

Schalltechnisches Gutachten gemäß FGW TR.1 zur Windenergieanlage ENERCON E-82 Ser.-Nr.: 823618, im Windpark Weibern-Rieden

- Betrieb I (2.000 kW) -

Messung 2014-02-12 Vollständiger Bericht 2014-03-11

SE12028B2

Dîpl.-Ing. David Rode Gruppenleiter

Schalltechnisches Gutachten gemäß FGW TR.1 zur Windenergieanlage ENERCON E-82 Ser.-Nr.: 823618, im Windpark Weibern-Rieden

- Betrieb I (2.000 kW) -

Bericht SE12028B2

Deliciti de 1202002						
Standort bzw. Messort:	Weibern-Rieden, WEA 8, Ser-Nr. 823618					
DunoAir Windpark Planung GmbH						
Auftraggeber:	Brotstrasse 1					
	D-54290 Trier					
	windtest grevenbroic	est grevenbroich gmbh				
Auftragnehmer:	Frimmersdorfer Str. 7	73a				
	D-41517 Grevenbroid	ch				
Datum der Auftragserteilung:	2012-10-02	Auftragsnummer:	12 0168 07			
Prüfer: Bea			Bearbeiter:			
			. 17			

Grevenbroich, 2014-03-11

Dieser Bericht darf auszugsweise nur mit schriftlicher Zustimmung der windtest grevenbroich gmbh vervielfältigt werden. Er umfasst insgesamt 38 Seiten inkl. der Anlagen.

1		AUFGABENSTELLUNG	. 4
2		DURCHFÜHRUNG DER MESSUNG	. 4
	2.1	Messverfahren	4
	2.2	Messobjekt	4
	2.3	Messort	5
	2.4	Messaufbau	5
	2.5	Messablauf	8
	2.6	Meteorologische Bedingungen	8
3		MESSERGEBNISSE	. 8
	3.1	Subjektives Geräuschempfinden	8
	3.2	Richtcharakteristik	8
	3.3	Schalldruckpegel	9
	3.4	Immissionsrelevanter Schallleistungspegel	12
	3.5	Impulshaltigkeit	14
	3.6	Pegel von Einzelereignissen	14
		Tonhaltigkeitsanalyse	14
		3.7.1 Verfahren der Tonhaltigkeitsanalyse	14
		Turbulenzintensität	
		Betriebszustand während der Messung	
4	0.0	MESSUNSICHERHEIT	
•	4.1	Messunsicherheit Typ A	
		Messunsicherheiten Typ B	
		Abschätzung der Gesamtmessunsicherheit U _c	
		Messunsicherheiten für Tonhaltigkeiten	
		Messunsicherheiten für Terzspektren	
5		ABWEICHUNGEN ZUR RICHTLINIE FGW TR.1	
6		ZUSAMMENFASSUNG	
7		LITERATURVERZEICHNIS	
8		VERZEICHNIS DER VERWENDETEN FORMELZEICHEN UND ABKÜRZUNGEN	
9		BEARBEITUNGSVERLAUF	
1(1		
1(,	ANHANG	24
Ai	nhai	ng 1 Lageplan	
Aı	nhai	ng 2 Herstellerbescheinigung	
		ng 3 Leistungskennlinie	
		ng 4 Oktav- und Terzspektrum	

Anhang 5

Schmalbandspektren

1 Aufgabenstellung

Die windtest grevenbroich gmbh (wtg) wurde 2012-10-02 von DunoAir Windpark Planung GmbH beauftragt, die charakteristische Geräuschabstrahlung der Windenergieanlage (WEA) E-82 mit einer Nabenhöhe von H = 108,4 m inkl. Fundament im leistungsoptimierten Betrieb I (2.000 kW) mit dem Standort Weibern-Rieden gemäß der aktuellen Technischen Richtlinie Teil 1 zu erfassen.

2 Durchführung der Messung

2.1 Messverfahren

Die Mess- und Beurteilungsmethoden basieren auf der Technischen Richtlinie für Windenergie- anlagen, Teil 1 "Bestimmung der Schallemissionswerte" [1], Revision 18, Stand 2008-02-01. Gemäß dieser Richtlinie ist die Tonhaltigkeitsauswertung entsprechend der IEC 61400-11 [2] durchzuführen und nach DIN 45681 [3] mit einem Tonzuschlag K_{TN} zu bewerten.

Angegeben werden der immissionsrelevante Schallleistungspegel sowie die Ton- und Impulshaltigkeit im Nahfeld der WEA im Bereich von 6 m/s bis 10 m/s in 10 m Höhe (und evtl. bei 95 % der Nennleistung, sofern diese unterhalb einer Windgeschwindigkeit von 10 m/s in 10 m Höhe erreicht wird).

2.2 Messobjekt

Beim zu vermessenden Objekt handelt es sich um eine im Dauerbetrieb betriebene Windenergieanlage des Typs E-82.

Akustisch betrachtet setzt sich eine WEA aus mehreren Einzelschallquellen zusammen. Zu nennen sind hier z. B. Komponenten wie Generator, Getriebe und Hydraulikpumpen (falls vorhanden), Transformatoren und Umrichter, welche sowohl über die Öffnungen im Maschinenhaus und im Turm direkt, als auch durch Körperschallübertragung über Maschinenhaus, Blätter und Turm Geräusche abstrahlen. Diese Geräusche können tonhaltig sein.

Aerodynamisch bedingte Geräusche, verursacht durch die Rotation der Rotorblätter, stellen eine weitere wesentliche Schallquelle dar. Diese Geräusche sind in der Regel breitbandig und in erster Linie von der Blattspitzengeschwindigkeit und den Blattprofilen bzw. dem Regelverhalten (Pitch oder Stall) abhängig.

Die vermessene WEA weist die in der Tab. 1 dargestellten Eigenschaften auf. Detaillierte Angaben finden sich in der Herstellerbescheinigung im Anhang.

entfällt

(Synchrongenerator)

E-82

Tab. 1: Technische Daten der Windenergieanlage



Abb. 1: WEA E-82 (823618)

2.3 Messort

Getriebe-Typ

Generator-Typ

Die WEA befindet sich mit weiteren WEA verschiedenen Typs am Standort Weibern-Rieden. Die Umgebung der WEA wird landwirtschaftlich genutzt und war zum Zeitpunkt der Messung bestellt. Weiterhin besteht die Umgebung aus mehreren eingestreuten Waldgebieten. Der Windpark Weibern-Rieden besteht derzeit aus insgesamt 14 WEA (1x Seewind, 2x Nordex N90, 5x Vestas V47, 4x Enercon E-82, 2x Enercon E-70 E4). Die Anlagen befinden sich auf einer Anhöhe mit einer geodätischen Höhe von ca. 490 m – 550 m über NN. Südöstlich des Windparks in ca. 1.200 m Entfernung befindest sich die im Tal gelegene Ortschaft Rieden (ca. 400 m über NN). Westlich des Windparks in ca. 1.200 m Entfernung befindet sich die ebenfalls im Tal gelegene Ortschaft Weibern (ca. 410 m über NN).

2.4 Messaufbau

Die Anordnung der Messpunkte wurde gemäß [2] gewählt. Die Messung der Schallemissionen am Referenzpunkt wurde mit einem Mikrofon auf einer schallharten Platte mit einem Durchmesser von 1 m in einem Abstand zum Turmmittelpunkt der WEA von $R_{0,gewählt} = 151$ m durchgeführt. Der Referenzpunkt war in Mitwindrichtung zur WEA angeordnet (Abb. 2).

$$R_0 = H + \frac{D}{2} \pm 20\%$$

(H: Nabenhöhe; D: Rotordurchmesser)

Die Schalldruckpegel (Betriebs- bzw. Gesamtgeräusche und Fremdgeräusche) wurde mit Hilfe eines Mikrofons und eines Schallpegelmessers aufgezeichnet und für nachträgliche Analysen

zeitgleich mit einem Audiorecorder aufgenommen. Bei der Messung wurde ein sekundärer halbkugelförmiger Windschirm (Spezifikation nach [2]) verwendet. Der Frequenzgang des Windschirms ist bekannt.

Der dämpfende Einfluss beträgt 0,2 dB und wurde im Folgenden berücksichtigt.

Die eingespeiste Wirkleistung der WEA wurde als 1 Minuten-Mittelwertsignal vom Hersteller aufgezeichnet und für spätere Analysen zur Verfügung gestellt.

Da die WEA E-82 auf Grund der regelbaren Drehzahl in verschiedenen Betriebsmodi betrieben werden kann, ist nach [1] vorgesehen, zur eindeutigen Charakterisierung des Betriebszustandes die Drehzahl der WEA während der Messung mit aufzuzeichnen.

Das Drehzahlsignal und ebenfalls das Signal der Windgeschwindigkeit in Nabenhöhe wurden ebenfalls als 1 Minuten-Mittelwertsignal vom Hersteller aufgezeichnet und für spätere Analysen zur Verfügung gestellt.

Die Windrichtung und Windgeschwindigkeit in 10 m Höhe wurden von einem Anemometer und einer Windfahne im Abstand von 336 m zur WEA luvseitig erfasst (Abb. 3), digitalisiert und ebenfalls auf der Festplatte des Mess-PCs gespeichert.

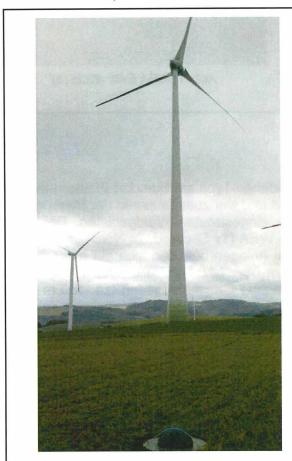


Abb. 2: Aufbau Mikrofon

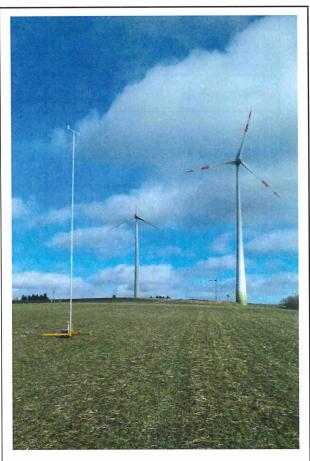


Abb. 3: Aufbau Windmessmast, (WEA 8 im Vordergrund)

Die Erfassung der meteorologischen, akustischen und elektrischen Signale wurde mit Hilfe einer Funkuhr (DCF77) synchronisiert. Die verwendeten Messgeräte zur Erfassung aller Signale sind in Tabelle 2 aufgeführt.

Um eine einwandfreie Daten- und Messsicherheit zu gewährleisten, werden alle Messgeräte in den in [2] genannten Abständen geprüft.

Die gesamte akustische Messkette wurde mit einer Prüfschallquelle vor und nach der Messung kalibriert.

Tab. 2: Messgeräte

	rab. 2: Wessgerate		
Geräte Akustik	Hersteller / SerienNr.	Kalibriert bis	WTG-Nummer
devices acoustic	manufacturer / serial number	calibrated until	wtg number
Mikrofon microphone	Norsonic, Typ 1220, Serien-Nr. 35321 Norsonic, type 1220, serial-no. 35321	2015-02-12	WTGMT1873
Mikrofonvorverstärker preamplifier	Norsonic, Typ 1201, Serien-Nr. 21114 Norsonic, type 1201, serial-no. 21114	2015-02-12	WTGMT1875
Schallpegelmesser sound level meter	Norsonic 110, Serien-Nr. 19603 Norsonic 110, serial-no. 19603	2015-02-12	WTGMT0033/1
Digitaler Audiorekorder digital audio recorder	Tascam HD-P2, Frontier / 0550010 Tascam HD-P2, Frontier / 0550010	2000	WTGMT1814
Akustischer Kalibrator acoustical calibrator	Brüel & Kjaer, Typ 4231, Serien-Nr. 2162810 Brüel & Kjaer, Typ 4231, serial-no. 2162810	2014-08-05	WTGMT0269
Prim. Windschirm	Norsonic		
primary wind screen Sek. Windschirm	Norsonic windtest grevenbroich gmbh	The decided as	
secondary wind screen	windtest grevenbroich gmbh		
Geräte Meteorologie	Hersteller / SerienNr.	Kalibriert bis	WTG-Nummer
meteorological devices	manufacturer / serial number	calibrated until	wtg number
Messmast 10 m meteorological mast	Teksam Clark-Mast, Typ Cot 10-6/HP, Serien-Nr. GK94289 Teksam Clark-Mast, type Cot 10-6/HP, serial- no. GK94289		WTGMT1806
Anemometer anemometer	Thies, Typ: 4.3519.00.700, Serien-Nr. 08120909 Thies, type: 4.3519.00.700, serial no. 08120909		WTGMT2417
Windfahne wind vane	Thies, Typ: 4.312.30.021A, SN: 0110039 Thies, type: 4.312.30.021A, SN: 0110039		WTGMT1780
Messumformer	Weidmüller, Typ: WAZ4 PRO DC/DC		WTGMT1402
signal transformer Messumformer	Weidmüller, type: WAZ4 PRO DC/DC		
signal transformer	Weidmüller, Typ: WAZ5 PRO RTD Weidmüller, type: WAZ5 PRO RTD		WTGMT1467
Thermometer und Hygrometer	Thies,1.1005.54.241,Serien-Nr. 1002-46		WTGMT2152
thermometer and hygrometer Barometer	Thies,1.1005.54.241,serial-no.1002-46 Greisinger, Typ GDH 12AN		
barometer	Greisinger, type GDH 12AN		WTGMT0563
Geräte Hard- und Software devices hard- and software	Hersteller / SerienNr. manufacturer / serial number	Kalibriert bis calibrated until	WTG-Nummer wtg number
Datenlogger	IMC CS4108, Serien-Nr. 125918	Calibrated until	-
data logger	IMC CS4108, serial-no. 125918		WTGMT2089
Datenlogger data logger	IMC SCI8, Serien-Nr. 888416 IMC SCI8, serial-no. 888416		WTGMT2090
Computer Computer	Toshiba Tecra R950-15F, Serien-Nr. XC130731 Toshiba Tecra R950-15F, serial-no. XC130731		WTGPC1146
Laserentfernungsmesser laser rangefinder	Yardage Pro, 1000 Serien-Nr. 027178 Yardage Pro, 1000 serial-no. 027178		WTGMT1050
Auswertesoftware data acquisiton software	WTG Technik WTG Technik		
Auswertesoftware	IMC Famos Version 6.0 Rev. 3		
data acquisiton software	IMC Famos version 6.0 rev. 3		

2.5 Messablauf

Die Messung wurde 2014-02-12 in der Zeit zwischen 11³⁰ Uhr und 15³⁰ Uhr durchgeführt. Für die Messung der Schallemissionen wurden die benachbarten WEA des Typs Nordex N90 (Ser.-Nr. 81761), Enercon E-82 mit der Park-Nr. 7 (Ser.-Nr. 823617) und 9, außer Betrieb gesetzt. Die während der Messung in 10 m Höhe aufgetretenen Windgeschwindigkeiten lagen in einem Bereich zwischen 3 m/s und 10 m/s (Abb. 5). Die abgegebene Wirkleistung der WEA lag zwischen 300 kW und 2.070 kW (Abb. 6). Während der Messungen des Betriebsgeräusches lief die WEA im Dauerbetrieb.

Bei der Messung wurden parallel der Schalldruckpegel, die elektrische Wirkleistung, die Generatordrehzahl, die Windgeschwindigkeit in Nabenhöhe und Windgeschwindigkeit sowie Windrichtung in 10 m Höhe gemessen und aufgezeichnet.

Störgeräusche, die während der Messung auftraten (z. B. Autoverkehr, landwirtschaftlicher Verkehr, Flugverkehr), wurden für die Ermittlung der Schallemissionswerte (Betrieb und Hintergrund) ausgeschlossen.

2.6 Meteorologische Bedingungen

Die meteorologischen Bedingungen wurden während der Messzeit kontinuierlich aufgezeichnet. Es herrschten die in Tabelle 3 dargestellten meteorologischen Bedingungen.

Bewölkungheiter bis wolkigLuftdruck944 – 948 hPaLufttemperatur4 – 7 °CLuftfeuchte71 – 84 %

Tabelle 3: Meteorologische Bedingungen während der Messzeit

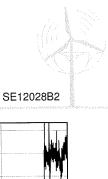
3 Messergebnisse

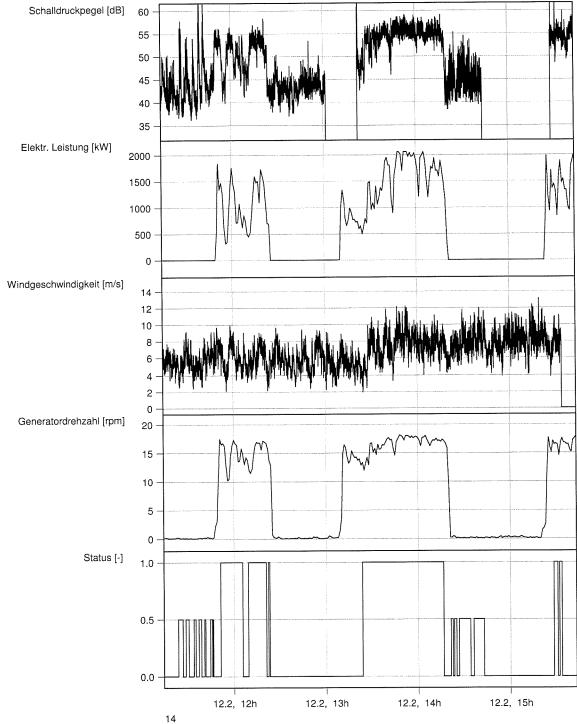
Grundlage aller Auswertungen (Tabellen, Grafiken) ist eine Mittelungszeit von 60 sek. für alle aufgezeichneten Signale.

3.1 Subjektives Geräuschempfinden

Aerodynamisch bedingte Geräusche traten durch die Rotation der Rotorblätter auf. Diese sind nach subjektivem Hörempfinden derzeit als auffällig zu bewerten. Am Referenzpunkt traten weiterhin wahrnehmbare tonale Betriebsgeräusche bei höheren Windgeschwindigkeiten auf. Das Anlagengeräusch ist derzeit als auffällig einzustufen.

3.2 Richtcharakteristik


Es wurde subjektiv keine ausgeprägte Richtcharakteristik für die WEA E-82 festgestellt.



3.3 Schalldruckpegel

Zur Analyse der charakteristischen Schallwerte bei den verschiedenen Windgeschwindigkeiten wurden die gemessenen Schalldruckwerte, Leistungswerte und Windgeschwindigkeiten des Messzeitraums nach Status unterschieden und analysiert.

Es wurde unterschieden zwischen den Zeiträumen Anlagenbetrieb (Betriebs- bzw. Gesamtgeräusche, Status = 1) und Anlagenstillstand (Fremdgeräusche, Status = 0,5). Status = 0 bedeutet, dass die Geräuschdaten aufgrund von Störgeräuschen nicht für die Auswertung herangezogen werden dürfen (vgl. Abb. 4).

Datum, h

Abb. 4: Messwerte

Aus dem zeitlichen Verlauf der gemessenen Werte wurden je nach Status die Leistung, Windgeschwindigkeit, Windrichtung und Schalldruckpegel gefiltert. Das arithmetische Mittel der Windgeschwindigkeit und der Leistung sowie das energetische Mittel der Schalldruckpegel über jeweils 60 sek. waren Grundlage zur Ermittlung der Regressionen für die Schalldruckpegel Betrieb und Hintergrund (vgl. Abb. 5 bis Abb. 7).

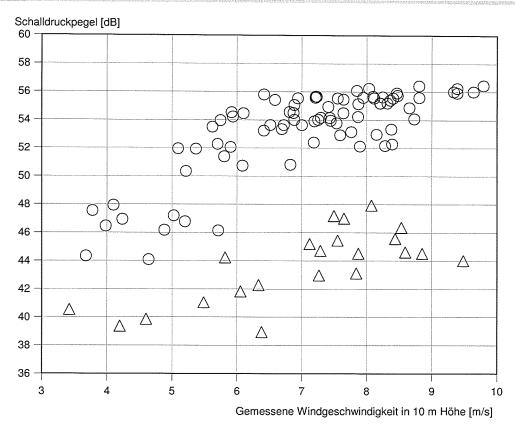


Abb. 5: Schalldruckpegel über gemessener Windgeschwindigkeit (Betrieb O und Hintergrund 4, 60 sek. Mittelwerte)

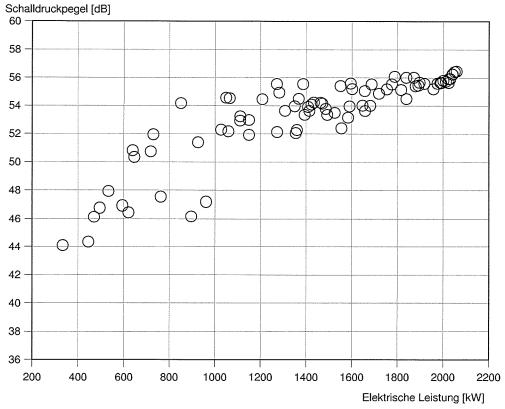


Abb. 6: Schalldruckpegel über elektrischer Leistung (60 sek. Mittelwerte)

3.4 Immissionsrelevanter Schallleistungspegel

Aus der gemessenen Wirkleistung wurde mit Hilfe der zu Grunde gelegten Leistungskurve (vgl. Anhang), einer meteorologischen Korrektur gemäß [2] und einem logarithmischen Ansatz für das Windgeschwindigkeitsprofil (Rauhigkeitslänge $z_0 = 0,05 \, \text{m}$) auf die standardisierte Windgeschwindigkeit in 10 m Höhe geschlossen.

$$v_{p10} = v_H \cdot \frac{\ln 10/z_0}{\ln H/z_0}$$
 mit $z_0 = 0.05$ m, H = 108,4 m

Aus der standardisierten Windgeschwindigkeit und der im Betrieb der WEA gemessenen Windgeschwindigkeit wurde der Korrekturfaktor κ für die gemessene Hintergrundwindgeschwindigkeit bestimmt.

$$\kappa = \frac{v_{p10}}{v_{mess,10}}$$
 und $v_{mess,10,korr} = \kappa \cdot v_{mess,10}$

Es wurde ein Korrekturfaktor κ = 0,96 zur Korrektur der gemessenen Hintergrundwindgeschwindigkeiten bestimmt. Daraus ergaben sich die in der folgenden Abbildung dargestellten Regressionen. Messwerte bei mehr als 95 % der Nennleistung sind in der Abb. 7 über ihre gemessene, mit dem Korrekturfaktor κ korrigierte Windgeschwindigkeit mit quadratischen Symbolen \square dargestellt. Dabei entfallen gemäß [1] solche Messwerte, bei denen die korrigierte Windgeschwindigkeit unterhalb der Windgeschwindigkeit zu 95 % der Nennleistung liegt.

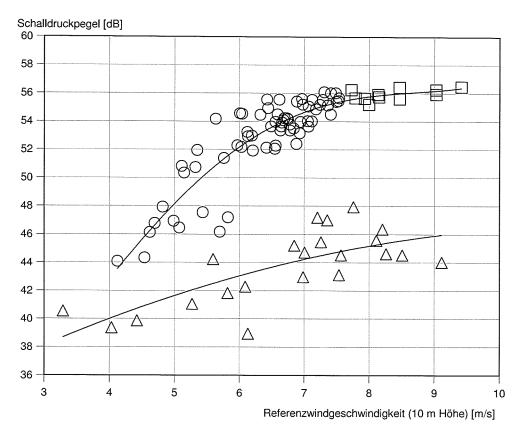


Abb. 7: Schalldruckpegel über standardisierter Windgeschwindigkeit (60 sek. Mittelwerte)

Regression Betrieb *O*: $30,82 - 4,824 * X + 3,5439 * X^2 - 0,47445 * X^3 + 0,019446 * X^4 [dB]$ Regression Hintergrund Δ : $31,12 - 2,677 * X + 0,1152 * X^2 [dB]$ \Box Messwerte größer 95%-Nennleistung

Zwischen den Regressionsgleichungen Schalldruckpegel Betrieb ($L_{Aeq,BG}$) und Schalldruckpegel Hintergrund ($L_{Aeq,HG}$) über der standardisierten Windgeschwindigkeit wurde der Störabstand bestimmt und anschließend der fremdgeräuschkorrigierte Schalldruckpegel ($L_{Aeq,c}$) für den Betrieb der WEA berechnet.

$$L_{Aeq,c} = 10\lg[10^{(0,1*L_{Aeq,BG})} - 10^{(0,1*L_{Aeq,HG})}]$$

Aus dem fremdgeräuschkorrigierten Schalldruckpegel $L_{\text{Aeq,c}}$ wurde für die standardisierten Windgeschwindigkeiten von 6 m/s bis 9 m/s in 10 m Höhe der Schallleistungspegel L_{WA} der WEA berechnet.

$$L_{WA} = L_{Aeq,c} - 6dB + 10 \cdot \log(4\pi \cdot \frac{R_{i}^{2}}{1m^{2}}) \qquad dB$$

$$R_{i} = \sqrt{(R_{o} + N_{A})^{2} + (H - h_{A})^{2}}$$

$$R_0 = 151 \text{ m}, N_A = 4,32 \text{ m}, H = 108,4 \text{ m}, h_A = 4 \text{ m}$$

Damit ergaben sich für die WEA E-82 in der vorliegenden Konfiguration die in der Tab. 4 dargestellten immissionsrelevanten Schallleistungspegel.

Seite 14 von 38

Windgeschwindigkeit in 10 m	BIN 6	BIN 7	7,4 m/s ¹⁾	BIN 8	BIN 9
Höhe (v _{p10})	5,5–6,5 m/s	6,5–7,5 m/s	7,4111/5	7,5–8,5 m/s	8,5–9,5 m/s
Gesamtgeräusch L _{Aeq,BG} [dB]	52,2	54,7	55,3	55,8	56,2
Fremdgeräusch L _{Aeq,HG} [dB]	43,0	44,2	44,7	45,2	45,2 ²⁾
Abstand ∆L [dB]	9,1	10,4	10,6	10,6	11,0
Betriebsgeräusch L _{Aeq,c} [dB]	51,6	54,2	54,9	55,4	55,8
Schallleistungspegel L _{WA} [dB]	102,0	104,6	105,3	105,8	106,2
Elektrische Leistung P [kW]	1.083	1.666	1.900	2.059	2.090

Tab. 4: Immissionsrelevanter Schallleistungspegel E-82, Betrieb I (2.000 kW)

Anmerkung 1: Aufgrund der derzeit untypischen aerodynamischen Betriebsgeräusche der WEA, ist nicht auszuschließen, dass bei noch höheren Windgeschwindigkeiten eine weitere Erhöhung der Schallemissionen erfolgt.

3.5 Impulshaltigkeit

Vom Gutachter wurden keine impulsartigen Auffälligkeiten festgestellt (subjektive Beurteilung nach [1]). Somit wurde hier keine detaillierte Auswertung nach DIN 45645-1 [4] vorgenommen.

3.6 Pegel von Einzelereignissen

Einzelereignisse wie das Anfahren oder Abschalten der Anlage, Quietschen der Bremsen oder Fahren des Azimut, die den Mittelungspegel um mehr als 10 dB überschritten, wurden bei der Messung nicht festgestellt.

3.7 Tonhaltigkeitsanalyse

Die Tonhaltigkeitsauswertung ist gemäß Technischer Richtlinie [1] nach IEC 61400-11 [2] durchzuführen und nach DIN 45681 [3] mit einem Tonzuschlag K_{TN} zu bewerten.

3.7.1 Verfahren der Tonhaltigkeitsanalyse

Das aufgezeichnete Geräusch (Hintergrund und Betrieb) wird zur Bestimmung der Frequenzzusammensetzung mit 40 kHz unter Verwendung eines Antialiasing-Filters mit einer Grenzfrequenz von 20 kHz digitalisiert und einer Fastfourieranalyse (FFT) unterzogen.

Je Windgeschwindigkeitsklasse (BIN) werden für das Betriebsgeräusch und das Hintergrundgeräusch jeweils zwölf Aufnahmen mit einer Länge von je 10 sek. der FFT zu Grunde gelegt. Die Frequenzauflösung beträgt 2 Hz. Für die FFT wurde ein Hanning Fenster verwendet.

Nach energetischer Mittelung der zwölf Differenzpegel ΔL und Berücksichtigung des Audibilitätsmaßes (L_a) wird ein Tonhaltigkeitszuschlag (K_{TN}) für den Nahbereich der Windenergieanlage nach [3] je BIN vergeben.

^{1) 95 %} Nennleistung

²⁾ Wenige Messwerte für das Fremdgeräusch. Wert für HG aus BIN 8 übernommen: Schallleistungspegel wurde abgeschätzt (worst-case Betrachtung).

3.7.2 Ergebnisse der Tonhaltigkeitsanalyse

Das von der E-82 analysierte Betriebsgeräusch weist im Spektrum zeitweise eine tonale Komponenten bei 130 Hz auf, die nach dem genannten Verfahren mit einem Tonhaltigkeitszuschlag K_{TN} für den Nahbereich der WEA zu bewerten ist. Die Ergebnisse der Analyse in den jeweiligen BINs sind in der Tab. 5 aufgeführt. Die Spektren sind im Anhang 5 dargestellt.

Tab. 5: Bestimmung des Tonhaltigkeitszuschlags:								
	BIN	l 6 ²⁾	BIN	BIN 7 ^{1) 2)}		8 1/	BII	1 9
Spektrum Nr.	f⊤ [Hz]	ΔL _{i.k} [dB]	f _T [Hz]	ΔL _{i,k} [dB]	f _T [Hz]	ΔL _{i.k} [dB]	f _T [Hz]	ΔL _{i.k} [dB]
1					128	-0,26	128	-1,57
2					128	0,68	128	0,14
3					130	3,50	128	4,16
4					130	4,92	128	-5,66
5					128	1,37	126	-2,25
6					124	-5,61	126	-6,84
7					130	-5,48	130	-0,56
8					130	-1,44	130	-0,59
9					128	1,11	130	4,57
10					128	-2,20	130	4,47
11					130	-3,73	128	2,46
12					126	-3,79	130	2,00
Energ. Mittel ∆L _k [dB]						0,29		1,30
Tonalität ∆L _{a,k} [dB]						2,31		3,31
K _{TN} [dB]		0		0		2		2

2) Keine nennenswerten Töne nach [2] mit ΔL_{a,k} > -3,0 dB

Anmerkung 1: Am Referenzpunkt ist eine Tonhaltigkeit zeitweise subjektiv wahrnehmbar (im Bereich 130 Hz).

Anmerkung 2: Die angegebenen Tonhaltigkeitszuschläge K_{TN} bezeichnen das Geräuschverhalten der WEA im Nahbereich. Diese Werte können nicht direkt auf immissionsrelevante Entfernungen übertragen werden.

3.8 Turbulenzintensität

Die Turbulenzintensität wurde gemäß [2] aus drei repräsentativen 10 Minuten Zeitabschnitten der Windgeschwindigkeit und der zugehörigen Standardabweichung ermittelt. Die Turbulenzintensität beträgt im Durchschnitt 20 %. Dieser Wert wurde in 10 m Höhe gemessen und ist nicht direkt mit Werten an anderer Stelle, z. B. in Standortgutachten, zu vergleichen.

^{1) 95 %} Nennleistung bei 7,4 m/s

3.9 Betriebszustand während der Messung

In Abb. 8 wurde die Generatordrehzahl über der Leistung aufgetragen. Dieser Messdatenverlauf charakterisiert den eingestellten Betriebsmodus der WEA und kann mit Sollkurven des Herstellers verglichen werden.

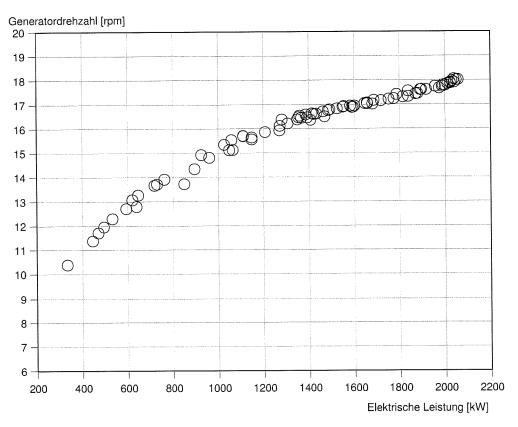


Abb. 8: Drehzahl über Leistung (60 sek. Mittelwerte)

4 Messunsicherheit

Die Messunsicherheit wird bei Schallemissionsmessungen an WEA gemäß [2] abgeschätzt. Sie setzt sich zusammen aus statistischen Unsicherheiten (Typ A) und systematischen Abweichungen (Typ B).

4.1 Messunsicherheit Typ A

Aus den gemessenen Schalldruckpegeln und den berechneten Schalldruckpegeln (Regressionsanalyse) wurde die Messunsicherheit des Typs A in 10 m Höhe bestimmt.

Die Gleichung für U_A in [1] beschreibt die Standardabweichungen der ermittelten Regressionswerte für das Betriebs- und Fremdgeräusch.

$$U_A = \sqrt{\frac{\sum (y - y_{est})^2}{N(N-2)}}$$

Die Unsicherheit des gemessenen fremdgeräuschkorrigierten Anlagenpegels $U_{A,s}$ wird wie folgt berechnet:

$$U_{A,s} = \sqrt{\frac{(U_{A,BG} * 10^{0,1*L_{BG}})^2 + (U_{A,HG} * 10^{0,1*L_{HG}})^2}{10^{0,1*L_{WEA}}}}$$

Tab. 6: Messunsicherheiten Typ A

Stand. Windgeschwindigkeit	BIN 6	BIN 7	BIN 8	BIN 9
Messunsicherheit U _{A,s} [dB]	0,67	0,19	0,16	0,21

4.2 Messunsicherheiten Typ B

Messunsicherheiten des Typs B wurden nach Tab. 7 abgeschätzt.

Tab. 7: Messunsicherheiten Typ B

Messunsicherheiten Typ B	Fehlergrenzen ± a	Wahrscheinli- cher Fehler	$U_a = a/\sqrt{3}$	
Akustischer Kalibrator U _{B1}	± 0,3 dB	0,17 dB		
Schallpegelmesser U _{B2}	± 0,3 dB	0,17 dB		
Schallharte Platte U _{B3}	± 0,5 dB	0,29 dB		
Messabstand U _{B4}	± 0,1 dB	0,06 dB		
Luftimpedanz U _{B5}	± 0,2 dB	0,12 dB		
Turbulenz U _{B6}	± 0,7 dB	0,40 dB		
Windgeschwindigkeit U _{B7}	± 0,3 dB	0,17 dB		
Windrichtung U _{B8}	± 0,5 dB	0,29 dB		

4.3 Abschätzung der Gesamtmessunsicherheit Uc

Aus der berechneten Messunsicherheit des Typs A und den abgeschätzten Messunsicherheiten des Typ B ergibt sich nach [2] die kombinierte Gesamtmessunsicherheit Uc:

$$U_{C} = \sqrt{U_{A,S}^{2} + U_{B1}^{2} + U_{B2}^{2} + U_{B3}^{2} + U_{B4}^{2} + U_{B5}^{2} + U_{B6}^{2} + U_{B7}^{2} + U_{B8}^{2}}$$

Die ermittelten Gesamtmessunsicherheiten Uc sind in Tab. 8 dargestellt:

Tab. 8: Gesamtmessunsicherheit U_C für den Schallleistungspegel

Windgeschwindigkeit auf 10m	BIN 6	BIN 7	BIN 8	BIN 9
Höhe (V _{p10})	5,5-6,5 m/s	6,5-7,5 m/s	7,5-8,5 m/s	8,5-9,5 m/s
Gesamtmessunsicherheit U _c [dB]	0,9	0,7	0,7	0,7

4.4 Messunsicherheiten für Tonhaltigkeiten

Bei der Tonhaltigkeit ist U_A für jeden Einzelton der Fehler des Mittelwertes aus den maximalen Tonpegeln. Der Wert von U_{B3} kann mit 1,7 dB abgeschätzt werden. Da es sich bei dem angegebenen Wert $\Delta L_{a,k}$ um eine Differenz handelt und des Weiteren die Windgeschwindigkeit hier von zweitrangiger Bedeutung ist, können die Werte von U_{B1} , U_{B4} und U_{B6} geringer angenommen werden als beim Schallleistungspegel L_{WA} .

Die Ergebnisse der kombinierten Gesamtmessunsicherheit U_{C} für Tonhaltigkeiten bei ganzzahligen Windgeschwindigkeitswerten ist in Tab. 9 dargelegt:

Tab. 9: Gesamtmessunsicherheit U_C für Tonhaltigkeiten

Windgeschwindigkeit auf 10m	BIN 6	BIN 7	BIN 8	BIN 9
Höhe (v _{p10})	5,5-6,5 m/s	6,5-7,5 m/s	7,5-8,5 m/s	8,5-9,5 m/s
Gesamtmessunsicherheit U _C [dB]	~-		3,81	4,16

4.5 Messunsicherheiten für Terzspektren

Bei der Betrachtung von Terzbänder gibt U_A die Abweichung zum jeweiligen Frequenzbandmittelungspegels in jedem Frequenzband an, welcher aus der Standardabweichung mit dem Nenner $\sqrt{N-1}$ berechnet wurde, wobei N die Anzahl der gemessenen Spektren ist. Der Wert für U_{B3} muss hier im Vergleich zur Messunsicherheitsbetrachtung des Schallleistungspegels L_{WA} größer eingeschätzt werden und liegt typischerweise bei 1,7 dB. Die Gesamtunsicherheiten U_C für die Frequenzbandmittelungspegel der Terzspektren sind in den Tabellen im Anhang 4 dargestellt.

5 Abweichungen zur Richtlinie FGW TR.1

- [1] Die relevanten Betriebsparameter (elektrische Wirkleistung, Rotordrehzahl und Gondelwindgeschwindigkeit) wurden als 1 Minuten-Mittelwerte vom Hersteller gespeichert, und für spätere Analysen zur Verfügung gestellt.
- [2] Für die Bestimmung des immissionsrelevanten Schallleistungspegels in BIN 9, lagen für die Fremdgeräusche nicht genügend Messwerte gemäß [2] vor, sodass der Schallleistungspegel abgeschätzt wurde.
- [3] Für die Beschreibung der Fremdgeräusche in Abhängigkeit zur Windgeschwindigkeit, wurde eine Regression 2. Ordnung verwendet.

6 Zusammenfassung

Im Auftrag der DunoAir Windpark Planung GmbH wurde von der Firma windtest grevenbroich gmbh die Geräuschabstrahlung der WEA E-82 mit einer Nabenhöhe von H = 108,4 m inkl. Fundament nach Technischer Richtlinie für Windenergieanlagen der FGW [1] untersucht.

Grundlage für den Messaufbau ist dabei die IEC 61400-11 [2]. Für die Bestimmung der Tonhaltigkeitszuschläge im Nahfeld der WEA ist die IEC 61400-11 bzw. die DIN 45681 [3] die Grundlage.

Die Messung wurde 2014-02-12 in Weibern-Rieden an der WEA 8 des Typs E-82 mit der Ser.-Nr. 823618, im leistungsoptimierten Betrieb I (2.000 kW) durchgeführt.

Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden. Einzelereignisse, die den Mittelungspegel im Betrieb der WEA um mehr als 10 dB überschreiten, traten nicht auf.

Bezüglich des Schallleistungspegels L_{WA} wurde für diese Messung eine typische Messunsicherheit von $U_{C} = 0.7 - 0.9$ dB ermittelt.

Die Tonhaltigkeitsanalyse nach IEC 61400-11 [2] für das in 151 m Entfernung gemessene Anlagengeräusch ergab nach DIN 45681 [3] einen Tonhaltigkeitszuschlag K_{TN} von bis zu 2 dB für die hier analysierten BINs.

Das Anlagengeräusch ist derzeit als auffällig einzustufen.

Nach Auswertung der gemessenen Werte in den einzelnen BINs ergeben sich für die E-82 die in Tab. 10 aufgeführten Pegel.

BIN 9 BIN 8 BIN 7 Windgeschwindigkeit in 10 m BIN 6 $7,4 \text{ m/s}^{1)}$ Höhe (V_{p10}) 8.5-9.5 m/s 7,5-8,5 m/s 5,5-6,5 m/s 6,5-7,5 m/s106,2 105,3 105,8 102,0 104,6 Schallleistungspegel L_{WA} [dB] Tonzuschlag K_{TN} [dB] $0^{2)}$ 2 2 0 0 $0^{2)}$ Impulshaltigkeit K_{IN} [dB] 0 0 0 0 18,0 Generatordrehzahl N_{Gen} [U/min] 15,4 17,1 17,5 18,0

Tab. 10: Messergebnisse für die WEA E-82, Betrieb I (2.000 kW)

3 1.666 1) 95 % Nennleistung

2) Übernahme des Wertes aus BIN 7, da der 95 % Punkt innerhalb dieser BIN-Grenzen liegt. Es wird versichert, dass das Gutachten gemäß dem Stand der Technik, unparteiisch und nach bestem Wissen und Gewissen erstellt wurde.

1.083

Die in diesem Bericht aufgeführten Ergebnisse beziehen sich nur auf diese Anlage (vgl. Herstellerbescheinigung im Anhang).

Grevenbroich, 2014-03-11

Elektrische Leistung P [kW]

Dipl.-Ing. David Rode Gruppenleiter

1.900

2.059

2.090

7 Literaturverzeichnis

- [1] Technische Richtlinien für Windenergieanlagen, Revision 18, Stand 01.02.2008
 Teil1: Bestimmung der Schallemissionswerte, Herausgeber: Fördergesellschaft
 Windenergie e. V.
 [2] IEC 61400-11:2002 + A1:2006,
 Wind turbine generator systems- Part 11: Acoustic noise measurement techniques
 [3] DIN 45681
 Bestimmung der Tonhaltigkeit von Geräuschen und Ermittlung eines Tonzuschlages
 für die Beurteilung von Geräuschimmissionen
 August 2006
- [4] DIN 45645, Teil 1
 Ermittlung von Beurteilungspegel aus Messungen, Teil1: Geräuschimmissionen in der Nachbarschaft
 Juli 1996.

8 Verzeichnis der verwendeten Formelzeichen und Abkürzungen

ΔL	_	Pegeldifferenz	dB
ΔL_k	-	energetisches Mittel	dB
∆L _{a,k}	_	Tonalität	dB
BG.	_	Betriebsgeräusch	-
D	_	Rotordurchmesser	m
f _T	_	Tonfrequenz	Hz
H	_	Höhe Rotormittelpunkt (Nabenhöhe)	m
h _A	-	Aufpunkthöhe (bei Messungen gleich der Mikrofonhöhe)	m
HG	-	Hintergrundgeräusch	-
h _{N, neu}	_	Nabenhöhe für gleiche WEA, aber andere Nabenhöhe als die vermessene	m
h _{N, vermessen}	_	Nabenhöhe der vermessenen WEA	m
κ	_	Korrekturfaktor	-
K _{IN}	_	Impulshaltigkeit	dB
K _{TN}	_	Tonzuschlag im Nahfeld nach DIN 45681	dB
La		Audibilitätsmaß	-
L _{Aeq}	_	äquivalenter Dauerschallpegel, A-bewertet	dB
L _{Aeq,c}	_	hintergrundkorrigierter Schalldruckpegel	dB
L _{Aeq,mess}	_	gemessene Schalldruckpegel	dB
L _{Aeq,regr}	-	aus Regression berechnete Schalldruckpegel	dB
L _T	_	Tonpegel	dB
L _{WA}	_	A-bewerteter Schallleistungspegel	dB
N	-	Anzahl Werte	-
N_A	-	Nabenabstand Rotormittelpunkt - Turmmitte	m
N_{Gen}	_	Generatordrehzahl	min ⁻¹
N_{Rot}	-	Rotordrehzahl	min ⁻¹
Р	-	abgegebene elektrische Wirkleistung	kW
R_0	-	Messradius (= projizierter Abstand zwischen Schallquelle und Messpunkt)	m
R_i	-	Abstand zwischen Schallquelle und Messpunkt (Hüllflächenradius)	m
U_a , U_b , U_c	-	Messunsicherheiten	dB
V_{H}	-	Windgeschwindigkeit aus Leistungskurve in Nabenhöhe	m/s
V _{mess,10}	-	gemessene Windgeschwindigkeit in 10 m Höhe	m/s
V _{mess,10,korr}	_	korrigierte gemessene Windgeschwindigkeit in 10 m Höhe	m/s
V _{p10}	-	standardisierte Windgeschwindigkeit in 10 m Höhe	m/s
$v_{10,i}$	-	Windgeschwindigkeit der vermessenen WEA in 10 m Höhe	m/s
V _{10,ref}	-	ganzzahlige Windgeschwindigkeit der WEA mit neuer Nabenhöhe	m/s
WEA	-	Windenergieanlage	-
Zη	-	Rauhigkeitslänge	m

9 Bearbeitungsverlauf

Fassung	Datum	Inhalt
SE12028B2	2014-03-11	Schalltechnisches Gutachten gemäß FGW TR.1 zur Wind- energieanlage ENERCON E-82 SerNr.: 823618, im Windpark Weibern-Rieden
		- Betrieb I (2.000 kW) -

Umlauf	Kopie Nr.
Auftraggeber	1
Projektordner	2
QM-Ablage	3

Kopie Nr.:

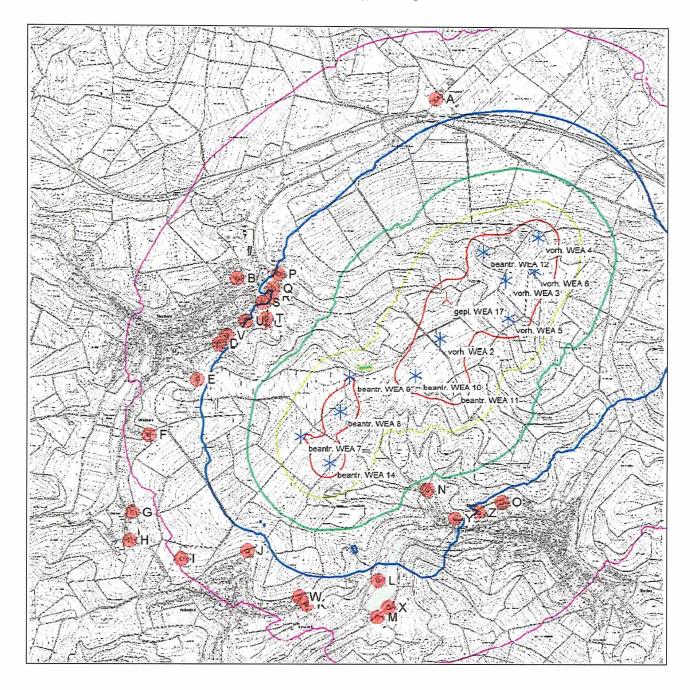
10 Anhang

Anhang 2 Herstellerbescheinigung

Anhang 3 Verwendete Leistungskurve

Anhang 4 Oktav- und Terzspektrum

Anhang 5 Schmalbandspektren



Lageplan der E-82 (WEA 8)

Quelle: Schallimmissionsprognose PK2008003-SLG-NT2 bis NT4 von 2010-07-26 (Datum letzter Nachtrag), Fa. Ingenieurbüro PLANkon

Herstellerbescheinigung, Kurzfassung für akustische Nachmessungen Manufacturer's certificate, Short version for control measurements of acoustic noise

1. Aligemeine Informationen – General Informations	
Anlagenhersteller - turbine manufacturer :	ENERCON
Spezifische Anlagenbezeichnung - specific turbine type name :	E-82
Seriennummer der vermessenen WEA - serial number of tested WT:	823618
Standort der vermessenen WEA - location of tested WT:	56745 Weibern - Rieden
Koordinaten des Standortes (WGS 84 / UTM zone 32N) – coordinates of turbine loc	ation (WGS 84 / UTM zone 32N): R: 3692/1 / H: 5584994
Rotorachse - rotor axis:	horizontal – horizontal ⊠ vertikal – vertical □ 2.0 MW
Nennleistung - rated power:	
Leistungsregelung – power control:	pitch ☑ stall ☐ 108,38 m
Nabenhöhe über Grund – hub height above ground :	
Nabenhöhe über Fundamentflansch - hub height above top of foundation flange:	13 m/s
Nennwindgeschwindigkeit – rated wind speed :	2.5 m/s / 28 – 34 m/s
Ein- / Abschaltwindgeschwindigkeit - cut-in / cut out wind speed :	2,5 1105 7 25 - 54 1105
2. Rotor - Rotor	
Durchmesser - rotor diameter :	82 m
Anzahl der Blätter – number of blades :	3
Nabenart - kind of hub :	pendelnd – teetered □ starr – rigid ☑
Anordnung zum Turm – position relative to tower:	luv – upwind ☑ lee – downwind □
Drehzahlbereich / Drehzahlstufen - rot. speed range / stages of rot. speed:	6 – 18 Upm (Betrieb I) – 6 – 18 rpm (mode I) variabel – variable
Rotorblatteinstellwinkel - rotor blade pitch setting :	O°
Konuswinkel – cone angle :	5°
Achsneigung – tilt angle :	
Horizontaler Abstand Rotormittelpunkt - Turmmittellinie – horiz. distance between	centre of rotor and tower centre line . 4,32 m
3. Rotorblatt - Rotor blade	ENEDGON
Hersteller - manufacturer:	ENERCON E82-1CFK
Typenbezeichnung – type:	
Seriennummern der Rotorblätter – serial numbers of rotor blades :	1: AE3371 2: AE3393 3: AE3400
Zusatzkomponenten (z.B. stall strips, Vortex-Gen., Turbulatoren) - additional com	iponents (e.g. stall strips, voitex gen., trip strips). Keine – none
4. Getriebe – Gearbox	
Hersteller – manufacturer:	entfällt – non existent
Typenbezeichnung – type:	entfällt – non existent
Seriennummer des Getriebes - serial number of gear box :	entfällt – non existent
Ausführung – design:	entfällt – non existent
Übersetzungsverhältnis – gear ratio :	entfällt – non existent
5. Generator - Generator	Lauren
Hersteller – manufacturer:	ENERCON E-82
Typenbezeichnung – type:	
Seriennummer des Generators – serial number of generator :	Rotor: CF323-12-2089 Stator: CM429-2-0862
Anzahl - number of generators :	
Art - design:	synchron, Ringgenerator 2,000 kW
Nennleistung(en) - rated power value(s):	
Drehzahlbereich / Drehzahlstufen – rot. speed range / stages of rot. speed:	6 – 18 Upm (Betrieb I) – 6 – 18 rpm (mode I)
6. Turm - Tower	
Ausführung – design: Gitter – lattice □ Rohr – tubular ⊠	zylindrisch – cylindrical □ konisch – conical ☑
Material - material:	Beton & Stahl - concrete & steel
Durchmesser - Turmfuß - foot of the tower diameter:	8,83 m
7. Betriebsführung / Regelung - Control system	
Art der Leistungsregelung – kind of power control :	Pitch
Antrieb der Leistungsregelung – actuation of power control :	elektrisch – electrical
Hersteller der Betriebsführung / Regelung - manufacturer of control system :	ENERCON
Typenbezeichnung der Betriebsführung / Regelung - control system type :	E-82
Bezeichnung der verwendeten Steuerungskurve - designation of used control set	tup: ENERCON E-82 Betrieb I
Bezeichnung / Messbericht der verwendeten Leistungskurve - designation of pow	wer curve report: Leistungskurve E-82 berechnet Rev 2.2

26605 Aurich Datum, Stempel und Unterschrift des Herstellers Date, manufacturer's stamp and signature

Dreekamp 5

Verwendete Leistungskennlinie E-82

Auszug aus dem Prüfbericht

Seite 1/2

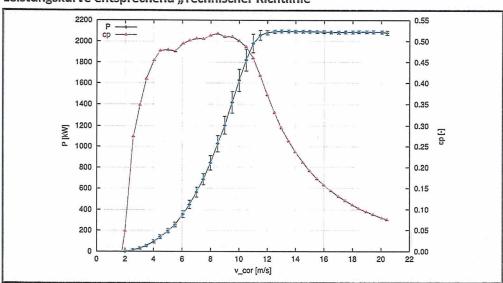
Stammblatt "Leistung", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 2:

Bestimmung von Leistungskurve und standardisierten Jahresenergieerträgen

Rev. 14 vom 01. März 2004 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, D-24103 Kiel

Auszug aus dem Prüfbericht DEWI-PV 0511-016.3 zur Leistungskurve der Windenergieanlage vom Typ ENERCON E-82 mit einer Nennleistung von 2000 kW Datenbasis B (WEA Status: Verfügbarkeit, ohne Abschalthysterese)

Anlagentyp:	ENERCON E-82	Herstellerangaben		
Anlagenhersteller:	ENERCON GmbH	Nennleistung: 2000 kW		
	Dreekamp 9	Nennwindgeschwindigkeit:	13 m/s	
	D-26605 Aurich	Rotordrehzahlbereich:	6 - 19.5 rpm (Betrieb 0)	
Anlagen-Standort (ca.):	x: 2592260 y: 5914843	Rotordurchmesser:	82 m	
	(Gauß Krüger, Bessel)	Nabenhöhe:	98 m	
Seriennummer:	82001	Blatteinstellwinkel: pitch	Blatt-Typ: ENERCON 82-1	


Messumfang und Angaben zu den Sensoren

Messzeitraum (MEZ):	26.10.2006 (17:00) – 30.03.2007 (10:30)			
		Messgenauigkeit		
Ausgewerteter Windrichtungssektor:	189° - 251° und 343° - 18°	bzgl. Leistungsmessung: 18.25 kW		
Windmessung / Nabenhöhe:	97.5 m	bzgl. Anemometerkalibration: Thies 1 st Class 4.3350.10.000	0.1 m/s	
Referenz-Luftdichte:	1.225 kg/m³	bzgl. Luftdichtebestimmung:	0.4 %	

Abweichungen gegenüber der Richtlinie

Keine Abweichungen von der Richtlinie.

Leistungskurve entsprechend "Technischer Richtlinie"

Gemessene Leistungskurve bei Referenzluftdichte 1.225 kg/m³; dargestellt sind nur vollständige Bins (mindestens drei Werte).

Auszug aus dem Prüfbericht "Leistung" Seite 2/2

Gemessene Leistungskurve der ENERCON E-82			Unsicherheit	Unsicherheit	Kombinierte		
Bezugs-Luftdichte 1.225 kg/m³			Kategorie A	Kategorie B	Unsicherheit		
Bin- Nr.	Windgeschwindigkeit in Nabenhöhe V _i	Wirkleistung P _i	c _{p,i} -Wert	Anzahl der Datensätze Ni	Standard- unsicherheit S _i	Standard- unsicherheit u _i	Standard- unsicherheit u _{c,i}
	[m/s]	[kW]	[-]	[-]	[kW]	[kW]	[kW]
3 4 5 6 7 8 9	1.48 2.00 2.57 3.04 3.48 4.03 4.47 5.00	-0.69 1.28 15.14 31.70 55.83 96.00 138.47 194.46	-0.07 0.05 0.27 0.35 0.41 0.46 0.48	6 8 17 25 25 29 48 38	0.1 0.9 1.1 1.4 2.1 3.4 2.6 4.7	10.6 10.6 11.0 11.5 12.9 14.9 17.7 19.8	10.6 10.6 11.0 11.6 13.1 15.3 17.9 20.3
11 12 13 14 15	5.00 5.50 6.05 6.51 7.01 7.49	255.42 355.07 448.18 564.52 687.56	0.48 0.50 0.50 0.51 0.51	33 36 73 88 156	5.6 7.7 6.1 5.0 4.8	23.2 33.3 38.8 46.4 53.3	23.9 34.2 39.3 46.7 53.5
16	7.98	844.06	0.51	152	5.6	68.4	68.7
17	8.50	1027.11	0.52	188	5.2	79.5	79.7
18	9.00	1204.86	0.51	199	6.2	83.2	83.4
19	9.51	1418.47	0.51	256	5.8	102.6	102.7
20	10.01	1627.90	0.50	348	4.6	105.4	105.5
21	10.50	1821.44	0.49	335	4.7	105.5	105.6
22	10.99	1979.36	0.46	331	3.7	87.9	88.0
23	11.50	2057.04	0.42	263	2.4	45.4	45.4
24	12.00	2081.39	0.37	326	1.1	20.0	20.0
25	12.51	2089.98	0.33	244	0.8	14.7	14.7
26	12.99	2093.23	0.30	241	0.5	13.9	13.9
27	13.51	2093.56	0.26	239	0.5	13.8	13.8
28	13.98	2091.68	0.24	197	0.5	13.8	13.8
29	14.51	2092.23	0.21	182	0.4	13.8	13.8
30	14.98	2090.97	0.19	127	0.6	13.8	13.8
31	15.50	2089.95	0.17	122	0.6	13.8	13.8
32	15.98	2088.23	0.16	119	0.8	13.8	13.9
33	16.48	2085.72	0.14	110	0.9	13.9	13.9
34	17.01	2083.06	0.13	79	2.0	13.9	14.0
35	17.49	2085.46	0.12	81	2.3	13.9	14.1
36	18.00	2085.60	0.11	53	4.0	13.7	14.3
37	18.43	2088.97	0.10	37	1.7	14.2	14.3
38	18.97	2088.28	0.10	20	1.7	13.8	13.9
39	19.44	2087.64	0.09	3	4.8	13.8	14.6
40 41	20.04 20.42	2085.77 2079.04	0.08	3 4	1.4 9.3	13.8 16.1	13.9 18.6

Berechnete Jahresenergieerträge

Referenzluftdichte: 1.225 kg/m³, Abschaltwindgeschwindigkeit: 25 m/s

Jahresmittel der Windgeschwindigkeit (Rayleigh-Verteilung)	Gemessener AEP (gemessene Leistungskurve)	Unsicherheit der gemessenen Leistungskurve, dargestellt als Standardabweichung des AEP		Extrapolierter AEP (extrapolierte Leistungs- kurve, 100 % Verfügbarkeit	
[m/s]	[MWh]	[MWh]	[%]	[MWh]	
4	1673.1	182.6	10.9	1673.1	
5	3158.1	258.5	8.2	3158.1	
6	4890.5	317.2	6.5	4892.1	
7	6605.6	349.0	5.3	6624.0	
8	8111.7	358.4	4.4	8198.5	
9	9296.8	353.0	3.8	9540.7	
10	10121.6	339.0	3.3	10617.1	
11 *	10603.9	320.4	3.0	11417.4	
*) Unvollständig gemäß I		ener AEP ist kleiner als 959	% des extrapolierten AEP)	

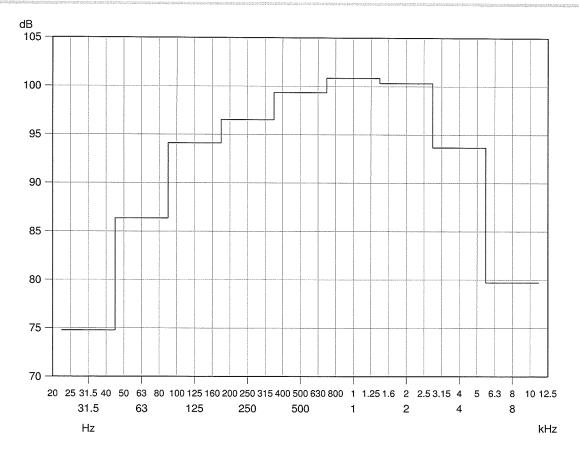
Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 21.04.2006.

Ausgestellt durch:

DEWI GmbH Ebertstraße 96

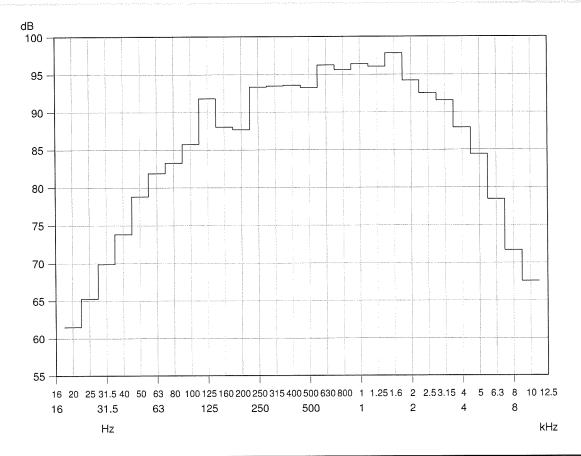
D-26382 Wilhelmshaven

Datum:

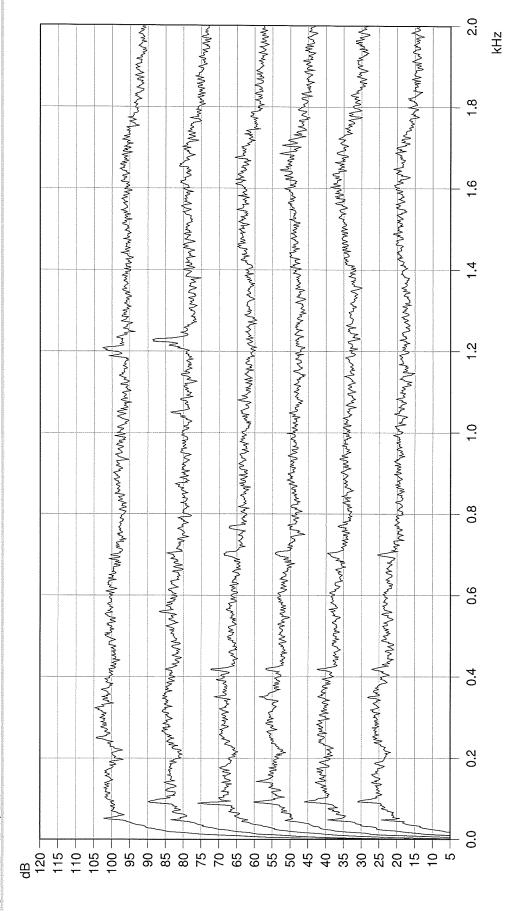

11.04.2007

(i.V. Dipl.-Phys. H. Mellinghoff) DEWI

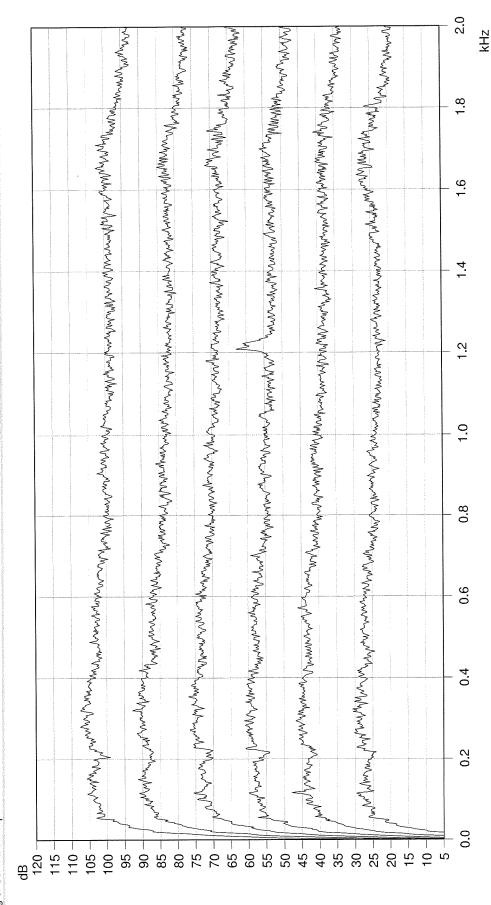
DEWI


(i.A. Dipl.-Ing. U. Bunse)

Dieser Auszug aus dem Prüfbericht enthält 2 Seiten.

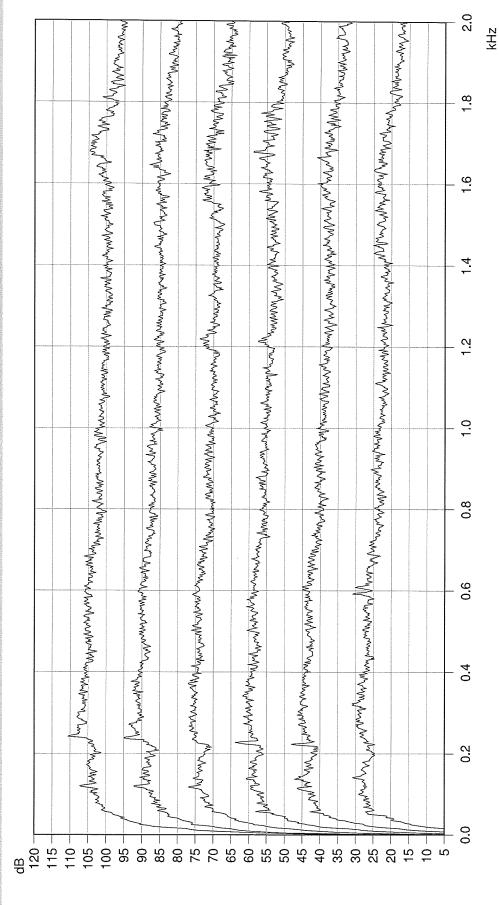


Oktavpegel für 9 m/s, Summenpegel = 106,2 dB				
Oktavmittenfrequenz [Hz] Schallleistungspegel [dB] Oktavmittenfrequenz [Hz] Schallleistu				
31,5	74,78	1000	100,87	
63	86,35	2000	100,34	
125	94,12	4000	93,70	
250	96,56	8000	79,70	
500	99,37			

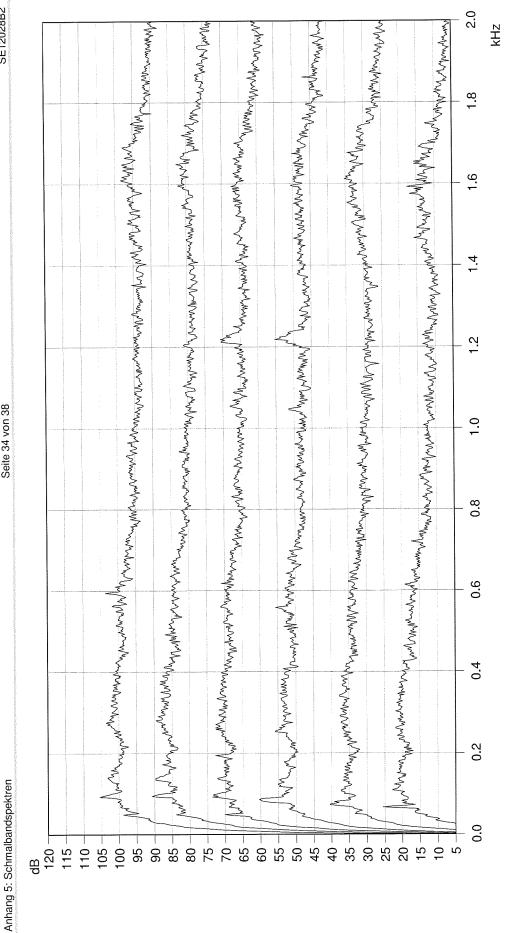


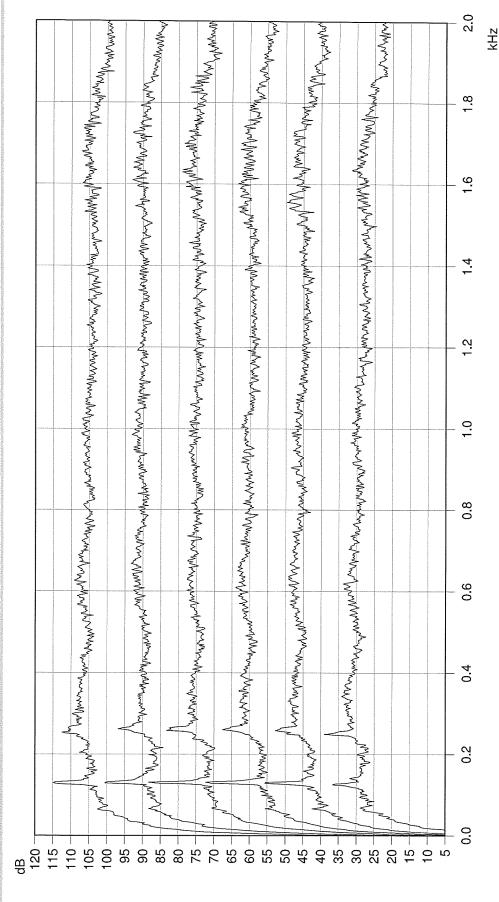
Terzpegel für 9 m/s, Summenpegel = 106,2 dB							
Terzmittenfrequenz [Hz]	Schallleistungspe- gel [dB]	Unsicherheit Uc [dB]	Terzmittenfrequenz [Hz]	Schallleistungspe- gel [dB]	Unsicherheit Uc [dB]		
20	61,51	2,51	500	93,28	1,96		
25	65,28	2,42	630	96,26	1,90		
31,5	69,88	2,58	800	95,62	1,88		
40	73,82	2,51	1000	96,40	1,89		
50	78,83	2,14	1250	96,07	1,95		
63	81,92	2,11	1600	97,83	1,96		
80	83,28	2,35	2000	94,24	1,99		
100	85,75	2,24	2500	92,55	1,92		
125	91,85	2,23	3150	91,57	1,90		
160	88,04	2,05	4000	87,95	1,92		
200	87,69	2,08	5000	84,42	1,98		
250	93,36	2,00	6300	78,45	1,95		
315	93,51	2,09	8000	71,68	2,00		
400	93,61	2,10	10000	67,55	1,98		

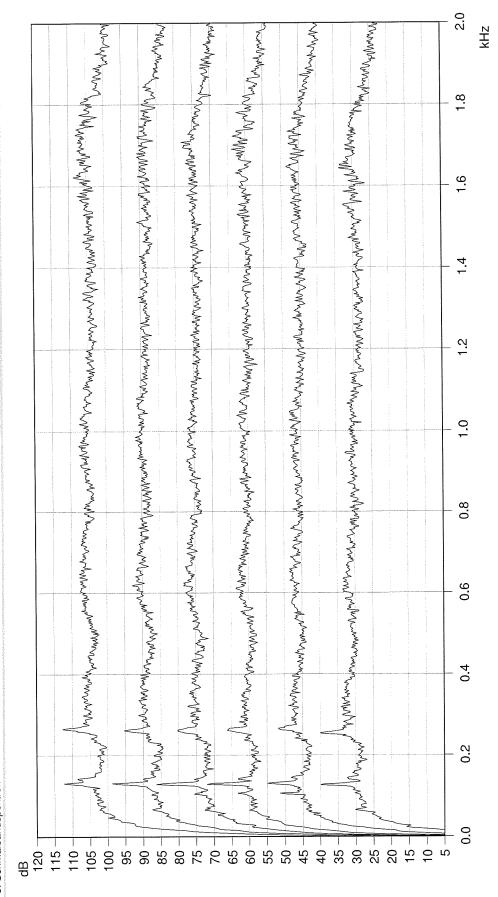
Spektren 1 – 6 aus BIN 6 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 1 ganz oben)

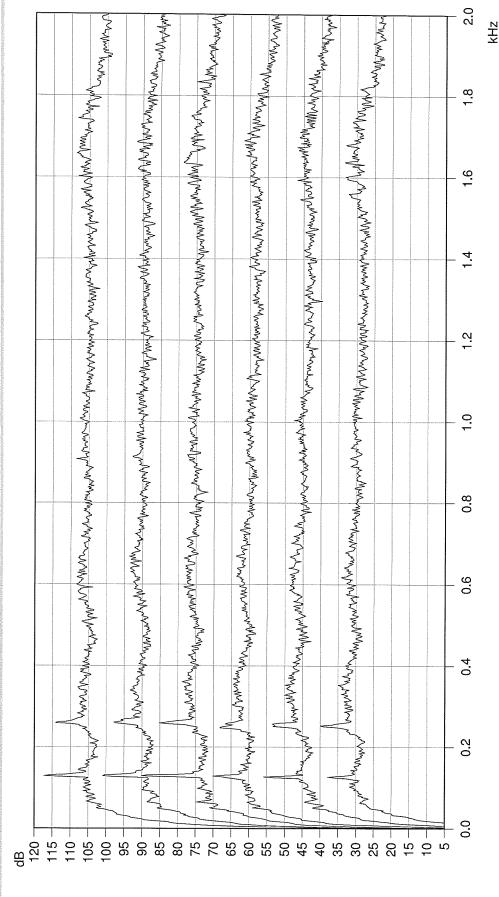


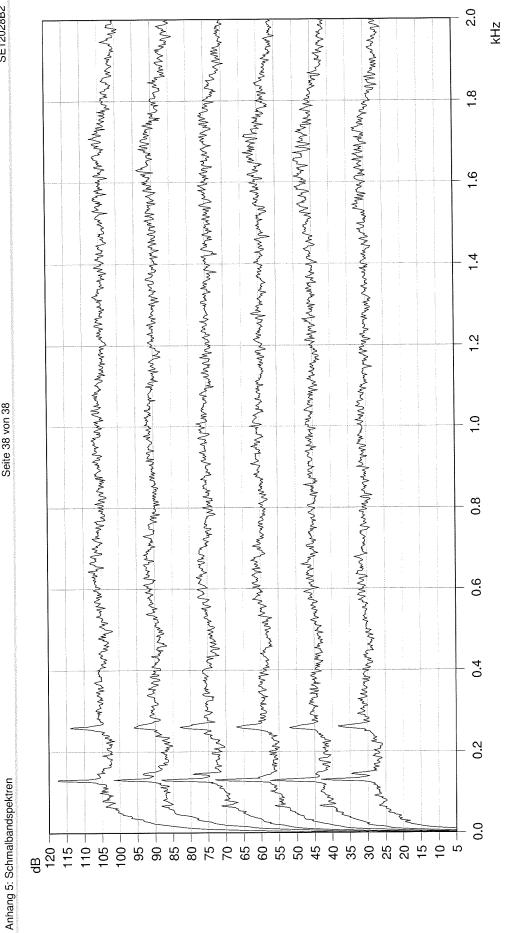
Spektren 7 – 12 aus BIN 6 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 7 ganz oben)




Anhang 5: Schmalbandspektren


Spektren 1 – 6 aus BIN 7 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 1 ganz oben)


Spektren 7 – 12 aus BIN 7 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 7 ganz oben)


Spektren 1 – 6 aus BIN 8 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 1 ganz oben)

Spektren 7 – 12 aus BIN 8 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 7 ganz oben)

Spektren 1 – 6 aus BIN 9 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 1 ganz oben)

Spektren 7 – 12 aus BIN 9 (obere Spektren jeweils 15 dB nach oben verschoben, Spektrum 7 ganz oben)