,5	2.37	ð	22 92	22 60 22 37	2 37 1	9 06 1	19 06 19 82 21 00 17 94 12 66	1 2	1 10,1	40,0	26,12				
-	Vestas V52	4	1.84	1.5	237	3	23 07	23 97 23 70 23 54 17 04	2 57	2,00	19,02 21,00	2 2	0,7	07,810	24,30				1
-	Enercon F-66/18 70	7.	0.61	7 7	1 60	Š	2,01	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1000	5 !	0, 10		- 1						
			5	5,	70'1	š	43,10	23,10 22,11 22,46 21,41 22,40 23,68	7,46 2	1,47 2,	2,40 23,	68 18,17	17 17,12	2 18,93	3 27,60				
																			T
													-					-	T
							T												
		-		-														_	Γ
													-				-		
												1		-			1		
Fraehnisse	989							_			_1	-							
							IO A	IO B	ည (၁	<u> </u>	10 E 10 F	F OH	<u></u> □	ر 10 ا	IO K				Γ
Resulte	Resultierender Pegel an den IO	2					31,60	31,24 30,98 27,06 27,93 29,14 26,58 26,16	0,98 2	7,06 27	,93 29	14 26.5	8 26.1	6 27 7	27 71 33 03				T
Result	Resultierende Ungenauigkeit bei einer oberen Vertrauensberei	it bei einer	oberen Vert	rauensbere	ichsgrenze von 90%	%06 uo/	1,10	1,10	1,10 1	1,06	1.06	1.07 1.11	1 1 14	1 13	1 07			+	T
Summe	Summe Pegel + Unsicherheit						32,7	32,3	32,1	28,2	1		1		_		-	-	T
										ı	ı	ı	ı	1	П			-	٦

WindPRO version 2.4.0.67 Dez 2004

Frojekt: Gebhardshain

Ausdruck/Seite 25.11.2005 10:35 / 1

Lizensierter Anwender: EMD DE

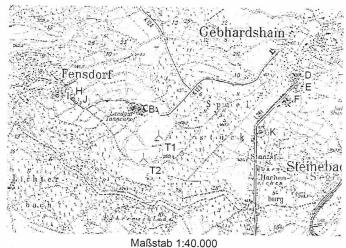
Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

Berechnet: 25.11.2005 10:35/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung an IO´s A-F, H-K

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 1,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maisstab 1:40.000

Schall-Immissionsort

WEA

	GK (Besse Ost	l) Zone: 3 Nord	Z	Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.	Höhe		Schall Quelle	lwerte Name	LwA,ref	Einzel-	Oktav-
T	1 3.415.031 2 3.414.865	5.623.058 5.622.812	[m] 407 390	NORDEX N-90 P NORDEX N-90 P		NORDEX NORDEX			[m] 90,0 90,0	[m] 100,0 100,0	radius [m] 1.500,0 1.500,0	USER USER	3 Verm. schall red. 1600kW 2xWICO, V 3 Verm. schall red. 1600kW 2xWICO, V	[dB(A)] VT 99,6 VT 99.6		Bänder Nein Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Imm		GK (Besse	el) Zone: 3		Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z	Schall	Von WEA	Schall
	IBM I A A A A A			[m]	[dB(A)]	[dB(A)]	
	IP 1, Landgut Tannenhof	3.414.875	5.623.320	409	45,0		Ja
	IP 2, Landgut Tannenhof	3.414.825	5.623.340	407	45,0	40.6	Ja
	IP 3, Landgut Tannenhof	3.414.768	5.623.346	403	45,0	39,4	Ja
	IP 4, Gebhardshain, Höhenweg 4	3.416.479	5.623.692	403	45,0	21,6	Ja
	IP 5, Hachenburger Str.41	3.416.483	5.623.565	423	40,0	22,4	Ja
	IP 6, Industriegebiet, WH	3.416.364	5.623.436	417	50,0	23,8	Ja
	IP 8, Fensdorf, Zum Heidorn 8	3.414.065	5.623.534	348	40,0	28,4	Ja
I	IP 9, Fensdorf, Feldstrasse 11	3.413.969	5.623.484	346	40,0	27,8	Ja
J	IP 10 Fensdorf, Erweiterungsfl. WA	3.414.137	5.623.446	360	40,0	29,8	Ja
K	IP 11, Industriegebiet Südwest	3.416.101	5.623.085	425	50,0	27,2	Ja

Abstände (m)

	WEA	
Schall-Immissionsort	T1	T2
Α	305	508
В	349	529
C	390	543
D	1581	1838
E	1538	1785
F	1386	1624
Н	1077	1078
1	1144	1120
J	974	965
K	1071	1266

WindPRO version 2.4.0.67 Dez 2004

25.11.2005 10:34 / 1 Lizensierter Anwender:

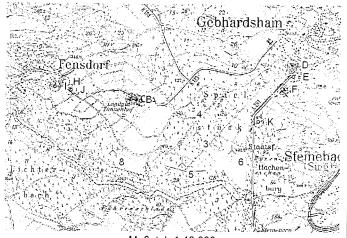
EMD DE Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

25.11.2005 10:34/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung:Zusatzbelastung an IO's A-F, H-K

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 1,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:40.000 Schall-Immissionsort

WEA

	GK (Bessel Ost	l) Zone: 3 Nord	z	Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung	Rotord.	Höhe	Schall Quelle	werte Name	LwA,ref		
١,	0.445.455		[m]					[kW]	[m]	[m]			[dB(A)]	töne	Bänder
				NORDEX N-90		NORDEX	N-90 PR	2.300	90,0	100,0	USER	MW 3Verm, 95% Pn	103.3	Nein	Nein
				NORDEX N-90		NORDEX			90,0	100,0	USER	schall red. 2000kW WT 4228/05	101,2		Nein
				NORDEX N-90		NORDEX	N-90 PR	2.300	90,0	100,0	USER	schall red. 2000kW WT 4228/05	101.2	Nein	Nein
				NORDEX N-90		NORDEX	N-90 PR	2.300	90,0	100,0	USER	3 Verm. schall red, 1600kW 2xWiCO, WT	99.6		
8	3.414.570	5.622.797	378	NORDEX N-90	Nein	NORDEX	N-90 PR	2.300	90,0			schall red. 2000kW WT 4228/05	101,2	Nein	

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort	GK (Besse	el) Zone: 3		Anforderungen B	eurteilungspegel	Anforderungen erfüllt?
Nr. Name	Öst	Nord	Z	Schall	Von WEA	Schall
			[m]	[dB(A)]	[dB(A)]	
A IP 1, Landgut Tannenhof	3.414.875	5.623.320	409	45,0	40.8	Ja
B IP 2, Landgut Tannenhof	3.414.825	5.623.340	407	45.0	40.1	Ja
C IP 3, Landgut Tannenhof	3.414.768	5.623.346	403	45.0	39.5	Ja
D IP 4, Gebhardshain, Höhenweg 4	3.416.479	5.623.692	403	45.0	31.1	Ja
E IP 5, Hachenburger Str.41	3.416.483	5.623.565	423	40,0	32,2	Ja
F IP 6, Industriegebiet, WH	3.416.364	5.623.436	417	50.0	34,1	Ja
H IP 8, Fensdorf, Zum Heidorn 8	3.414.065	5.623.534	348		32.3	Ja
I IP 9, Fensdorf, Feldstrasse 11		5.623.484		40.0	31.9	Ja
J IP 10 Fensdorf, Erweiterungsfl. W.A.	3.414.137	5.623.446	360	40.0	33.8	Ja
K IP 11, Industriegebiet Südwest	3.416.101				40,3	Ja

Abstände (m)

1	**				
Schall-Immissionsort	3	4	5	6	8
A	670	514	783	1084	605
В	723	565	828	1137	599
C	777	622	867	1190	584
D	1244	1158	1571	1117	2108
E	1180	1126	1493	1020	2061
F	1015	985	1321	845	1905
н	1495	1343	1510	1906	893
	1568	1430	1563	1977	913
J	1396	1259	1401	1806	780
K	654	746	911	407	1558
I					

WEA

WindPRO version 2.4.0.67 Dez 2004

Projekt:

Gebhardshain

Ausdruck/Seite 25.11.2005 10:15 / 1

Lizensierter Anwender

Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

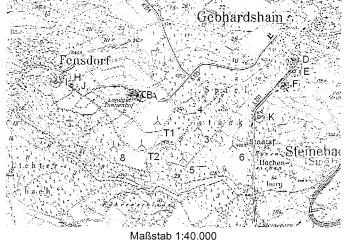
Berechnet: 25.11.2005 10:14/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung:Gesamtbelastung an IO´s A-F, H-K

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"


Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 1,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)
Dorf- und Mischgebiet: 45 dB(A)
Reines Wohngebiet: 35 dB(A)
Gewerbegebiet: 50 dB(A)
Allgemeines Wohngebiet: 40 dB(

Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Malsstab 1:40.000

Schall-Immissionsort

WEA

GK (Bessel) Zone:	3 WEA	-Тур		Schallwerte		
Ost Nord	Z Beschreibung Aktu	II Hersteller Typ Leistun	Rotord, Höhe K	Kreis- Quelle Name	LwA,ref Einzel	- Oktav-
			ri	radius	töne	Bänder
	[m]	[kW]	[m] [m]	[m]	[dB(A)]	
	5 415 NORDEX N-90 P Nein		90,0 100,0	USER MW 3Verm, 95% Pn	103,3 Neir	n Nein
	3 433 NORDEX N-90 P Nein	NORDEX N-90 PR 2.300	90,0 100,0	USER schall red. 2000kW WT 4228/05	101,2 Neir	n Nein
	409 NORDEX N-90 P Nein	NORDEX N-90 PR 2.300	90,0 100,0	USER schall red. 2000kW WT 4228/05	101,2 Neir	n Nein
	427 NORDEX N-90 P Nein	NORDEX N-90 PR 2,300	90,0 100,0	USER 3 Verm. schall red. 1600kW 2xWICO, WI	99,6 Neir	n Nein
	' 378 NORDEX N-90 P Nein	NORDEX N-90 PR 2.300	90,0 100,0	USER schall red. 2000kW WT 4228/05	101,2 Neir	n Nein
T1 3.415.031 5.623.058	407 NORDEX N-90 P Nein	NORDEX N-90 PR 2.300	90,0 100,0 1.	.500,0 USER 3 Verm. schall red. 1600kW 2xWICO, WI	99.6 Neir	n Nein
T2 3.414.865 5.622.812	2 390 NORDEX N-90 P Nein	NORDEX N-90 PR 2.300	90,0 100,0 1.	.500,0 USER 3 Verm. schall red. 1600kW 2xWICO, WI	99,6 Neir	n Nein

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort	GK (Besse	el) Zone: 3		Anforderungen B	eurteilungspegel	Anforderungen erfüllt?
Nr. Name	Òst	Nord	Z	Schall	Von WEA	Schall
			[m]	[dB(A)]	[dB(A)]	
A IP 1, Landgut Tannenhof	3.414.875	5.623.320	409	45,0	44,4	Ja
B IP 2, Landgut Tannenhof	3.414.825	5.623.340	407	45,0	43,4	Ja
C IP 3, Landgut Tannenhof	3.414.768	5.623.346	403	45,0	42,5	Ja
D IP 4, Gebhardshain, Höhenweg 4	3.416.479	5.623.692	403	45,0	31,6	Ja
E IP 5, Hachenburger Str.41	3.416.483	5.623.565	423	40,0	32,7	Ja
F IP 6, Industriegebiet, WH	3.416.364	5.623.436	417	50,0	34,5	Ja
H IP 8, Fensdorf, Zum Heidorn 8	3.414.065	5.623.534	348	40,0	33,8	Ja
I IP 9, Fensdorf, Feldstrasse 11	3.413.969	5.623.484	346	40,0	33,3	Ja
J IP 10 Fensdorf, Erweiterungsfl. WA	3.414.137	5.623.446	360	40,0	35,2	Ja
K IP 11, Industriegebiet Südwest	3.416.101	5.623.085	425	50,0	40,5	Ja

Abstände (m)

, ,							
	WEA						
Schall-Immissionsort	T1	T2	3	4	5	6	8
A	305	508	670	514	783	1084	605
В	349	529	723	565	828	1137	599
С	390	543	777	622	867	1190	584
D	1581	1838	1244	1158	1571	1117	2108
E	1538	1785	1180	1126	1493	1020	2061
F	1386	1624	1015	985	1321	845	1905
Н	1077	1078	1495	1343	1510	1906	893
1	1144	1120	1568	1430	1563	1977	913
J	974	965	1396	1259	1401	1806	780

WindPRO Version 2.4.0.67

25.11.2005 10:15 / 2

Lizensierter Anwender: EMD DE

Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

Berechnet: 25.11.2005 10:14/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung:Gesamtbelastung an IO´s A-F, H-K

..Fortsetzung von voriger Seite

WEA

Schall-Immissionsort T1 K 1071 1266 654 746 911 407 1558

25.11.2005 10:15 / 3

CEMD DE

Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

25.11.2005 10:14/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung: Gesamtbelastung an IO's A-F, H-K

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar:

die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A IP 1, Landgut Tannenhof WEA

	Nr.	Abstand			Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı	_	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	3	670	677	49,9	Ja	35,17	103,3	3,00	67,62	1,29	2,23	0.00	0.00	71.13	
١	4	514	527	52,0	Ja	36,42				1,00				67,77	-,
١	5	783	789	60,5	Ja	31,63				1,50				72,58	
ı	6	1.084	1.089	50,3	Ja	25,56				2,07			-	77.02	
Ì	8	605	608	46,6	Ja	34,24				1,16				69.96	
I	T1	305	318	46,5	Ja	40,90				0,60				61,66	-,
ı	T2	508	513	46,7	Ja	34,81			65,20					67,78	

Summe 44,39

Schall-Immissionsort: B IP 2, Landgut Tannenhof WEA

Nr.	Abstand [m]	Schallweg [m]	Mittlere Höhe [m]	Sichtbar	Beurteilungspegel	LwA,ref	Dc [dB]	Adiv [dB]	Aatm [dB]	Agr [dB]	Abar [dB]	Amisc	A [dB]	Cmet [dB]
3	723	731	49,2	Ja	34,18	/3							72.12	
4	565	577	52,4	Ja	35,25			66,23				•	68.95	- ,
5	828	834	59,5	Ja	30,88	101,2	3,00	69,42				,	73.32	-,
6	1.137	1.143	49,7	Ja	24,90			72,16					77.63	- ,
_8	599	603	47,1	Ja	34,38							- ,	69.82	-,
T1	349	362	46,5	Ja	39,51	99,6	2,98	62,17	0,69	0,21	0,00	0.00	63.07	0.00
T2	529	535	46,1	Ja	34,25	99,6	3,00	65,56	1,02	1,77	0.00	,	68.35	-,

Summe 43,39

Schall-Immissionsort: C IP 3, Landgut Tannenhof

WEA

ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]		[dB]	[dB]	[dB]
ı	3	777	784	48,4	Ja	33,28	103,3	3,00	68,88	1,49	2,65	0,00	0,00	73.03	
ı	4	622	634	52,1	Ja	34,02	101,2	3,00	67,05	1,21	1,93	0.00	0.00	70.18	0.00
١	5	867	873	58,6	Ja	30,26	101,2	3,00	69,82	1,66	2,47	0,00	0.00	73.95	0.00
İ	6	1.190	1.196	49,1	Ja	24,27	99,6	3,01	72,56	2.27	3.38	0.00	0.00	78,21	0.12
ı	8	584	588	48,1	Ja	34,76	101,2	3,00	66,39	1.12	1.94	0.00			,
ı	T1	390	403	46,5	Ja	38,01			63,10					64.57	0.00
ı	T2	543	549	45,7	Ja	33,88			65,79					68,72	-,

Summe 42,49

25.11.2005 10:15 / 4

EMD DE

OOO 18 DLudwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

25.11.2005 10:14/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung:Gesamtbelastung an IO's A-F, H-K

Schall-Immissionsort: D IP 4, Gebhardshain, Höhenweg 4

Nr. 3 4 5 6 8 T1	Abstand [m] 1.244 1.158 1.571 1.117 2.108 1.581	Schallweg [m] 1.249 1.165 1.574 1.123 2.110 1.584	[m] 28,0 38,6 28,8 41,9 22,8	Nein Ja Nein Ja Nein	25,92 21,15 24,89 17,42	[dB(A)] 103,3 101,2 101,2 99,6 101,2	[dB] 3,01 3,01 3,01 3,01 3,01	[dB] 72,93 72,33 74,94 72,01 77,48	[dB] 2,37 2,21 2,99 2,13 4,01	[dB] 4,80 3,65 4,80 3,51 4,80	[dB] 0,00 0,00 0,00 0,00 0,00	0,00 0,00 0,00 0,00	[dB] 80,10 78,19 82,73 77,66 86,29	0,33 0,06 0,50
T1 T2			28,6 28,3	Nein Nein	17,42 19,47 17,59	99,6	3,01	77,48 74,99 76,30	3,01	4,80	0,00	0,00	86,29 82,80 84,59	0,34

Summe 31,56

Schall-Immissionsort: E IP 5, Hachenburger Str.41

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspege	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
١.	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	1.180		0=,0	Ja	27,63	103,3	3,01	72,47	2,25	3.84			78.56	3
4	1.126	1.132	40,1	Ja	26,34				2,15			-	77,80	
5	1.493	1.496	34,4	Ja	22.56				2,84				,	0.30
6	1.020	1.026	48,6	Ja	26,27				1,95				76.33	
8	2.061	2.062	28.0	Nein	,				3,92					,
T1	1.538	1.541	31.9	Ja	20.52							,	,	-,
I T2	1.785	1.786		Nein	•				2,93				81,77	
l '-	1	1.700	33,3	Nem	17,97	99,6	3,01	76,04	3,39	4.80	0.00	0.00	84.23	0.41

Summe 32,67

Schall-Immissionsort: F IP 6, Industriegebiet, WH

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	1.015	1.019	34,3	Ja	29,57			71,17					76.74	
4	985	992	39,5	Ja	27,98			70,93					76.23	-,
5	1.321	1.324	35,9	Ja	24,19			73,44					79,82	-,
6	845	851	48,8	Ja	28,58			69,60						0.00
8	1.905	1.905	32,2	Nein	18,74			76,60					85.02	,
T1	1.386	1.388	34,3	Ja	21,93			73,85					80.44	-,
Т2	1.624	1.625	36,6	Nein	19,15			75,22					83.11	- ,

Summe

Schall-Immissionsort: H IP 8, Fensdorf, Zum Heidorn 8

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
1	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
] 3	1.495	1.503	39,5	Ja	24,72	103,3		74,54					81.29	
4	1.343	1.355	,.	Ja	24,17			73,64					- , ,	0.22
5	1.510	1.518	, .	Ja	22,68	101,2	3,01	74,63	2.88	3.71	0.00			
6		1.914	39,7	Ja	17,80			76,64				-	84.36	-,
8		902	50,1	Ja	29,51			70,10					74.70	
T1	1.077	1.088	44,4	Ja	25,39			71,73					77.19	
T2	1.078	1.086	43,8	Ja	25,39			71.72					77 19	-,

Schall-Immissionsort: I IP 9, Fensdorf, Feldstrasse 11

WEA

INT.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	fuil	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
] 3	1.568	1.576	42,4	Ja		103,3	3,01	74.95	2.99	3.88	0.00	0,00	81.82	0.33
4	1.430	1.442	47,9	Ja	23,37							0,00		
5	1.563	1.570	50,0	Ja	22,27	101,2	3,01	74,92	2,98	3,71	0,00	0,00	81.61	0.33
ľ	1.000	1.570	50,0	Ja	22,21	101,2	3,01	74,92	2,98	3,71	0,00	0,00	81,61	0,3

25.11.2005 10:15 / 5

Lizensierter Anwender:

Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

Berechnet: 25.11.2005 10:14/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung:Gesamtbelastung an IO's A-F, H-K

..Fortsetzung von voriger Seite

	Nr. 6 8 T1	1.977 913	1.985 921	42,7 51,9	Ja Ja	Beurteilungspegel [dB(A)] 17,35 29,32	[dB(A)] 99,6 101,2	[dB] 3,01 3,01	[dB] 76,95 70,29	[dB] 3,77 1,75	[dB] 4,06 2,85	[dB] 0,00 0,00	[dB] 0,00 0,00	[dB] 84,79 74,89	Cmet [dB] 0,47 0,00	
-	T1 T2	1.144 1.120	1.155 1.128	46,7		24,68 24,95	99,6	3,01	70,29 72,25 72,05	2,19	3,40	0,00	0,00		0,08	

Summe 33,35

Schall-Immissionsort: J IP 10 Fensdorf, Erweiterungsfl. WA

1	INT.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
i		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
ı	3	1.396	1.404	43,9	Ja	25,72			73,95					80,34	
1	4	1.259	1.270	48,6	Ja	25,07	101,2	3,01	73.08	2.41	3.48	0.00	0.00	78,97	
	5	1.401	1.408	52,4	Ja	23,79	101,2	3.01	73,97	2.68	3.52	0.00	0.00	80.17	-,
ı	6	1.806	1.813	44,5	Ja	18,62			76,17					83,57	
ı	8	780	788	54,0	Ja	31,36			68,93				-,	72,85	,
ı	T1	974	985	47,8	Ja	26,75			70,86					75,86	,
I	T2	965	973	47,3	Ja	26,88			70,76					75.73	- ,

Summe 35,23

Schall-Immissionsort: K IP 11, Industriegebiet Südwest WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
l	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
3	654	659	36,8	Ja	34,82	103,3							71.48	r 3
4	746	753	42,2	Ja	31,39			68,53					72.81	-,
5	911	914	39,5	Ja	28,95			70,22					75.26	-,
6	407	419	45,4	Ja	37,40			63,44					65,19	- /
8	1.558	1.559	44,1	Nein	21,27			74,86					82,62	,
T1	1.071	1.073	42,9	Ja	25,51			71,61					77.07	0,02
T2	1.266	1.267	46,8	Nein	22,17			73,06					80.27	0,02

Summe 40,55

WindPRO version 2.4.0.67 Dez 2004 Gebhardshain 25.11.2005 10:15 / 6 EMD DE 000184 Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338 25.11.2005 10:14/2.4.0.67 DECIBEL - Karte: TK 25 Gebhardshain.bmi Berechnung: Gesamtbelastung an IO's A-F, H-K Datei: TK 25 Gebhardshain.bmi Tànnenho 250 500 750 Karte: TK 25 Gebhardshain , Druckmaßstab 1:15.000, Kartenzentrum GK (Bessel) Zone: 3 Ost: 3.415.226 Nord: 5.623.176 Neue WEA Schall-Immissionsort

40 dB(A)

35 dB(A)

Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt

50 dB(A)

45 dB(A)

Berechnung der Qualität der Prognose an den einzelnen Immissionsorten

ΖEA	
>	
elevanten	
75	
Ψ	
_	
Φ	
_	
ω	
_	
	,
$\underline{\mathcal{Q}}$	
≅	
ij	
stung	
astung	
lastunc	
elastunç	
belastunç	
ntbelastung	
mtbelastung	
amtbelastung	
samtbelastung	
esamtbelastung	
ŝ	

	Summe WEA Typ		Stand	Standardabweichung	hung						Beurt	Spunie	negal	lar pinz	Beurfeilungspegel der einzelnen WEA	∇ <u></u> <u> </u> <u> </u>			
-			Serien-									0	10001						
			streuung		Gesamt-														
Anzahl			inkl		standard-														
WEA			Messunge	Din-ISO	ab-														
Тур	ichnung	WE	nauigkeit	9613-2	weichung Eingabe	Eingabe	∢	В	O	۵	Ш	ш	I	_					-
_	N-90	-	0,71	1,5	1,66	송	35,17	34,18	33.28	26.05	27.63	29.57	24 72	24 16	25.72	34 82			
က	N-90 schallred. 1600kW	2	0,78	1,5	1,69	송	41,96	40,76	39.56	26.57	27.77	29.82	26.57 27.77 29.82 28.76 28.20	28 20	30 14	37.70			
3	N-90 schallred. 2000kW	3	1,84	1,5	2,37	송	39,29	38.64	38.18	27.61	28.26	29 85	29 85 31 27	30.04		22,73			
		4						₩		-		20101	1		4	2,00			
		2																	
		9																	
		7																	
		8																	
		6																	
Ergebnisse	lisse						10 A	10 B	2 O	00	10 E	10 F	HO	<u></u>	<u>-</u>	<u> </u>	<u>c</u>	9	2
Resulti	Resultierender Pegel an den IO						44,39	43,39	42,49	31,56		34,52	+	2	+	40,55	2		2
Resul	Resultierende Ungenauigkeit bei einer oberen Vertrauensbereichsgrenze von 90%	iner	oberen Vert	rauensbere	ichsgrenze \	%06 uo/	1,57	1,58	1,60	1,52	1,47	1,44	1,85	1,88	1,90	1,42	######	######	######
Summe	Summe Pegel + Unsicherheit						46,0	45,0	44,1	33,1	34,2	35,9	35,7	35,2	37,1	41,9		-	

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe

DECIBEL - Hauptergebnis

Berechnung: Vorbelastung an IO G

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

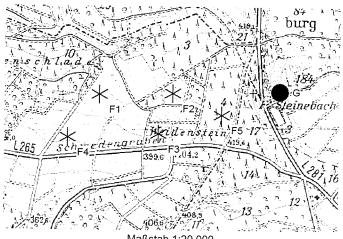
Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 1,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A)

Kur- und Feriengebiet: 35 dB(A)


WindPRO version 2.4.0.63 Mai 2

26.01.2005 19:36 / 1

000186

CUBE Engineering GmbH Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

26.01.2005 19:36/2.4.0.63

Maßstab 1:20.000

WEA

GK (Bessel) Zone: 3 Ost Nord Z Beschreibung	WEA-Typ Aktuell Hersteller Typ	Leistung Rotord.	Höhe				Oktav-
[m] F1 3.415.200 5.621.994 387 ENERCON E-66/ F2 3.415.584 5.621.995 401 ENERCON E-66- F3 3.415.506 5.621.780 400 VESTAS V52 85/ F4 3.415.028 5.621.768 402 VESTAS V52 85/ F5 3.415.840 5.621.875 416 ENERCON E-66/	1Ja ENERCON E-66/18.7 Ja VESTAS V52 Ja VESTAS V52	0 1.800 70,0 850 52,0 850 52,0	114,0 74,0 74,0	1.096,0 EMD 799,0 USER 799,0 USER	[dB(A)] 10m/s man. guaranteed all hub heights 09/02 103, 10m/s man. guaranteed all hub heights 09/02 103, modus 104,2dB Windtest 102, modus 104,2dB Windtest 102, 10m/s man. guaranteed all hub heights 09/02 103,	Nein Nein Nein Nein	

Berechnungsergebnisse

Beurteilungspegel

	nmissionsort	GK (Besse	el) Zone: 3		Anforderungen	Beurteilungsnegel	Anforderungen erfüllt?
Nr.	Name	Öst	Nord	Z	Schall	Von WEA	Schall
	G IP 7, Forsthaus Steinebach	3.416.149	5.621.996	[m] 403	[dB(A)] 45,0	[dB(A)] 44,8	Ja

Abstände (m)

	Schall-Immissionsort
WEA	G
F1	949
F2	565
F3	679
F4	1144
F5	332

Projekt:

Gebhardshain

wat Wasser- und Abfalltechnik Ingenieurgesellschaft mbH & Co.KG Kleinoberfeld 5 76135 Karlsruhe WindPRO version 2.4.0.63 Mai 2004

000187

Ausdruck/Seite 26.01.2005 19:36 / 1

Lizensierter Anwender:

CUBE Engineering GmbH Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

Berechnet: 26.01.2005 19:36/2.4.0.63

DECIBEL - Detaillierte Ergebnisse

Berechnung: Vorbelastung an IO G

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr:

die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Abar: Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: G IP 7, Forsthaus Steinebach

WEA

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspegel	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
F1	949	954	52,8	Ja	30,72	103,0	3,00	70,59	1,81	2.88	0.00	0.00	75.28	0.00
F2	565	575	50,0	Ja	36,95	103,0	3,00	66,20	1,09	1,75	0.00	0.00	69,04	0.00
F3	679	682	31,3	Ja	33,53	102,7	3,00	67,67	1,30	3,20	0.00	0.00	72.17	0.00
F4	1.144	1.146	37,0	Ja	27,35	102,7	3,01	72,19	2,18	3,69	0,00	0,00	78,05	0.31
F5	332	354	51,8	Ja	43,32	103.0	2.97	61.98	0.67	0.00	0.00		62.65	

Summe 44,83

Berechnung der Qualität der Prognose an den einzelnen Immissionsorten

Anzahl			ordin	Standardapwelc	chung		Sur	mmen der	Benrieiln	languanu	der oin	JAN MAR	T V	71			
Anzahl			Serien-					The state of the s		a Bade Bu	מבו בוווד	JAK L	H-Liyber	an den 16	zusamm	engetass]
Anzah			streuung		Gesamt-												
			inkl		standard-												
_			Messunge	Din-ISO	ap-												
Typ Be		WEA Typ	WEA Typ nauigkeit	9613-2	weichung Eingabe	Eingabe	∀										
1 E	Enercon E-66/18.70	1	0,61	1,5	1,62	š	<u>ا</u> ٣						1				
1 Er	Enercon E-66/18.70	2	0,61	1,5	1,62	ě	36.95						1				
1 Ve	Vestas V52	3	1,84	1,5	2,37	š	33.53										
1 Ve	Vestas V52	4	1,84	1,5	2.37	č	27.35										
1 Er	Enercon E-66/18.70	5	0,61	1,5	1,62	송	43.32							1	1		
																1	
													1				
									1								
Ergebnisse	91						NO A							l		1	I
Resultierer	Resultierender Pegel an den 10	0					44.83										
Resultier	Resultierende Ungenauidkeit bei einer oberen Vertrauensbereichsorenze von 90%	t bei einer	oberen Vert	ranenshereir	hearenze	700 uc	1 53										
Summe Pe	Summe Pegel + Unsicherheit				10.65.10	200	102										
							40,3						_				

RW 45

WindPRO version 2.4.0.67 Dez 2 Gebhardshain

25.11.2005 10:27 / 1

Lizensierter Anwender:

EMD DE 000189

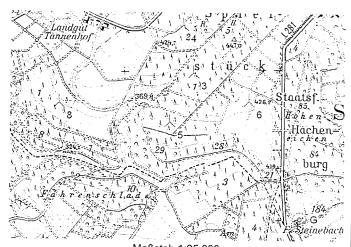
Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338

25.11.2005 10:25/2.4.0.67

DECIBEL - Hauptergebnis

Berechnung: Zusatzbelastung an IO G

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2


Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 2,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A) Dorf- und Mischgebiet: 45 dB(A) Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:25.000 Schall-Immissionsort

WEA

	GK (Bessel) Ost	Zone: 3 Nord	Z [m]	Beschreibung	WEA-T Aktuell	yp Hersteller	Тур	Leistung [kW]			Schalle Quelle	werte Name	LwA,ref	Einzel- töne	Oktav- Bänder
ı	3 3 415 455	5 622 985		NORDEX N-90	Nini-	NODDEY			[m]	[m]			[dB(A)]		
						NORDEX			90,0	100,0	USER	MW 3Verm. 95% Pn	103.3	Nein	Nein
				NORDEX N-90		NORDEX	N-90 PR	2.300	90,0	100,0	USER	schall red. 2000kW WT 4228/05	101.2	Nein	Nein
				NORDEX N-90		NORDEX	N-90 PR	2.300				schall red. 2000kW WT 4228/05			
1	6 3.415.820	5.622.790	427	NORDEX N-90	Nein	NORDEX	N OO DD	2 200					101,2	Nein	Nein
				NORDEX N-90					90,0	100,0	USER	3 Verm. schall red. 1600kW 2xWICO, WT	99.6	Nein	Nein
ı	0 3.414.370 3	3.022.797	3/6	NORDEX N-90	Nein	NORDEX	N-90 PR	2.300	90,0	100,0	USER	schall red. 2000kW WT 4228/05	101.2	Nein	Nein

Berechnungsergebnisse

Beurteilungspegel

	Schall-Immissionsort	GK (Besse	el) Zone: 3		Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
-	Nr. Name	Ost	Nord	Z	Schall	Von WEA	Schall
	C.ID.7. Familian Quit			[m]	[dB(A)]	[dB(A)]	
1	G IP 7, Forsthaus Steinebac	h 3.416.149	5.621.996	402	45.0	33.3	la

Abstände (m)

	Schall-Immissionsort
WEA	G
3	1208
4	1512
5	1080
6	859
8	1771

WindPRO version 2.4.0.67 Dez 2004

Projekt:

Gebhardshain

Ausdruck/Seite 25.11.2005 10:27 / 2

Lizensierter Anwender: **EMD DE**Ludwig-Erhard-Str. 4-12

DE-34131 Kassel +49 561 34338

000190

Berechnet: 25.11.2005 10:25/2.4.0.67

DECIBEL - Detaillierte Ergebnisse

Berechnung:Zusatzbelastung an IO G

Annahmen

Beurteilungspegel L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (wenn mit Bodendämpfung gerechnet wird, dann ist Dc = Domega)

LWA,ref:

Schalleistungspegel WKA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

die Dämpfung aufgrund geometrischer Ausbreitung

Aatm:

die Dämpfung aufgrund von Luftabsorption

Agr: Abar: die Dämpfung aufgrund des Bodeneffekts die Dämpfung aufgrund von Abschirmung

Amisc:

die Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: G IP 7, Forsthaus Steinebach WEA

ı	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Beurteilungspege	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]						[dB]	[dB]	[dB]	[dB]
ı	3	1.208	1.213	49,0	Ja	27,66	103,3	3,01	72,68	2,30	3,41	0,00	0,00	78.39	0.26
I	4	1.512	1.518	52,2	Ja	22,47	101,2	3,01	74,62	2,88	3,62	0.00	0.00	81.12	0.61
١	5	1.080	1.085	55,9	Ja	27,36	101,2	3,01	71,71	2.06	3.02	0.00	0.00	76.79	0.06
ı	6	859	868	53,2	Ja	28,51	99.6	3,00	69.77	1,65	2.67	0.00	0.00	74.09	0.00
۱	8	1.771	1.772	54.9	Ja	20.32					,	•	0,00	,	. ,

Summe 33,27

WindPRO version 2.4.0.67 Dez 2004 Ausdruck/Seite 25.11.2005 10:27 / 3 Gebhardshain EMD DE 000191 Ludwig-Erhard-Str. 4-12 DE-34131 Kassel +49 561 34338 25.11.2005 10:25/2.4.0.67 DECIBEL - Karte: TK 25 Gebhardshain.bmi Berechnung: Zusatzbelastung an IO G Datei: TK 25 Gebhardshain.bmi annenho 399.6 250 500 Karte: TK 25 Gebhardshain , Druckmaßstab 1:15.000, Kartenzentrum GK (Bessel) Zone: 3 Ost: 3.415.360 Nord: 5.622.650 Neue WEA Schall-Immissionsort Höhe über Meeresspiegel von aktivem Höhenlinien-Objekt 35 dB(A) 40 dB(A) 45 dB(A)

Berechnung der Qualität der Prognose an den einzelnen Immissionsorten

G	
<u>ල</u>	
_	
Ξ	
8 an l	
ω	
တ်	
5,	
S	
4.	
3, 4	
EA	
ш	
≥	
_	
5	
Ξ	
*	
ä	
a	
ڡٙ	
Ŋ	
ā	
ξ	
ヹ	
	ı

	Summe WEA Typ	Stan	Standardabweichung	hung		Be	urteilung	Beurteilungspegel der einzelnen WEA	r einzelr	en WE	4
		Serien-									
		streuung		Gesamt-							
Anzahl		inkl		standard-							
WEA		Messunge	Din-ISO	ab-						•	
Тур	Bezeichnung	nauigkeit	9613-2	weichung	Eingabe	O					
_	N-90	0,71	1,5	1,66	송	27,66					
1	N-90 schallred. 1600kW	0,78	1,5	1,69	송	28,51					
3	N-90 schallred. 2000kW	1,84	1,5	2,37	송	29,18					
Ergebnisse	isse					90	_ 	<u>0</u> 0	0	0	0
Resultie	Resultierender Pegel an den IO					33,27					
Resulti	Resultierende Ungenauigkeit bei eine	ner oberen Vertrauensbereichsgrenze von 90%	trauensbere	ichsgrenze	%06 uov	1,51 #####		##### #####	######	#####	#####
Summe	Summe Pegel + Unsicherheit					34,8					
											١

Nordex Energy GmbH • Bornweg 28 • 49152 Bad Essen / Deutschland

WAT GmbH Frau Jung Kleinoberfeld 5

76135 Karlsruhe

Ansprechpartner/in Torsten Höhl

Tel. 06747/950947

Fax

Email

06747/950948 thoehl@nordex-online.com

Datum

22. November 2005

<u>Definition zum Schalleistungspegel</u> <u>Hier Projekt Gebhardshain 7xN90</u>

Sehr geehrte Frau Jung,

die WKA Typ NORDEX N90 im ertragsoptimierten Betrieb hat gemäß FGW-Richtlinie^[1] (bzw. IEC 61400-11^[2]) einen Schalleistungspegel L_{WA} von 103,3 dB(A) bis zu einer standardisierten Windgeschwindigkeit von 10 m/s in einer Höhe von 10 m (jedoch bis maximal zu der Windgeschwindigkeit, die dem 95%-Wert der Nennleistung entspricht), einschließlich der jeweiligen Tonhaltigkeitszuschläge nach ^[1] (wobei Tonhaltigkeitszuschläge nach TA-Lärm $K_{TN} \le 2$ dB außer Betracht bleiben) und einschließlich Impulshaltigkeitszuschlägen nach ^[1] für jede einzelne WKA.

Die WKA Typ NORDEX N90 hat weiterhin für die schallreduzierte Betriebsweise mit 1600kW ("Nachtbetrieb") gemäß FGW-Richtlinie $^{[1]}$ (bzw. IEC 61400-11 $^{[2]}$) einen Schalleistungspegel L_{WA} von 100 dB(A) bis zu einer standardisierten Windgeschwindigkeit von 10 m/s in einer Höhe von 10 m (jedoch bis maximal zu der Windgeschwindigkeit, die dem 95%-Wert der reduzierten Nennleistung gemäß der Leistungskennlinie entsprechend der Anlage hierzu entspricht), einschließlich der jeweiligen Tonhaltigkeitszuschläge nach $^{[1]}$ (wobei Tonhaltigkeitszuschläge nach TA-Lärm $K_{\text{TN}} \leq 2$ dB außer Betracht bleiben) und einschließlich Impulshaltigkeitszuschlägen nach $^{[1]}$ für jede einzelne WKA.

Der von NORDEX oben angegebene Schalleistungspegel wird als Referenzschalleistungspegel angegeben. dieser Referenzschalleistungspegel beinhaltet keine Messunsicherheiten oder Toleranzen. NORDEX gewährleistet den Referenzschalleistungspegel zuzüglich eines Unsicherheitsfaktors $K=\pm 1.5$ dB(A) in Anlehnung an die IEC 61400-14 TS. Dieser Unsicherheitsfaktor beinhaltet die Streuungen durch Fertigungstoleranzen und Messunsicherheiten.

Nordex Energy GmbH Bornweg 28 49152 Bad Essen Deutschland

Tel: +49 5472 94 94-0 Fax: +49 5472 94 94-94 info@nordex-online.com www.nordex-online.com

Sitz der Gesellschaft: Norderstedt AG Kiel, HRB 4861 NO

UST-ID: DE159112930

Geschäftsführung: Theo Becker (Vors.) Jörg Hempel Jörg Scholle Dr. Eberhard Voss Ulrich Wischermann HSH Nordbank AG BLZ 210 500 00 SWIFT: HSHN DE HH Konth 53005372 DE56 2105 0000 0053 0053 72

Bayrische Hypo- und Vereinsbank AG BLZ 200 300 00 SWIĤT VUWB DE HH Konto 313 346 DE91 2003 0000 0000 3133 46 Seite 2 von 4

000194

Die Daten, welche den schalloptimierten Betrieb kennzeichnen (z.B. Leistung, Drehzahl, Uhrzeit) werden kontinuierlich auf dem PC jeder WEA für mindestens sechs Monate gespeichert und sind zu Kontrollzwecken per Datenfernübertragung abrufbar.

Die Daten, welche die Abschaltung bei Schlagschatten kennzeichnen (z.B. Betrieb/nicht Betrieb) werden kontinuierlich auf dem PC jeder WEA für mindestens sechs Monate gespeichert und sind zu Kontrollzwecken per Datenfernübertragung abrufbar.

Die schalloptimierte Betriebsweise in der Betriebssteuerung wird durch ein Passwort geschützt. Nur geschultes NORDEX Personal Zugriffsrechten kann die Einstellung ändern.

mit besonderen

Mit freundlichen Grüßen

Torsten Höhl

Zitierte Normen und Richtlinien:

^[1] Technische Richtlinie für Windenergieanlagen – Teil 1: Bestimmung der Schallemissionswerte; Herausgeber: Fördergesellschaft Windenergie e. V.; Revision 13, 2000-01-01

^[2] IEC 61400-11 ed. 2 Wind turbine generator systems - Part 11: Acoustic noise measurement techniques; Second edition, 2002-12

^[3] DIN EN ISO/IEC 17025 Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien; 2000-04