GERÄUSCHIMMISSIONSGUTACHTEN

für den Betrieb von

6 WINDENERGIEANLAGEN

DER TYPEN ENERCON E-82 MIT 108,4 M NABENHÖHE

UND ENERCON E-70/E4 MIT 113,5 M NABENHÖHE

am Standort

56745 WEIBERN

AUFTRAGGEBER:

Windpark Weibern-Rieden GmbH & Co. KG

Wertherbruchstr. 13

D - 46459 Rees

AUFTRAGNEHMER:

Ingenieurbüro PLANkon

Dipl.-Ing. Roman Wagner vom Berg

Achternstraße 16

D - 26122 Oldenburg

Tel.: (0441) 39034-0

BERICHTSNUMMER:

PK 2009102-SLG

DATUM:

08.03.2010

Inhaltsverzeichnis

1	Einleitung und Aufgabenstellung	3
2	Kartengrundlagen	4
3	Standortbeschreibung	4
4	Daten der emittierenden Windenergieanlagen	5
5	Randbedingungen und Berechnungsverfahren	9
6	Immissionsrichtwerte und Immissionspunkte	12
7	Ermittlung der Geräuschimmissionen	14
8	Beurteilung	28
9	Quellenverzeichnis	30
10	Anlagen zum Geräuschimmissionsgutachten 6 WEA in Weibern	31

1 Einleitung und Aufgabenstellung

Für den Standort Weibern ist die Aufstellung von 6 Windenergieanlagen (WEA) der Typen Enercon E-82 (gepl. WEA 7 – 9 und 11) und Enercon E-70/E4 (gepl. WEA 10 und 12) geplant. Die geplante Nabenhöhe der E-82-WEA beträgt 108,4 m, der Rotordurchmesser misst 82,0 m und die Nennleistung der Anlagen beträgt je Anlage 2.000 kW. Die geplante Nabenhöhe der E-70/E4-WEA beträgt 113,5 m, der Rotordurchmesser misst 71,0 m und die Nennleistung der Anlagen beträgt je Anlage 2.300 kW. Südlich und nordöstlich der geplanten Anlagen werden bereits 6 WEA betrieben.

Der Auftraggeber, die Fa. Dunoair Windparkplanung GmbH, beauftragte das Ingenieurbüro PLANkon mit der Erstellung einer Geräuschimmissionsprognose für die geplanten Windkraftanlagen. Die hier vorgenommene Begutachtung erfolgt im Rahmen des BImSch-Genehmigungsverfahrens.

Eine Voraussetzung für den Betrieb von Windenergieanlagen ist die genehmigungsfähige Höhe der durch den Anlagenbetrieb verursachten Schallimmissionen an den für die Untersuchung relevanten Immissionspunkten. Die zu beurteilenden Immissionspunkte leiten sich aus den örtlichen Gegebenheiten unter Berücksichtigung ihrer Lage und Nutzung ab. Die Einstufung der Immissionspunkte erfolgte nach zeichnerischen Angaben in Bebauungsplänen durch Fr. Hatzmann der Verbandsgemeinde Mendig und Fr. Kardinal der Verbandsgemeinde Brohltal für die Ortschaften Rieden, Volkesfeld, Weibern und Wabern sowie durch Angaben in B- und F-Plänen für die genannten Orte.

Im Rahmen dieses Gutachtens erfolgt eine Prognoseberechnung der entstehenden Geräuschimmissionen, die durch den Betrieb der Windenergieanlagen (WEA) hervorgerufenen werden, für jeden relevanten Immissionspunkt. Die aus den Geräuschimmissionen entstehenden Umwelteinwirkungen werden hinsichtlich einer dem geltenden BimSchG /4/ entsprechenden Genehmigungsfähigkeit untersucht.

Die Windenergieanlagen sollen zu jeder Tages- und Nachtzeit betrieben werden können.

Hinweise:

- Um die nächtlichen Lärmemissionen insbesondere durch den Betrieb des Werkzeugherstellers Wolfcraft im Ort Weibern zu erfassen, wurde durch das schalltechnische Ingenieurbüro Paul Pies eine Geräuschmessung an der nächstgelegenen Wohnbebauung durchgeführt. Die an den 4 ausgewählten Messpunkten erfassten Immissionspegel fließen in die Berechnungen der Vor- und Gesamtbelastung mit ein. Details zum erstellten Messbericht des Ingenieurbüros Pies sind dem Anhang zu entnehmen.
- Um die Höhe der nächtlichen Vorbelastung zu reduzieren, wird vertraglich zwischen der Fa. Dunoair, einem weiteren Antragsteller, der Fa. Gamesa Energie Deutschland (GED), und dem Betreiber der sich im Südwesten des Windparks befindenden Seewind-WEA vereinbart, dass diese in einem nächtlichen Zeitraum von 22.00 Uhr bis 06.00 Uhr ausgeschaltet wird. Die Seewind-WEA ist somit nicht mehr Bestandteil der nächtlichen Vor- und Gesamtbelastungsberechnungen. Der Antragsteller erbringt das entsprechende Schriftstück für die Genehmigungsbehörden.
- In letzter Zeit erfolgte Umplanungen bzgl. der von Dunoair geplanten WEA der Zusatzbelastung fließen in die Berechnungen mit ein: Die geplante WEA Nr. 13 entfällt, die beiden

- als Enercon E-82 geplanten WEA 10 und 12 werden den aktuellen Planungen entsprechend bereits als Enercon E-70/E4-WEA berücksichtigt.
- Trotz der Umplanung eines WEA-Typs, was normalerweise eine Änderung in der Rangfolge der beantragten/geplanten WEA bedeuten würde, wird die bisherige Rangfolge beibehalten, da dies für keinen Antragsteller einen Nachteil beinhaltet und sich beide Antragsteller damit einverstanden erklären.

Es wird zwischen zwei Berechnungszuständen unterschieden. Im <u>Zustand 1</u> werden als Zusatzbelastung allein die geplanten WEA 7, 9 und 12 auf dem Gebiet des Landkreises Ahrweiler betrachtet. Die Vorbelastung besteht aus den bereits vorhandenen WEA Vestas V47 ohne die Seewind-WEA.

Im <u>Zustand 2</u> stellen die geplanten WEA 8, 10 und 11, die sich auf dem Gebiet des Landkreises Mayen-Koblenz befinden, die Zusatzbelastung dar. Als Vorbelastung werden wiederum die vorhandenen Anlagen V47, jedoch ebenfalls die geplanten WEA 7, 9 und 12 aus dem Zustand 1 berücksichtigt.

2 Kartengrundlagen

1. Topographische Karten im Maßstab 1:5.000

2. Topographische Karten im Maßstab 1:50.000

3 Standortbeschreibung

Die Ortschaft Weibern gehört zum Landkreis Ahrweiler und liegt im Bundesland Rheinland-Pfalz. Der Auftraggeber plant hier 6 Windkraftanlagen des Typs Enercon E-82 und Enercon E-70/E4.

Südlich und nordöstlich der geplanten Anlagen werden bereits 6 WEA betrieben. Die vorhandenen WEA sind der folgenden Tabelle zu entnehmen:

Anzahl	Тур	Nabenhöhe [m]	Rotor- durchmesser [m]	Nennleistung [kW]	Status
1	Seewind 110/20	28,2	21,0	110	vorhanden
5	Vestas V47	65,0	47,0	660	vorhanden

Das Gebiet um den Standort stellt sich als landwirtschaftlich genutzter Einwirkungsbereich dar. Der geplante Windpark befindet sich zwischen den Ortschaften Weibern im Westen, Wabern im Südwesten sowie Volkesfeld und Rieden im Südosten. Die Anlagen besitzen zu den Orten eine Entfernung von mind. 665 m.

Als Immissionspunkte werden die als Wohnhäuser im Außenbereich und an den Ortsrändern gekennzeichneten Gebäude sowie z.T. auch bislang unbebaute Baugrundstücke, wenn diese den geplanten WEA am nächsten sind, berücksichtigt. Die Koordinaten der geplanten Immissionspunkte wurden mit Hilfe der verwendeten Berechnungssoftware aus dem vom Auftraggeber zur Verfügung gestellten Kartenmaterial ermittelt. Die Koordinaten der vorhandenen WEA wurden Angaben des Auftraggebers in Abstimmung mit den zuständigen Kreisverwaltungen der beiden Landkreise entnommen.

4 Daten der emittierenden Windenergieanlagen

1) geplante WEA 7, 8, 9 und 11: Enercon E-82 – Vollastbetrieb tags, gepl. WEA 8 und 11 auch Volllastbetrieb nachts

Gemäß Prüfbericht von Kötter Nr. 207542-02.02 vom 18.09.2008 ergibt sich bei dreifacher Vermessung der beantragten Windenergieanlagen ein energetischer Mittelwert der Schalleistungspegel von 103,8 dB(A) bei einer Beurteilungssituation v(10) = 7,7 m/s, der dem Messergebnis bei 95 % der Nennleistung entspricht (s. Auszug Messbericht). Dieser Wert zzgl. einer Beaufschlagung von 2,1 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

2) geplante WEA 7 und 9: Enercon E-82 – nächtliche Reduzierung auf eine Nennleistung von 1 MW

Gemäß Prüfbericht von Müller-BBM Nr. M68 330/1 vom 27.04.2007 ergibt sich bei einfacher Vermessung der beantragten Windenergieanlagen ein energetischer Wert der Schalleistungspegel von 98,7 dB(A) bei einer Beurteilungssituation v(10) = 6,8 m/s, der dem Messergebnis bei 95 % der Nennleistung entspricht (s. Auszug Messbericht). Dieser Wert zzgl. einer Beaufschlagung von 2,6 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

3) geplante WEA 10 und 12: Enercon E-70/E4 – tags und nachts im Volllastbetrieb

Gemäß Auszügen aus den Prüfberichten von Windconsult (WICO 141SE707/02, WICO 314SEA05/01) vom 24.01.2008 und 21.11.2005 sowie Auszug aus dem Prüfbericht von Busch Nr. 135208gs01 vom 22.06.2009 ergibt sich bei dreifacher Vermessung der beantragten Windenergieanlagen im Volllastbetrieb von 2.300 kW ein energetischer Mittelwert der Schalleistungspegel von 104,2 dB(A) bei Beurteilungssituationen v(10) von 10 m/s, 9,6 m/s und 11 m/s. Dieser Wert zzgl. einer Beaufschlagung von 2,03 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

4) vorhandene WEA 2 bis 6: Vestas V47

Gemäß erstem Nachtrag zum Prüfbericht von WINDTEST Nr. WT 802/98 vom 11.02.2005 ergibt sich bei einfacher Vermessung der vorhandenen Windenergieanlagen ein Schalleistungspegel von 101,9 dB(A) bei einer Beurteilungssituation v(10) = 10 m/s, der dem Messergebnis bei 95 % der Nennleistung entspricht (s. Auszug Messbericht). Dieser Wert zzgl. einer Beaufschlagung von 3,4 dB(A) für Unsicherheiten der Schallemissions-Vermessung und der Serienstreuung der WEA sowie für Unsicherheiten des Prognosemodells der Ausbreitungsrechnung wird als Emissionspegel bei den Berechnungen angesetzt. Mögliche Tonhaltigkeiten sind über diesen Wert hinaus nicht zu berücksichtigen.

Für eine Betrachtung relevanter Infraschall wird von heutigen Windkraftanlagen nachweislich nicht emittiert, an dieser Stelle sei auf die entsprechende Fachliteratur verwiesen.

Die wichtigsten, für die nächtliche Prognoseberechnung erforderlichen Daten der untersuchten Windenergieanlagen folgen im Überblick:

Parameter	geplante WEA 8 und 11	geplante WEA 7 und 9	beantragte WEA 10 und 12
WEA - Typ	Enercon E-82	Enercon E-82	Enercon E-70/E4
Nennleistung	2.000 kW	nachts red. auf 1.000 kW	2.300 kW
Rotordurchmesser	82,0 m	82,0 m	71,0 m
Nabenhöhe	108,4 m	108,4 m	113,5 m
Vermessung Schall	Müller-BBM, Köt- ter	Müller-BBM	Windconsult, Busch
max. Schallpegel	103,8 dB(A)	98,7 dB(A)	104,2 dB(A)
Tonhaltigkeit K _T	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)
Impulshaltigkeit K _I	0,0 dB(A)	0,0 dB(A)	0,0 dB(A)
Zuschlag für Un- sicherheiten	2,1 dB(A)	2,6 dB(A)	2,03 dB(A)
Summe	105,9 dB(A)	101,3 dB(A)	106,2 dB(A)

Parameter	vorh. WEA 2 - 6
WEA - Typ	Vestas V47
Nennleistung	660 kW
Rotordurchmesser	47,0 m
Nabenhöhe	65,0 m
Vermessung Schall	Windtest
max. Schallpegel	101,9 dB(A)
Tonhaltigkeit K _T	0,0 dB(A)
Impulshaltigkeit K _I	0,0 dB(A)
Zuschlag für Un- sicherheiten	3,4 dB(A)
Summe	105,3 dB(A)

Es wurde aufgrund von Forderungen der zuständigen Genehmigungsbehörde, Hr. Schäfer von der Immissionsschutzabteilung der SGD Nord Rheinland-Pfalz mit Sitz in Koblenz, eine zusätzliche Sicherheitsbetrachtung der verwendeten Emissionspegel unter Berücksichtigung der Ungenauigkeiten des Berechnungsmodells gefordert. Es werden Unsicherheiten für Messwerte, die Serienstreuung und die Ausbreitungsberechnung angesetzt. Zur Berechnung der Gesamtunsicherheit werden die Einzelunsicherheiten quadriert und aufsummiert. Aus der Summe wird die Wurzel gezogen. Das Ergebnis wird zur Würdigung einer 10 %-igen Irrtumswahrscheinlichkeit mit dem Faktor 1,28 multipliziert.

Für die o.g. Punkte ergeben sich Unsicherheiten für die geplanten WEA 8 und 11 / Enercon E-82 im Volllastbetrieb bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte durch die Auswertung der Dreifachvermessung 0,4 dB(A). Es ergibt sich der Wert 2,1 dB(A).

$$U_{\text{ges}} = 1,28*(U1^2 + U2^2 + U3^2)^{0,5} = 1,28*(0,5^2 + 1,5^2 + 0,4^2)^{0,5} = \textbf{2,1 dB(A)}$$

Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je WEA ein Rechenpegel von 103.8 + 2.1 = 105.9 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Für die geplanten WEA 7 und 9 vom Typ Enercon E-82 mit nächtlicher reduzierten Nennleistung auf 1 MW ergeben sich Unsicherheiten bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte infolge der vorhandenen Einfachvermessung 1,22 dB(A). Es ergibt sich der Wert 2,6 dB(A).

$$U_{ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(0,5^2+1,22^2+1,5^2)^{0.5} = 2,6 \text{ dB(A)}$$

Der Sicherheitsabstand zu den Richtwerten kann reduziert werden, wenn die angenommenen Unsicherheiten durch messtechnische Nachweise ausgeräumt werden können. Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je vorhandener WEA ein Rechenpegel von $98.7 + 2.6 = 101.3 \, dB(A)$ je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Für die geplanten WEA 10 und 12 / Enercon E-70/E4 im Volllastbetrieb ergeben sich Unsicherheiten bei der schalltechnischen Vermessung von 0,5 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte durch die Auswertung der Dreifachvermessung 0,16 dB(A). Es ergibt sich der Wert 2,0 dB(A).

$$U_{ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(0,5^2+1,5^2+0,16^2)^{0.5} = \textbf{2,0 dB(A)}$$

Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je WEA ein Rechenpegel von 104,2+2,0=106,2 dB(A) je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

Für die <u>vorhandenen WEA vom Typ Vestas V47</u> ergeben sich Unsicherheiten bei der schalltechnischen Vermessung von 1,8 dB(A), in der Prognoseberechnung von 1,5 dB(A) und für die Standardabweichung der Messwerte infolge der vorhandenen Einfachvermessung 1,22 dB(A). Es ergibt sich der Wert 3,4 dB(A).

$$U_{ges} = 1,28*(U1^2+U2^2+U3^2)^{0.5} = 1,28*(1,8^2+1,22^2+1,5^2)^{0.5} = 3,4 \text{ dB(A)}$$

Der Sicherheitsabstand zu den Richtwerten kann reduziert werden, wenn die angenommenen Unsicherheiten durch messtechnische Nachweise ausgeräumt werden können. Aus Vereinfachungsgründen, die im vorliegenden Fall anwendbar sind, wurde dieser Sicherheitswert den vermessenen Pegeln beaufschlagt und mit diesen erhöhten Pegeln je Emissionsquelle die Ausbreitungsberechnung durchgeführt. Dadurch ergibt sich je vorhandener WEA ein Rechenpegel von $101.9 + 3.4 = 105.3 \, dB(A)$ je WEA infolge der Berücksichtigung der o.g. Unsicherheiten.

5 Randbedingungen und Berechnungsverfahren

Windenergieanlagen erzeugen abhängig von der Windgeschwindigkeit zwei Arten von Geräuschen. Zum Einen entstehen Maschinengeräusche durch Generator und Getriebe mit einem anlagenabhängigen Frequenzspektrum, zum Anderen entstehen aerodynamische Geräusche infolge der Luftverwirbelungen an den Rotorblättern, die ein breitbandiges Frequenzspektrum aufweisen.

Schallimmissionspegel werden als A-bewertete Schallpegel in der Einheit Dezibel dB(A) angegeben. Die A-Bewertung berücksichtigt das vom menschlichen Gehör subjektiv wahrnehmbare Frequenzspektrum und Lärmempfinden. Die Schallemissionen der Windenergieanlagen liegen ebenfalls als A-bewertete Schalleistungspegel vor.

Aus den Frequenzspektren der Windenergieanlagen heraustretende Einzeltöne, die abhängig von ihrer Frequenz über weitere Entfernungen hörbar bleiben (Tonhaltigkeiten) und im Hörempfinden als besonders störend gelten, werden durch einen Tonhaltigkeitszuschlag k_T berücksichtigt.

Für eine Betrachtung relevanter Infraschall wird von heutigen Windenergieanlagen nachweislich nicht emittiert, an dieser Stelle sei auf die entsprechende Fachliteratur verwiesen.

Die Beurteilungssituation ist bei einer Windgeschwindigkeit von 10 m/s in 10 m Höhe über Grund gegeben, dies entspricht v(10) = 10 m/s. Es wird in dieser Situation davon ausgegangen, daß bei flachem Gelände für umliegende, von Bewuchs gesäumte Immissionspunkte die ungünstigste Beurteilungssituation entsteht, da dann nahezu die Nennleistung der Windenergieanlagen erreicht ist und die WEA i.d.R. den max. Schallpegel emittieren. Die windinduzierten Hintergrundgeräusche an den Immissionspunkten können sich dann im Bereich um ca. 45 dB(A) bewegen.

Die Berechnung der Schallausbreitung wird nach DIN ISO 9613-2 /7/ vorgenommen. Die Berechnungen werden mit dem Programm "WINDPRO, Modul: DECIBEL" der Fa. EMD durchgeführt. Die Ergebnisprotokolle sind im Anhang zu finden.

In der Regel wird, aufgrund der vorliegenden vermessenen Schallpegel als A-bewertete Schallpegel, die Berechnung mit einem A-bewerteten Emissionspegel der WEA durchgeführt. Für die Abschätzung der resultierenden Dämpfung der Schallausbreitung werden die Dämpfungswerte bei 500 Hz angesetzt.

Der Schallpegel L_{AT} an einem Immissionsort im Abstand d vom Mittelpunkt einer Schallquelle wird für eine Mitwindwetterlage nach folgender Gleichung berechnet:

$$L_{AT}(DW) = L_{WA} + D_C - A$$

In der Formel bedeuten:

L_{AT}: Beurteilungspegel am Immissionsort

 L_{WA} : Schalleistungspegel einer Punktschallquelle in dB bezogen auf Bezugsschalleistung von einem Picowatt an einem Punkt in dB(A)

 D_C : Richtwirkungskorrektur für die Quelle ohne Richtwirkung (0dB), aber unter Berücksichtigung der Reflexion am Boden D_{Ω} :

$$D_{\Omega} = 10Lg \left(1 + \left[\left(d_{p}^{2} + \left(h_{s} - h_{r} \right)^{2} \right) / \left(d_{p}^{2} + \left(h_{s} + h_{r} \right)^{2} \right) \right] \right)$$

Mit:

h_s: Höhe der Quelle über dem Grund (Nabenhöhe)

h_r: Höhe des Immissionspunktes über dem Grund (Nabenhöhe)

 d_p: Abstand zwischen Schallquelle und Empfänger, projiziert auf die Bodenebene. Der Abstand bestimmt sich aus den x - und y - Koordinaten der Quelle (Index s) und des Immissionspunktes (Index r)

$$d_p = \sqrt{(x_s - x_r)^2 + (y_s - y_r)^2}$$

A: Dämpfung zwischen der Punktschallquelle (WKA-Gondel) und dem Immissionspunkt, die während der Schallausbreitung vorhanden ist. Sie bestimmt sich aus den folgenden Dämpfungsarten:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

A_{div}: Dämpfung aufgrund der geometrischen Ausbreitung

$$A_{div} = 20 \lg (d / 1m) + 11 dB$$

d: Abstand zwischen Quelle und Immissionspunkt

A_{atm}: Dämpfung durch Luftabsorption

$$A_{atm} = \alpha_{500} d / 1000$$

 α_{500} : Absorptionskoeffizient der Luft, hier 1,9 dB/km für 500 Hz bei 10° C und 70 % relative Luftfeuchte

Der Wert α_{500} bezieht sich auf die günstigsten Schallausbreitungsbedingungen (Temperatur von 10° und relativer Luftfeuchte von 70~%)

Agr: Bodendämpfung

$$A_{gr} = 4.8 - (2h_m / h)x(17 + (300 / d)) \ge 0$$

h_m: mittlere Höhe (in Meter) des Schallausbreitungsweges über der Boden

$$h_m = (h_s + h_r)/2$$

 h_s : Quellhöhe (Nabenhöhe); h_r : Aufpunkthöhe, hier 5 m

 A_{bar} : Dämpfung aufgrund der Abschirmung (Schallschutzmaßnahmen), hier $A_{bar} = 0$

 A_{misc} : Dämpfung aufgrund verschiedener weiterer Effekte (Bewuchs, Bebauung etc.) In der Regel gehen diese Effekte nicht in die Prognose ein; hier $A_{misc} = 0$

In der Praxis dämpfen Bebauung und Bewuchs den Schall, d.h. $A_{misc} > 0$, insofern ist die hier vorgenommene Prognoserechnung konservativ angesetzt.

Bei mehreren Schallquellen werden die Schallpegel L_{ATi} am Immissionsort für jede Quelle getrennt ermittelt und energetisch addiert. Gem. der TA-Lärm ist der aus allen Schallquellen resultierende Schalleistungspegel L_{AT} bei Berücksichtigung von eventuell erforderlichen Zuschlägen nach der im folgenden aufgeführten Gleichung zu ermitteln:

$$L_{AT}(LT) = 10 \lg \left(\sum_{i=1}^{n} 10^{0,1} (L_{ATI} - C_{met} + K_{Ii} + K_{Ii}) \right)$$

L_{AT}: Beurteilungspegel am Immissionsort

L_{ATi}: Schallimmissionspegel einer Emissionsquelle i an dem Immissionspunkt

i: Index für alle Geräuschquellen von 1-n

 C_{met} : Meteorologische Korrektur (hier (bei 0 : konservativster) Ansatz $C_0 = 0.0$)

K_{Ti}: Zuschlag für die Tonhaltigkeit einer Emissionsquelle i

K_{li}: Zuschlag für die Impulshaltigkeit einer Emissionsquelle i

Für die Entstehung von tonhaltigen Geräuschen bei Windenergieanlagen können Anlagenteile wie Getriebe, Generatoren, Azimutgetriebe und eventuelle Hydraulikanlagen verantwortlich sein. Die Hersteller bemühen sich durch konstruktive Maßnahmen Tonhaltigkeiten in den Geräuschemissionen bei Windenergieanlagen zu vermeiden, bzw. zu minimieren. Genauere Daten dazu sind in der Regel dem Meßbericht zu entnehmen.

Treten aus den Anlagengeräuschen Einzeltöne deutlich hervor, ist gem. TA-Lärm /3/ erforderlichenfalls ein Zuschlag K_T anzusetzen. In Abhängigkeit von der Auffälligkeit des Tones ist ein Zuschlag K_T von 3 oder 6 dB(A) anzusetzen. Tritt die Tonhaltigkeit nur im Nahbereich der Windenergieanlage auf, so spricht man von einer Tonhaltigkeit K_{TN} . Bei Entfernungen ab 300 m ergeben sich aus Tonhaltigkeiten K_{TN} folgende Tonhaltigkeiten K_T :

$$K_T = 0$$
 für $0 \le K_{TN} \le 2$ $K_T = 3$ für $2 < K_{TN} \le 4$ $K_T = 6$ für $K_{TN} > 4$

6 Immissionsrichtwerte und Immissionspunkte

Für die Beurteilung von Industrie- und Gewerbegeräuschen sind in der TA Lärm /3/ Immissionsrichtwerte sowohl für den Beurteilungspegel, als auch für Maximalpegel einzelner Geräuschereignisse genannt. Sie sind nach Einwirkungsorten entsprechend der baulichen Nutzung ihrer Umgebung, sowie nach Tag und Nacht unterteilt (s. Tabelle unten). Die Beurteilungspegel beziehen sich auf die Zeiträume tags von 6:00 bis 22:00 Uhr und nachts von 22:00 bis 6:00 Uhr. Somit werden auch die Einflüsse der Ortsüblichkeiten und des Zeitpunktes des Auftretens der Geräusche berücksichtigt. Im vorliegenden Fall ist die lauteste Nachtstunde maßgeblich.

Industriegebiete	tags und nachts
	70 dB(A)
Gewerbegebiete	tags 65 dB(A)
	nachts 50 dB(A)
Kerngebiete, Dorfgebiete und Mischgebiete	tags 60 dB(A)
	nachts 45 dB(A)
Allgemeine Wohngebiete und Kleinsiedlungsgebiete	tags 55 dB(A)
	nachts 40 dB(A)
Reine Wohngebiete	tags 50 dB(A)
	nachts 35 dB(A)
Kurgebiete, Krankenhäuser und Pflegeanstalten	tags 45 dB(A)
	nachts 35 dB(A)

Es werden insgesamt 26 Punkte in der näheren Umgebung zu den geplanten Windkraftanlagen als Immissionspunkte untersucht. Bei den Immissionspunkten handelt es sich hauptsächlich um die nächstgelegene Wohnbebauung, die in ein- bzw. zweigeschossiger Bauweise mit ausgebautem Dachgeschoß ausgebildet ist. Die Einstufung der Immissionspunkte erfolgte nach Rücksprache mit den örtlichen Baubehörden der Verbandsgemeinden Mendig und Brohltal. Die Koordinaten der Immissionspunkte wurden mit Hilfe der verwendeten Berechnungssoftware aus dem vom Auftraggeber zur Verfügung gestellten Kartenmaterial ermittelt. Die Höhe des Aufpunktes wird mit 5 m bzw. 7,50 m über Gelände angesetzt. Die Immissionspunkte wurden im Zuge einer Ortsbegehung besichtigt.

Die Bezeichnungen und Lagebeschreibungen sowie zulässigen Richtwerte für die verschiedenen Immissionspunkte sind der folgenden Tabelle zu entnehmen:

Immissionspunkt	Lagebeschreibung	Richtwert Tag/Nacht in dB(A)
IP A	Whs. Appentalerhof	60/45
IP B	Whs. Winkelweg 10, Weibern	55/40
IP C	Whs. Waldstr. 2, Weibern	60/45
IP D	Whs. Waldstr. 32, Weibern	60/45
IP E	Whs. Kirchstr. 27, Weibern	60/45
IP F	Whs. Im Wiesengrund 13, Weibern	60/45
IP G	Whs. Dorfstr. 10, Wabern	60/45
IP H	Whs. Heideweg 6a, Wabern	55/40
IP I	Whs. Birkenhof, Volkesfeld	60/45
IP J **)	Baugrundstück Sonnenwinkel, Volkesfeld	55/40
IP K	Whs. Seeblick 1, Volkesfeld	55/40
IP L	Hotel Eifler Seehütte, Rieden	55/40
IP M *)	Whs. Waldseestr. 8, Rieden	55/40
IP N	Whs. Suhrstr. 24, Rieden	60/45
IP O	Whs. Am Sonnenhang 24, Rieden	55/40
IP P	Whs. Bahnhofstr. 111, Weibern	60/45
IP Q	Whs. Löhstr. 5, Weibern	60/45
IP R	Whs. Löhstr. 6, Weibern	60/45
IP S	Whs. Konnstr. 41, Weibern	55/40
IP T	Whs. Tannenweg 6, Weibern	55/40
IP U	Whs. Konnstr. 25, Weibern	55/40
IP V	Whs. Buchenweg 1, Weibern	55/40
IP W **)	Baugrundstück Am Hang, Volkesfeld	55/40
IP X	Uferterrasse 3, Rieden	55/40
IP Y	Whs. Geisenberg 19, Rieden	55/40
IP Z	Whs. Am Sonnenhang 40, Rieden	55/40

^{*)} Da das Wohnhaus noch nicht im den Berechnungen zugrundeliegenden Kartenmaterial verzeichnet ist, wurde der IP M anhand des im Internet veröffentlichten Liegenschaftskatasters mit ausgewiesenen Flurstücken des Landschaftsinformationssystems der Naturschutzverwaltung Rheinland-Pfalz gesetzt (siehe http://map1.naturschutz.rlp.de).

**) Diese Grundstücke (Flurstücke 241 und 51 der Gemeinde Volkesfeld) waren zum Zeitpunkt der Begehung noch nicht bebaut. Nach Telefonaten mit Fr. Hatzmann von der Verbandsgemeinde Mendig wurden diese Grundstück mit IPs versehen, die sich an der den geplanten und vorhandenen WEA zugewandten Grundstücksseite befinden – unter Beachtung des auf den jeweiligen Grundstücken It. Fr. Hatzmann zu beachtenden Grenzabstandes, um die Geräuschbelastung auch an diesen bebaubaren Grundstücken miteinzubeziehen.

7 Ermittlung der Geräuschimmissionen

Grundlage für die Berechnung der Geräuschimmissionen sind die Schallleistungspegel der Windenergieanlagen gem. Abs. 4, sowie die Randbedingungen und Berechnungsgrundlagen gem. Abs. 5.

Die Berechnungen erfolgen mit dem Programmsystem DECIBEL. Das Programmsystem führt die Schallausbreitungsrechnungen auf der Grundlage der DIN ISO 9613-2 /7/ durch. Die Berechnungen ermöglichen eine Analyse des Einflusses jeder Emissionsquelle auf die Geräuschimmission an jedem Immissionsort.

Berechnet wurden für den Zustand 1 und den Zustand 2 jeweils drei verschiedene Situationen.

Im <u>Zustand 1</u> wurden die 5 bestehenden Anlagen (Vorbelastung) und die geplanten Anlagen 7, 9 und 12 des Landkreises Ahrweiler (Zusatzbelastung) jeweils getrennt betrachtet. Weiterhin wurden Immissionen durch die Gesamtbelastung der insgesamt 8 WEA berechnet.

Im <u>Zustand 2</u> besteht die Vorbelastung aus den 5 bestehenden Anlagen sowie den nun als vorhanden angesetzten WEA 7, 9 und 12 des Zustandes 1. In der Zusatzbelastung werden die Immissionen durch die geplanten WEA 8, 10 und 11 des Landkreises Mayen-Koblenz berechnet. Abschließend werden die Immissionen durch die Gesamtbelastung der insgesamt 11 WEA betrachtet.

Die vorhandene WEA Seewind 20/110 ist nicht Bestandteil der Berechnungen, da sie im nächtlichen Zeitraum von 22.00 bis 06.00 Uhr ausgeschaltet wird.

Hinweis:

In den Berechnungen der Vor- und Gesamtbelastung beider Zustände wird die vom Ingenieurbüro Pies ermittelte nächtliche Geräuschbelastung durch den Gewerbebetrieb Wolfcraft in Weibern berücksichtigt. Das Ingenieurbüro wertete die Geräuschvorbelastung an vier nahegelegenen Messpunkten aus, die aufgrund ihrer Nähe und ihrer Einstufungen in Anlehnung an Empfehlungen der Genehmigungsbehörde ausgewählt wurden. Am IP T ("Whs. Tannenweg 6, Weibern") waren Betriebsgeräusche durch Wolfcraft weder "mess- noch wahrnehmbar" (s. Auszug aus dem Messbericht vom Büro Pies im Anhang).

Ebenso fand an allen anderen IPs keine zu berücksichtigende Vorbelastung durch Wolfcraft statt.

An den drei übrigen Messpunkten P, Q und R konnten folgende Betriebsgeräuschimmissionen verzeichnet werden:

Name des Messpunktes	gemessene Betriebsgeräuschimmissionen
IP P: "Whs. Bahnhofstr. 111, Weibern"	31 dB(A)
IP Q: "Whs. Löhstr. 5, Weibern"	34 dB(A)
IP R: "Whs. Löhstr. 6, Weibern"	31 dB(A)

Die Messpunkte befanden sich dabei so nah wie möglich an der Wohnbebauung. Auf eine Sichtverbindung zwischen den Messpunkten und der Firma Wolfcraft bzw. ihrem Dachbereich wurde Wert gelegt.

Das Ergebnis am Messpunkt östlich des Wohnhauses Löhstr. 6 am Fahrweg wurde auf den IP S ("Whs. Konnstr. 41, Weibern") übertragen, da in der Nähe dieses IPs keine Messung stattfand, dieser IP anders als die IPs P bis R aber in einem allgemeinen Wohngebiet liegt und deshalb ebenfalls Beachtung finden muss, auch wenn die Entfernung zu Wolfcraft größer ist als bei den IPs P bis R. Aus diesem Grund ist die Schallbelastung durch Wolfcraft am IP S geringer als die angenommenen 31 dB(A), der Wert wird aber, auf der ungünstigen Seite liegend, in den Berechnungen angesetzt.

<u>Hinweis:</u> Die in den Anlagen enthaltenen graphischen Darstellungen der Isolinienverläufe stellen die Immissionen bedingt allein durch die Emissionen der WEA dar. Um die Belastung an den vier betroffenen IPs P, Q, R und S in Weibern durch die WEAs und das Gewerbe Wolfcraft darzulegen, sind dem Anhang Tabellenblätter beigefügt, in denen die entsprechenden Pegeladditionen aus WEAs und Gewerbe für die vier betroffenen IPs durchgeführt werden.

Zustand 1

Berechnet wurde die Vorbelastung durch 5 bestehende WEA sowie das Gewerbe Wolfcraft bei und in Weibern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes und der WEA dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

I			Т	<u> </u>		1	I	—т			П	Т	T	
Reserve zum Richtwert in dB(A)	8,6	8,0	12,2	14,1	15,6	18,0	19,7	15,3	19,3	12,4	12,2	10,2	11,5	10,3
erf. Richtwert in dB(A)	45	40	45	45	45	45	45	40	45	40	40	40	40	45
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	35,2	32,0	32,8	30,9	29,4	27,0	25,3	24,7	25,7	27,6	27,8	29,8	28,5	34,7
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	/		/		/	/	/	/	/	/	/	/	/	1
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	35,2	32,0	32,8	30,9	29,4	27,0	25,3	24,7	25,7	27,6	27,8	29,8	28,5	34,7
Immissions- punkt	IP A	IP B	IPC	IPD	IPE	IPF	IP G	IP H	IPI	IP J	IP K	IPL	IP M	IPN

	1	ı		r	· · · · · ·	I			T			
Reserve zum Richtwert in dB(A)	0,9	9,4	8,1	L'6	5,0	7,1	8,1	8,9	12,5	10,9	6,9	6.5
erf. Richtwert in dB(A)	40	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	34,0	35,6	36,9	35,3	35,0	32,9	31,9	31,1	27,5	29,1	33,1	33,5
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)		31,0	34,0	31,0	31,0	*)	/	/	/	/	/	1
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	34,0	33,8	33,8	33,3	32,7	32,9	31,9	31,1	27,5	29,1	33,1	33,5
Immissions- punkt	РO	IP P	РQ	IPR	ΡS	IPT	IPU	ΙΡV	IP W	IP X	IP Y	IPZ

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar.

An keinem Immissionspunkt werden durch die Vorbelastung aus WEA und Gewerbe die zulässigen Richtwerte überschritten. Als Immissionspunkt mit dem maximalen Immissionspegel von 36,9 dB(A) ergibt sich der IP Q ("Whs. Löhstr. 5, Weibern"). Am IP S ("Whs. Konnstr. 41, Weibern") tritt der geringste Abstand zum zulässige Richtwert durch die Vorbelastung auf.

PLANkon Dipl. Jng. Roman Wagner vom Berg Achternstraße 16, 26122 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2009102-SLG Datum 08.03.2010 Seite 17 von 32 Berechnet wurde die <u>Zusatzbelastung durch drei geplante WEA (WEA 7, 9 und 12) bei Weibern</u>. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Immissionspunkt	Berechneter Schallpegel L_s in dB(A) $V(10)=10 \text{ m/s}$	erf. Richtwert in dB(A)	Reserve zum Richtwert in dB(A)
	33,4	4.5	11.6
IP A		45	11,6
IP B	32,5	40	7,5
IP C	35,2	45	9,8
IP D	33,7	45	11,3
IP E	31,5	45	13,5
IP F	30,4	45	14,6
IP G	27,4	45	17,6
IP H	26,5	40	13,5
IP I	28,4	45	16,6
IP J	31,2	40	8,8
IP K	27,9	40	12,1
IP L	29,8	40	10,2
IP M	28,0	40	12,0
IP N	33,4	45	11,6
IP O	29,0	40	11,0
IP P	33,8	45	11,2
IP Q	33,7	45	11,3
IP R	34,4	45	10,6
IP S	33,2	40	6,8
IP T	35,1	40	4,9
IP U	34,4	40	5,6
IP V	33,8	40	6,2
IP W	28,1	40	11,9
IP X	28,5	40	11,5
IP Y	31,1	40	8,9
IP Z	29,2	40	10,8

Als Immissionspunkt mit dem geringsten Abstand zum Richtwert ergibt sich in der Berechnung der Zusatzbelastung IP T ("Whs. Tannenweg 6, Weibern"). Es wird hier ein Abstand von 4,9 dB(A) zum Richtwert eingehalten.

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Zusatzbelastung IP C ("Whs. Waldstr. 2, Weibern"). An diesem IP werden 35,2 dB(A) immittiert.

Es erfolgt an keinem IP eine Überschreitung der zulässigen Richtwerte durch die geplanten WEA der Zusatzbelastung.

Die Immissionspunkte A, D bis I, K bis R, W, X und Z liegen zudem nicht mehr im Einflussbereich der geplanten WEA 7, 9 und 12, da hier mehr als 10 dB(A) Abstand zum Richtwert eingehalten werden.

Berechnet wurde die Gesamtbelastung durch drei geplante und 5 bestehende WEA sowie das Gewerbe Wolfcraft bei und in Weibern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes und der WEA dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Reserve zum Richtwert in dB(A)	7,6	4,7	7,8	9,5	11,4	13,0	15,5	11,3	14,7	7,2	9,1	7,2	8,7	7,9	4,8
erf. Richtwert in dB(A)	45	40	45	45	45	45	45	40	45	40	40	40	40	45	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	37,4	35,3	37,2	35,5	33,6	32,0	29,5	28,7	30,3	32,8	30,9	32,8	31,3	37,1	35,2
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	/	/	/		/		/	/	1	/	/	/	/		/
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	37,4	35,3	37,2	35,5	33,6	32,0	29,5	28,7	30,3	32,8	30,9	32,8	31,3	37,1	35,2
Immissions- punkt	IP A	IP B	IPC	IPD	IPE	IPF	IP G	IPH	IP I	IP J	IPK	IPL	IP M	IPN	IPO

Bericht Nr. PK 2009102-SLG Datum 08.03.2010 Seite 20 von 32

			1					,				
Reserve zum Richtwert in dB(A)		7,2	6,4	7,1	2,8	2,8	3,7	4,3	9,2	8,2	4,8	5.1
erf. Richtwert in dB(A)		45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus	werbe in dB(A)	37,8	38,6	37,9	37,2	37,2	36,3	35,7	30,8	31,8	35,2	34.9
Gemessener Schallpegel Lr,nacht durch Gewerbe in		31,0	34,0	31,0	31,0	(*	/	1	/	1		
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s		36,8	36,7	36,9	36,0	37,2	36,3	35,7	30,8	31,8	35,2	34,9
Immissions- punkt		IРР	ΡQ	IPR	IPS	IPT	IPU	IP V	IP W	IP X	IP Y	IPZ

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar.

An keinem Immissionspunkt werden durch die Gesamtbelastung die zulässigen Richtwerte überschritten.

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Gesamtbelastung IP Q ("Whs. Löhstr. 5, Weibern"). An diesem IP werden 38,6 dB(A) immittiert. Die IPs S und T ("Whs. Konnstr. 41, Weibern", "Whs. Tannenweg 6, Weibern") sind diejenigen IPs mit dem geringsten Abstand zum Richtwert von 2,8 dB(A).

PLANkon Dipl. -Ing. Roman Wagner vom Berg Achtemstraße 16 , 26122 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2009102-SLG Datum 08.03.2010 Seite 21 von 32

Zustand 2

nungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes und der WEA do-Berechnet wurde die Vorbelastung durch 8 bestehende und beantragte WEA sowie das Gewerbe Wolfcraft bei und in Weibern. In den Berechkumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Reserve zum Richtwert in dB(A)	7,6	4,7	7,8	9,5	11,4	13,0	15,5	11,3	14,7	7,2	9,1	7,2	8,7	7,9
erf. Richtwert in dB(A)	45	40	45	45	45	45	45	40	45	40	40	40	40	45
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	37,4	35,3	37,2	35,5	33,6	32,0	29,5	28,7	30,3	32,8	30,9	32,8	31,3	37,1
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)		/	/		/	/	/	/	/	/	/			1
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	37,4	35,3	37,2	35,5	33,6	32,0	29,5	28,7	30,3	32,8	30,9	32,8	31,3	37,1
Immissions- punkt	IPA	IPB	IPC	IPD	IPE	IP F	IP G	IP H	IP I	IP J	IP K	IPL	IP M	IPN

Bericht Nr. PK 2009102-SLG Datum 08.03.2010 Seite 22 von 32

			T				_	,				
Reserve zum Richtwert in dB(A)	4,8	7,2	6,4	7,1	2,8	2,8	3,7	4,3	9,2	8,2	4,8	5,1
erf. Richtwert in dB(A)	40	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	35,2	37,8	38,6	37,9	37,2	37,2	36,3	35,7	30,8	31,8	35,2	34,9
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)		31,0	34,0	31,0	31,0	*)	1	1	1	/	/	/
Berechneter Schallpegel Ls durch WEA in dB(A) V(10)=10 m/s	35,2	36,8	36,7	36,9	36,0	37,2	36,3	35,7	30,8	31,8	35,2	34,9
Immissions- punkt	ΙΡΟ	IP P	РQ	IPR	IPS	IPT	IPU	ΙΡV	IP W	IP X	ΙΡΥ	ΡZ

^{*)} An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft

An keinem Immissionspunkt werden durch die Vorbelastung aus WEA und Gewerbe die zulässigen Richtwerte überschritten.

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Vorbelastung IP Q ("Whs. Löhstr. 5, Weibern"). An diesem IP werden 38,6 dB(A) immittiert.

Die IPs S und T ("Whs. Konnstr. 41, Weibern", "Whs. Tannenweg 6, Weibern") sind diejenigen IPs mit dem geringsten Abstand zum Richtwert von 2,8 dB(A).

PLANkon Dipl. -Ing. Roman Wagner vom Berg Achtemstraße 16, 26122 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2009102-SLG Datum 08.03.2010 Seite 23 von 32

Berechnet wurde die <u>Zusatzbelastung durch drei geplante WEA (WEA 8, 10 und 11) bei Weibern</u>. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Immissionspunkt	Berechneter Schallpegel L_s in dB(A) $V(10)=10 \text{ m/s}$	erf. Richtwert in dB(A)	Reserve zum Richtwert in dB(A)
IP A	29,2	45	15,8
IP B	34,7	40	5,3
IP C	37,0	45	8,0
IP D	35,2	45	9,8
IP E	33,5	45	11,5
IP F	32,0	45	13,0
IP G	29,0	45	16,0
IP H	28,3	40	11,7
IP I	30,4	45	14,6
IP J	32,4	40	7,6
IP K	32,9	40	7,1
IP L	35,0	40	5,0
IP M	33,0	40	7,0
IP N	41,5	45	3,5
IP O	36,1	40	3,9
IP P	36,3	45	8,7
IP Q	36,5	45	8,5
IP R	35,3	45	9,7
IP S	35,1	40	4,9
IP T	36,9	40	3,1
IP U	35,9	40	4,1
IP V	35,3	40	4,7
IP W	32,0	40	8,0
IP X	33,6	40	6,4
IP Y	37,2	40	2,8
IP Z	36,2	40	3,8

Als Immissionspunkt mit dem geringsten Abstand zum Richtwert ergibt sich in der Berechnung der Zusatzbelastung IP Y ("Whs. Geisenberg 19, Rieden"). Es wird hier ein Abstand von 2,8 dB(A) zum Richtwert eingehalten.

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Zusatzbelastung IP N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 41,5 dB(A) immittiert.

Es erfolgt an keinem IP eine Überschreitung der zulässigen Richtwerte durch die geplanten WEA der Zusatzbelastung.

Die Immissionspunkte A und E bis I liegen zudem nicht mehr im Einflussbereich der geplanten WEA 8, 10 und 11, da hier mehr als 10 dB(A) Abstand zum Richtwert eingehalten werden.

bern. In den Berechnungsausdrucken im Anhang sind die Berechnungsergebnisse auch hinsichtlich der Pegeladdition aus Emissionen des Gewerbes Berechnet wurde die Gesamtbelastung durch drei geplante und 8 bestehende und beantragte WEA sowie das Gewerbe Wolfcraft bei und in Weiund der WEA dokumentiert. Die Ergebnisse der Immissionsberechnungen sind der folgenden Tabelle zu entnehmen:

Reserve zum Richtwert in dB(A)	7,0	2,0	4,9	9,9	8,4	10,0	12,7	8,5	11,6	4,4	5,0	3,0	4,8	2,1	1,3
erf. Richtwert in dB(A)	45	40	45	45	45	45	45	40	45	40	40	40	40	45	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	38,0	38,0	40,1	38,4	36,6	35,0	32,3	31,5	33,4	35,6	35,0	37,0	35,2	42,9	38,7
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	/	/				/	/	/	/	/	/	/	/	/	
Berechneter Schallpegel Ls in dB(A) V(10)=10 m/s	38,0	38,0	40,1	38,4	36,6	35,0	32,3	31,5	33,4	35,6	35,0	37,0	35,2	42,9	38,7
Immissions- punkt	IP A	IP B	IPC	IP D	IPE	IPF	IP G	IPH	IP I	IP J	IP K	IPL	IP M	IP N	ΙΡΟ

PLANkon Dipl. -Ing. Roman Wagner vom Berg Achternstraße 16, 26122 Oldenburg - Postfach 4070, 26030 Oldenburg

Bericht Nr. PK 2009102-SLG Datum 08.03.2010 Seite 26 von 32

Reserve zum Richtwert in dB(A)	4,9	4,3	5,2	7,0	0,0	6,0	1,5	5,5	4,2	0,6	1,4
erf. Richtwert in dB(A)	45	45	45	40	40	40	40	40	40	40	40
Summe Schall- pegel aus WEA und Ge- werbe in dB(A)	40,1	40,7	39,8	39,3	40,0	39,1	38,5	34,5	35,8	39,4	38,6
Gemessener Schallpegel Lr,nacht durch Gewerbe in dB(A)	31,0	34,0	31,0	31,0	(*		/	/		/	/
Berechneter Schallpegel Ls in dB(A) V(10)=10 m/s	39,6	39,6	39,2	38,6	40,0	39,1	38,5	34,5	35,8	39,4	38,6
Immissions- punkt	IP P	ΡQ	IPR	IPS	$IP\ T$	ΡU	IP V	IP W	IP X	IP Y	Z dI

*) An dem neben dem Wohnhaus T gelegenen Messpunkt waren durch das Ingenieurbüro Pies keine Betriebsemissionen des Gewerbes Wolfcraft messbar.

dies als Überschreitung. Rein rechnerisch ist der zulässige Richtwert von 40 dB(A) jedoch nur erreicht, der Wert 40,02 dB(A) wird abgerundet auf Am IP T ("Whs. Tannenweg 6, Weibern") wird durch die Gesamtbelastung aus den geplanten und vorhandenen/beantragten WEA der zulässige Richtwert erreicht. Auf dem Deckblatt der dazugehörigen Berechnung (s. Anlagen) ist in der Spalte bzgl. der erfüllten Anforderungen das Wort "Nein" vermerkt. Den detaillierten Ergebnissen ist zu entnehmen, dass der Schallpegel an diesem IP T 40,02 dB(A) beträgt. Das Programm wertet 40,0 dB(A). Eine Überschreitung wäre ansonsten lt. TA-Lärm von 1998, Abs. 3.2.1 zulässig, da die Überschreitung nicht mehr als 1 dB(A) beträgt und die Vorbelastung die Zusatzbelastung an diesem IP überschreitet (vgl. S. 23 und 24).

Als Immissionspunkt mit der höchsten Schallbelastung ergibt sich in der Berechnung der Gesamtbelastung IP N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 42,9 dB(A) immittiert.

An keinem Immissionspunkt werden durch die Gesamtbelastung aus 3 geplanten und 8 vorhandenen bzw. beantragten WEA die zulässigen Richtwerte überschritten.

8 Beurteilung

Folgende Vorschriften werden zur Beurteilung herangezogen:

- BImSchG /4/ mit allen ergänzenden und relevanten Verordnungen
- TA Lärm /3/

Die Begutachtung erfolgt im Rahmen des Genehmigungsverfahrens. In den Berechnungsausdrucken sind verschiedene Belastungszustände aus schalltechnischer Sicht dokumentiert. Bewertet werden die Ergebnisse für die verschiedenen Immissionspunkte gemäß den relevanten Belastungszuständen für die Belastung nachts (22-6 Uhr). Aufgrund der um 15 dB(A) höheren Richtwerte tags sind am Tage (6-22 Uhr) generell höhere Emissionswerte möglich. Alle Berechnungen enthalten je nach WEA-Typ einen Zuschlag zum Emissionspegel von 2,0 – 3,4 dB(A), s. auch Kap. 4.

In diesem Gutachten werden zwei Zustände betrachtet, die sich auf die zeitliche Abfolge der Errichtung der geplanten WEA 7, 9 und 12 sowie 8, 10 und 11 beziehen.

Zustand 1

Die geplanten WEA 7, 9 und 12 auf dem Gebiet des Landkreises Ahrweiler stellen die Zusatzbelastung dar. Zusammen mit den 5 vorhandenen WEA werden in der Gesamtbelastung 8 WEA berechnet. In den Schallberechnungen der Vor- und Gesamtbelastung werden nächtliche, vom Ingenieurbüro Pies gemessene Emissionen des Gewerbes Wolfcraft in Weibern berücksichtigt. Diese Emissionen werden an den vier nächstgelegenen IPs miteinbezogen, an denen von Wolfcraft freigesetzte Lärmpegel messbar waren.

Der max. Immissionspegel an einem Immissionspunkt beträgt in der Berechnung der Gesamtbelastung 38,6 dB(A) am Immissionspunkt Q ("Whs. Löhstr. 5, Weibern"). An diesem IP werden 6,4 dB(A) Abstand zum Richtwert eingehalten.

An keinem Immissionspunkt werden durch die Gesamtbelastung die zulässigen Richtwerte überschritten.

Die geplanten WEA 7, 9 und 12 können tagsüber mit dem vollen Emissionspegel betrieben werden. Nachts werden die gepl. WEA 7 und 9 schallreduziert mit einer Leistung von 1.000 kW betrieben, WEA 12 läuft nachts im Volllastmodus. Bei Ansatz des Emissionspegels von 98,7 dB(A) mit Ansatz von 2,6 dB(A) für Unsicherheiten (s. Kap. 4) für die neuen WEA 7 und 9 und bei Ansatz des Emissionspegels von 104,2 dB(A) mit Ansatz von 2,0 dB(A) für Unsicherheiten (s. Kap. 4) für die neue WEA 12 werden die Richtwerte nachts lt. Prognose bei Betrachtung der Zusatzbelastung an allen relevanten Immissionspunkten um mindestens 4,9 dB(A) unterschritten.

Die Immissionspunkte A, D bis I, K bis R, W, X und Z liegen zudem nicht mehr im Einflussbereich der geplanten WEA 7, 9 und 12, da hier mehr als 10 dB(A) Abstand zum Richtwert eingehalten werden.

Zustand 2

Im Zustand 2 besteht die Vorbelastung aus den 5 vorhandenen WEA sowie den im Zustand 1 geplanten WEA 7, 9 und 12, die nun als beantragte WEA behandelt werden. Die Zusatzbelastung stellen die geplante WEA 8, 10 und 11 auf dem Gebiet des Landkreises Mayen-Koblenz dar. Die Gesamtbelastung besteht abschließend aus den insgesamt 8 vorhandenen und beantragten WEA und den geplanten WEA 8, 10 und 11. Auch in diesem Zustand werden in der Berechnung der Vor- und Gesamtbelastung nächtliche, gemessene Emissionen des Gewerbebetriebes Wolfcraft an den vier nächstgelegenen IPs berücksichtigt.

Der max. Immissionspegel an einem Immissionspunkt beträgt in der Berechnung der Gesamtbelastung 42,9 dB(A) am Immissionspunkt N ("Whs. Suhrstr. 24, Rieden"). An diesem IP werden 2,1 dB(A) Abstand zum Richtwert eingehalten.

Am IP T ("Whs. Tannenweg 6, Weibern") wird durch die Gesamtbelastung aus den geplanten und vorhandenen/beantragten WEA der zulässige Richtwert erreicht.

An keinem Immissionspunkt werden durch die insgesamt 11 vorhandenen, beantragten und geplanten WEA die zulässigen Richtwerte überschritten.

Die geplanten WEA 8, 10 und 11 können tagsüber und auch nachts mit dem vollen Emissionspegel betrieben werden. Bei Ansatz des Emissionspegels von 103,8 dB(A) mit Ansatz von 2,1 dB(A) für Unsicherheiten (s. Kap. 4) für die neuen WEA 8 und 11 und bei Ansatz des Emissionspegels von 104,2 dB(A) mit Ansatz von 2,0 dB(A) für Unsicherheiten (s. Kap. 4) für die neue WEA 10 werden die Richtwerte nachts lt. Prognose bei Betrachtung der Zusatzbelastung an allen Immissionspunkten um mehr als 2,8 dB(A) unterschritten.

Aus schalltechnischer Sicht bestehen keine Bedenken bei Errichtung der Anlagen 7 bis 12.

Oldenburg, den 08. März 2010

Dipl.-Ing. Roman Wagner vom Berg

9 Quellenverzeichnis

/1/ VDI 2714: Schallausbreitung im Freien

Fassung vom Januar 1988

/2/ VDI 2058/1: Beurteilung von Arbeitslärm in der Nachbarschaft.-

Fassung vom Februar 1999

/3/ TA Lärm: Technische Anleitung zum Schutz gegen Lärm (TA Lärm),

Fassung vom August 1998

/4/ BImSchG: Bundesimmissionsschutzgesetz

Fassung vom September 2002, letzte Änderung Juni 2005

/5/ 4. BImSchV: Vierte Verordnung zur Durchführung des

Bundesimmissionsschutzgesetzes

Fassung vom Juni 2005

/6/ DIN 18005: Schallschutz im Städtebau

Teil 1: Berechnungsverfahren

Fassung vom Juli 2002

/7/ DIN ISO 9613/2: DIN ISO 9613-2, "Dämpfung des Schalls bei der Ausbreitung im Freien

Teil 2: Allgemeines Berechnungsverfahren"

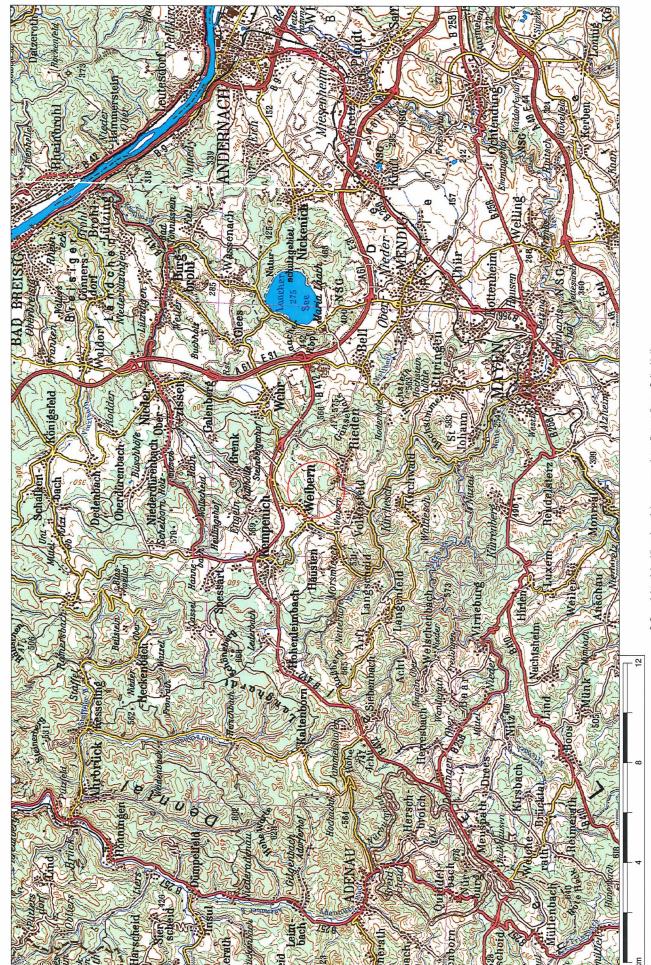
Deutsche Fassung ISO 9613-2 vom Oktober 1999

10 Anlagen zum Geräuschimmissionsgutachten 6 WEA in

Weibern

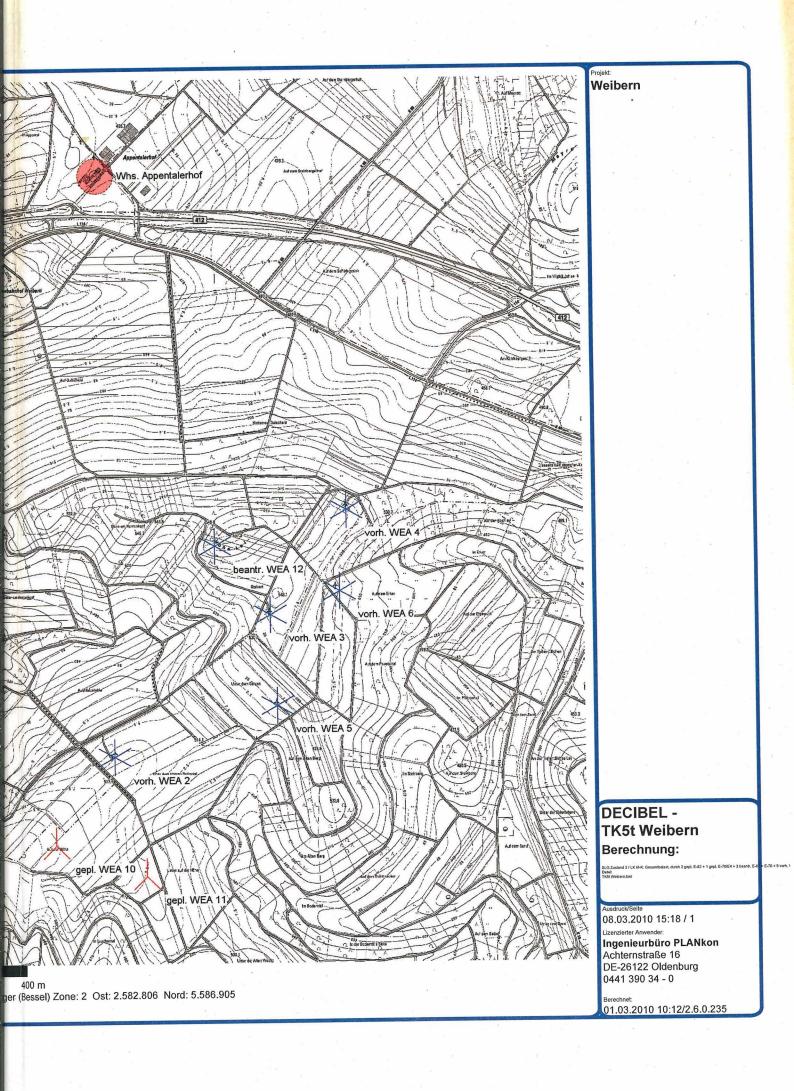
- 1 Blatt Übersichtskarte
- 4 Blatt Lageplan Nord und Süd

Zustand 1

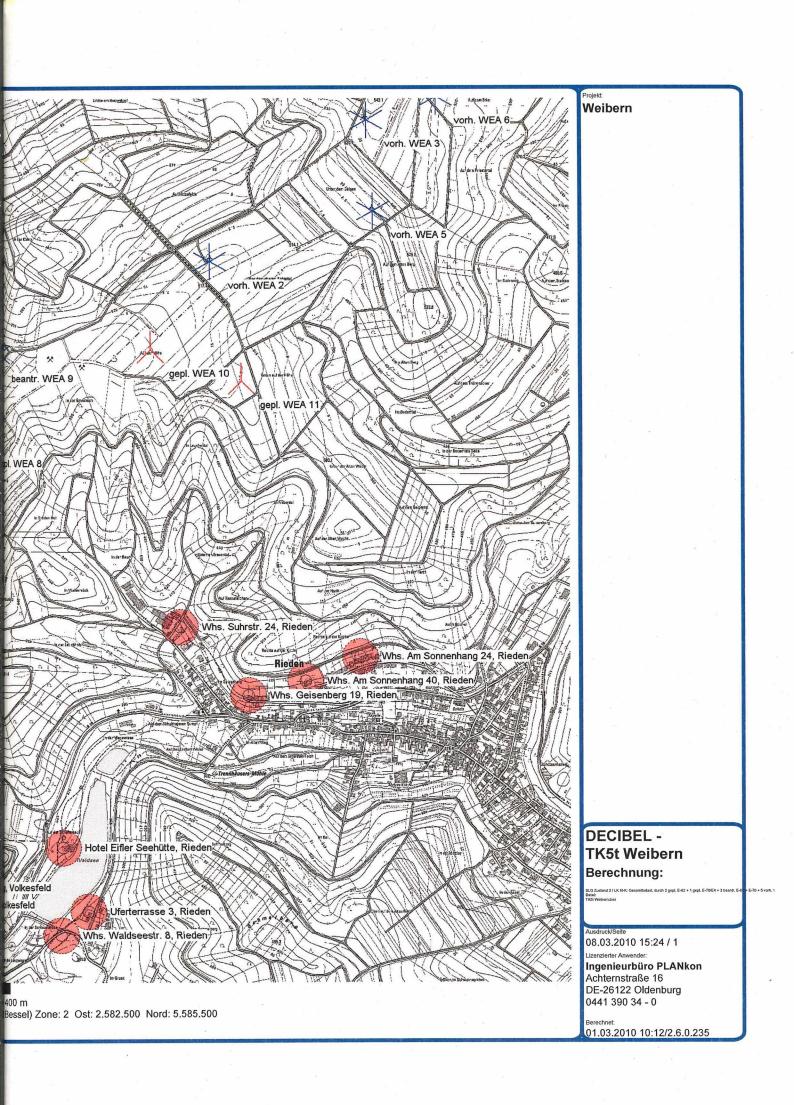

- 8 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl.
 4 Blatt Isophondarstellungen 11 WEA (Vorbelastung)
- 7 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl.
 5 Blatt Isophondarstellungen gepl. WEA 14 (Zusatzbelastung)
- 9 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl.
 5 Blatt Isophondarstellungen 12 WEA (Gesamtbelastung)
- 4 Blatt tabellarische Pegeladditionen der Vor- und Gesamtbelastung aus WEA und Gewerbe Wolfcraft für die IPs P, Q, R und S

Zustand 2

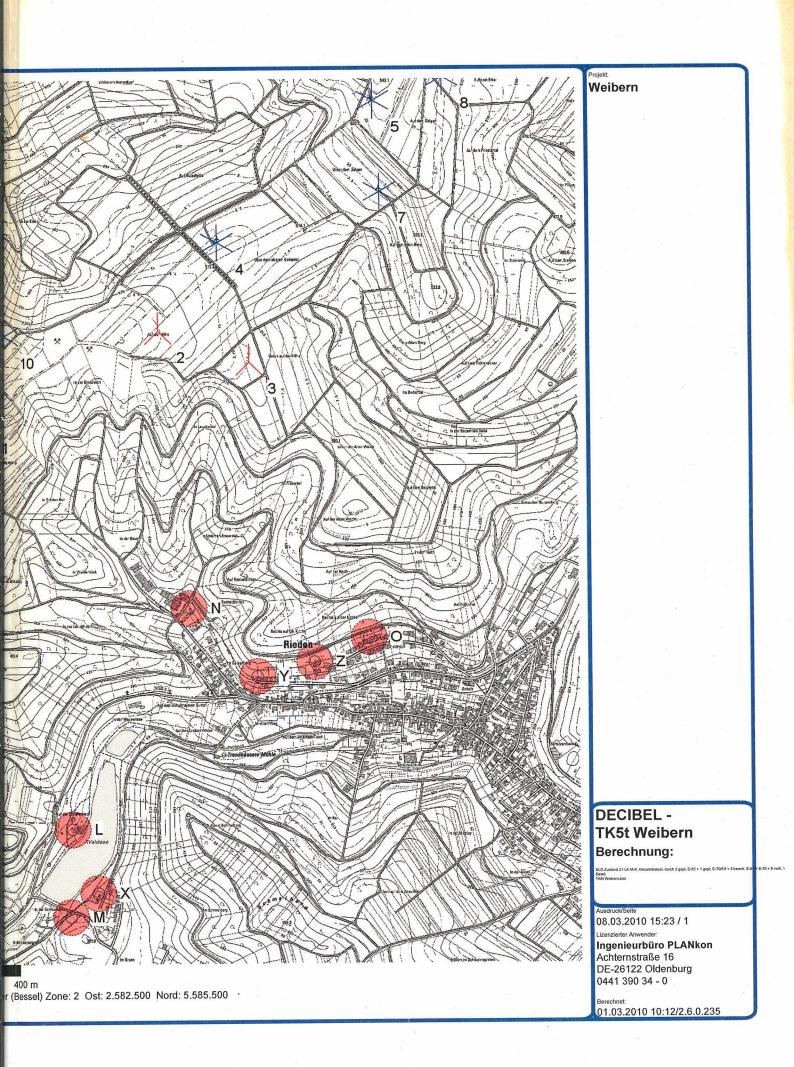
- 9 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl.
 5 Blatt Isophondarstellungen 12 WEA (Vorbelastung)
- 7 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl.
 4 Blatt Isophondarstellung gepl. WEA 17 (Zusatzbelastung)
- 10 Blatt Berechnungsprotokolle inkl. Eingabedaten und detaillierten Ergebnissen zzgl.
 5 Blatt Isophondarstellungen 13 WEA (Gesamtbelastung)
- 4 Blatt tabellarische Pegeladditionen der Gesamtbelastung aus WEA und Gewerbe Wolfcraft für die IPs P, Q, R und S (tabellarische Addition der Vorbelastung kann der Addition der Gesamtbelastung des Zustandes 1 entnommen werden)
- 2 Blatt schalltechnischer Messbericht für geplante WEA Enercon E-82-WEA im Volllastbetrieb: Zusammenfassung von 3 Messungen von der Fa. Kötter, Bericht Nr. 207542-02.02 vom 18.09.2008
- 1 Blatt Auszug aus dem Prüfbericht Nr. M68 330/1 vom 27.04.2007 für geplante Enercon E-82-WEA, reduzierter nächtlicher Betrieb auf Nennleistung von 1.000 kW
- 4 Blatt Auszüge aus den Prüfberichten von Windconsult (WICO 141SE707/02, WICO 314SEA05/01) vom 24.01.2008 und 21.11.2005 sowie Auszug aus dem Prüfbericht von Busch Nr. 135208gs01 vom 22.06.2009 für die beantragten Windenergieanlagen


Enercon E-70/E4 im Volllastbetrieb von 2.300 kW inkl. tabellarischer Unsicherheitenermittlung

- 2 Blatt Auszug aus dem schalltechnischen Messbericht für die vorh. WEA Vestas V47: Fa. WINDTEST, Bericht Nr. WT 802/98 von Januar 1998; ebenso 2 Blatt des ersten Nachtrags zum Prüfbericht von WINDTEST Nr. WT 802/98 vom 11.02.2005
- 9 Blatt Auszug aus Messbericht vom schalltechnischen Ingenieurbüro P. Pies vom 17.12.2009



© Copyright: siehe Hinweis auf dem verwendeten Datenträger - Seite (1,1) TÜK 1:200000 Rheinland-Plalz/Saarland



^{Projekt:} Weibern

Ausdruck/Seite 08.03.2010 10:49 / 1 Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:45/2.6.0.235

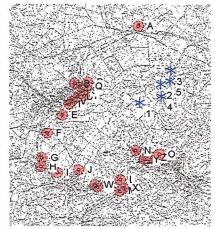
DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000 * Existierende WEA Schall-Immissionsort

WEA

	GK (Bessel) Zone: 2				WEA-1						Schall				
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Generatortyp	Nenn-	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
				-				leistung					•	the chart of the first	töne
	GK (Bessel) Zone: 2		[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
1	2,583,217	5.586.188	515,0	vorh. WEA 2	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB
2	2.583.645	5.586.574	536,3	3 vorh. WEA 3	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB
3	2.583.855	5.586.860	536,8	3 vorh. WEA 4	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB
4	2.583.661	5.586.325	524,4	vorh. WEA 5	Ja	VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB
5	2 583 835	5 586 638	530 1	vorh WEA6	Ja	VESTAS	V47-660/200	660	47.0	65.0	LISER	WL 803/08	10.0	1053	0 dB

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
			[m]	[m]	[dB(A)]	[dB(A)]	
A Whs. Appentalerhof	2.583.186	5.587.779	468,6	5,0	45,0	35,2	Ja
B Whs. Winkelweg 10, Weibern	2.581.879	5.586.583	427,5	5,0	40,0	32,0	Ja
C Whs. Waldstr. 2, Weibern	2.582.057	5.586.291	437,2	5,0	45,0	32,8	Ja
D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5,0	45,0	30,9	Ja
E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0	45,0	29,4	Ja
F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585.546	415,7	5,0	45,0	27,0	Ja
G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5,0	45,0	25,3	Ja
H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0	24,7	Ja
I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0	25,7	Ja
J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448,7	5,0	40,0	27,6	Ja
K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584.430	427,8	5,0	40,0	27,8	Ja
L Hotel Eifler Seehütte, Rieden	2.582.814	5.584.586	377,5	5,0	40,0	29,8	Ja
M Whs. Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	28,5	Ja
N Whs. Suhrstr. 24, Rieden	2.583.134	5.585.188	400,0	7,5	45,0	34,7	Ja
O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585.107	414,6	7,5	40,0	34,0	Ja
P Whs. Bahnhofstr. 111, Weibern	2.582.149	5.586.612	427,3	5,0	45,0	33,8	Ja
Q Whs. Löhstr. 5, Weibern	2.582.117	5.586.518	420,0	5,0	45,0	33,8	Ja
R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3	5,0	45,0	33,3	Ja
S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420,0	5,0	40,0	32,7	Ja
T Whs. Tannenweg 6, Weibern	2.582.071	5.586.322	429,1	5,0	40,0	32,9	Ja
U Whs. Konnstr. 25, Weibern	2.581.935	5.586.303	420,0	5,0	40,0	31,9	Ja
V Whs. Buchenweg 1, Weibern	2.581.812	5.586.207	415,6	5,0	40,0	31,1	Ja
W Baugrundstück Am Hang, Volkesfeld	2.582.296	5.584.477	437,8	5,0	40,0	27,5	Ja
X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0	5,0	40,0	29,1	Ja
Y Whs. Geisenberg 19, Rieden	2.583.318	5.585.001	398,6	7,5	40,0	33,1	Ja
Z Whs. Am Sonnenhang 40, Rieden	2.583.474	5.585.041	410,9	7,5	40,0	33,5	Ja
- "							

^{Projekt:} Weibern

Ausdruck/Seite

08.03.2010 10:49 / 2

Lizenzlierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16

DE-26122 Oldenburg

0441 390 34 - 0

Berechnet: 01.03.2010 09:45/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47

Abstände (m)

	WEA					
Schall-Immissionsort	1	2	3	4	5	
Α	1590	1289	1136	1529	1313	
В	1395	1766	1996	1801	1957	
С	1165	1613	1886	1605	1812	
D	1456	1930	2210	1907	2129	
E	1621	2130	2427	2083	2331	
F	2017	2556	2869	2481	2755	
G	2325	2891	3224	2781	3086	
H	2437	3008	3346	2886	3200	
1	2239	2815	3163	2672	3001	
J	1893	2466	2819	2304	2645	
K	1962	2507	2861	2307	2663	
L	1653	2156	2502	1935	2292	
M	1887	2380	2724	2155	2511	
N	1004	1477	1821	1253	1610	
0	1155	1467	1769	1219	1545	
Р	1149	1497	1724	1539	1686	
Q	1149	1530	1772	1556	1723	
R	1145	1543	1794	1562	1738	
S	1195	1606	1860	1618	1801	
Т	1154	1595	1864	1591	1793	
U	1287	1732	1999	1726	1929	
V	1405	1869	2145	1853	2068	
W	1943	2493	2848	2297	2653	
X	1809	2294	2636	2067	2422	
Y	1192	1607	1935	1368	1717	
Z	1176	1543	1859	1298	1637	

08.03.2010 10:49 / 3 Lizenzierter Anwender. Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 09:45/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	5250				95% der Ne	ennleistuu	na							
Nr.	Abstand	Schallweg	Mittlere Höhe		Berechnet			Adiv	Aatm	۸۵۲	^ hor	A!		
	[m]	[m]	[m]	-11 YE MARKET AND	[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]		Amisc		Cmet
1	1.590	1.595	29.8	Nein	25,43	105,3					[dB]	[dB]	[dB]	[dB]
2	1.289	1.296	33,1	Ja	28.68	105,5	3,01	73,05	3,03	4,80	0,00	0,00	82,88	
3	1.136	1,144	44.4	Ja	30.50	105,3	3,01	73,23	2,46	3,92	0,00	0,00	79,63	_,
4	1.529	1.534	23.3	Nein	25.88	105,3	3,01	72,17	2,17	3,46	0,00	510.00.00.00.00.00	77,81	0,00
5	1.313	1.319	32.2	17.000	10000000	105,3						0,00	82,43	0,00
		1.010	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79,87	0.00

Summe 35,18

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

VVE	А				95% der Ne	ennleistur	na							
Nr.	Abstand	Schallweg	Mittlere Höhe		Berechnet			Adiv	Aatm	Aar	Abor	Λ mai = =		
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	Amisc [dB]	05/050	Cmet
1	1.395	1.403	49,1	Ja		105,3						0.00	[dB] 80.20	[dB] 0.00
2	1.766	1.774	42,9	Nein	24,16	105,3	3.01	75.98	3.37	4 80	0,00		84.15	. ,
3	1.996	2.003	17,4	Nein	22,67	105,3	3.01	77.03	3.81	4 80	0,00	0,00	85.64	0.00
4	1.801	1.808	42,1	Ja	24,73								83.58	0.00
5	1.957	1.964	29,9	Nein	22,92	105,3				4 80	0.00	-,	85,39	
						,		-,00	-,. 0	.,50	0,00	0,00	05,59	0,00

Summe 32,00

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

				,									
-				95% der Ne	ennleistur	าต							
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA ref	Dc	Adiv	Aatm	Agr	Abor	ممنمه	^	0
[m]	[m]	[m]		[dB(A)]					-				Cmet [dB]
1.165	1.174	31,7	Nein	28.89							0.00		
1.613	1.622	47,8	Nein	25,23	105.3	3.01	75.20	3.08	4.80	0,00			-,
	1.894	32,7	Nein	23,37									-,
	1.612	29,2	Nein	25,30								200,000,000	0.00
1.812	1.819	37,9	Nein	23,86	105,3	3,01	76,20					1 - 1	-,
	[m] 1.165	Abstand Schallweg [m] [m] 1.165 1.174 1.613 1.622 1.886 1.894 1.605 1.612	Abstand [m] Schallweg [m] Mittlere Höhe [m] 1.165 1.174 31,7 1.613 1.622 47,8 1.886 1.894 32,7 1.605 1.612 29,2	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [m] Sichtbar [m] 1.165 1.174 31,7 Nein 1.613 1.622 47,8 Nein 1.886 1.894 32,7 Nein 1.605 1.612 29,2 Nein	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet [m] [m] [m] [dB(A)] 1.165 1.174 31,7 Nein 28,89 1.613 1.622 47,8 Nein 25,23 1.886 1.894 32,7 Nein 23,37 1.605 1.612 29,2 Nein 25,30	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] 1.165 1.174 31,7 Nein 28,89 105,3 1.613 1.622 47,8 Nein 25,23 105,3 1.886 1.894 32,7 Nein 23,37 105,3 1.605 1.612 29,2 Nein 25,30 105,3	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] [dB(A)] <t< th=""><th>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB(A)] 1.165 1.174 31,7 Nein 28,89 105,3 3,01 72,39 1.613 1.622 47,8 Nein 25,23 105,3 3,01 75,20 1.886 1.894 32,7 Nein 23,37 105,3 3,01 75,55 1.605 1.612 29,2 Nein 25,30 105,3 3,01 75,15</th><th>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(B)] Adiv [dB] Aatm 1.165 1.174 31,7 Nein 28,89 105,3 3,01 72,39 2,23 3,01 72,39 2,23 1.613 1.622 47,8 Nein 25,23 105,3 3,01 75,20 3,08 1.886 1,894 32,7 Nein 23,37 105,3 3,01 76,55 3,60 3,60 76,55 3,60 1.605 1.612 29,2 Nein 25,30 105,3 3,01 75,15 3,06</th><th>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [M] LwA,ref [M] Dc [M] Adiv [M] Aatm [M] Agr [M] 1.165 1.174 31,7 Nein [M] 28,89 105,3 (M) 3,01 (M) 72,39 (M) 2,23 (M) 4,80 (M) 1.886 1.894 32,7 (M) Nein (M) 23,37 (M) 105,3 (M) 3,01 (M) 75,20 (M) 3,60 (M) 4,80 (M) 1.812 1.810 27,0 (M) Nein (M) 25,30 (M) 105,3 (M) 3,01 (M) 75,15 (M) 3,06 (M) 4,80 (M)</th><th>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [M] LwA,ref [M] Dc [M] Adiv [M] Aatm [M] Agr [M] Abar [M] 1.165 1.174 31,7 Nein [M] 28,89 105,3 (3),1 (72,39) 2,23 (4,80) 0,00 1.886 1.894 32,7 Nein [M] 23,37 105,3 (3),1 (75,20) 3,60 (4,80) 0,00 1.812 1.810 29,2 (Nein [25,30] 105,3 (3),1 (75,15) 3,06 (4,80) 0,00</th><th>Abstand [m] [m] [m] [m] [m] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB</th><th>Abstand [m] [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB</th></t<>	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv [dB(A)] 1.165 1.174 31,7 Nein 28,89 105,3 3,01 72,39 1.613 1.622 47,8 Nein 25,23 105,3 3,01 75,20 1.886 1.894 32,7 Nein 23,37 105,3 3,01 75,55 1.605 1.612 29,2 Nein 25,30 105,3 3,01 75,15	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(B)] Adiv [dB] Aatm 1.165 1.174 31,7 Nein 28,89 105,3 3,01 72,39 2,23 3,01 72,39 2,23 1.613 1.622 47,8 Nein 25,23 105,3 3,01 75,20 3,08 1.886 1,894 32,7 Nein 23,37 105,3 3,01 76,55 3,60 3,60 76,55 3,60 1.605 1.612 29,2 Nein 25,30 105,3 3,01 75,15 3,06	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [M] LwA,ref [M] Dc [M] Adiv [M] Aatm [M] Agr [M] 1.165 1.174 31,7 Nein [M] 28,89 105,3 (M) 3,01 (M) 72,39 (M) 2,23 (M) 4,80 (M) 1.886 1.894 32,7 (M) Nein (M) 23,37 (M) 105,3 (M) 3,01 (M) 75,20 (M) 3,60 (M) 4,80 (M) 1.812 1.810 27,0 (M) Nein (M) 25,30 (M) 105,3 (M) 3,01 (M) 75,15 (M) 3,06 (M) 4,80 (M)	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] Berechnet [M] LwA,ref [M] Dc [M] Adiv [M] Aatm [M] Agr [M] Abar [M] 1.165 1.174 31,7 Nein [M] 28,89 105,3 (3),1 (72,39) 2,23 (4,80) 0,00 1.886 1.894 32,7 Nein [M] 23,37 105,3 (3),1 (75,20) 3,60 (4,80) 0,00 1.812 1.810 29,2 (Nein [25,30] 105,3 (3),1 (75,15) 3,06 (4,80) 0,00	Abstand [m] [m] [m] [m] [m] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand [m] [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB

Summe 32,80

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern WFA

WE					95% der Ne	ennleistuu	na							
Nr.	Abstand	Schallweg	Mittlere Höhe		Berechnet			Adiv	Aatm	Aar	Abor	Amisc	^	0
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]			Cmet
1	1.456	1.464	27,1	Nein	26.42	. , ,,		74.31				[dB]	[dB]	[dB]
2	1.930	1.938	47,1	Ja	23,91	105,3				3.07	0,00	0,00	81,89	
3	2.210	2.217	38,4	Ja				77.91			0.00	1000	84,40	
4	1.907	1.914	27,4	Nein	23,23			76,64	- 1 -			-,	86,33	0,00
5	2.129	2.136	38,5	Ja	22,48	105,3					0.00	3.5	85,08 85,83	0,00
						,0	0,01	, , , , , ,	4,00	4, 10	0,00	0,00	05,03	0,00

Projekt:

Weibern

Ausdruck/Seite

08.03.2010 10:49 / 4

Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet 01.03.2010 09:45/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

0-1						Control of the same				aphyr are	Park Tolk			
SCI	naii-imm	nssionso	rt: E Whs. K	(irchstr.	27. Weib	ern								
WE	Δ													
\$100 pt 100 pt 1			D 02710 9110 10		95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]				
1	1.621	1.627	18.3	Main							[dB]	[dB]	[dB]	[dB]
				Nein	25,19	105,3	3,01	75,23	3,09	4.80	0.00	0.00	83,12	0,00
2	2.130	2.136	38,0	Nein	21,86	105.3	3.01	77.59	4.06	4,80	0.00	400	86.45	0.00
3	2.427	2.432	40,8	Nein	20,17	105,3			,	4,80	0.00		,	2000 2000 2000
4	2.083	2.088	20,7			100000000000000000000000000000000000000	0.000		.,		,	0,00	88,14	0,00
			and the second s	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0.00	0.00	86.16	0.00
5	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00		87,61	0.00
Sur	nme 2	9,39							-			-,	.,	0,00

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

2020000					g. ana	o, vicio	CIII							
WE	-				95% der Ne	ennleistur	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.017	2.023	. 0,0	Nein	22,54	105,3	3,01	77,12	3,84	4.80	0.00	0.00	85,77	
2	2.556	2.563	, _	Nein	19,47			79,17			0,00			
3	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17				0.000	90.43	-,
4	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91					88,44	-,
5	2.755	2.761	14,7	Nein	18,44	105,3	3,01	79,82					89,87	0,00

Summe 26,96

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

ı		-				95% der Ne	ennleistur	าต							
	Nr.			Mittlere Höhe	Sichtbar	Berechnet			Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	2.325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43				87.58	
	2	2.891	2.897	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90.54	-1
1	3	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0.00	0.00	92.12	1
١	4	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0.00	0.00	89.99	-,
	5	3.086	3.091	7,6	Nein	16,84	105,3							91,47	0,00

Summe 25,26

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

WE	4				95% der Ne	ennleistur	าต							
Nr.	Abstand	Schallweg	Mittlere Höhe		Berechnet			Adiv	Aatm	Agr	Ahar	Amisc	Α	C4
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	Cmet
1	2.437	2.442	0,6	Nein	20,12	. , ,,		78,75			0.00		88.19	[dB] 0.00
2	3.008	3.013	10,3	Nein	17,20	105,3							91.11	0.00
3	3.346	3.351	11,7	Nein	15,64			81.50					92.67	-,
4	2.886	2.891	3,4	Nein	17,80	2000		80,22	-,		0,00		90.51	0.00
5	3.200	3.205	3,4	Nein	16,30	the second second	reaction and	81,12	00001100000		0.00		92.01	0.00
								,	-,00	.,00	0,00	0,00	02,01	0,00

Summe 24,69

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

				95% der Ne	ennleistur	าต							
Abstand	Schallweg	Mittlere Höhe					Adiv	Aatm	Aar	Ahar	Amisc	۸	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]			5				[dB]
	2.243	11,3	Nein	21,23	105,3	3,01					The second second		0.00
		19,6	Nein	18,15	105,3	3,01	80,00					,	
		17,1	Nein	16,49	105,3	3,01	81,01						-,
40.1 Sales and Co.		22,6	Nein	18,88	105,3	3,01	79,55					, , , , , , , , , , , , , , , , , , , ,	0.00
3.001	3.005	17,2	Nein	17,25	105,3	3,01	80,56			1			0,00
		[m] [m] 2.239 2.243 2.815 2.819 3.163 3.166 2.672 2.675	[m] [m] [m] 2.239 2.243 11,3 2.815 2.819 19,6 3.163 3.166 17,1 2.672 2.675 22,6	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [m] 2.239 2.243 11,3 Nein 2.815 2.819 19,6 Nein 3.163 3.166 17,1 Nein 2.672 2.675 22,6 Nein	bstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] 2.239 2.243 11,3 Nein 21,23 2.815 2.819 19,6 Nein 18,15 3.163 3.166 17,1 Nein 16,49 2.672 2.675 22,6 Nein 18,88	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] 2.239 2.243 11,3 Nein 21,23 105,3 2.815 2.819 19,6 Nein 18,15 105,3 3.163 3.166 17,1 Nein 16,49 105,3 2.672 2.675 22,6 Nein 18,88 105,3	[m] [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] 2.239 2.243 11,3 Nein 21,23 105,3 3,01 2.815 2.819 19,6 Nein 18,15 105,3 3,01 3.163 3.166 17,1 Nein 16,49 105,3 3,01 2.672 2.675 22,6 Nein 18,88 105,3 3,01	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 2.239 2.243 11,3 Nein 21,23 105,3 3,01 78,01 2.815 2.819 19,6 Nein 18,15 105,3 3,01 80,00 3.163 3.166 17,1 Nein 16,49 105,3 3,01 81,01 2.672 2.675 22,6 Nein 18,88 105,3 3,01 79,55	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] 2.239 2.243 11,3 Nein 21,23 105,3 3,01 78,01 4,26 2.815 2.819 19,6 Nein 18,15 105,3 3,01 80,00 5,36 3.163 3.166 17,1 Nein 16,49 105,3 3,01 81,01 6,02 2.672 2.675 22,6 Nein 18,88 105,3 3,01 79,55 5,08	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Adm [dB] [dB]	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Adm [dB	bstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc Amisc	bstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Amisc [dB] Amisc [dB] [dB]

Summe 25,72

Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 09:45/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

13-2 Deutschland 10,0 m/s

			ilierte ⊨rg											
Be	rechnun	g: SLG Z	Zustand 1 / L	K AW: \	/orbelastu	ing durch	1 5x \	V 47	Schal	lbere	echni	unas-l	Vlodeli	: ISO 961
Scl	hall-Imm	nissionso	rt: J Baugrı	ındstüc	k Sonner	winkel	Volk	esfalc	1			3- 1		100 301
WE	A				95% der N	annlaietu	na	CSICIO	4					
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	I wA ref	ng Dc	Adiv	Aatm	Aar	۸hor	Amisc		0
	[m]	[m]	[m]		[dB(A)]	[dB(A)]			[dB]	[dB]		[dB]	A [dB]	Cmet
1	1.893	1.897	17,0	Nein				76,56		4,80			84,96	[dB] 0.00
2	2.466	2.471	25,6	Nein	19,96	105,3	3,01	78,86		4,80			88,35	
3	2.819	2.823	1-		18,13			80,01		4,80			90,18	
4	2.304	2.308	,-		20,86	105,3	3,01	78,26		4,80		300	87,45	
5	2.645	2.648	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00	0,00	89,29	0,00
Sur	mme 2	7,65												
Sch	nall-lmm	issionso	rt: K Whs. S	eeblick	1, Volkes	sfeld								
WEA	X				95% der N		na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA ref	Dc	Adiv	Aatm	Aar	Abor	Amisc	۸	C
	[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]	[dB]	[dB]	[dB]	A [dB]	Cmet
1	1.962	1.968	43,2	Nein				76,88		4,80			85,42	[dB] 0,00
2	2.507	2.513	44,6	Ja	2 7 50 00			79,00		4,19			87,97	0,00
3	2.861	2.866	38,0	Ja		105,3	3.01	80,15		4,35			89,94	0,00
4	2.307	2.313	51,3	Ja	21,59			78,28		4,04		,	86,72	0,00
5	2.663	2.668	43,1	Ja		105,3	3,01	79,52	5,07	4,25	0,00	-,	88,84	0,00
Sun	nme 2	7,81											U	33 1 45.35
Sch	all-lmm	issionsor	t: L Hotel E	ifler See	ehütte. Ri	eden								
WEA					95% der Ne		10							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	I wA ref	Dc Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Const
	[m]	[m]	[m]		[dB(A)]		[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	Cmet
1	1.653	1.665	31,6	Ja	25,57	105,3		75.43	3,16				82,74	[dB] 0,00
2	2.156	2.167	32,7	Nein	21,67	105,3	3.01		4,12		0,00		86,64	0,00
3	2.502	2.512	21,9	Nein	19,74	105,3			4,77		0,00		88,57	0,00
4	1.935	1.947	36,7	Ja	23,67	105,3			3,70				84,64	0,00
5	2.292	2.303	26,8	Nein	20,89	105,3		78,25	4,38				87,42	0.00
Sum	nme 29	9,81										2.1.000		-1
Sch	all-lmmi	ssionsor	t: M Whs. W	laldsees	str 8 Rie	den								
WEA							_							
		Schallweg	Mittlere Höhe	Sichthar	95% der Ne	lwa rof	g	۸ ما:	A - 4			•		_

WE	4				95% der Ne	ennleistur	าต							
Nr.	Abstand	Schallweg	Mittlere Höhe					Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	40000	
1	1.887	1.899	38,1	Ja	24,02			76.57	3,61				[dB]	[dB]
2	2.380	2.392	37,2	Ja	20,92	105,3							84,29	0,00
3	2.724	2.734	26,6	Nein	18,58		confident va	79,74			0,00		87,39	0,00
4	2.155	2.167	40.8	Ja	22.32			,	-, -		0,00	-00 F100 F100	89,73	0,00
5	2.511	2.522	31.2	Nein		57700 TO 10	po ence in	77,72			0,00	400	85,99	0,00
Ŭ	2.011	2.022	31,2	ivein	19,68	105,3	3,01	79,03	4,79	4,80	0,00	0,00	88,63	0,00
Sur	nme 2	8,52												

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

VVE/	-				95% der Ne	ennleistur	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.004	1.018	23,5	Ja	31,21	105,3	3,01	71,16						0.00
2		1.490	15,0	Nein	26,21	105,3	3,01	74,46					82.09	
3	1.821	1.831	7,3	Nein	23,77			76,26					84,54	-,
4	1.253	1.267	19,5	Nein	28,05			73,05				- A -	80.26	0.00
5	1.610	1.621	11,5	Nein	25,23			75,20					83,08	0,00
Sur	nme 3	4,70											0.00	100 M CO TO

08.03.2010 10:49 / 6 Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 09:45/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

			The second second second		STATE OF THE PARTY	THE RESERVE AND ADDRESS OF THE PARTY.						90	···	. 100 3
Scl	nall-lmm	nissionso	rt: O Whs. A	m Sonr	nenhang	24. Ried	en							
WE	4				95% der Ne	ennleistur								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Const
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	Cmet [dB]
1	1.155	11.00	-, .	Nein	28,96	. ,,,		72,33					79.35	0.00
2	1.467	1.478	,-	Nein	26,30			74,40				2000	82,00	
3	1.769	1.778	٠, .	Nein	24,13	105,3	3,01	76,00				-,	84,17	0.00
4	1.219	1.230		Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00		79,94	0.00
5	1.545	1.555	10,0	Nein	25,72	105,3	3,01	74,84	2,95	4,80	0,00		82,59	0.00

Summe 34,04

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

100000000000000000000000000000000000000	· ·				95% der Ne	ennieistui	าต							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]			[dB]			[dB]	[dB]	[dB]
1	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28					78,16	
2	1.497	1.506	30,8	Nein	26,09			74,56					82,22	
3	1.724	1.733	6,1	Nein	24,44			75,77					83.87	
4	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	
5	1.686	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00

Summe 33,79

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

				95% der Ne	ennieistui	าต							
	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Ahar	Amisc	Δ	Cmet
	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]					. 3.3	[dB]
	1940, 1943 FB	37,9		30,15	105,3	3,01	72,28						
			Nein	25,84								2 100	-,
	240	,	Nein	24,11								84.20	
			Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81.95	
1.723	1./31	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,85	
	Abstand [m] 1.149 1.530 1.772 1.556 1.723	[m] [m] 1.149 1.159 1.530 1.540 1.772 1.781 1.556 1.565	[m] [m] [m] 1.149 1.159 37,9 1.530 1.540 39,0 1.772 1.781 12,3 1.556 1.565 32,4	[m] [m] [m] 1.149 1.159 37,9 Ja 1.530 1.540 39,0 Nein 1.772 1.781 12,3 Nein 1.556 1.565 32,4 Ja	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] 1.149 1.159 37,9 Ja 30,15 1.530 1.540 39,0 Nein 25,84 1.772 1.781 12,3 Nein 24,11 1.556 1.565 32,4 Ja 26,36	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] 1.149 1.159 37,9 Ja 30,15 105,3 1.530 1.540 39,0 Nein 25,84 105,3 1.772 1.781 12,3 Nein 24,11 105,3 1.556 1.565 32,4 Ja 26,36 105,3	[m] [m] [m] [dB(A)] [dB(A)] [dB] 1.149 1.159 37,9 Ja 30,15 105,3 3,01 1.530 1.540 39,0 Nein 25,84 105,3 3,01 1.772 1.781 12,3 Nein 24,11 105,3 3,01 1.556 1.565 32,4 Ja 26,36 105,3 3,01	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.149 1.159 37,9 Ja 30,15 105,3 3,01 72,28 1.530 1.540 39,0 Nein 25,84 105,3 3,01 74,75 1.772 1.781 12,3 Nein 24,11 105,3 3,01 76,01 1.556 1.565 32,4 Ja 26,36 105,3 3,01 74,89	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Adm 1.149 1.159 37,9 Ja 30,15 105,3 3,01 72,28 2,20 1.530 1.540 39,0 Nein 25,84 105,3 3,01 74,75 2,93 1.772 1.781 12,3 Nein 24,11 105,3 3,01 76,01 3,38 1.556 1.565 32,4 Ja 26,36 105,3 3,01 74,89 2,97	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] [dB]<	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] Abar [dB] [dB]	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Amisc [dB] [dB] <th< td=""><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] Amisc [</td></th<>	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] Amisc [

OFO/ dos Nos

Summe 33,78

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WE					95% der Ne	ennleistur	าต							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Δar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.145		39,1	Nein	29,06	105,3							79.24	0.00
2	1.543	1.553	44,0	Ja	26,71	105,3	3,01	74,82					81.60	
3	1.794	1.802	20,2	Nein	23,97			76,12				3000000	84.34	0.00
4	1.562	1.570	35,4	Nein	25,61			74,92				-,	82.70	0.00
5	1.738	1.746	32,3	Nein	24,35			75,84	,			-1	83,96	0,00

Summe

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

VVE/	A				95% der Ne	ennleistur	าต							
Nr.	Abstand	Schallweg	Mittlere Höhe		Berechnet		Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62					79.71	0.00
2	1.606	1.615	43,0	Nein	25,28	105,3	3,01	75,16					83,03	- 1
3	1.860	1.869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00		84.78	0.00
4	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	2000	83.11	0.00
5	1.801	1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00
Sur	nme 3	2,71												

Projekt:

Weibern

Ausdruck/Seite

08.03.2010 10:49 / 7

Lizenzierter Anwender:

Ingenieurbüro PLANkon

Achternstraße 16

DE-26122 Oldenburg

0441 390 34 - 0

Berechnet:

01.03.2010 09:45/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Scl	nall-Imm	issionso	rt: T Whs. T	annenw	eg 6, Wei	bern		njul si selisite						
WE					95% der Ne	ennleistur	ng							
Nr.			Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0.00
2	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82.95	0.00
3	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0.00	84.80	0.00
4	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0.00
5	1.793	1.800	37,6	Nein	23,99	105,3	3,01	76,10	3,42	4,80	0,00	0,00	84,32	0,00

Summe 32,91

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

AAE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0.00	80,52	0.00
2	1.732	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00		manual Parmer	,
3	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0.00	85.67	0.00
4	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0.00	83.88	0.00
5	1.929	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00		85,22	

Summe 31,88

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

AAL					95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
1	1.405	1.414	,-	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0.00	81.50	0.00
2	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0.00	84.01	0.00
3	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0.00	86.55	0.00
4	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0.00	0.00	84.73	
5	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00		86,09	

Summe 31,12

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld WEA

130107					20 % GCI 146	illieistui	ıy							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70				85.29	
2	2.493	2.498	45,4	Nein	19,81	105,3	3,01	78,95					88.50	-,
3	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80.10	5.42	4.80	0.00	120,000	90.32	
4	2.297	2.302	50,3	Nein	20,89	105,3	3,01	78,24			0.00	-,	87.42	0.00
5	2.653	2.657	42,5	Nein	18,97			79,49			0,00	DOMESTICATION OF THE PARTY OF T	89.34	0.00
													7.717.0	-,

Summe 27,49

Schall-Immissionsort: X Uferterrasse 3, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe				Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0.00		83.71	
2	2.294	2.305	35,6	Ja	21,40	105,3	3,01	78,25	4,38	4,27	0.00		86.91	0.00
3	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45					89.28	0.00
4	2.067	2.078	39,6	Ja	22,86								85,45	0.00
5	2.422	2.432	30,4	Nein	20,17	105,3	3,01	78,72			0,00		88.14	0.00

Summe 29,05

_{Projekt} Weibern

08.03.2010 10:49 / 8 Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:45/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Schallberechnungs-Modell: ISO 9613-2 Deutschland 10,0 m/s

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

VV E	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0.00	79.70	
2	1.607	1.619	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83.06	0.00
3	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0.00
4	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
5	1.717	1.727	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0,00

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.176	1.187	11,2	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79.55	
2	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82.58	0.00
3	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0.00
4	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0.00	80.63	0.00
5	1.637	1.647	9,3	Nein	25,05	105,3	3,01	75,33	3,13	4,80	0,00	0,00	83,26	0,00

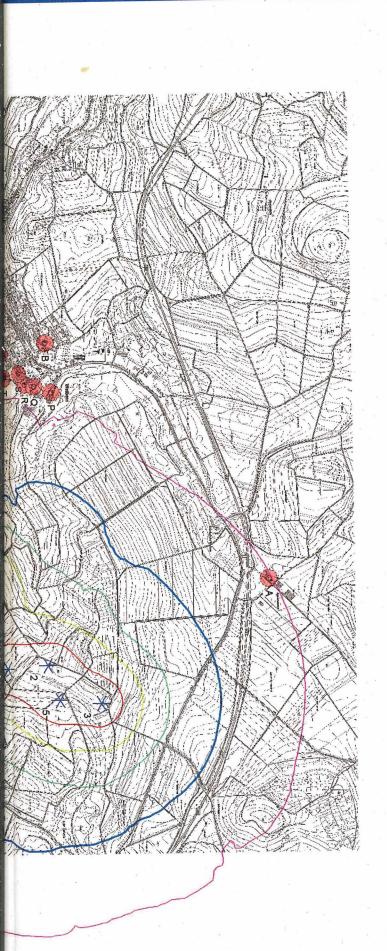
Summe 33,53

Summe

33,12

35,0 dB(A)

35,0 dB(A)


WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

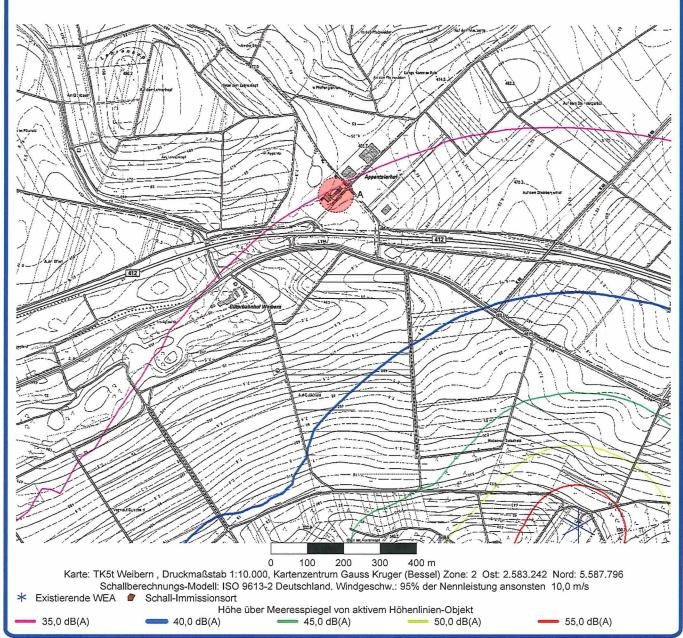
Berechnet: 01.03.2010 09:45/2.6.0.235

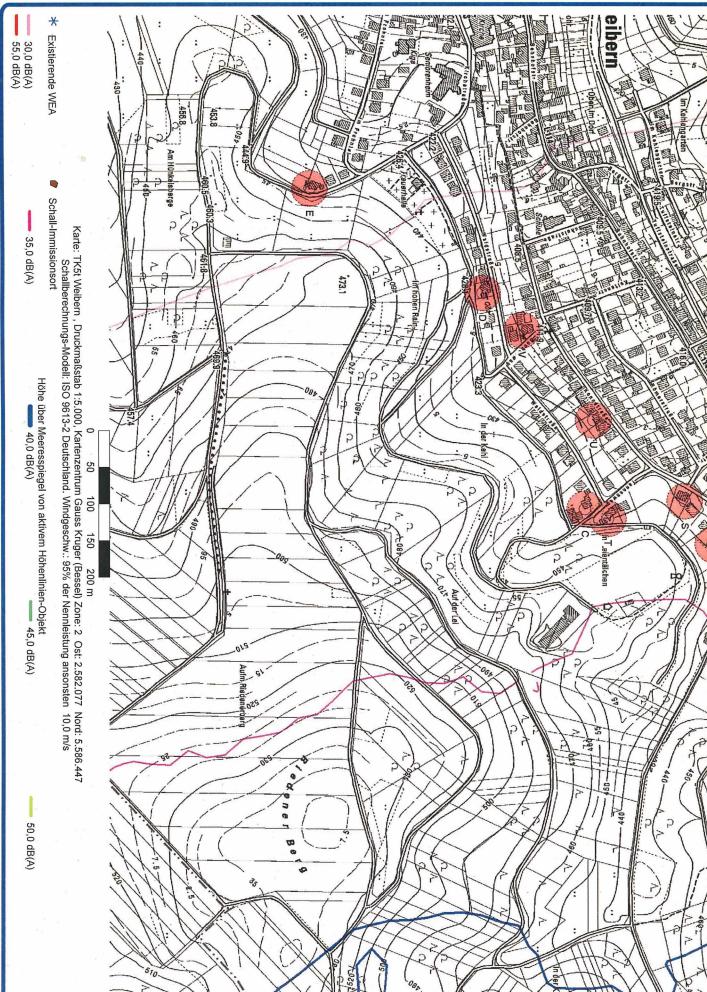
DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Datei: TK5t Weibern.bmi

WindPRO version 2.6.0.235 Aug 2008

^{Projekt:} **Weibern**

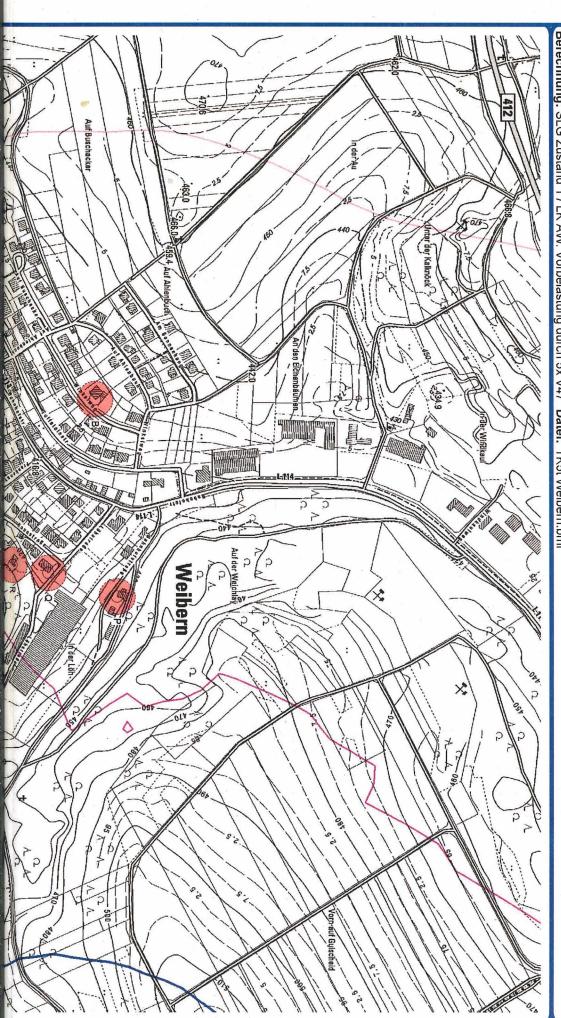

08.03.2010 11:26 / 1

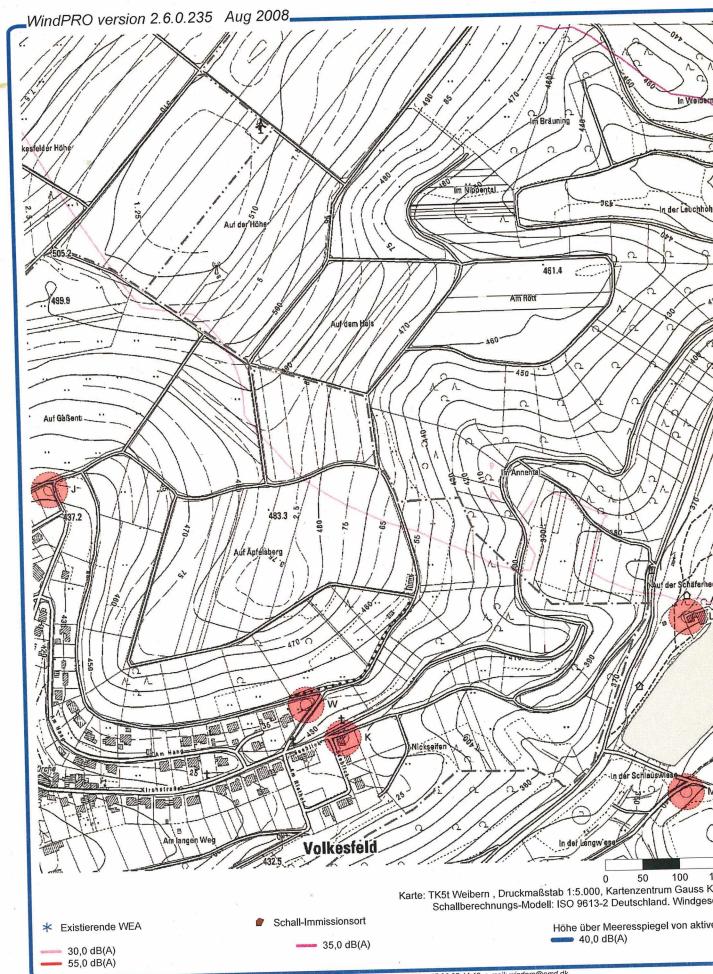

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

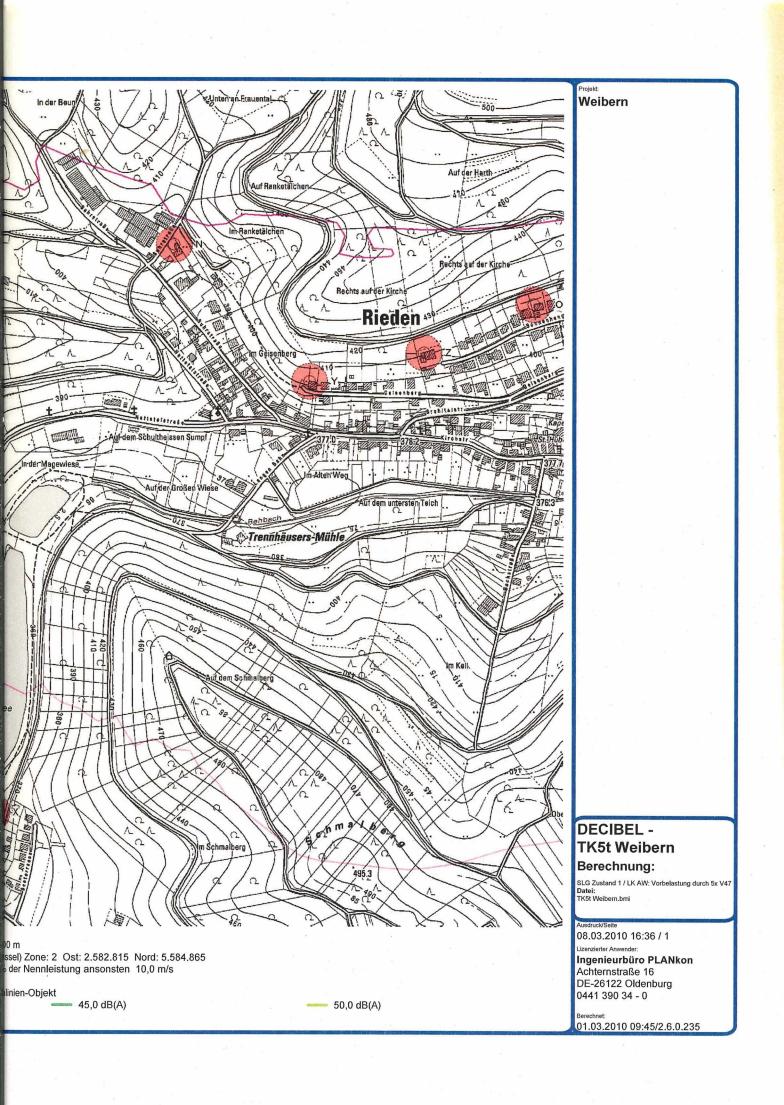
Berechnet: 01.03.2010 09:45/2.6.0.235

DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Datei: TK5t Weibern.bmi


Ausdruck/Seite 08.03.2010 16:39 / 1


Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0


01.03.2010 09:45/2.6.0.235

DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 1 / LK AW: Vorbelastung durch 5x V47 Datei: TK5t Weibern.bmi

08.03.2010 10:56 / 1

Lizenzierter Anwend Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:46/2.6.0.235

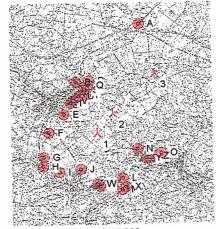
DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000 Schall-Immissionsort

WEA

١	WEA										C-b-II				
	GK (Bessel) Zone: 2 Ost	Nord	Z Beschre		WEA-Ty Aktuell F		Generatortyp		Rotordurchmesser	Nabenhöhe	Schally Quelle		Windgeschw.	LwA,ref	Einzel- töne
	GK (Bessel) Zone: 2 1 2.582.301 5 2 2.582.621 5	5.585.538 5.585.936	[m] 515,8 gepl. Wi 533,7 gepl. Wi 550,0 gepl. Wi	EA 9	Ja E	ENERCON	E-82-2.000 E-82-2.000 E-70 E4 2,3 MW-2.300	leistung [kW] 2.000 2.000 2.300	[m] 82,0 82,0 71,0	108.4	USER	red. 1000kW + Sicherheit 2,6 S-A red. 1000kW + Sicherheit 2,6 S-A Volllast 104,2 + Sicherheit 2,0 S-A	10,0	101,3	0 dB

Berechnungsergebnisse

Beurteilungspegel

Beurteilungspegel		andre -		Amfordorungon	Rourtailungsnegel	Anforderungen erfüllt?
Schall-Immissionsort	GK (Bessel) Zoi	ne: 2	Aufpunkthöhe	Schall	Von WEA	Schall
Nr. Name	Ost No			[dB(A)]	[dB(A)]	
		[m]	[m] 5,0	45,0		Ja
A Whs. Appentalerhof	2.583.186 5.58	87.779 468,6	5,0	40,0		Ja
B Whs. Winkelweg 10, Weiberr	2.581.879 5.58		5,0	45,0		Ja
C Whs. Waldstr. 2, Weibern	2.582.057 5.58	86.291 437,2	5,0	45,0		Ja
D Whs. Waldstr. 32, Weibern	2.581.761 5.58	86.154 431,0	5,0	45,0	* STATE	Ja
E Whs. Kirchstr. 27, Weibern	2.581.618 5.58		5,0	45,0		Ja
F Whs. Im Wiesengrund 13, W	eibern 2.581.306 5.58	85.546 415,7	5,0	45,0		Ja
G Whs. Dorfstr. 10, Wabern	2.581.198 5.58	85.035 422,1	5,0	40,0		Ja
H Whs. Heideweg 6a, Wabern	2.581.182 5.58	84.848 422,6	5,0	45,0		Ja
I Whs. Birkenhof, Volkesfeld	2.581.520 5.58	84.728 460,0	5,0			Ja
J Baugrundstück Sonnenwinke	el, Volkesfeld 2.581.953 5.58		5,0	40,0		Ja
K Whs. Seeblick 1, Volkesfeld	2.582.345 5.58		5,0			Ja
L Hotel Eifler Seehütte, Rieder			5,0			Ja
M Whs. Waldseestr. 8, Rieden	2.582.807 5.58	84.347 368,2				Ja
N Whs. Suhrstr. 24, Rieden	2.583.134 5.5	85.188 400,0	7,5			Ja
O Whs. Am Sonnenhang 24, R	lieden 2.583.624 5.5		5,0	0.00		Ja
P Whs. Bahnhofstr. 111, Weib	em 2.582.149 5.5					Ja
Q Whs. Löhstr. 5, Weibern	2.582.117 5.5	86.518 420,0				Ja
R Whs. Löhstr. 6, Weibern	2.582.106 5.5	86.464 427,3				Ja
S Whs. Konnstr. 41, Weibern	2.582.046 5.5	86.426 420,0	5,0			Ja
T Whs. Tannenweg 6, Weiber	n 2.582.071 5.5			100	The state of the s	Ja
U Whs. Konnstr. 25, Weibern	2.581.935 5.5			•	7	Ja
V Whs. Buchenweg 1, Weiber	n 2.581.812 5.5					Ja
W Baugrundstück Am Hang, V	olkesfeld 2.582.296 5.5					Ja
X Uferterrasse 3, Rieden	2.582.882 5.5	584.411 370,0				Ja
Y Whs. Geisenberg 19, Riede		505.001 398,6				Ja
Z Whs. Am Sonnenhang 40, F	Rieden 2.583.474 5.5	585.041 410,9	7,5	, 40,		

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 17 vom 01. Juli 2006 (Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz. 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 141SE707/02 zur Schallemission der Windenergieanlage vom Typ ENERCON E-70 E4 2,3 MW

Allgemeine Angaben		Technische Daten (Herstelleranga	aben)
Anlagenhersteller:	ENERCON GmbH	Nennleistung (Generator):	2300 kW
	Dreekamp 5	Rotordurchmesser:	71 m
	D-26605 AURICH	Nabenhöhe über Grund:	64,00 m
Seriennummer:	78793	Turmbauart:	kon. Stahlrohrturm
WEA-Standort (ca.):	RW: 4442701 HW: 6040496	Leistungsregelung:	Pitch/Stall/Aktiv-Stall
Ergänzende Daten zum R	totor (Herstellerangaben)	Erg. Daten zu Getriebe und Gener	rator (Herstellerangaben)
Rotorblatthersteller:	ENERCON GmbH	Getriebehersteller:	entfällt
Typenbezeichnung Blatt:	70-4	Typenbezeichnung Getriebe:	entfällt
Blatteinstellwinkel:	Variabel	Generatorhersteller:	ENERCON GmbH
Rotorblattanzahl	3	Typenbezeichnung Generator:	E-70
Rotornenndrehzahl/-bere	ich: 6 - 21 U/min (Betrieb II)	Generatornenndrehzahl:	6 - 21 U/min (Betrieb II)

Leistungskurve: "Leistungskennlinie E-70 E4" (berechnete Kurve, Herstellerangabe)

				Refer	enzpunk	κt			lemissions rameter	-	Bem	erkuı	ngen
				disierte nwindigkeit n Höhe		Elektrisch Wirkleistur	-						
Schalleistu Pegel L _{WA,P}	ngs-		6 n 7 n 8 n 9 n 10 r	ns ⁻¹ ns ⁻¹ ns ⁻¹		663 kW 1056 kW 1536 kW 1938 kW 2165 kW		102,8 103,7	dB(A) dB(A)				
Tonzuschla den Nahbe K _{TN}	0		6 n 7 n 8 n 9 n 10 r	ns ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹		663 kW 1056 kW 1536 kW 1938 kW 2165 kW		0 dB 0 dB 0 dB 0 dB 0 dB	bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz bei - Hz				
Impulszusc für den Nal K _{IN}	-		6 n 7 n 8 n 9 n 10 r	าร ⁻¹ าร ⁻¹ าร ⁻¹	1	663 kW 1056 kW 1536 kW 1938 kW 2165 kW			0 dB 0 dB 0 dB 0 dB 0 dB				
			Terz-Scha	alleistungs	pegel R	eferenzpu	ınkt v ₁₀ =	= 10,0 ms	1 in dB(A)	•			
Frequenz	50	63	80	100	125	160	200	250	315	400	5	00	630
L _{WA, P}	81,3	82,5	83,6	84,7	87,0	89,5	89,9	92,5	94,6	94,3	93	3,6	94,4
Frequenz 800 1000			1250	1600	2000	2500	3150	4000	5000	6300	80	000	10000
L _{WA, P}	93,0	92,8	90,4	88,3	89,7	85,7	88,2	87,1	85,0	84,5	83	3,2	83,5
			Oktav-Sch	alleistung	spegel F	Referenzp	unkt v ₁₀	= 10,0 ms	⁻¹ in dB(A)				
Frequenz	63		125	250		500	100	00	2000	40	00		8000
L _{WA, P}	87,3		92,3	97,5		98,9	97,		93,0	91	50		88,5

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 17.10.2007. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). Bemerkungen:

Gemessen durch:

WIND-consult GmbH Reuterstraße 9

D-18211 Bargeshagen

Datum: 24.01.2008

Deutscher Akkreditierungs Rat

Unterschrift Unterschrift
Dipl.-Ing. (FH) H.Reichelt Dipl.-Ing. W.Wilke

Das PDF-Dokument wurde elektronisch unterschrieben.

DAP-PL-2756.00

08.03.2010 10:56 / 2 Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:46/2.6.0.235

DECIBEL - Hauptergebnis

WEA

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12)

Abstände (m)

roiekt:

Weibern

08.03.2010 10:56 / 3

Lizenzierter Anwender

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:46/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Schallberechnung

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc: Cmet:

Dämpfung aufgrund verschiedener anderer Effekte

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

ı	WE	4				95% der N	ennieistui	ıg							
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	2.408	2.414	56,2	Ja	17,07	101,3	3,01	78,65	4,59	4,00	0,00	0,00	87,24	0,00
	2	1.927	1.935	74,3	Ja	20,42	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0,00
ľ	3	1.061	1.079	72.8	Ja	33.02	106.2	3.01	71.66	2.05	2.47	0.00	0.00	76.19	0.00

Summe 33,36

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	4				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.127	1.143	60,7	Ja	27,01	101,3	3,01	72,16	2,17	2,97	0,00	0,00	77,30	0,00
2	984	1.006	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2,60	0,00	0,00	75,56	0,00
3	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12	3,50	0,00	0,00	81,94	0,00

Summe 32.51

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

WE	4				95% der Ne	ennieistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	792	814	42,2	Ja	30,55	101,3	3,00	69,21	1,55	3,00	0,00	0,00	73,76	0,00
2	667	698	41,3	Ja	32,36	101,3	3,00	67,88	1,33	2,74	0,00	0,00	71,94	0,00
3	1.514	1.531	76,6	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00

Summe 35,23

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	818	842	45,7	Ja	30,28	101,3	3,00	69,50	1,60	2,92	0,00	0,00	74,02	0,00
2	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
3	1.838	1.853	81,7	Ja	26,04	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00

Summe 33,66

^{Projekt:} **Weibern**

08.03.2010 10:56 / 4 Lizenzierter Anwender. Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:46/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Schallberechnung

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

W						95% der Ne									
Nr	. ,	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
8		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]		[dB]	[dB]	[dB]
	1	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0,00	0,00	75,40	0,00
	2	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0,00	77,93	0,00
	3	2.059	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00

Summe 31,52

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

VV C	4				95% der Ne	ennieistui	1g							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	996	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,79	0,00
2	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,87	2,64	3,48	0,00	0,00	79,99	0,00
3	2.505	2.518	62,8	Nein	20,61	106,2	3,01	79,02	4,78	4,80	0,00	0,00	88,60	0,00

Summe 30,40

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

	-													
r.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.212	1.230	43,8	Ja	25,60	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
2	1.685	1.699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0,00
3	2.875	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00
		[m] 1 1.212 2 1.685	r. Abstand Schallweg [m] [m] 1 1.212 1.230 2 1.685 1.699	r. Abstand Schallweg Mittlere Höhe [m] [m] [m] 1 1.212 1.230 43,8 2 1.685 1.699 47,7	r. Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] 1 1.212 1.230 43,8 Ja 2 1.685 1.699 47,7 Nein	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet [m] [m] [m] [m] [dB(A)] 1 1.212 1.230 43,8 Ja 25,60 2 1.685 1.699 47,7 Nein 20,68	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref [m] [m] [m] [m] [dB(A)] [dB(A)] 1 1.212 1.230 43,8 Ja 25,60 101,3 2 1.685 1.699 47,7 Nein 20,68 101,3	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] 1 1.212 1.230 43,8 Ja 25,60 101,3 3,01 2 1.685 1.699 47,7 Nein 20,68 101,3 3,01	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 1 1.212 1.230 43,8 Ja 25,60 101,3 3,01 72,79 2 1.685 1.699 47,7 Nein 20,68 101,3 3,01 75,60	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 1 1.212 1.230 43,8 Ja 25,60 101,3 3,01 72,79 2,34 2 1.685 1.699 47,7 Nein 20,68 101,3 3,01 75,60 3,23	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [1 1.212 1.230 43,8 Ja 25,60 101,3 3,01 72,79 2,34 3,57 2 1.685 1.699 47,7 Nein 20,68 101,3 3,01 75,60 3,23 4,80	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	r. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1 1.212 1.230 43,8 Ja 25,60 101,3 3,01 72,79 2,34 3,57 0,00 0,00 78,70 2 1.685 1.699 47,7 Nein 20,68 101,3 3,01 75,60 3,23 4,80 0,00 0,00 83,63

Summe 27,44

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

WEA	4				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.315	1.331	43,1	Ja	24,61	101,3	3,01	73,48	2,53	3,68	0,00	0,00	79,69	0,00
2	1.804	1.818	43,8	Nein	19,86	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,45	0,00
3	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00

Summe 26,54

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	4				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.126	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,66	0,00
2	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,33	3,13	3,84	0,00	0,00	82,29	0,00
3	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00

28,45 Summe

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	835	852	39,7	Ja	29,89	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0,00
2	1.336	1.349	38,2	Nein	23,34	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80,96	0,00
3	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0,00	88,62	0,00
		mar verser												

Summe 31,16 Projekt:

Weibern

Ausdruck/Seite 08.03.2010 10:56 / 5

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet:

01.03.2010 09:46/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Schallberechnung

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.109	1.125	43,9	Nein	25,34	101,3	3,01	72,03	2,14	4,80	0,00	0,00	78,96	0,00
2	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,52	0,00
3	2.601	2.611	72,7	Ja	21,06	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,15	0,00

Summe 27,93

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

`													
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.082	1.111	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,35	0,00	0,00	77,37	0,00
1.365	1.391	55,5	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0,00
2.282	2.300	56,8	Ja	22,65	106,2	3,01	78,23	4,37	3,95	0,00	0,00	86,56	0,00
	Abstand [m] 1.082 1.365	Abstand Schallweg [m] [m] 1.082 1.111 1.365 1.391	Abstand Schallweg Mittlere Höhe [m] [m] [m] [m] 1.082 1.111 46,8 1.365 1.391 55,5	Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] 1.082 1.111 46,8 Ja 1.365 1.391 55,5 Ja	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet [m] [m] [m] [dB(A)] 1.082 1.111 46,8 Ja 26,94 1.365 1.391 55,5 Ja 24,38	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref [m] [m] [m] [dB(A)] [dB(A)] 1.082 1.111 46,8 Ja 26,94 101,3 1.365 1.391 55,5 Ja 24,38 101,3	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] 1.082 1.111 46,8 Ja 26,94 101,3 3,01 1.365 1.391 55,5 Ja 24,38 101,3 3,01	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] 1.082 1.111 46,8 Ja 26,94 101,3 3,01 71,91 1.365 1.391 55,5 Ja 24,38 101,3 3,01 73,86	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 1.082 1.111 46,8 Ja 26,94 101,3 3,01 71,91 2,11 1.365 1.391 55,5 Ja 24,38 101,3 3,01 73,86 2,64	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]

QE% dor Nonplaistung

Summe 29,79

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

AAL	ā				55% del Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.295	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00
2	1.601	1.624	61,6	Ja	22,51	101,3	3,01	75,21	3,09	3,50	0,00	0,00	81,79	0,00
3	2.513	2.530	64,7	Ja	21,41	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,80	0,00

95% dar Napplaistung

Summe 28,03

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0,00	74,91	0,00
2	907	937	62,2	Ja	29,59	101,3	3,00	70,44	1,78	2,50	0,00	0,00	74,72	0,00
3	1.616	1.636	46,5	Nein	26,02	106,2	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00

Summe 33,38

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
2	1.301	1.320	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,72	0,00
3	1.661	1.679	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00

Summe 29,01

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

н	WE					95% der No									
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ŀ	1	1.084	1.101	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,21	0,00
Ì	2	824	850	66,3	Ja	31,00	101,3	3,00	69,59	1,62	2,10	0,00	0,00	73,30	0,00
I	3	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00

Summe 33,82

08.03.2010 10:56 / 6

Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:46/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Schallberechnung

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern 95% der Nennleistung

IA	11.	Abstand	Schallweg	iviittiere Hone	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	997	1.017	41,3	Nein	26,43	101,3	3,01	71,14	1,93	4,80	0,00	0,00	77.87	0.00
	2	110	800	52,0	Ja	31,18	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,12	0,00
	3	1.400	1.420	56,7	Nein	27,66							0,00		

Summe 33,68

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

AA C	(0 3)/				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]							[dB]	[dB]	[dB]
1	946	965	42,8	Nein	26,98	101,3	3,01	70,69	1,83	4,80	0,00	0,00	77.33	0.00
2	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72,71	0.00
3	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,16	0,00

Summe 34,39

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

	VV E					95% der Ne									
l	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]				[dB]	[dB]
	1	923	945	44,9	Ja	28,85	101,3	3,00	70,50	1,79	3,15	0,00	0,00	75,45	0.00
	2	755	785	44,7	Nein	29,11	101,3	3,00	68,90	1,49	4,80	0,00	0,00	75,19	0,00
١	3	1.488	1.507	66,6	Nein	26,99	106.2	3.01	74.56	2.86	4.80	0.00	0.00	82 22	0.00

Summe 33,18

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	-				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]			[dB]	[dB]	[dB]	[dB]
1	817	838	43,5	Ja	30,25	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,06	0,00
2	672	703	41,7	Ja	32,29	101,3	3,00	67,94	1,34	2,73	0,00	0,00	72,01	0,00
3	1.492	1.509	74,5	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0.00	0.00	82.24	0.00

Summe 35,12

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

V						95% der No	ennleistui	ng							
N	r.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]			[dB]	[dB]			[dB]	[dB]	[dB]
	1	847	870	43,7	Ja	29,80	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0.00
	2	778	807	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0.00	0.00	73.46	0.00
	3	1.627	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00

Summe 34.36

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WE					95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]		[dB]			[dB]	[dB]	[dB]
1	828	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,90	0,00	0,00	74,14	0.00
2	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
3	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00

Summe 33,79 Projekt: Weibern

Ausdruck/Seite 08.03.2010 10:56 / 7

izenzierter Anwender.

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet:

01.03.2010 09:46/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Schallberechnung

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

WEA 95% der Nennleistung

INT.	Abstand	Schallweg	Mittlere Hohe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.061	1.076	43,1	Nein								0.00		
2	1.495	1.508	52,7	Nein	22,08	101,3	3,01	74,57	2,87	4,80	0,00	0,00	82.23	0.00
3	2.581	2.591	74,6	Nein	20,22							0,00		

Summe 28,12

Schall-Immissionsort: X Uferterrasse 3, Rieden

WEA 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]			[dB(A)]								
1	1.268	1.293	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0,00	0,00	78.91	0.00
2	1.548	1.571	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0,00	0.00	81,22	0.00
3	2.431	2.448	66,8	Ja	21,92	106,2	3,01	78,78	4,65	3,87	0,00	0,00	87,29	0,00

Summe 28,49

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

WEA 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]								
1	1.150	1.171	70,0	Ja	26,98							0,00		
2	1.166	1.190	71,1	Ja	26,79							0,00		
3	1.771	1.790	42,5	Nein	24.95				100 000 000	(a) (b) (c)		0.00	A 2000	1000

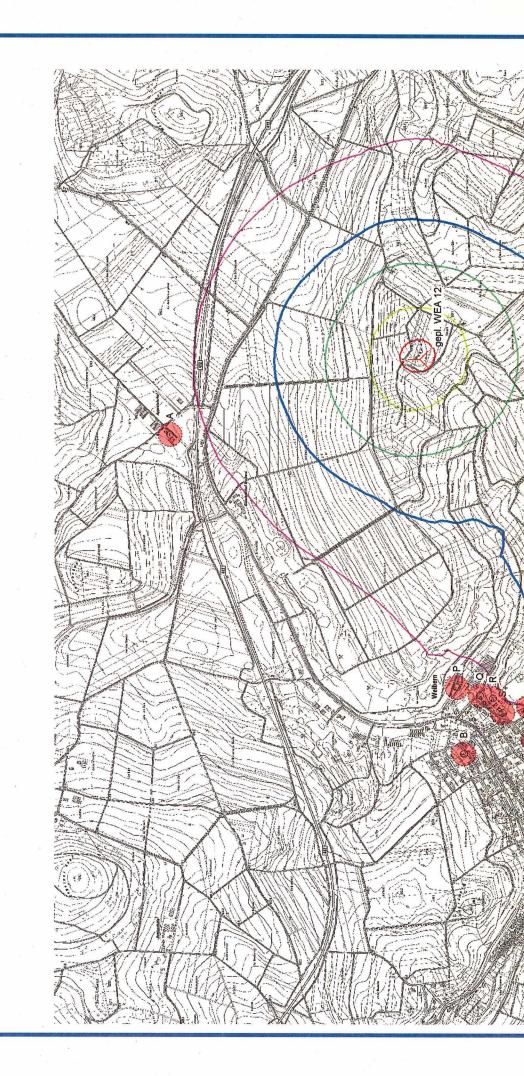
Summe 31,10

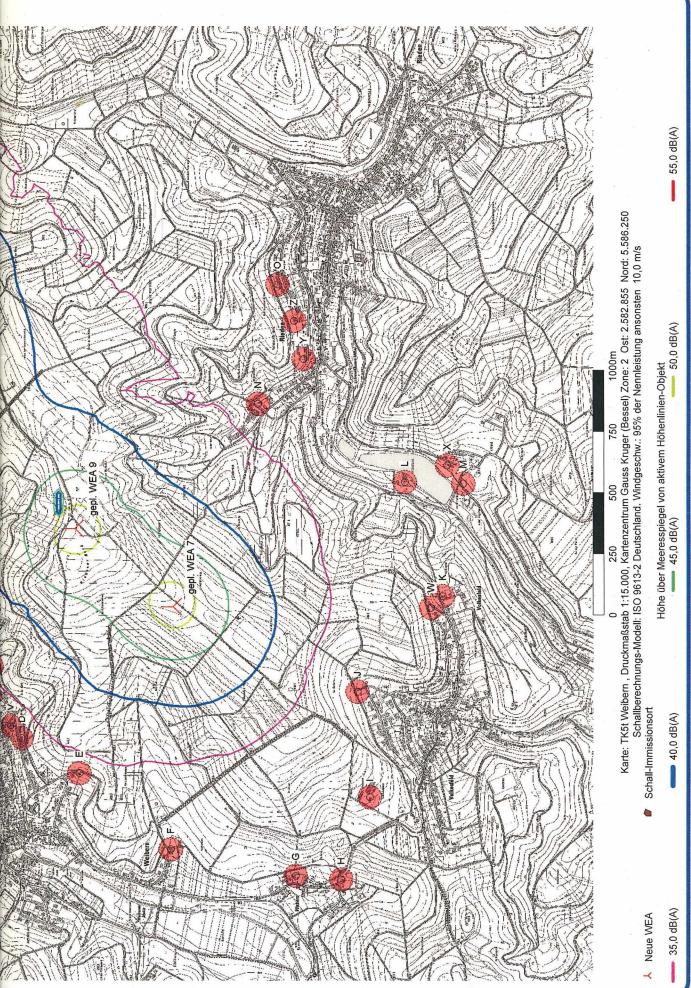
Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WEA 95% der Nennleistung

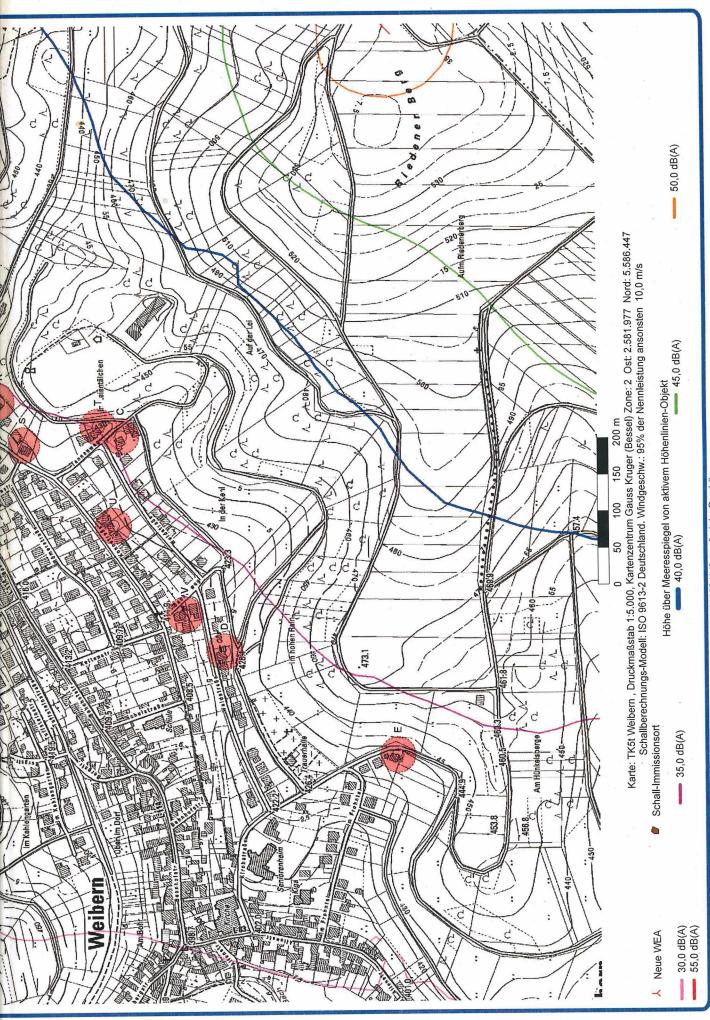
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]			[dB(A)]								
1	1.274	1.291	71,3	Nein								0,00		
2	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0.00	0,00	80.18	0.00
3	1.723	1.740	42,5	Nein	25,29							0,00		

Summe 29,24

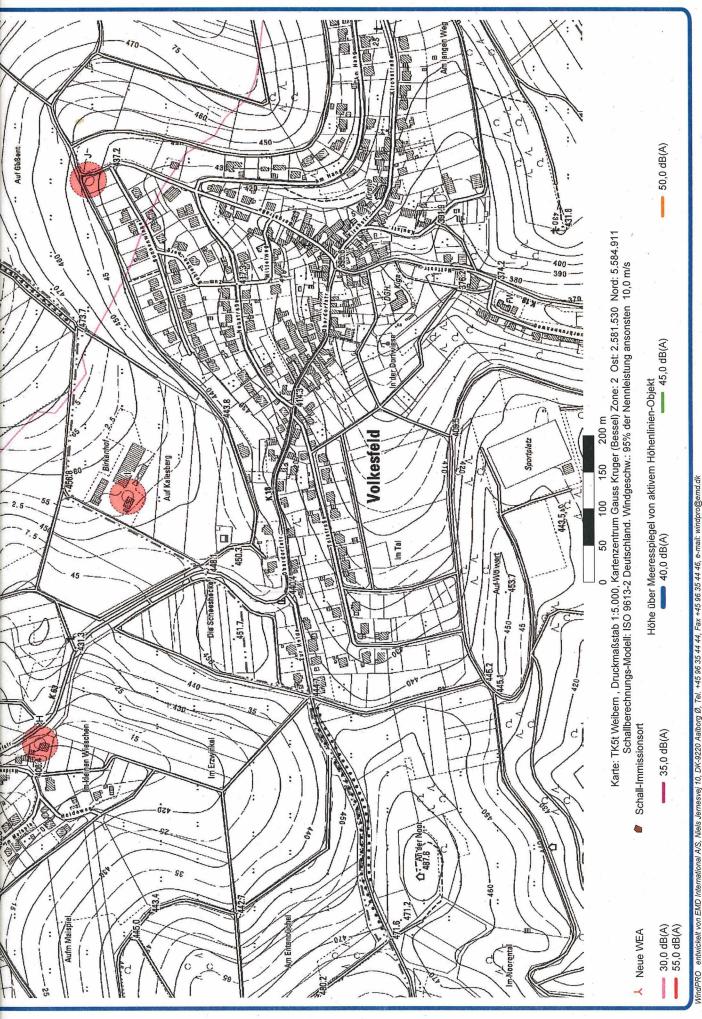

Ausdruck/Seite 08.03.2010 11:31 / 1

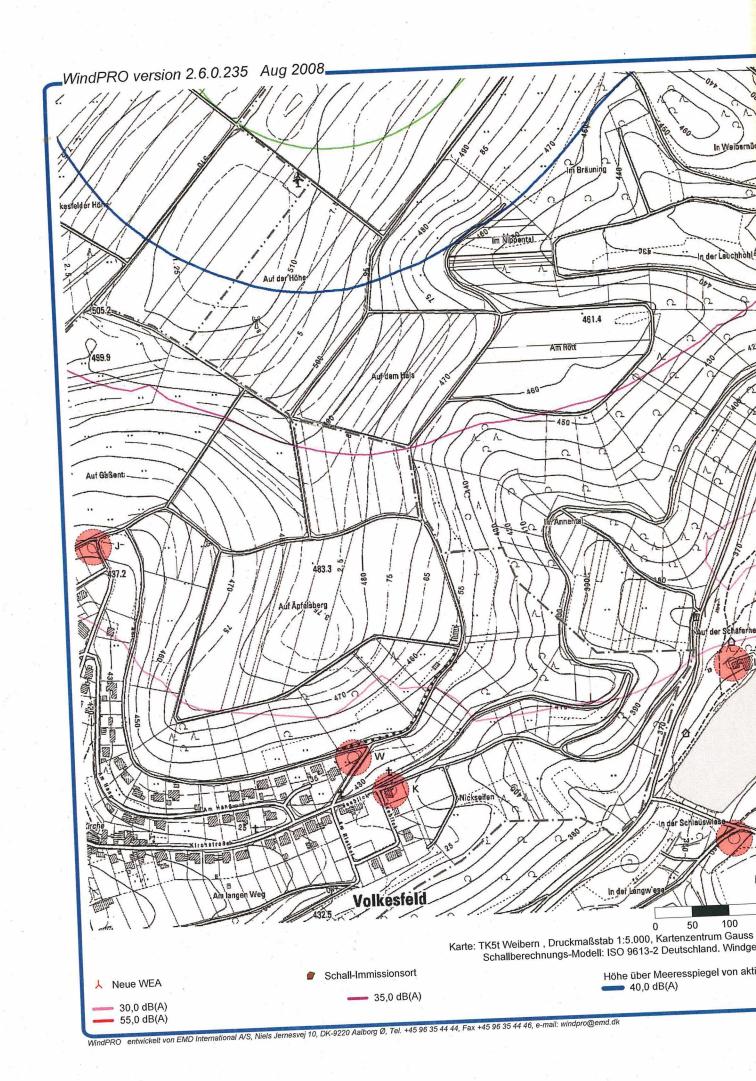

Lizenzierter Anwender:
Ingenieurbüro PLANKon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

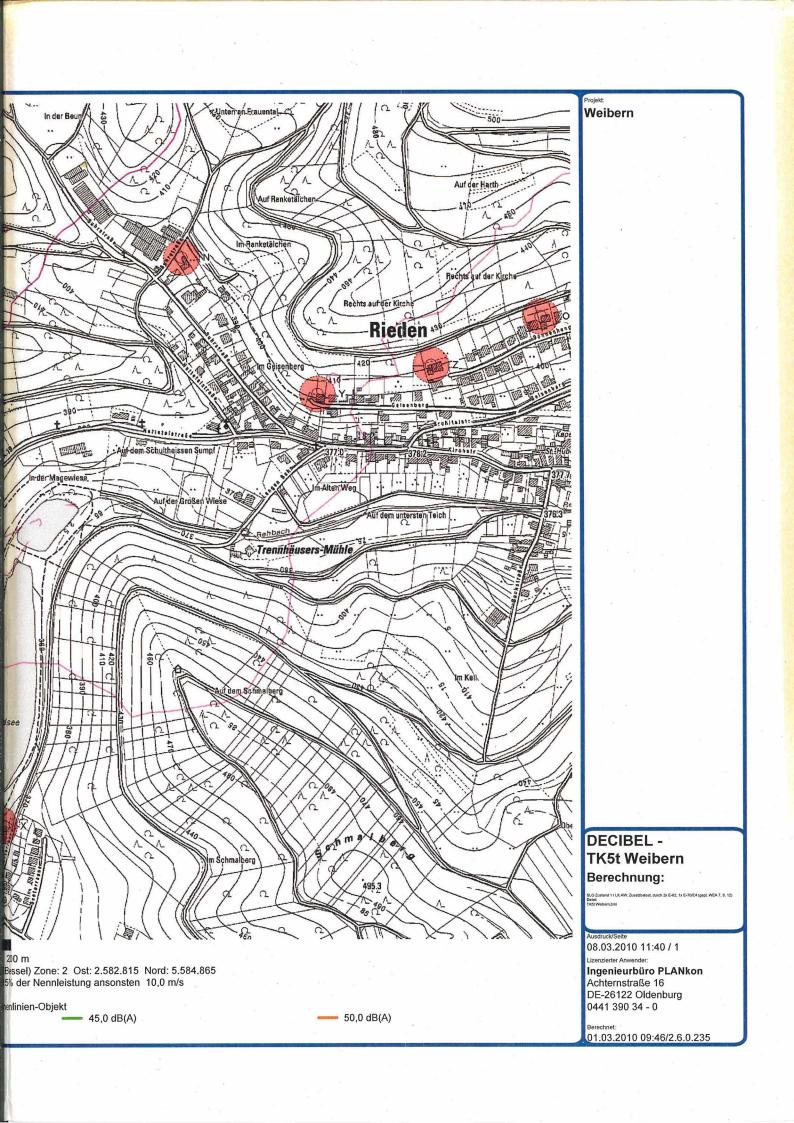
Berechnet: 01.03.2010 09:46/2.6.0.235


DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Datei: TK5t Weibern.bmi



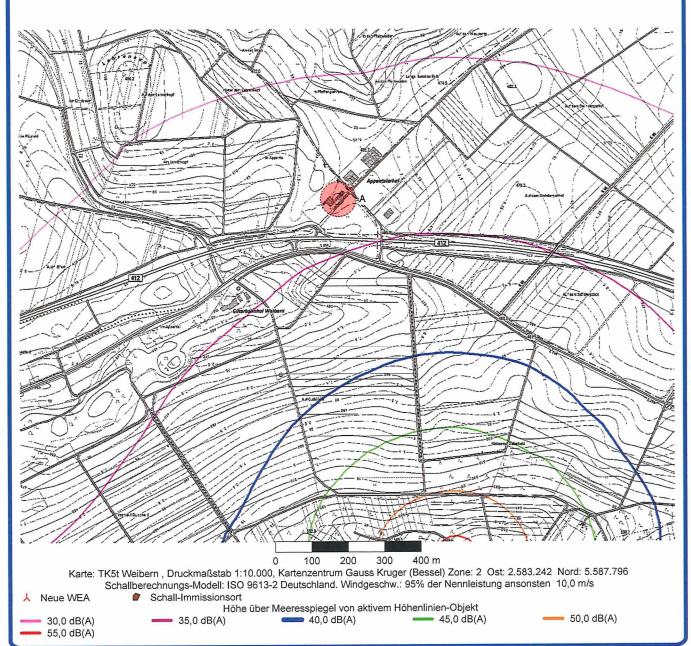

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk



WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

TO entwicker von EMD International AVS, Iviels Jernesvej 10, DN-8420 Aarborg V, Tel. 449 90 53 44 44, Fax 449 90 53 44 40, e-trial. Windprotectional

08.03.2010 11:43 / 1


Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16

DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:46/2.6.0.235

DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 1 / LK AW: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 7, 9, 12) Datei: TK5t Weibern.bmj

Weibern

08.03.2010 10:58 / 1

Lizenzierter Anwender

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg

0441 390 34 - 0

01.03.2010 09:47/2.6.0.235

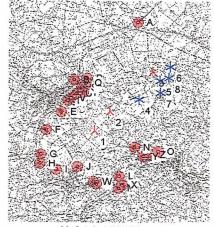
DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1:75.000 * Existierende WEA

Schall-Immissionsort

WEA

	GK (Bessel) Zone: 2				WEA-T						Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Generatortyp	Nenn-	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA.ref	Einzel-
	GK (Bessel) Zone: 2							leistung					3		töne
20.0			[m]					[kW]	[m]	[m]			[m/s]	[dB(A)]	
1				gepl. WEA 7		ENERCON	E-82-2.000	2.000	82.0	108.4	USER	red. 1000kW + Sicherheit 2.6 S-A			0 dB
2	2.582.621	5.585.936	533,7	gepl. WEA 9	Ja	ENERCON	E-82-2.000	2.000	82.0	108,4		red. 1000kW + Sicherheit 2.6 S-A			
3	2.583.495	5.586.763	550.0	gepl. WEA 12	Ja	ENERCON	E-70 E4 2,3 MW-2,300		71.0	113.5		Volllast 104,2 + Sicherheit 2,0 S-A	10.75		
4				vorh. WEA 2			V47-660/200	660							
5				vorh. WEA 3						65,0		WT 802/98	10,0	105,3	0 dB
_						VESTAS	V47-660/200	660	47,0	65,0	USER	WT 802/98	10.0	105,3	0 dB
6				vorh. WEA 4		VESTAS	V47-660/200	660	47.0	65.0	USER	WT 802/98	10,0		
7	2.583.661	5.586.325	524,4	vorh. WEA 5	Ja	VESTAS	V47-660/200	660		65.0		WT 802/98	10,0		0 dB
8	2.583.835	5.586.638	530 1	vorh. WEA 6	.la	VESTAS	V47-660/200	660	S100 500	65.0					
				***************************************	ou	VEOTAG	V47-000/200	000	47,0	05,0	USER	WT 802/98	10,0	105,3	0 dB

Berechnungsergebnisse

Beurteilungspegel

Deurte	nungspeger							
Schall-Im	missionsort	GK (Besse	I) Zone: 2			Anforderungen	Reurteilungsnegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	Cortain
	A Whs. Appentalerhof	2.583.186	5.587.779	468,6	5,0			Ja
	B Whs. Winkelweg 10, Weibern	2.581.879	5.586.583	427,5	5,0		F100 1 1 1 1	Ja
	C Whs. Waldstr. 2, Weibern	2.582.057	5.586.291	437,2	5,0		5000 Sept. 4 (5000)	Ja
	D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5,0			Ja
	E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0			Ja
	F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585.546	415,7	5,0			Ja
	G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5,0		2004.0	Ja
	H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0	28,7	Ja
	I Whs. Birkenhof, Volkesfeld		5.584.728	460,0	5,0	45,0	30,3	Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448,7	5,0	40,0	32,8	Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584.430	427,8	5,0	40,0	30,9	Ja
	L Hotel Eifler Seehütte, Rieden	2.582.814	5.584.586	377,5	5,0	40,0	32,8	Ja
	M Whs. Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	31,3	Ja
	N Whs. Suhrstr. 24, Rieden	2.583.134	5.585.188	400,0	7,5	45,0	37,1	Ja
	O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585.107	414,6	7,5	40,0	35,2	Ja
	P Whs. Bahnhofstr. 111, Weibern	2.582.149	5.586.612	427,3	5,0	45,0	36,8	Ja
	Q Whs. Löhstr. 5, Weibern	2.582.117	5.586.518	420,0	5,0	45,0	36,7	Ja
	R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3	5,0	45,0	36,9	Ja
	S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420,0	5,0	40,0	36,0	Ja
	T Whs. Tannenweg 6, Weibern	2.582.071	5.586.322	429,1	5,0	40,0	37,2	Ja
	U Whs. Konnstr. 25, Weibern	2.581.935	5.586.303	420,0	5,0	40,0	36,3	Ja
	V Whs. Buchenweg 1, Weibern	2.581.812	5.586.207	415,6	5,0	40,0	35,7	Ja
1	W Baugrundstück Am Hang, Volkesfeld	2.582.296	5.584.477	437,8	5,0	40,0	30,8	Ja
	X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0	5,0	40,0	31,8	Ja
	Y Whs. Geisenberg 19, Rieden	2.583.318	5.585.001	398,6	7,5	40,0	35,2	Ja
	Z Whs. Am Sonnenhang 40, Rieden	2.583.474	5.585.041	410,9	7,5	40,0	34,9	Ja

Projekt: Weibern

Ausdruck/Seite 08.03.2010 10:58 / 2 Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 09:47/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47

Abstände (m)

	WEA								
Schall-Immissionsort	1	2	3	4	5	6	7	8	
A	2408	1927	1061	1590	1289	1136	1529	1313	
В	1127	984	1626	1395	1766	1996	1801	1957	
C	792	667	1514	1165	1613	1886	1605	1812	
D	818	887	1838	1456	1930	2210	1907	2129	
E	781	1003	2059	1621	2130	2427	2083	2331	
F	996	1372	2505	2017	2556	2869	2481	2755	
G	1212	1685	2875	2325	2891	3224	2781	3086	
Н	1315	1804	3003	2437	3008	3346	2886	3200	
Ţ	1126	1635	2836	2239	2815	3163	2672	3001	
J	835	1336	2512	1893	2466	2819	2304	2645	
K	1109	1531	2601	1962	2507	2861	2307	2663	
L	1082	1365	2282	1653	2156	2502	1935	2292	
M	1295	1601	2513	1887	2380	2724	2155	2511	
N	904	907	1616	1004	1477	1821	1253	1610	
0	1391	1301	1661	1155	1467	1769	1219	1545	
Р	1084	824	1355	1149	1497	1724	1539	1686	
Q	997	770	1400	1149	1530	1772	1556	1723	
R	946	738	1421	1145	1543	1794	1562	1738	
S	923	755	1488	1195	1606	1860	1618	1801	
T	817	672	1492	1154	1595	1864	1591	1793	
U	847	778	1627	1287	1732	1999	1726	1929	
V	828	853	1772	1405	1869	2145	1853	2068	
W	1061	1495	2581	1943	2493	2848	2297	2653	
X	1268	1548	2431	1809	2294	2636	2067	2422	
Υ	1150	1166	1771	1192	1607	1935	1368	1717	
Z	1274	1237	1723	1176	1543	1859	1298	1637	

Weibern

08.03.2010 10:58 / 3 Ingenieurbüro PLANkon

Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption

Abar:

Dämpfung aufgrund des Bodeneffekts Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE					95% der Ne		ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.408	2.414	56,2	Ja	17,07	101,3	3,01	78,65	4,59	4,00	0,00	0,00	87,24	0.00
2	1.927	1.935	74,3	Ja	20,42	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0,00
3	1.061	1.079	72,8	Ja	33,02	106,2	3,01	71,66	2,05	2,47	0,00	0,00	76,19	0.00
4	1.590	1.595	29,8	Nein	25,43	105,3	3,01	75,05	3,03	4,80	0,00	0,00	82,88	0,00
5	1.289	1.296	33,1	Ja	28,68	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79.63	0.00
6	1.136	1.144	44,4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0,00	0.00	77.81	0.00
7	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0.00	0.00	82,43	0.00
8	1.313	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79,87	0,00

Summe 37,37

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	4				95% der Ne	ennleistur	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.127	1.143	60,7	Ja	27,01	101,3	3,01	72,16	2,17	2,97	0,00		77,30	0.00	
2	984	1.006	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2,60	0,00	0,00	75,56	0,00	
3	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12	3,50	0,00	0,00	81,94	0.00	
4	1.395	1.403	49,1	Ja	28,11	105,3	3,01	73,94	2,67	3,60	0,00	0,00	80,20	0.00	
5	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0,00	0.00	84,15	0.00	
6	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0,00	0,00	85,64	0.00	
7	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4,00	0,00	0,00	83,58	0.00	
8	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4,80	0.00	0.00	85,39	0.00	

Summe 35,28

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	792	814	42,2	Ja	30,55	101,3	3,00	69,21	1,55	3,00	0,00	0,00	73,76	0,00
2	667	698	41,3	Ja	32,36	101,3	3,00	67,88	1,33	2,74	0,00	0,00	71,94	0,00
3	1.514	1.531	76,6	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00
4	1.165	1.174	31,7	Nein	28,89	105,3	3,01	72,39	2,23	4,80	0,00	0,00	79,42	0,00
5	1.613	1.622	47,8	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
6	1.886	1.894	32,7	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0,00	0,00	84,94	0,00
7	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00
8	1.812	1.819	37,9	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00

Summe 37,19

Ausdruck/Seite 08.03.2010 10:58 / 4

Lizenzierter Anwender

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

001	-				95% der Ne	ennieistui	าต							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	818	842	45,7	Ja	30,28	101,3	3,00	69,50	1,60	2,92	0,00	0,00	74.02	0.00
2	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74.99	0.00
3	1.838	1.853	81,7	Ja	26,04	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83.16	0.00
4	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81.89	0.00
5	1.930	1.938	47,1	Ja	23,91	105,3	3,01	76,75	3,68	3,97	0,00	0.00	84,40	0.00
6	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00		86.33	0.00
7	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0.00	0.00	85.08	0.00
8	2.129	2.136	38,5	Ja	22,48	105,3	3,01	77,59	4,06	4,18	0,00		85,83	0,00

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

WE					95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80		0,00	75.40	0.00
2	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0.00	77.93	0.00
3	2.059	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0.00	86.05	0.00
4	1.621	1.627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0.00
5	2.130	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86.45	0.00
6	2.427	2.432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0.00	0.00	88.14	0.00
7	2.083	2.088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0.00	86.16	0.00
8	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00	0,00	87,61	0,00

Summe 33,59

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

VVE/					95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	996	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75.79	0.00
2	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,87	2,64	3,48	0,00	0,00	79,99	0.00
3	2.505	2.518	62,8	Nein	20,61	106,2	3,01	79,02	4,78	4,80	0,00	0.00	88.60	0.00
4	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0.00	85.77	0.00
5	2.556	2.563	22,0	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88.84	0.00
6	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0.00	90.43	0.00
7	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0.00
8	2.755	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00

Summe

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

WE					95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.212	1.230	43,8	Ja	25,60	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
2	1.685	1.699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0.00
3	2.875	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90.48	0.00
4	2.325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0.00	87.58	0.00
5	2.891	2.897	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0.00	0.00	90.54	0.00
6	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00		92.12	0.00
7	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4.80	0.00	0.00	89.99	0.00
8	3.086	3.091	7,6	Nein	16,84	105,3	3,01	80,80	5,87	4,80	0,00		91,47	0,00

Summe 29,50

Weibern

08.03.2010 10:58 / 5

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern WEA 95% der Nennleistung

Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.315	1.331	43,1	Ja	24,61	101,3	3,01	73,48	2,53	3,68	0,00	0.00	79.69	0.00
2	1.804	1.818	43,8	Nein	19,86	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,45	0.00
3	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91.10	0.00
4	2.437	2.442	0,6	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0.00	88.19	0.00
5	3.008	3.013	10,3	Nein	17,20	105,3	3,01	80,58	5,73	4,80	0,00	0.00	91.11	0.00
6	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4.80	0.00	0.00	92,67	0.00
7	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0.00		90.51	0.00
8	3.200	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00		92,01	0,00

Summe 28,73

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	The same same				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.126	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0.00		77.66	
2	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,33	3,13	3,84	0,00	0,00	82,29	
3	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0.00
4	2.239	2.243	11,3	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87.08	0.00
5	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90.16	0.00
6	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91.82	0.00
7	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0.00	89.43	0.00
8	3.001	3.005	17,2	Nein	17,25	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,06	0,00

Summe 30,31

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

WE					95% der Ne		ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	835	852	39,7	Ja	29,89	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0.00
2	1.336	1.349	38,2	Nein	23,34	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80.96	0.00
3	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0.00	88.62	0.00
4	1.893	1.897	17,0	Nein	23,34	105,3	3,01	76,56	3,60	4,80	0.00	0.00	84,96	0.00
5	2.466	2.471	25,6	Nein	19,96	105,3	3,01	78,86	4,69	4,80	0,00		88.35	0.00
6	2.819	2.823	20,5	Nein	18,13	105,3	3,01	80,01	5,36	4,80	0.00	0.00	90.18	0.00
7	2.304	2.308	31,5	Nein	20,86	105,3	3,01	78,26	4,38	4.80	0.00	0.00	87,45	0.00
8	2.645	2.648	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00		89.29	0.00

Summe 32,76

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

			THE STATE OF THE S		,									
WE					95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.109	1.125	43,9	Nein	25,34	101,3	3,01	72,03	2,14	4,80	0,00	0,00	78,96	0,00
2	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,52	0,00
3	2.601	2.611	72,7	Ja	21,06	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,15	0,00
4	1.962	1.968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0.00
5	2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4,19	0,00	0.00	87.97	0.00
6	2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0,00	0,00	89,94	0.00
7	2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0,00	0,00	86,72	0,00
8	2.663	2.668	43,1	Ja	19,47	105,3	3,01	79,52	5,07	4,25	0,00	0,00	88,84	0,00

Summe 30.88

Projekt: Weibern

08.03.2010 10:58 / 6 Lizenzierter Anwender. Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech

Sch	nall-lmn	nissions	ort: L Hotel	Eifler S	eehütte,	Rieden								
WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.082	1.111	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,35	0,00	0,00	77,37	0,00
2	1.365	1.391	55,5	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0,00
3	2.282	2.300	56,8	Ja	22,65	106,2	3,01	78,23	4,37	3,95	0,00	0,00	86,56	0,00
4	1.653	1.665	31,6	Ja	25,57	105,3	3,01	75,43	3,16	4,15	0,00	0,00	82,74	0,00
5	2.156	2.167	32,7	Nein	21,67	105,3	3,01	77,72	4,12	4,80	0,00	0,00	86,64	0,00
6	2.502	2.512	21,9	Nein	19,74	105,3	3,01	79,00	4,77	4,80	0,00	0,00	88,57	0,00
7	1.935	1.947	36,7	Ja	23,67	105,3	3,01	76,79	3,70	4,15	0,00	0,00	84,64	0,00
8	2.292	2.303	26,8	Nein	20,89	105,3	3,01	78,25	4,38	4,80	0,00	0,00	87,42	0,00

Summe 32,81

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.295	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00
2	1.601	1.624	61,6	Ja	22,51	101,3	3,01	75,21	3,09	3,50	0,00	0,00	81,79	0,00
3	2.513	2.530	64,7	Ja	21,41	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,80	0,00
4	1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0,00
5	2.380	2.392	37,2	Ja	20,92	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,39	0,00
6	2.724	2.734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89,73	0,00
7	2.155	2.167	40,8	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
8	2.511	2.522	31,2	Nein	19,68	105,3	3,01	79,03	4,79	4,80	0,00	0,00	88,63	0,00

Summe 31,30

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WE	A				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0,00	74,91	0,00
2	907	937	62,2	Ja	29,59	101,3	3,00	70,44	1,78	2,50	0,00	0,00	74,72	0,00
3	1.616	1.636	46,5	Nein	26,02	106,2	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
4	1.004	1.018	23,5	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00
5	1.477	1.490	15,0	Nein	26,21	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0,00
6	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0,00	84,54	0,00
7	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0,00
8	1.610	1.621	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
2	1.301	1.320	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,72	0,00
3	1.661	1.679	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00
4	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
5	1.467	1.478	20,3	Nein	26,30	105,3	3,01	74,40	2,81	4,80	0,00	0,00	82,00	0,00
6	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0,00
7	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0,00
8	1.545	1.555	10,0	Nein	25,72	105,3	3,01	74,84	2,95	4,80	0,00	0,00	82,59	0,00

Summe 35,22

08.03.2010 10:58 / 7

Lizenzierter Anwender Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech

Sci	nall-lmn	nissions	ort: P Whs.	Bahnho	ofstr. 111	, Weibe	rn							
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.084	1.101	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,21	0,00
2	824	850	66,3	Ja	31,00	101,3	3,00	69,59	1,62	2,10	0,00	0,00	73,30	0,00
3	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00
4	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00
5	1.497	1.506	,-	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
6	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00
7	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00
8	1.686	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00

Summe 36,81

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

WE	Δ.				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	997	1.017	41,3	Nein	26,43	101,3	3,01	71,14	1,93	4,80	0,00	0,00	77,87	0,00
2	770	800	52,0	Ja	31,18	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,12	0,00
3	1.400	1.420	56,7	Nein	27,66	106,2	3,01	74,05	2,70	4,80	0,00	0,00	81,55	0,00
4	1.149	1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00
5	1.530	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00
6	1.772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00
7	1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0,00
8	1.723	1.731	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,85	0,00

Summe 36,74

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	946	965	42,8	Nein	26,98	101,3	3,01	70,69	1,83	4,80	0,00	0,00	77,33	0,00
2	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72,71	0,00
3	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,16	0,00
4	1.145	1.155	39,1	Nein	29,06	105,3	3,01	72,25	2,19	4,80	0,00	0,00	79,24	0,00
5	1.543	1.553	44,0	Ja	26,71	105,3	3,01	74,82	2,95	3,83	0,00	0,00	81,60	0,00
6	1.794	1.802	20,2	Nein	23,97	105,3	3,01	76,12	3,42	4,80	0,00	0,00	84,34	0,00
7	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92	2,98	4,80	0,00	0,00	82,70	0,00
8	1.738	1.746	32,3	Nein	24,35	105,3	3,01	75,84	3,32	4,80	0,00	0,00	83,96	0,00

Summe 36,91

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	923	945	45,0	Ja	28,85	101,3	3,00	70,50	1,79	3,15	0,00	0,00	75,45	0,00
2	755	785	44,7	Nein	29,11	101,3	3,00	68,90	1,49	4,80	0,00	0,00	75,19	0,00
3	1.488	1.507	66,6	Nein	26,99	106,2	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
4	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,71	0,00
5	1.606	1.615	43,0	Nein	25,28	105,3	3,01	75,16	3,07	4,80	0,00	0,00	83,03	0,00
6	1.860	1.869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
7	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	0,00	83,11	0,00
8	1.801	1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00

Summe 35,96

08.03.2010 10:58 / 8

Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

1.800

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech

105,3 3,01 76,10 3,42 4,80 0,00 0,00 84,32 0,00

SCI	naii-imn	nissions	ort: I wns.	rannen	weg 6, W	leibern								
WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	817	838	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,06	0,00
2	672	703	41,6	Ja	32,29	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
3	1.492	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00
4	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0,00
5	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0,00
6	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
7	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00

Nein 23,99

1.793 Summe 37,16

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

37,6

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	847	870	43,7	Ja	29,80	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
2	778	807	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
3	1.627	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00
4	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
5	1.732	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
6	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
7	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
8	1.929	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00

Summe 36,30

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WEA	١				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	828	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,90	0,00	0,00	74,14	0,00
2	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
3	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00
4	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00
5	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,01	0,00
6	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00
7	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00
8	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00

35,67 Summe

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

VVE/	4				95% der Ne	ennieistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.061	1.076	43,1	Nein	25,82	101,3	3,01	71,64	2,05	4,80	0,00	0,00	78,48	0,00
2	1.495	1.508	52,7	Nein	22,08	101,3	3,01	74,57	2,87	4,80	0,00	0,00	82,23	0,00
3	2.581	2.591	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00
4	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00
5	2.493	2.498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00
6	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00
7	2.297	2.302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00
8	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00

Summe 30,83

08.03.2010 10:58 / 9

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 09:47/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 1 / LK AW: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Schallberech

Schall-Immissionsort: X Uferterrasse 3, Rieden

WE	oo // del Neimielstang													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.268	1.293	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0,00	0,00	78,91	0,00
2	1.548	1.571	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0,00	0,00	81,22	0,00
3	2.431	2.448	66,8	Ja	21,92	106,2	3,01	78,78	4,65	3,87	0,00	0,00	87,29	0,00
4	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0,00	0,00	83,71	0,00
5	2.294	2.305	35,6	Ja	21,40	105,3	3,01	78,25	4,38	4,27	0,00	0,00	86,91	0,00
6	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45	5,03	4,80	0,00	0,00	89.28	0.00
7	2.067	2.078	39,6	Ja	22,86	105,3	3,01	77,35	3,95	4,15	0,00	0,00	85,45	0.00
8	2.422	2.432	30,4	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00

Summe 31,79

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
1.166	1.190	71,1	Ja	26,79	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0,00
0.000	1.790	42,5	Nein	24,95	106,2	3,01	76,06	3,40	4,80	0,00	0,00	84,26	0,00
1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0,00
1.607	1.619	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
1.717	1.727	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0,00
	Abstand [m] 1.150 1.166 1.771 1.192 1.607	Abstand Schallweg [m] [m] 1.150 1.171 1.166 1.190 1.771 1.790 1.192 1.204 1.607 1.619 1.935 1.945 1.368 1.381	Abstand [m] Schallweg [m] Mittlere Höhe [m] [m] [m] [m] 1.150 1.171 70,0 1.166 1.190 71,1 1.771 1.790 42,5 1.192 1.204 118,1 1.607 1.619 15,1 1.935 1.945 8,8 1.368 1.381 18,7	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [m] [m] [m] 1.150 1.171 70,0 Ja 1.166 1.190 71,1 Ja 1.771 1.790 42,5 Nein 1.192 1.204 18,3 Nein 1.607 1.619 15,1 Nein 1.935 1.945 8,8 Nein 1.368 1.381 18,7 Nein	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] 1.150 1.171 70,0 Ja 26,98 1.166 1.190 71,1 Ja 26,79 1.771 1.790 42,5 Nein 24,95 1.192 1.204 18,3 Nein 28,60 1.607 1.619 15,1 Nein 25,25 1.935 1.945 8,8 Nein 23,03 1.368 1.381 18,7 Nein 27,08	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar Berechnet [dB(A)] LwA,ref [dB(A)] 1.150 1.171 70,0 Ja 26,98 101,3 1.166 1.190 71,1 Ja 26,79 101,3 1.771 1.790 42,5 Nein 24,95 106,2 1.192 1.204 18,3 Nein 28,60 105,3 1.607 1.619 15,1 Nein 25,25 106,3 1.935 1.945 8,8 Nein 23,03 105,3 1.368 1.381 18,7 Nein 27,08 105,3	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] [dB(A)]	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.150 1.171 70,0 Ja 26,98 101,3 3,01 72,37 1.166 1.190 71,1 Ja 26,79 101,3 3,01 72,51 1.771 1.790 42,5 Nein 24,95 106,2 3,01 76,06 1.192 1.204 18,3 Nein 28,60 105,3 3,01 72,62 1.607 1.619 15,1 Nein 25,25 105,3 3,01 75,18 1.935 1.945 8,8 Nein 23,03 105,3 3,01 76,78 1.368 1.381 18,7 Nein 27,08 105,3 3,01 73,80	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] 1.150 1.171 70,0 Ja 26,98 101,3 3,01 72,37 2,22 1.166 1.190 71,1 Ja 26,79 101,3 3,01 72,51 2,26 1.771 1.790 42,5 Nein 24,95 106,2 3,01 76,06 3,40 1.192 1.204 18,3 Nein 25,25 105,3 3,01 72,62 2,29 1.607 1.619 15,1 Nein 25,25 105,3 3,01 75,18 3,08 1.935 1.945 8,8 Nein 27,08 105,3 3,01 76,78 3,70 1.368 1.381 18,7 Nein 27,08 105,3 3,01 73,80 2,62	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] Agr [dB] [Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Abar [dB] [dB]	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Agr [dB] Abar Amisc [dB] 1.150 1.171 70,0 Ja 26,98 101,3 3,01 72,37 2,22 2,74 0,00 0,00 1.166 1.190 71,1 Ja 26,79 101,3 3,01 72,51 2,26 2,74 0,00 0,00 1.771 1.790 42,5 Nein 24,95 106,2 3,01 76,06 3,40 4,80 0,00 0,00 1.607 1.619 15,1 Nein 25,25 105,3 3,01 75,18 3,08 4,80 0,00 0,00 1.935 1.945 8,8 Nein 23,03 105,3 3,01 76,78 3,70 4,80 0,00 0,00 1.368 1.381 18,7 Nein 27,08 105,3 3,01 75,18 3,70 4,80 0,00 0,00 <	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Abar Amisc [dB] A [dB] 1.150 1.171 70,0 Ja 26,98 101,3 3,01 72,37 2,22 2,74 0,00 0,00 77,33 1.166 1.190 71,1 Ja 26,79 101,3 3,01 72,51 2,26 2,74 0,00 0,00 77,51 1.771 1.790 42,5 Nein 24,95 106,2 3,01 76,66 3,40 4,80 0,00 0,00 79,70 1.607 1.619 15,1 Nein 25,25 105,3 3,01 72,62 2,29 4,80 0,00 0,00 79,70 1.607 1.619 15,1 Nein 25,25 105,3 3,01 75,18 3,08 4,80 0,00 0,00 85,28 1.935 1.945 8,8 Nein 27,08 105,3 3,01 73,80 2,62 4,80 <t< td=""></t<>

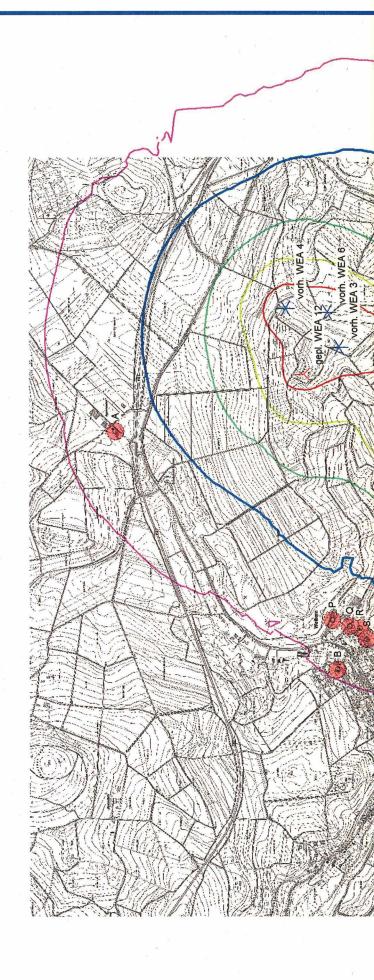
Summe 35,24

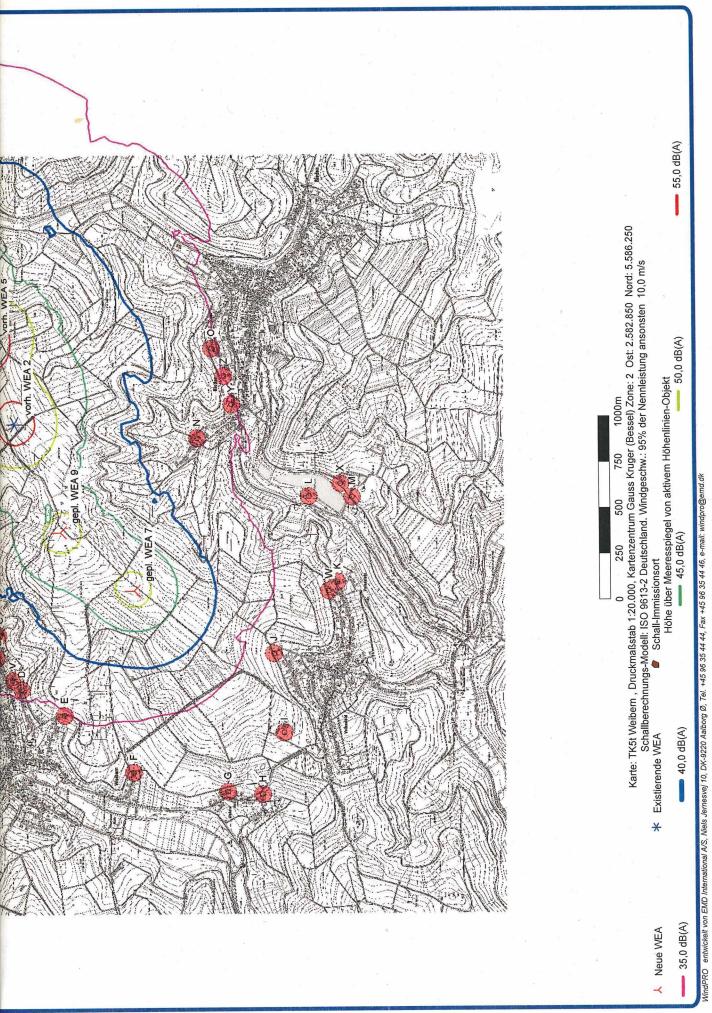
Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

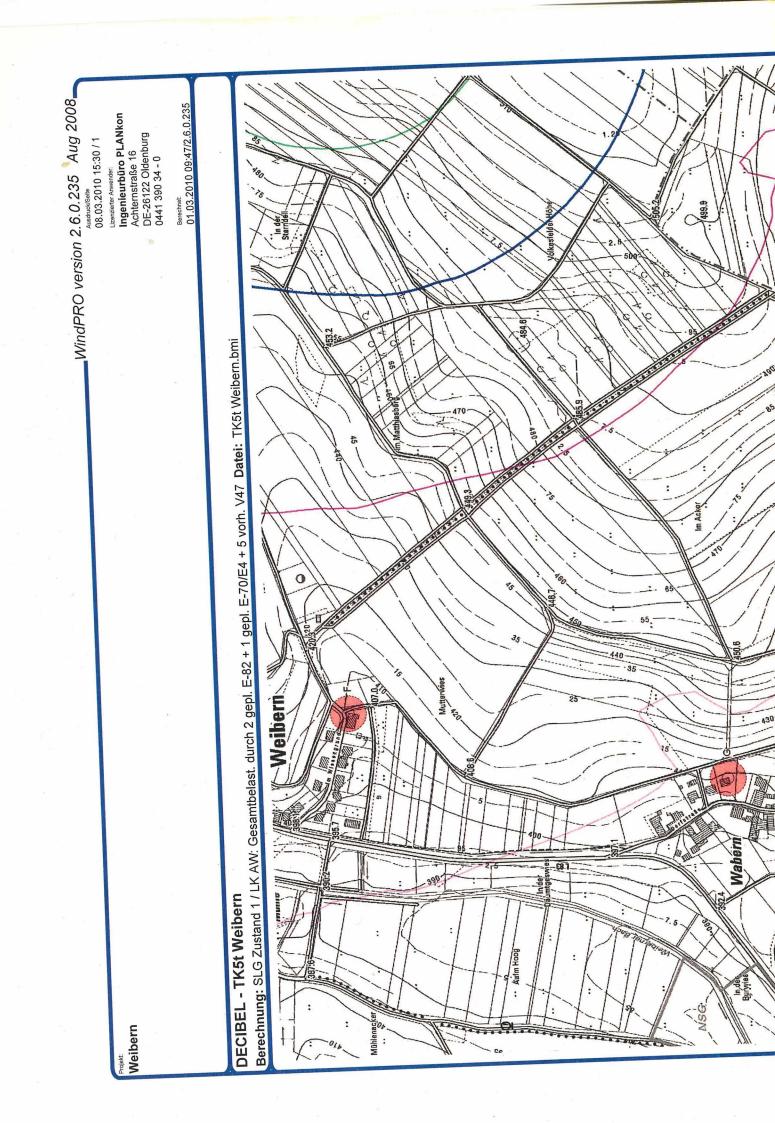
WE	Α.				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
2	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,18	0,00
3	1.723	1.740	42,5	Nein	25,29	106,2	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
4	1.176	1.187	11,2	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
5	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
6	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
7	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
8	1.637	1.647	9,3	Nein	25,05	105,3	3,01	75,33	3,13	4.80	0.00	0.00	83.26	0.00

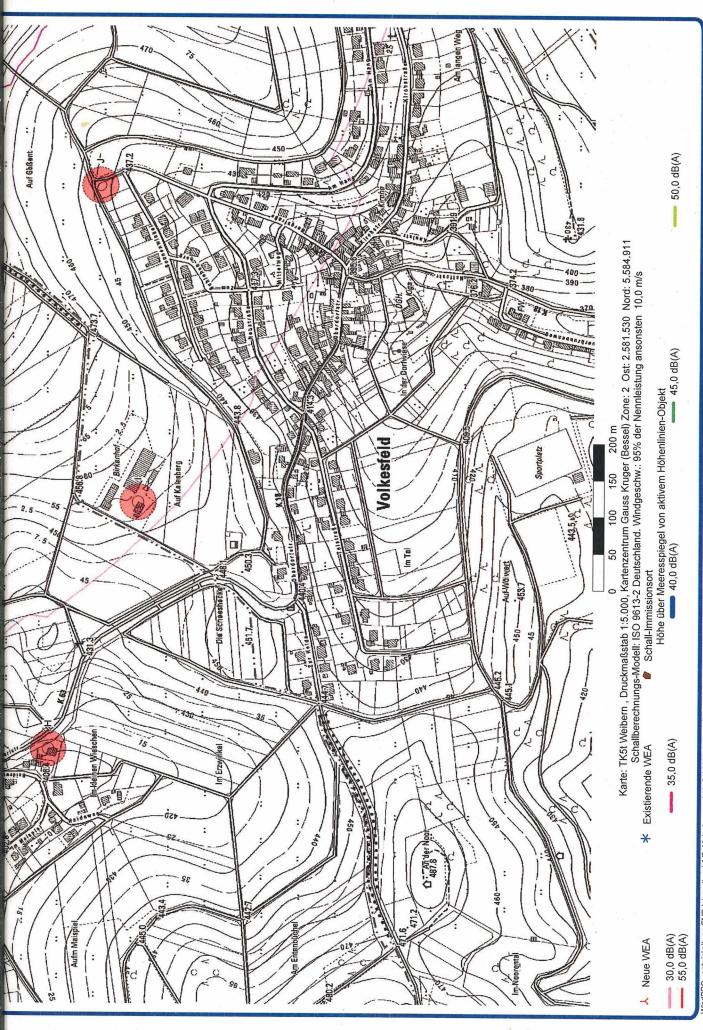
Summe 34,91

Projekt: Weibern

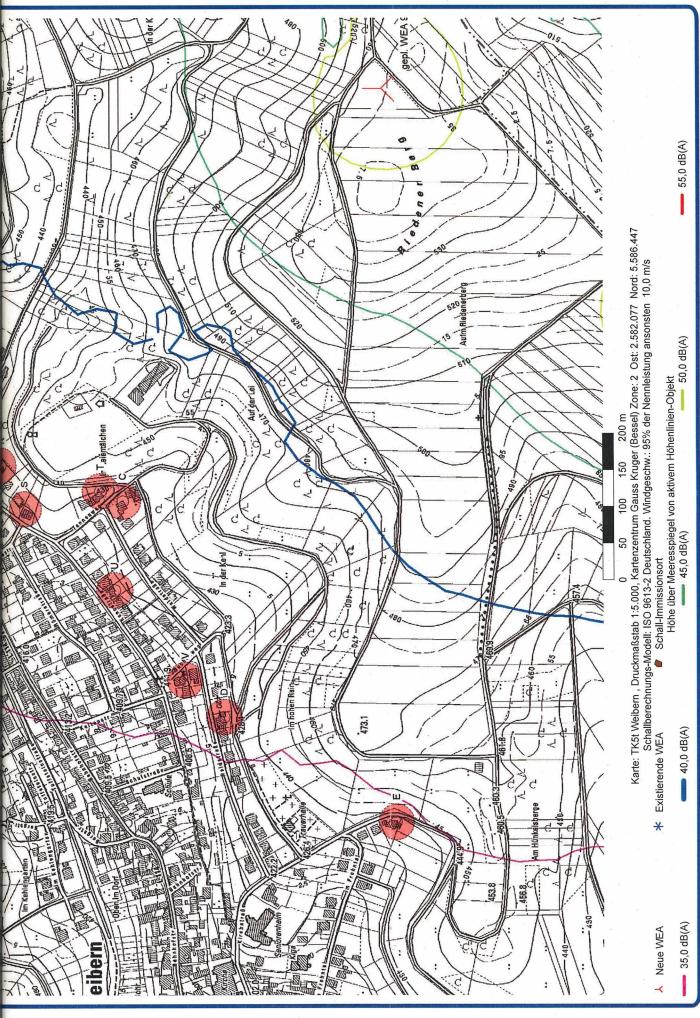

Ausdruck/Seite 08.03.2010 12:43 / 1

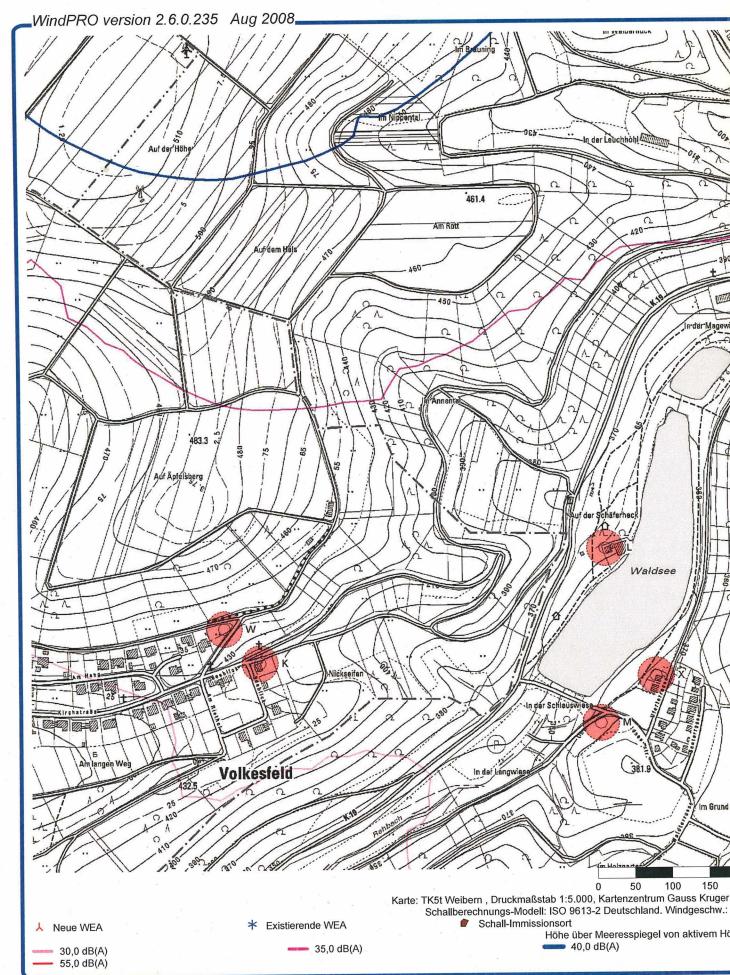

Lizenzierter Anwerder:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0


Berechnet: 01.03.2010 09:47/2.6.0.235


DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 1 / LK AW. Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 5 vorh. V47 Datei: TK5t Weibern.bmi







VindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Windpark Weibern

Vorbelastung: 5 WEA + Gewerbe

Immissionspunkt: IP P (Whs. Bahnhofstr. 111, Weibern)

et. Dämpfungskoeffizient Co:

			Teilpegel		Pegeländer- ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		33,79	2393,32	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
35,63

Gesamtbelastung: 8 WEA + Gewerbe

Immissionspunkt: IP P (Whs. Bahnhofstr. 111, Weibern)

st. Dämpfungskoeffizient Co: 0

					Pegeländer-
			Teilpegel		ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		36,81	4797,33	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
37.82

Windpark Weibern

Vorbelastung: 5 WEA + Gewerbe

Immissionspunkt: IP Q (Whs. Löhstr. 5, Weibern)

et. Dämpfungskoeffizient Co: 0

Pegeländer-Teilpegel ung mit Nr. Anl.-Bez. **Pegel WEA** Lp,j Hilfswerte Vorzeichen WEAs 33,78 2387,81 2 Wolfcraft 34,00 2511,89

Summe aus
Teilpegeln
Lr
36,90

Gesamtbelastung: 8 WEA + Gewerbe

Immissionspunkt: IP Q (Whs. Löhstr. 5, Weibern)

et. Dämpfungskoeffizient Co: 0

			Teilpegel		Pegeländer- ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		36,74	4720,63	
2	Wolfcraft		34,00	2511,89	

Summe aus Teilpegeln Lr 38,59

Windpark Weibern

Vorbelastung: 5 WEA + Gewerbe

Immissionspunkt: IP R (Whs. Löhstr. 6, Weibern)

et. Dämpfungskoeffizient Co: 0

			Teilpegel		Pegeländer- ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		33,35	2162,72	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
35,34

Gesamtbelastung: 8 WEA + Gewerbe

Immissionspunkt: IP R (Whs. Löhstr. 6, Weibern)

et. Dämpfungskoeffizient Co: 0

			Teilpegel		Pegeländer- ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		36,91	4909,08	
2	Wolfcraft		31,00	1258,93	

	Summe aus
L	Teilpegeln
	Lr
	37,90

Windpark Weibern

Vorbelastung: 5 WEA + Gewerbe

Immissionspunkt: IP S (Whs. Konnstr. 41, Weibern)

Met. Dämpfungskoeffizient Co: 0

					Pegeländer-
			Teilpegel		ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		32,71	1866,38	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
34,95

Gesamtbelastung: 8 WEA + Gewerbe

Immissionspunkt: IP S (Whs. Konnstr. 41, Weibern)

Met. Dämpfungskoeffizient Co: 0

Nr.	AnlBez.	Pegel WEA	Teilpegel Lp,i	Hilfswerte	Pegeländer- ung mit Vorzeichen
		. ogo: **E/t		1 IIII SVVCI LC	VOIZEICHEH
1	WEAs		35,96	3944.57	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
37,16

08.03.2010 11:01 / 1

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:08/2.6.0.235

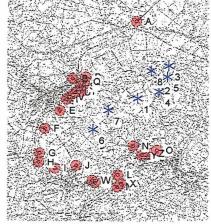
DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10.0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000 * Existierende WEA Schall-Immissionsort

WEA

	GK (Bessel) Zone: 2				WEA-T						Schall	werte			
	Ost	Nord	Z	Beschreibung	Aktuell	Hersteller	Generatortyp	Nenn-	Rotordurchmesser	Nabenhöhe	Quelle	Name	Windgeschw.	LwA,ref	Einzel-
	200020 2020 00							leistung							töne
	GK (Bessel) Zone: 2		[m]					[kVV]	[m]	[m]			[m/s]	[dB(A)]	
1	2.583.217	5.586.188	515,0	vorh. WEA 2	Ja	VESTAS	V47-660/200	660	47.0	65,0	USER	WT 802/98	10.0	105.3	0 dB
2	2.583.645	5.586.574	536,3	vorh. WEA 3	Ja	VESTAS	V47-660/200	660	47.0	65.0		WT 802/98	10.0	105,3	0 dB
3	2.583.855	5.586.860	536,8	vorh, WEA 4	Ja	VESTAS	V47-660/200	660	47.0	65.0		WT 802/98	10,0		0 dB
4	2.583.661	5.586.325	524.4	vorh. WEA 5	Ja	VESTAS	V47-660/200	660	47.0	65,0		WT 802/98		105,3	
5				vorh. WEA 6	Ja	VESTAS	V47-660/200	660					10,0		0 dB
6					-				47,0	65,0	USER	WT 802/98	10,0	105,3	0 dB
0						ENERCON	E-82-2.000	2.000	82,0	108,4	USER	red. 1000kW + Sicherheit 2.6 S-A	10,0	101.3	0 dB
7				beantr. WEA 9		ENERCON	E-82-2.000	2.000	82.0	108.4		red. 1000kW + Sicherheit 2,6 S-A	10.0	101,3	0 dB
8	2.583.495	5.586.763	550,0	beantr. WEA 12	Ja	ENERCON	E-70 E4 2,3 MW-2.300		71,0	113,5		Volllast 104,2 + Sicherheit 2.0 S-A		106.2	0 dB

Berechnungsergebnisse

Beurteilungspegel

Deurte	nungspeger							
Schall-Im	missionsort	GK (Besse	l) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr.	Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	o o nom
	A Whs. Appentalerhof	2.583.186	5.587.779	468,6	5,0	45,0		Ja
	B Whs. Winkelweg 10, Weibern	2.581.879	5.586.583	427,5	5,0	40,0		Ja
	C Whs. Waldstr. 2, Weibern	2.582.057	5.586.291	437,2	5,0	45,0		Ja
	D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5,0	45,0		Ja
	E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0	45,0	, , , , , , , , , , , , , , , , , , , ,	Ja
	F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585.546	415,7	5,0			Ja
	G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5,0	45,0		Ja
	H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0		Ja
	I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0		Ja
	J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448,7	5,0	40,0		Ja
	K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584.430	427,8	5,0	40,0		Ja
	L Hotel Eifler Seehütte, Rieden	2.582.814	5.584.586	377,5	5,0	40,0	32,8	Ja
	M Whs. Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0	31,3	Ja
	N Whs. Suhrstr. 24, Rieden	2.583.134	5.585.188	400,0	7,5	45,0	37,1	Ja
	O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585.107	414,6	7,5	40,0		Ja
	P Whs. Bahnhofstr. 111, Weibern	2.582.149	5.586.612	427,3	5,0	45,0	36,8	Ja
ì	Q Whs. Löhstr. 5, Weibern	2.582.117	5.586.518	420,0	5,0	45,0	36,7	Ja
,	R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3	5,0	45,0	36,9	Ja
	S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420,0	5,0	40,0	36,0	Ja
	T Whs. Tannenweg 6, Weibern	2.582.071	5.586.322	429,1	5,0	40,0		Ja
	U Whs. Konnstr. 25, Weibern	2.581.935	5.586.303	420,0	5,0	40,0	36,3	Ja
	V Whs. Buchenweg 1, Weibern	2.581.812	5.586.207	415,6	5,0	40,0	35,7	Ja
	N Baugrundstück Am Hang, Volkesfeld	2.582.296	5.584.477	437,8	5,0	40,0	30,8	Ja
	X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0	5,0	40,0	31,8	Ja
	Y Whs. Geisenberg 19, Rieden	2.583.318	5.585.001	398,6	7,5	40,0	35,2	Ja
	Z Whs. Am Sonnenhang 40, Rieden	2.583.474	5.585.041	410,9	7,5	40,0	34,9	Ja
						•		

Ausdruck/Seite
08.03.2010 11:01 / 2
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet: 01.03.2010 10:08/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47

Abstände (m)

	WEA							
Schall-Immissionsort	1	2	3	4	5	6	7	8
A	1590	1289	1136	1529	1313	2409	1927	1062
В	1395	1766	1996	1801	1957	1127	985	1626
С	1165	1613	1886	1605	1812	792	667	1513
D	1456	1930	2210	1907	2129	819	887	1838
E	1621	2130	2427	2083	2331	781	1003	2058
F	2017	2556	2869	2481	2755	995	1372	2505
G	2325	2891	3224	2781	3086	1212	1684	2874
Н	2437	3008	3346	2886	3200	1314	1804	3003
I	2239	2815	3163	2672	3001	1125	1635	2836
J	1893	2466	2819	2304	2645	834	1335	2512
K	1962	2507	2861	2307	2663	1108	1531	2601
L	1653	2156	2502	1935	2292	1082	1364	2281
M	1887	2380	2724	2155	2511	1294	1600	2512
N	1004	1477	1821	1253	1610	904	907	1616
0	1155	1467	1769	1219	1545	1391	1301	1661
Р	1149	1497	1724	1539	1686	1085	825	1355
Q	1149	1530	1772	1556	1723	997	770	1400
R	1145	1543	1794	1562	1738	946	738	1421
S	1195	1606	1860	1618	1801	924	755	1487
Т	1154	1595	1864	1591	1793	817	672	1491
U	1287	1732	1999	1726	1929	848	778	1626
V	1405	1869	2145	1853	2068	829	853	1772
W	1943	2493	2848	2297	2653	1061	1494	2581
X	1809	2294	2636	2067	2422	1268	1547	2431
Υ	1192	1607	1935	1368	1717	1150	1166	1771
Z	1176	1543	1859	1298	1637	1274	1237	1722

Weibern

08.03.2010 11:01 / 3

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref: Schalldruckpegel an WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Dämpfung aufgrund von Luftabsorption Agr: Dämpfung aufgrund des Bodeneffekts Abar: Dämpfung aufgrund von Abschirmung

Amisc: Dämpfung aufgrund verschiedener anderer Effekte

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	4				95% der Ne	ennleistui	nq							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.590	1.595	29,8	Nein	25,43	105,3	3,01		3,03	4,80	0,00	0,00	82,88	0.00
2	1.289	1.296	33,1	Ja	28,68	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79,63	0,00
3	1.136	1.144	44,4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0,00	0,00	77,81	0.00
4	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0,00	0,00	82,43	0,00
5	1.313	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79,87	0.00
6	2.409	2.414	56,2	Ja	17,07	101,3	3,01	78,66	4,59	4,00	0,00	0,00	87,24	0,00
7	1.927	1.935	74,3	Ja	20,41	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0.00
8	1.062	1.080	72.8	Ja	33.01	106.2	3.01	71.67	2.05	2 47	0.00	0.00	76 10	0.00

Summe 37,37

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	4				95% der Ne	ennleistui	ng								
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
1	1.395	1.403	49,1	Ja	28,11	105,3	3,01	73,94	2,67	3,60	0,00	0,00	80,20	0.00	
2	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0,00	0,00	84,15	0,00	
3	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0,00	0,00	85,64	0,00	
4	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4,00	0,00	0,00	83,58	0,00	
5	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4,80	0,00	0,00	85.39	0.00	
6	1.127	1.143	60,7	Ja	27,00	101,3	3,01	72,16	2,17	2,97	0,00	0,00	77,30	0,00	
7	985	1.007	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2,60	0,00	0.00	75.57	0.00	
8	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12	3,50	0,00	0.00	81.94	0.00	

Summe 35,27

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

WE	A				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.165	1.174	31,7	Nein	28,89	105,3	3,01	72,39	2,23	4,80	0,00	0,00	79,42	0,00
2	1.613	1.622	47,8	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
3	1.886	1.894	32,7	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0,00	0,00	84,94	0,00
4	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00
5	1.812	1.819	37,9	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00
6	792	814	42,2	Ja	30,54	101,3	3,00	69,22	1,55	3,00	0,00	0,00	73,76	0,00
7	667	698	41,3	Ja	32,35	101,3	3,00	67,88	1,33	2,74	0,00	0,00	71,95	0,00
8	1.513	1.531	76,6	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00

Summe 37,19

Projekt: Weibern

08.03.2010 11:01 / 4

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet:

01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

AAL	٦.				95% der Ne	ennieistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81,89	0,00
2	1.930	1.938	47,1	Ja	23,91	105,3	3,01	76,75	3,68	3,97	0,00	0,00	84,40	0,00
3	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00	0,00	86,33	0,00
4	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0,00	0,00	85,08	0,00
5	2.129	2.136	38,5	Ja	22,48	105,3	3,01	77,59	4,06	4,18	0,00	0,00	85,83	0,00
6	819	842	45,7	Ja	30,28	101,3	3,00	69,51	1,60	2,92	0,00	0,00	74,02	0,00
7	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
8	1.838	1.853	81,7	Ja	26,05	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00

Summe 35,50

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

4				95% der Ne	ennleistur	ng							
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1.621	1.627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0,00
950 8 8 8	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86,45	0,00
	2.432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0,00
2.083	2.088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0,00	86,16	0,00
2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00	0,00	87,61	0,00
781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0,00	0,00	75,40	0,00
1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0,00	0,00	77,93	0,00
2.058	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00
	[m] 1.621 2.130 2.427 2.083 2.331 781 1.003	Abstand Schallweg [m] [m] 1.621 1.627 2.130 2.136 2.427 2.432 2.083 2.088 2.331 2.336 781 801 1.003 1.022	Abstand Schallweg Mittlere Höhe [m] [m] [m] [m] 1.621 1.627 18,3 2.130 2.136 38,0 2.427 2.432 40,8 2.083 2.088 20,7 2.331 2.336 30,7 781 801 56,7 1.003 1.022 43,3	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [m] Sichtbar [m] 1.621 1.627 18,3 Nein 2.130 2.136 38,0 Nein 2.427 2.432 40,8 Nein 2.083 2.088 20,7 Nein 2.331 2.336 30,7 Nein 781 801 56,7 Nein 1.003 1.022 43,3 Nein	Abstand [m] Schallweg [m] Mittlere Höhe Sichtbar [dB(A)] Berechnet [dB(A)] 1.621 1.627 18,3 Nein 25,19 2.130 2.136 38,0 Nein 21,86 2.427 2.432 40,8 Nein 20,17 2.083 2.088 20,7 Nein 22,15 2.331 2.336 30,7 Nein 20,70 781 801 56,7 Nein 28,90 1.003 1.022 43,3 Nein 26,37	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] 1.621 1.627 18,3 Nein 25,19 105,3 2.130 2.136 38,0 Nein 21,86 105,3 2.427 2.432 40,8 Nein 20,17 105,3 2.083 2.088 20,7 Nein 22,15 105,3 2.331 2.336 30,7 Nein 20,70 105,3 781 801 56,7 Nein 28,90 101,3 1.003 1.022 43,3 Nein 26,37 101,3	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB(A)] [dB(A)] <t< td=""><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.621 1.627 18,3 Nein 25,19 105,3 3,01 75,23 2.130 2.136 38,0 Nein 21,86 105,3 3,01 77,59 2.427 2.432 40,8 Nein 20,17 105,3 3,01 78,72 2.083 2.088 20,7 Nein 22,15 105,3 3,01 77,39 2.331 2.336 30,7 Nein 20,70 105,3 3,01 78,37 781 801 56,7 Nein 28,90 101,3 3,00 69,08 1.003 1.022 43,3 Nein 26,37 101,3 3,01 71,19</td><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv Aatm Adm Aatm 1.621 1.627 18,3 Nein 25,19 105,3 3,01 75,23 3,09 3,01 75,23 3,09 3,09 3,01 77,59 4,06 4,06<</td><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] 1.621 1.627 18,3 Nein 25,19 105,3 3,01 75,23 3,09 4,80 2.130 2.136 38,0 Nein 21,86 105,3 3,01 77,59 4,06 4,80 2.427 2.432 40,8 Nein 20,17 105,3 3,01 78,72 4,62 4,80 2.083 2.088 20,7 Nein 22,15 105,3 3,01 77,39 3,97 4,80 2.331 2.336 30,7 Nein 20,70 105,3 3,01 78,37 4,44 4,80 781 801 56,7 Nein 28,90 101,3 3,00 69,08 1,52 4,80 1.003 1.022 43,3 Nein 26,37 101,3 3,01 71,19 1,94 4,80</td><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Abar [dB] Abar [dB] Adiv [dB] Aatm [dB] Abar [dB] Abar [dB] Adiv [dB]</td><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB] Berechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv Aatm Agr Abar Amisc Amisc Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]<</td><td>Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] [dB(A)] [dB] [dB]</td></t<>	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] 1.621 1.627 18,3 Nein 25,19 105,3 3,01 75,23 2.130 2.136 38,0 Nein 21,86 105,3 3,01 77,59 2.427 2.432 40,8 Nein 20,17 105,3 3,01 78,72 2.083 2.088 20,7 Nein 22,15 105,3 3,01 77,39 2.331 2.336 30,7 Nein 20,70 105,3 3,01 78,37 781 801 56,7 Nein 28,90 101,3 3,00 69,08 1.003 1.022 43,3 Nein 26,37 101,3 3,01 71,19	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv Aatm Adm Aatm 1.621 1.627 18,3 Nein 25,19 105,3 3,01 75,23 3,09 3,01 75,23 3,09 3,09 3,01 77,59 4,06 4,06<	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm Agr [dB] 1.621 1.627 18,3 Nein 25,19 105,3 3,01 75,23 3,09 4,80 2.130 2.136 38,0 Nein 21,86 105,3 3,01 77,59 4,06 4,80 2.427 2.432 40,8 Nein 20,17 105,3 3,01 78,72 4,62 4,80 2.083 2.088 20,7 Nein 22,15 105,3 3,01 77,39 3,97 4,80 2.331 2.336 30,7 Nein 20,70 105,3 3,01 78,37 4,44 4,80 781 801 56,7 Nein 28,90 101,3 3,00 69,08 1,52 4,80 1.003 1.022 43,3 Nein 26,37 101,3 3,01 71,19 1,94 4,80	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] LwA,ref [dB(A)] Dc [dB] Adiv [dB] Aatm [dB] Abar [dB] Abar [dB] Adiv [dB] Aatm [dB] Abar [dB] Abar [dB] Adiv [dB]	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB] Berechnet [dB(A)] LwA,ref [dB(A)] Dc Adiv Aatm Agr Abar Amisc Amisc Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]<	Abstand [m] Schallweg [m] Mittlere Höhe [m] Sichtbar [dB(A)] Berechnet [dB(A)] [dB(A)] [dB] [dB]

Summe 33,59

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0,00	85,77	0,00
2	2.556	2.563	22,0	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88,84	0,00
3	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0,00	90,43	0,00
4	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0,00
5	2.755	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00
6	995	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,78	0,00
7	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,86	2,64	3,48	0,00	0,00	79,99	0,00
8	2.505	2.517	62,8	Nein	20,61	106,2	3,01	79,02	4,78	4,80	0,00	0,00	88,60	0,00

Summe 32,02

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0,00	87,58	0,00
2	2.891	2.897	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90,54	0,00
3	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00	0,00	92,12	0,00
4	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0,00	0,00	89,99	0,00
5	3.086	3.091	7,6	Nein	16,84	105,3	3,01	80,80	5,87	4,80	0,00	0,00	91,47	0,00
6	1.212	1.229	43,8	Ja	25,61	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00
7	1.684	1.699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0,00
8	2.874	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00

Summe 29,50

08.03.2010 11:01 / 5

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

0,00 91,10 0,00

01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

3.013

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

106,2 3,01 80,58 5,72 4,80 0,00

	Scl	nall-lmn	nissions	ort: H Whs.	Heidew	eg 6a, W	abern								
	WE	4				95% der No	ennleistui	ng							
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	2.437	2.442	-,-	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0,00	88,19	0,00
	2	3.008	3.013	10,3	Nein	17,20	105,3	3,01	80,58	5,73	4,80	0,00	0,00	91,11	0,00
	3	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4,80	0,00	0,00	92,67	0,00
ı	4	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0,00	0.00	90.51	0.00
	5	3.200	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00	0,00	92,01	0.00
١	6	1.314	1.330	43,1	Ja	24,62	101,3	3,01	73,48	2,53	3,68	0,00	0.00	79.69	
	7	1.804	1.818	43,8	Nein	19,87	101,3	3,01	76,19		4,80			84,44	0.00
П	0	2 002	2 042	= 0 1		2027 0.0	0.425,075,0	E177 B. 76	- 1 5 5 m						

3.003 Summe 28,73

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

53,4

Nein

18,11

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.239	2.243	11,3	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87,08	0,00
2	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90,16	0,00
3	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91,82	0,00
4	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0,00	89,43	0,00
5	3.001	3.005	17,2	Nein	17,25	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,06	0,00
6	1.125	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,65	0,00
7	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,32	3,13	3,84	0,00	0,00	82,29	0.00
8	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00

Summe 30,31

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.893	1.897	17,0	Nein	23,34	105,3	3,01	76,56	3,60	4,80	0,00	0,00	84,96	0.00
2		2.471	25,6	Nein	19,96	105,3	3,01	78,86	4,69	4,80	0,00	0,00	88,35	0,00
3	2.819	2.823	20,5	Nein	18,13	105,3	3,01	80,01	5,36	4,80	0,00	0,00	90,18	0,00
4	2.304	2.308	31,5	Nein	20,86	105,3	3,01	78,26	4,38	4,80	0,00	0,00	87,45	0.00
5	2.645	2.648	23,6	Nein	19,02	105,3	3,01	79,46	5,03	4,80	0,00	0,00	89,29	0,00
6	834	852	39,7	Ja	29,90	101,3	3,00	69,61	1,62	3,18	0,00	0,00	74,41	0.00
7	1.335	1.349	38,2	Nein	23,35	101,3	3,01	73,60	2,56	4,80	0,00	0,00	80,96	0,00
8	2.512	2.521	51,4	Nein	20,59	106,2	3,01	79,03	4,79	4,80	0,00	0,00	88,62	0,00

Summe

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

VVE	4				95% der Ne	ennleistur	าg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.962	1.968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00	0,00	85,42	0,00
2	2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4,19	0,00	0,00	87,97	0,00
3	2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0,00	0,00	89,94	0,00
4	2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0,00	0,00	86,72	0,00
5	2.663	2.668	43,1	Ja	19,47	105,3	3,01	79,52	5,07	4,25	0,00	0,00	88,84	0.00
6	1.108	1.125	43,9	Nein	25,35	101,3	3,01	72,02	2,14	4,80	0,00	0,00	78,96	0.00
7	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78	2,94	4,80	0,00	0,00	82,51	0.00
8	2.601	2.611	72,7	Ja	21,07	106,2	3,01	79,34	4,96	3,85	0,00	0,00	88,14	0,00

Summe 30,88

08.03.2010 11:01 / 6

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

		Annal Control of the Control	And the first of the state of t						- 1 S 10 L 10 L	Contract of the last				A. C. Carles
Sc	hall-lmn	nissions	ort: L Hotel	Eifler S	eehütte,	Rieden								
WE	Α				95% der No	ennleistu	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.653	1.665	- 1	Ja	25,57	105,3	3,01	75,43	3,16	4,15	0,00	0,00	82,74	
2		2.167		Nein	21,67	105,3	3,01	77,72	4,12	4,80	0,00	0,00	86,64	0.00
3		2.512		Nein	19,74	105,3	3,01	79,00	4,77	4,80	0,00	0,00	88,57	0.00
4		1.947	00,.	Ja	23,67	105,3	3,01	76,79	3,70	4,15	0,00	0.00	84,64	0.00
5		2.303	,-	Nein	20,89	105,3	3,01	78,25	4,38	4,80	0,00	0,00	87,42	0.00
6		1.110	46,8	Ja	26,94	101,3	3,01	71,91	2,11	3,34	0,00	0.00	77.36	0.00
7	1.504	1.390	,-	Ja	24,38	101,3	3,01	73,86	2,64	3,43	0,00	0,00	79,93	0.00
8	2.281	2.300	56,8	Ja	22,65	106,2	3,01	78,23	4,37	3,95	0,00	0,00	86,56	0,00

Summe 32,81

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

VVE					95% der No		ng							
Nr.		Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0.00
2	2.380	2.392	37,2	Ja	20,92	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,39	0,00
3		2.734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89.73	0.00
4	2.155	2.167	40,8	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
5	2.511	2.522	31,2	Nein	19,68	105,3	3,01	79,03	4,79	4,80	0,00	0,00	88,63	0.00
6	1.294	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0.00	0.00	79.27	0.00
7	1.600	1.624	61,6	Ja	22,52	101,3	3,01	75,21	3,08	3,50	0,00	0,00	81,79	0.00
8	2.512	2.530	64,7	Ja	21,42	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,79	0,00

Summe 31,30

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden WEA

WE	A				95% der Ne	ennleistur	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.004	1.018	23,5	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00
2	1.477	1.490	15,0	Nein	26,21	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0.00
3	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0.00	84.54	0.00
4	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0.00
5	1.610	1.621	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0.00	83.08	0.00
6	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0.00	0.00	74.91	0.00
7	907	937	62,2	Ja	29,59	101,3	3,00	70,43	1,78	2,50	0.00	0.00	74,71	0.00
8	1.616	1.636	46,5	Nein	26,03	106,2	3,01	75,27	3,11	4,80	0,00	0.45	83,18	0,00

Summe 37,10

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE	A													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
2	200	1.478	20,3	Nein	26,30	105,3	3,01	74,40	2,81	4,80	0,00	0,00	82,00	0.00
3	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0.00
4	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0.00
5	1.545	1.555	10,0	Nein	25,72	105,3	3,01	74,84	2,95	4,80	0,00	0.00	82.59	0.00
6	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81.43	0.00
7	1.301	1.319	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0.00	0.00	80.71	0.00
8	1.661	1.678	45,5	Nein	25,72	106,2	3,01	75,50	2000	2.4000000		1000	83,49	0,00

Summe 35,22

Projekt: Weibern

08.03.2010 11:01 / 7

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg

0441 390 34 - 0

Berechnet: 01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

SCI	mail-ininissionsort: P wns. Bannnoistr. 111, welpern													
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00
2	1.497	1.506	30,8	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
3	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00
4	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00
5	1.686	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
6	1.085	1.102	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,22	0,00
7	825	851	66,3	Ja	31,00	101,3	3,00	69,60	1,62	2,10	0,00	0,00	73,31	0,00
8	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00

Summe

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

WE	50% del remineistang													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.149	1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00
2	1.530	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00
3	1.772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00
4	1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0.00
5	1.723	1.731	25,9	Nein	24,45	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,85	0,00
6	997	1.017	41,3	Nein	26,43	101,3	3,01	71,15	1,93	4,80	0,00	0,00	77,88	0.00
7	770	800	52,0	Ja	31,17	101,3	3,00	69,06	1,52	2,54	0,00	0,00	73,13	0,00
8	1.400	1.420	56,7	Nein	27,66	106,2	3,01	74,05	2,70	4,80	0,00	0,00	81,54	0,00

Summe 36,74

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

WE	oo // der Neimielstung													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.145	1.155	39,1	Nein	29,06	105,3	3,01	72,25	2,19	4,80	0,00	0,00	79,24	0,00
2	1.543	1.553	44,0	Ja	26,71	105,3	3,01	74,82	2,95	3,83	0,00	0,00	81,60	0,00
3	1.794	1.802	20,2	Nein	23,97	105,3	3,01	76,12	3,42	4,80	0,00	0,00	84,34	0,00
4	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92	2,98	4,80	0,00	0,00	82,70	0.00
5	1.738	1.746	32,3	Nein	24,35	105,3	3,01	75,84	3,32	4,80	0,00	0,00	83,96	0.00
6	946	966	42,8	Nein	26,97	101,3	3,01	70,70	1,84	4,80	0,00	0,00	77.33	0.00
7	738	767	49,5	Ja	31,59	101,3	3,00	68,70	1,46	2,56	0,00	0,00	72.72	0.00
8	1.421	1.440	64,9	Ja	29,05	106,2	3,01	74,17	2,74	3,25	0,00	0,00	80,15	0,00

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE	4	con der Heinfieldung												
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.195	1.205	34,2	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,71	0,00
2	1.606	1.615	43,0	Nein	25,28	105,3	3,01	75,16	3,07	4,80	0,00	0,00	83,03	0,00
3	1.860	1.869	22,0	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
4	1.618	1.626	33,0	Nein	25,20	105,3	3,01	75,22	3,09	4,80	0,00	0,00	83,11	0,00
5		1.809	31,9	Nein	23,92	105,3	3,01	76,15	3,44	4,80	0,00	0,00	84,39	0,00
6	924	945	45,0	Ja	28,85	101,3	3,00	70,51	1,80	3,15	0,00	0,00	75,46	0,00
7	755	786	44,7	Nein	29,10	101,3	3,00	68,91	1,49	4,80	0,00	0,00	75,20	0.00
8	1.487	1.506	66,6	Nein	26,99	106,2	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00

35,96 Summe

Ausdruck/Seite 08.03.2010 11:01 / 8

Lizenzierter Anwender

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0,00
2	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0,00
3	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
4	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00
5	1.793	1.800	37,6	Nein	23,99	105,3	3,01	76,10	3,42	4,80	0,00	0,00	84,32	0,00
6	817	839	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,07	0,00
7	672	703	41,6	Ja	32,28	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
8	1.491	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00

Summe 37,16

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

WE	4				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
2	1.732	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
3	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
4	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
5	1.929	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00
6	848	871	43,7	Ja	29,79	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
7	778	808	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
8	1.626	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00

36,30 Summe

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WEA	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00
2	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,01	0,00
3	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00
4	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00
5	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00
6	829	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,91	0,00	0,00	74,15	0,00
7	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
8	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

ш							0,								
	WE	A				95% der No	ennleistur	ng							
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00
ı	2	2.493	2.498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00
	3	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00
١	4	2.297	2.302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00
	5	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00
	6	1.061	1.076	43,1	Nein	25,83	101,3	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
	7	1.494	1.507	52,7	Nein	22,08	101,3	3,01	74,56	2,86	4,80	0,00	0,00	82,23	0,00
ı	8	2.581	2.590	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00
П															

Summe 30,83

Summe

Ausdruck/Seite 08.03.2010 11:01 / 9 Lizenzierter Anwender.

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:08/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

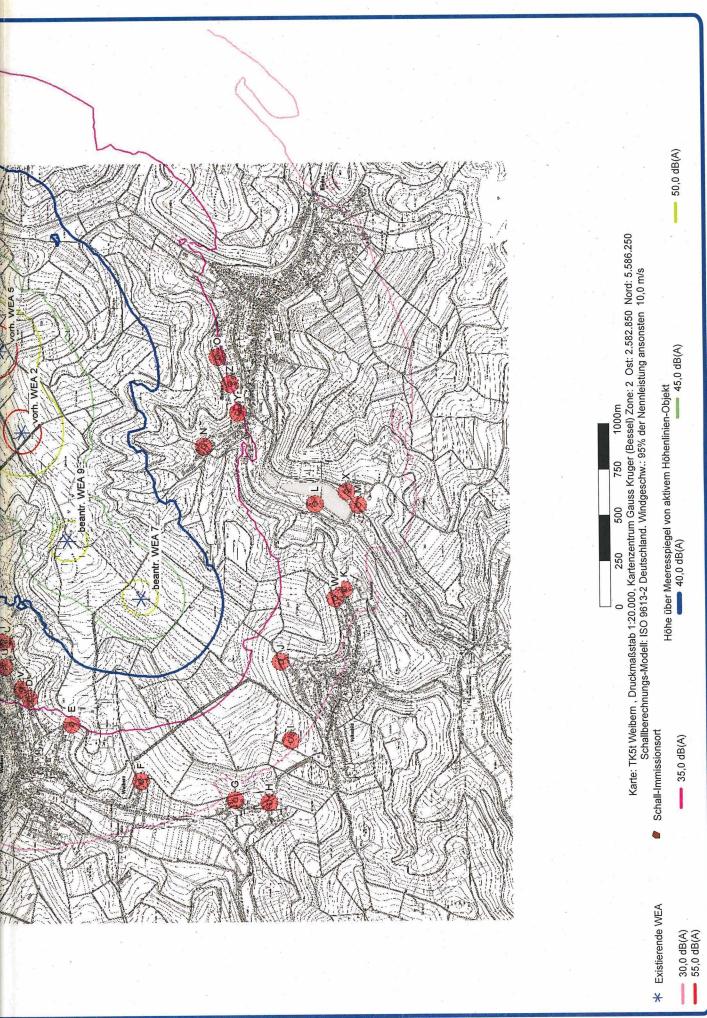
Berechnung: SLG Zustand 2 / LK M-K: Vorbelast. durch 2 beantr. E-82 + 1 beantr. E-70/E4 + 5 vorh. V47 Schallberech

Schall-Immissionsort: X Uferterrasse 3, Rieden

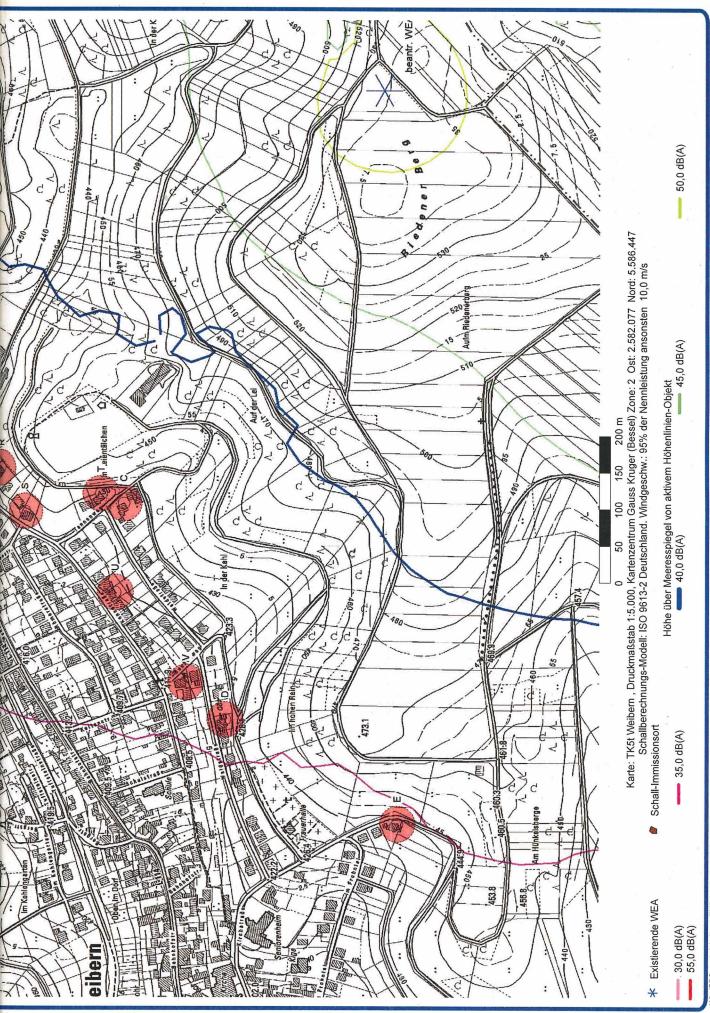
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0,00	0,00	83,71	0,00
2	2.294	2.305	35,6	Ja	21,40	105,3	3,01	78,25	4,38	4,27	0,00	0,00	86,91	0,00
3	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45	5,03	4,80	0,00	0,00	89,28	0,00
4	2.067	2.078	39,6	Ja	22,86	105,3	3,01	77,35	3,95	4,15	0,00	0,00	85,45	0,00
5	2.422	2.432	30,4	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0.00
6	1.268	1.292	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0,00	0,00	78,91	0.00
7	1.547	1.570	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0,00	0,00	81,21	0.00
8	2.431	2.448	66,8	Ja	21,92	106,2	3,01	78,78	4,65	3,87	0,00	0,00	87,29	0,00

31,79 Summe

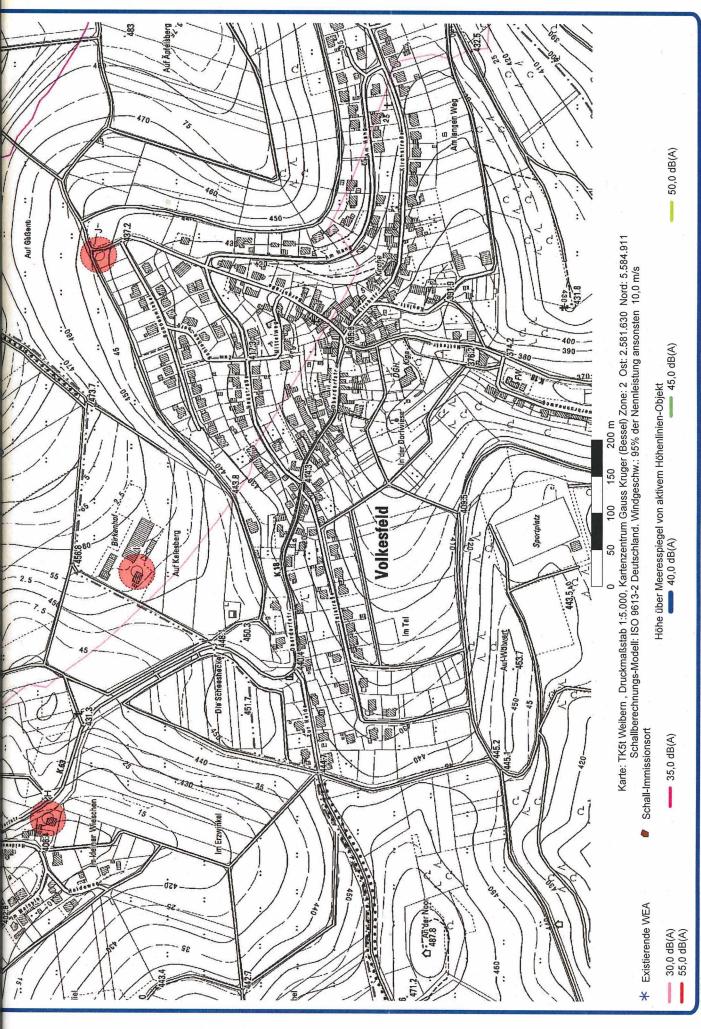
Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

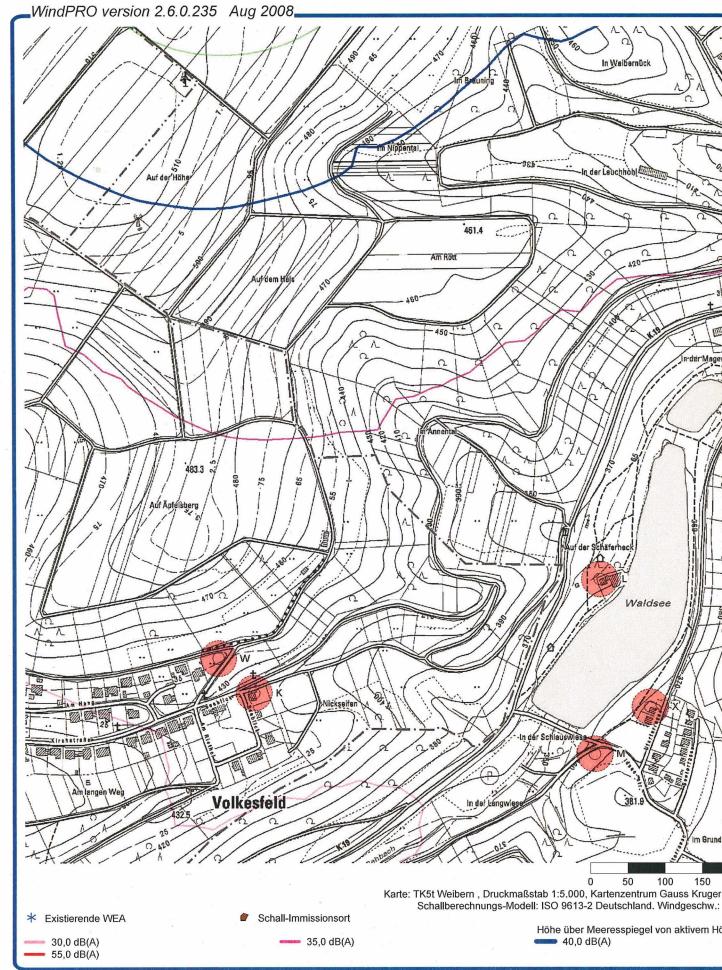

AAE	= - Con der Neimielstang													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0,00
2	1.607	1.619	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
3	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
4	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
5	1.717	1.727	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0,00
6	1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
7	1.166	1.190	71,1	Ja	26,80	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0,00
8	1.771	1.790	42,5	Nein	24,95	106,2	3,01	76,05	3,40	4,80	0,00	0,00	84,25	0,00

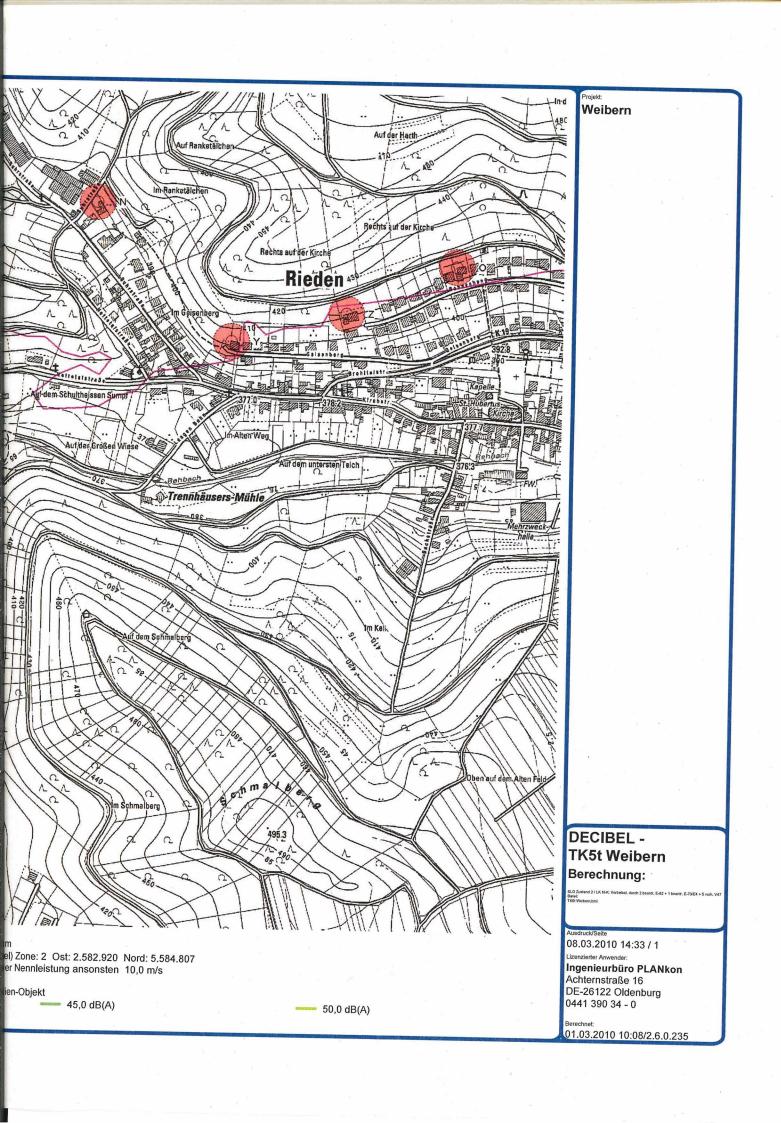
Summe 35,24


Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	-				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.176	1.187	11,2	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
2	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
3	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
4	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
5	1.637	1.647	9,3	Nein	25,05	105,3	3,01	75,33	3,13	4,80	0,00	0,00	83,26	0,00
6	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
7	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,17	0,00
8	1.722	1.740	42,5	Nein	25,29	106,2	3,01	75,81	3,31	4.80	0.00	0.00	83.92	0.00


Summe 34,91


WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk



WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dlk

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tei. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

roiekt:

Weibern

08.03.2010 11:03 / 1

Ingenieurbüro PLANkon

Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:10/2.6.0.235

Windgeschw. LwA.ref Einzel-

[m/s]

[dB(A)] 10,0 105,9 10,0 106,2 10,0 105,9

DECIBEL - Hauptergebnis

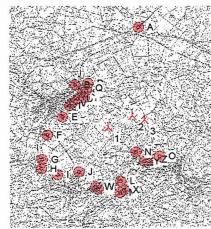
Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11)

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s

Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB


Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A)

Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Maßstab 1:75.000 Schall-Immissionsort

USER Volllast 103,8 + Sicherheit 2,09 S-A USER Volllast 104,2 + Sicherheit 2,0 S-A USER Volllast 103,8 + Sicherheit 2,09 S-A

Schallwerte

Quelle Name

Rotordurchmesser Nabenhöhe

leistung

[kW] 2.000

GK (Bessel) Zone: 2 [m] [m] 2.582.561 5.585.703 526,5 gepl. WEA 8 Ja 2.583.056 5.585.948 525,0 gepl. WEA 10 Ja 2.583.302 5.585.862 515,0 gepl. WEA 11 Ja Berechnungsergebnisse

Beurteilungspegel

WEA

GK (Bessel) Zone: 2

Schall-Immissionsort	GK (Besse	I) Zone: 2			Anforderungen	Beurteilungspegel	Anforderungen erfüllt?
Nr. Name	Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
Section 1997 (Constitution)			[m]	[m]	[dB(A)]	[dB(A)]	
A Whs. Appentalerhof	2.583.186	5.587.779	468,6	5,0	45,0	29,2	Ja
B Whs. Winkelweg 10, Weibern	2.581.879	5.586.583	427,5	5,0	40,0	34,7	Ja
C Whs. Waldstr. 2, Weibern	2.582.057	5.586.291	437,2	5,0	45,0	37,0	Ja
D Whs. Waldstr. 32, Weibern	2.581.761	5.586.154	431,0	5,0	45,0	35,2	Ja
E Whs. Kirchstr. 27, Weibern	2.581.618	5.585.918	443,3	5,0	45,0	33,5	Ja
F Whs. Im Wiesengrund 13, Weibern	2.581.306	5.585.546	415,7	5,0	45,0	32,0	Ja
G Whs. Dorfstr. 10, Wabern	2.581.198	5.585.035	422,1	5,0	45,0		Ja
H Whs. Heideweg 6a, Wabern	2.581.182	5.584.848	422,6	5,0	40,0	28,3	Ja
I Whs. Birkenhof, Volkesfeld	2.581.520	5.584.728	460,0	5,0	45,0	30,4	Ja
J Baugrundstück Sonnenwinkel, Volkesfeld	2.581.953	5.584.780	448,7	5,0	40,0	32,4	Ja
K Whs. Seeblick 1, Volkesfeld	2.582.345	5.584.430	427,8	5,0	40,0		Ja
L Hotel Eifler Seehütte, Rieden	2.582.814	5.584.586	377,5	5,0	40,0		Ja
M Whs. Waldseestr. 8, Rieden	2.582.807	5.584.347	368,2	5,0	40,0		Ja
N Whs. Suhrstr. 24, Rieden	2.583.134	5.585.188	400,0				Ja
O Whs. Am Sonnenhang 24, Rieden	2.583.624	5.585.107	414,6	7,5	40,0	36,1	Ja
P Whs. Bahnhofstr. 111, Weibern	2.582.149	5.586.612	427,3	5,0	45,0	36,3	Ja
Q Whs. Löhstr. 5, Weibern	2.582.117	5.586.518	420,0				Ja
R Whs. Löhstr. 6, Weibern	2.582.106	5.586.464	427,3				Ja
S Whs. Konnstr. 41, Weibern	2.582.046	5.586.426	420,0				Ja
T Whs. Tannenweg 6, Weibern	2.582.071	5.586.322	429,1	5,0	40,0		Ja
U Whs. Konnstr. 25, Weibern	2.581.935	5.586.303	420,0				Ja
V Whs. Buchenweg 1, Weibern	2.581.812	5.586.207	415,6	5,0	40,0	7. 120 E00 E000	Ja
W Baugrundstück Am Hang, Volkesfeld	2.582.296	5.584.477	437,8	5,0	40,0		Ja
X Uferterrasse 3, Rieden	2.582.882	5.584.411	370,0				Ja
Y Whs. Geisenberg 19, Rieden	2.583.318	5.585.001	398,6				Ja
Z Whs. Am Sonnenhang 40, Rieden	2.583.474	5.585.041	410,9	7,5	40,0	36,2	Ja

WindPRO version 2.6.0.235 Aug 2008

Projekt: Weibern

Ausdruck/Seite
08.03.2010 11:03 / 2
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16

DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 10:10/2.6.0.235

DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11)

Abstände (m)

	WEA			
Schall-Immissionsort	1	2	3	
Α	2167	1835	1920	
В	1113	1337	1595	
C	775	1056	1317	
D	918	1311	1568	
E	967	1438	1685	
F	1265	1796	2022	
G	1518	2070	2261	
Н	1623	2173	2350	
I	1427	1962	2113	
J	1106	1607	1730	
K	1291	1676	1722	
L	1146	1384	1367	
M	1379	1621	1595	
N	771	764	695	
0	1218	1015	821	
P	998	1124	1376	
Q	928	1099	1355	
R	886	1081	1339	
S	887	1117	1376	
Т	789	1054	1314	
Ü	867	1176	1436	
V	902	1270	1529	
W	1254	1656	1712	
X	1332	1547	1511	
Y	1033	983	862	
Z	1128	999	839	

Projekt:

Weibern

Ausdruckfseite
08.03.2010 11:03 / 3
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet:

01.03.2010 10:10/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11) Schallberechnu

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref: Schalldruckpegel an WEA

K: Einzeltöne

Dc: Richtwirkungskorrektur

Adiv: Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Dämpfung aufgrund von Luftabsorption
Agr: Dämpfung aufgrund des Bodeneffekts
Abar: Dämpfung aufgrund von Abschirmung

Amisc: Dämpfung aufgrund verschiedener anderer Effekte

Cmet: Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

VV E					95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.167	2.174	64,8	Ja	23,26	105,9	3,01	77,74	4,13	3,78	0,00	0,00	85,65	0,00
2	1.835	1.843	60,2	Ja	25,72	106,2	3,01	76,31	3,50	3,68	0,00	0,00	83,49	0,00
3	1 920	1 926	46.3	Mein	23.76	105.9	3.01	76 60	3 66	4 80	0.00	0.00	85 15	0.00

Summe 29.15

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	4				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.113	1.131	54,2	Ja	31,54	105,9	3,01	72,07	2,15	3,14	0,00	0,00	77,37	0,00
2	1.337	1.353	69,9	Ja	29,99	106,2	3,01	73,63	2,57	3,02	0,00	0,00	79,22	0,00
3	1.595	1 607	56.8	.la	27 15	105.9	3.01	75 12	3.05	3 58	0.00	0.00	81 76	0.00

Summe 34,69

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

WE	4				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	775	800	34,4	Ja	35,01	105,9	3,00	69,06	1,52	3,31	0,00	0,00	73,89	0,00
2	1.056	1.076	43,8	Nein	30,73	106,2	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
3	1.317	1.330	31,4	Nein	28,10	105,9	3,01	73,48	2,53	4,80	0,00	0,00	80.81	0.00

Summe 36,99

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

VV ⊏ A	4				95% der Ne	ennieistui	าg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	918	941	42,9	Ja	33,42	105,9	3,00	70,47	1,79	3,22	0,00	0,00	75,48	0,00
2	1.311	1.328	36,9	Nein	28,42	106,2	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
3	1.568	1.580	23,4	Nein	26,13	105,9	3,01	74,97	3,00	4,80	0,00	0,00	82,78	0,00

Summe 35.19

08.03.2010 11:03 / 4 Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:10/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11) Schallberechnu

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

Cmet
[dB]
0,00
0,00
0,00
49

Summe 33,54

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

VVE/	-				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]			[dB]				[dB]	[dB]
1	1.265	1.284	57,0	Ja	30,02	105,9	3,01	73,17	2,44	3,27	0,00	0,00	78.89	0.00
2	1.796	1.810	40,3	Ja	25,58							0,00		
3	2.022	2.032	33,7	Ja	23,66	105,9	3,01	77,16	3,86	4,23	0,00	0,00	85,25	0,00

Summe 32,04

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

	WEA					95% der Ne									
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ŀ		[m]	[m]	[m]		[dB(A)]	[dB(A)]		[dB]	[dB]			[dB]	[dB]	[dB]
	1	1.518	1.533	42,0	Nein	26,48	105,9	3,01	74,71	2,91	4,80	0,00	0,00	82,43	0.00
	2	2.070	2.082	33,3	Nein	23,08	106,2								0.00
	3	2.261	2.270	32,2	Nein	21,68	105,9	3,01	78,12	4,31	4,80	0,00	0,00	87,23	0,00

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

NEA 95% der Nennleistung														
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]				[dB]	[dB]	[dB]	
	1.637	40,6	Nein	25,72	105,9	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00	
	2.184		Nein	22,47	106,2	3,01	77,79	4,15	4,80	0,00	0,00	86,74	0,00	
2.350	2.359	35,2	Nein	21,17	105,9	3,01	78,45	4,48	4,80	0,00	0,00	87,74	0,00	
	Abstand [m] 1.623 2.173	Abstand Schallweg [m] [m] 1.623 1.637 2.173 2.184	Abstand Schallweg Mittlere Höhe [m] [m] [m] [m] 1.623 1.637 40,6 2.173 2.184 33,7	Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] 1.623 1.637 40,6 Nein 2.173 2.184 33,7 Nein	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet [m] [m] [m] [dB(A)] 1.623 1.637 40,6 Nein 25,72 2.173 2.184 33,7 Nein 22,47	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref [m] [m] [m] [dB(A)] [dB(A)] 1.623 1.637 40,6 Nein 25,72 105,9 2.173 2.184 33,7 Nein 22,47 106,2	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] 1.623 1.637 40,6 Nein 25,72 105,9 3,01 2.173 2.184 33,7 Nein 22,47 106,2 3,01	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] 1.623 1.637 40,6 Nein 25,72 105,9 3,01 75,28 2.173 2.184 33,7 Nein 22,47 106,2 3,01 77,79	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm [m] [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] [dB	

Summe 28,33

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	-				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]		[dB]			[dB]	[dB]	[dB]
1	1.427	1.438	46,0	Ja	28,32	105,9	3,01	74,15	2,73	3,70	0,00	0,00	80,58	0,00
2	1.962	1.970	48,2	Nein	23,77	106,2	3,01	76,89	3,74	4,80	0,00	0.00	85,44	0.00
3	2.113	2.119	53,2	Nein	22,56	105,9	3,01	77,52	4,03	4,80	0,00	0,00	86,35	0,00

Summe 30,41

Schall-Immissionsort: J Baugrundstück Sonnenwinkel, Volkesfeld

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.106	1.121	41,8	Nein	29,99	105,9	3,01	71,99	2,13	4,80	0,00	0,00	78,92	0,00
2	1.607	1.618	53,5	Nein	26,16	106,2	3,01	75,18	3,07	4,80	0,00	0,00	83,05	0,00
3	1.730	1.738	63,3	Nein	25,01	105,9	3,01	75,80	3,30	4,80	0,00	0,00	83,90	0,00
Sur	imme 32,37													

08.03.2010 11:03 / 5

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:10/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11) Schallberechnus

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

	VVE	-				95% der No									
Ì	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]							[dB]	[dB]
	1	1.291	1.307	59,2	Ja	29,86	105,9	3,01	73,33	2,48	3,24	0,00	0.00	79.05	0.00
	2	1.676	1.689	81,0	Ja	27,29	106,2	3,01	75,55	3,21	3,15	0.00	0.00	81,91	0.00
	3	1.722	1.733	82,1	Ja	26,67	105.9	3.01	75.78	3.29	3.17	0.00	0.00	82 24	0.00

Summe 32,94

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

AAL					95% der No									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]							[dB]	[dB]
1	1.146	1.175	60,6	Ja	31,25	105,9	3,01	72,40	2,23	3,02	0,00	0,00	77.66	0.00
2	1.384	1.409	75,4	Ja	29,59	106,2	3,01	73,98	2,68	2,96	0,00	0,00	79,61	0.00
3	1.367	1.389	78,2	Ja	29,55	105,9	3,01	73,86	2,64	2.86	0.00	0,00	79.36	0.00

Summe 34,98

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

	AAL					95% der N	ennieistui	าg							
I	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
ı		[m]	[m]	[m]		[dB(A)]	[dB(A)]			[dB]					[dB]
ı	1	1.379	1.405	66,2	Ja	29,11	105,9	3,01	73,95	2,67	3,18	0,00	0,00	79,80	0,00
l	2	1.621	1.644	82,0	Ja	27,68	106,2	3,01	75,32	3,12	3,08	0,00	0,00	81,52	0.00
l	3	1.595	1.615	83,8	Ja	27,66	105,9	3,01	75,16	3,07	3,02	0,00	0,00	81,25	0,00
ш															

32,98

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

VVE/	S-5-				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]		[dB]			[dB]		[dB]
1	771	804	71,5	Ja	36,56	105,9	3,00	69,10	1,53	1,71	0,00	0,00	72,34	0,00
2	764	798	54,4	Ja	36,21	106,2	3,00	69,04	1,52	2,43	0,00	0,00	72.99	0.00
3	695	728	60,2	Ja	37,36			68,24						

Summe 41,51

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE					95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]		[dB]		[dB]			[dB]	[dB]	[dB]
1	1.218	1.237	74,8	Nein	28,91	105,9	3,01	72,85	2,35	4,80	0,00	0,00	80,00	0,00
2	1.015	1.038	49,5	Nein	31,11	106,2	3,00	71,32	1,97	4,80	0,00	0,00	78,09	0,00
3	821	845	39,1	Nein	32,95	105,9	3,00	69,54	1,61	4,80	0,00	0,00	75,95	0,00

Summe 36,07

Schall-Immissionsort: P Whs. Bahnhofstr. 111, Weibern

WE	-				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	998	1.018	45,9	Ja	32,58	105,9	3,01	71,16	1,93	3,24	0,00	0,00	76,33	0,00
2	1.124	1.143	71,6	Ja	32,24	106,2	3,01	72,16	2,17	2,64	0,00	0,00	76,97	0,00
3	1.376	1.389	53,5	Ja	28,94	105,9	3,01	73,85	2,64	3,47	0,00	0,00	79,96	0,00

Summe 36,30

08.03.2010 11:03 / 6 Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet 01.03.2010 10:10/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11) Schallberechnu

Schall-Immissionsort: Q Whs. Löhstr. 5, Weibern

	WEA					95% der Ne	ennleistur	ng							
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]			[dB]	[dB]	[dB]
	1	928	952	34,3	Ja	32,97	105,9	3,00	70,57	1,81	3,55	0,00	0,00	75,93	0,00
	2	1.099	1.119	63,3	Ja	32,25	106,2	3,01	71,98	2,13	2,85	0,00	0,00	76,95	0,00
	3	1.355	1.369	49,2	Ja	29,01	105,9	3,01	73,73	2,60	3,56	0,00	0,00	79,89	0,00
п															

Summe 36,49

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

AAE					95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]								[dB]
1	886	910	34,4	Nein	32,20	105,9	3,00	70,18	1,73	4,80	0,00	0,00	76,71	0,00
2	1.081	1.101	59,0	Nein	30,48	106,2	3,01	71,84	2,09	4,80	0,00	0,00	78,73	0,00
3	1.339	1.353	45,9	Nein	27,91	105,9	3,01	73,63	2,57	4,80	0,00	0,00	81,00	0,00

Summe 35,31

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

					95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	887	912	33,6	Nein	32,18	105,9	3,00	70,20	1,73	4,80	0,00	0,00	76,73	0,00
2	1.117	1.137	52,0	Nein	30,13	106,2	3,01	72,12	2,16	4,80	0,00	0,00	79,08	0,00
3	1.376	1.391	39,3	Nein	27,60	105,9	3,01	73,86	2,64	4,80	0,00	0,00	81,31	0,00
	Nr. 1 2	[m] 1 887 2 1.117	Nr. Abstand Schallweg [m] [m] 1 887 912 2 1.117 1.137	Nr. Abstand Schallweg Mittlere Höhe [m] [m] [m] 1 887 912 33,6 2 1.117 1.137 52,0	Nr. Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] 1 887 912 33,6 Nein 2 1.117 1.137 52,0 Nein	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet [m] [m] [m] [dB(A)] 1 887 912 33,6 Nein 32,18 2 1.117 1.137 52,0 Nein 30,13	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref [m] [m] [m] [dB(A)] [dB(A)] 1 887 912 33,6 Nein 32,18 105,9 2 1.117 1.137 52,0 Nein 30,13 106,2	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)]	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv [m] [m] [m] [dB(A)] [dB(A)] [dB(A)] [dB] [dB] 1 887 912 33,6 Nein 32,18 105,9 3,00 70,20 2 1.117 1.137 52,0 Nein 30,13 106,2 3,01 72,12	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet Berechnet LwA,ref Dc (dB(A)) Dc Adiv Aatm Agr Agr Abar Amisc Amisc Amisc Amisc Amisc Adiv Adm (dB) Amisc Adm (dB)	Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [dB] [dB]

Summe 35,13

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

AAL	7				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	789	814	33,7	Ja	34,78	105,9	3,00	69,22	1,55	3,36	0,00	0,00	74,12	0.00
2	1.054	1.073	47,0	Nein	30,75	106,2	3,01	71,62	2,04	4,80	0,00	0,00	78,45	0,00
3	1.314	1.328	34,6	Nein	28,12	105,9	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0.00

Summe 36,85

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

VV E	105				95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	867	892	37,4	Ja	33,86	105,9	3,00	70,00	1,69	3,34	0,00	0,00	75,04	0,00
2	1.176	1.195	44,6	Nein	29,59	106,2	3,01	72,55	2,27	4,80	0,00	0,00	79,62	0,00
3	1.436	1.450	31,2	Nein	27,13	105,9	3,01	74,23	2,75	4,80	0,00	0,00	81,78	0,00

Summe 35.86

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

1				95% der No	ennleistur	ng							
Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
902	928	38,6	Ja	33,44	105,9	3,00	70,35	1,76	3,36	0,00	0,00	75,47	0,00
1.270	1.289	37,8	Nein	28,75	106,2	3,01	73,21	2,45	4,80	0,00	0,00	80,45	0,00
1.529	1.543	23,7	Nein	26,41	105,9	3,01	74,76	2,93	4,80	0,00	0,00	82,50	0,00
	Abstand [m] 902 1.270	Abstand Schallweg [m] [m] 902 928 1.270 1.289	Abstand Schallweg Mittlere Höhe [m] [m] [m] [m] 902 928 38,6 1.270 1.289 37,8	Abstand Schallweg Mittlere Höhe Sichtbar [m] [m] [m] 902 928 38,6 Ja 1.270 1.289 37,8 Nein	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet [m] [m] [m] [dB(A)] 902 928 38,6 Ja 33,44 1.270 1.289 37,8 Nein 28,75	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref [m] [m] [m] [dB(A)] [dB(A)] 902 928 38,6 Ja 33,44 105,9 1.270 1.289 37,8 Nein 28,75 106,2	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] 902 928 38,6 Ja 33,44 105,9 3,00 70,35 1.270 1.289 37,8 Nein 28,75 106,2 3,01 73,21</td> <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]</td> <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]</td> <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]</td> <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]</td> <td>Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [dB(A)] [dB(A)] [dB] <</td>	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] 902 928 38,6 Ja 33,44 105,9 3,00 70,35 1.270 1.289 37,8 Nein 28,75 106,2 3,01 73,21	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB]	Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc A [m] [m] [m] [dB(A)] [dB(A)] [dB] <

Summe 35,31 Projekt:

Weibern

Ausdruck/Seite 08.03.2010 11:03 / 7

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet:

01.03.2010 10:10/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA 8, 10, 11) Schallberechnus

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

WEA 95% der Nennleistung Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc [m] [m] [m] [dB(A)] [dB(A)] [dB] Adiv Aatm Agr Abar Amisc Cmet [m] 1.269 [dB] [dB] [dB] [dB] [dB] [dB] [dB] 1.254 56,8 Nein 28,63 105,9 3,01 73,07 2,41 4,80 0,00 0,00 80,28 0,00 1.656 1.667 81,7 Nein 25,80 106,2 3,01 75,44 3,17 4,80 0,00 0,00 83,41 0,00 105,9 3,01 75,72 3,27 3,19 0,00 3 1.712 1.721 80,8 26,74 0,00 82,17 0,00

Summe 31,99

Schall-Immissionsort: X Uferterrasse 3, Rieden

	55.5				95% der N	ennieistui	ng							
Nr	 Abstand 	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	1 1.332	1.357	72,9	Ja	29,73							0,00		
	2 1.547	1.570	85,1	Ja	28,37							0,00		
	3 1.511	1.531	83,8	Ja	28,38	105,9	3,01	74,70	2,91	2,92	0,00	0,00	80.53	0.00
									579	50	0.50		2	2010 2

Summe 33,65

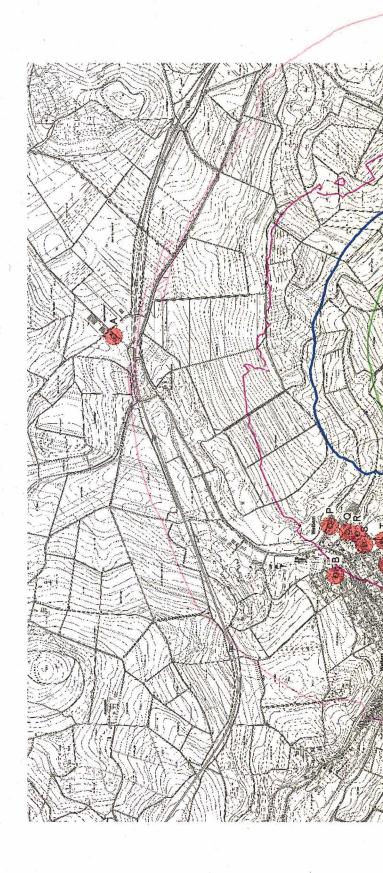
Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

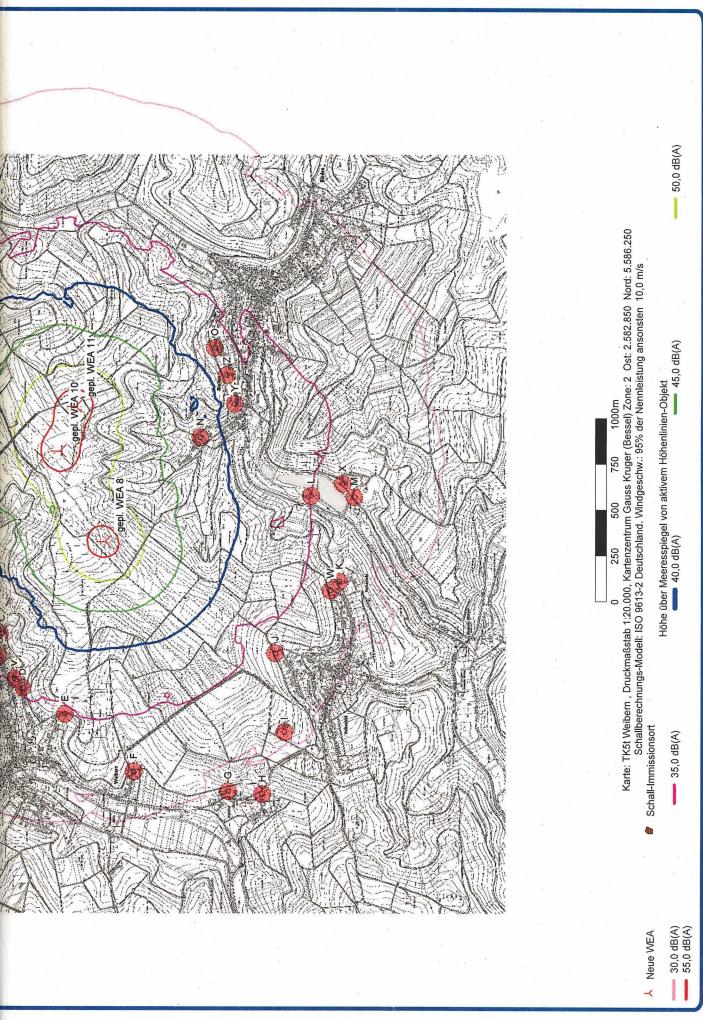
	VVE					95% der No	ennleistui	ng							
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
١		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]				[dB]	[dB]	[dB]
ŀ	1	1.033	1.058	,-	Ja	33,31	105,9	3,00	71,49	2,01	2,09	0,00	0,00	75.59	0.00
l	2	983	1.010	64,4	Nein	31,39	106,2	3,00	71,09	1,92	4,80	0,00	0,00	77.81	0.00
ŀ	3	862	889	50,2	Nein	32,44	105,9	3,00	69,98	1,69	4,80	0,00	0,00	76,46	0,00
П															

Summe 37,22

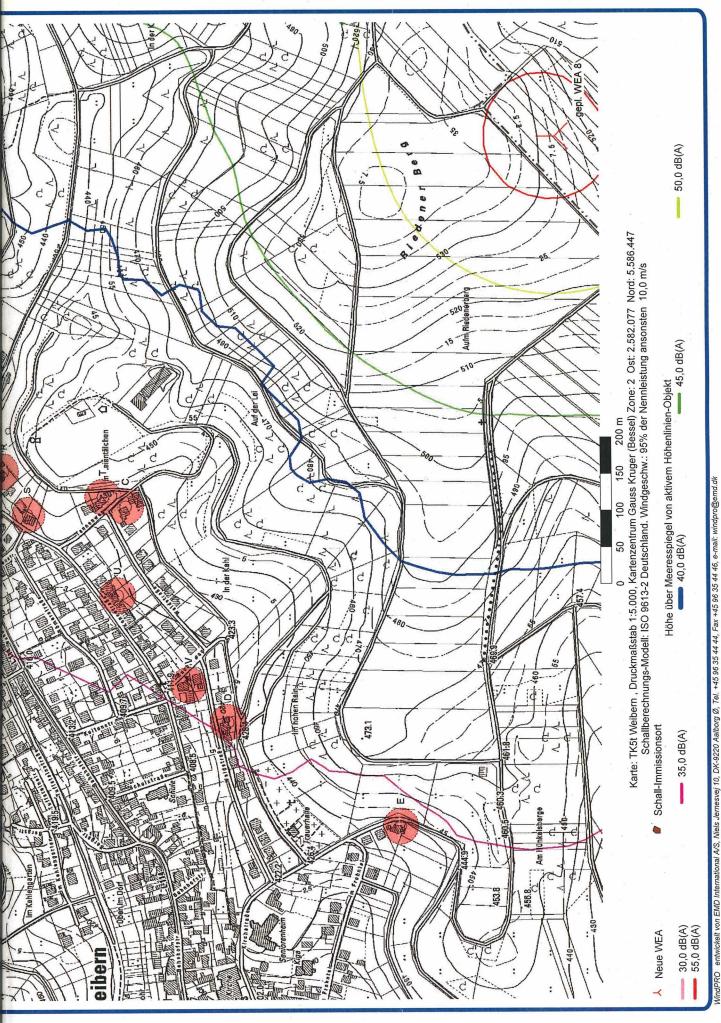
Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

WE	-				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Aar	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]							[dB]	[dB]	[dB]
1	1.128	1.149	80,6	Nein	29,72	105,9	3,00	72,21				0,00		
2	999	1.023	59,2	Nein	31,26	106,2								
3	839	864	42,9	Nein	32,72	105,9	3,00	69,73	1,64	4,80				0,00

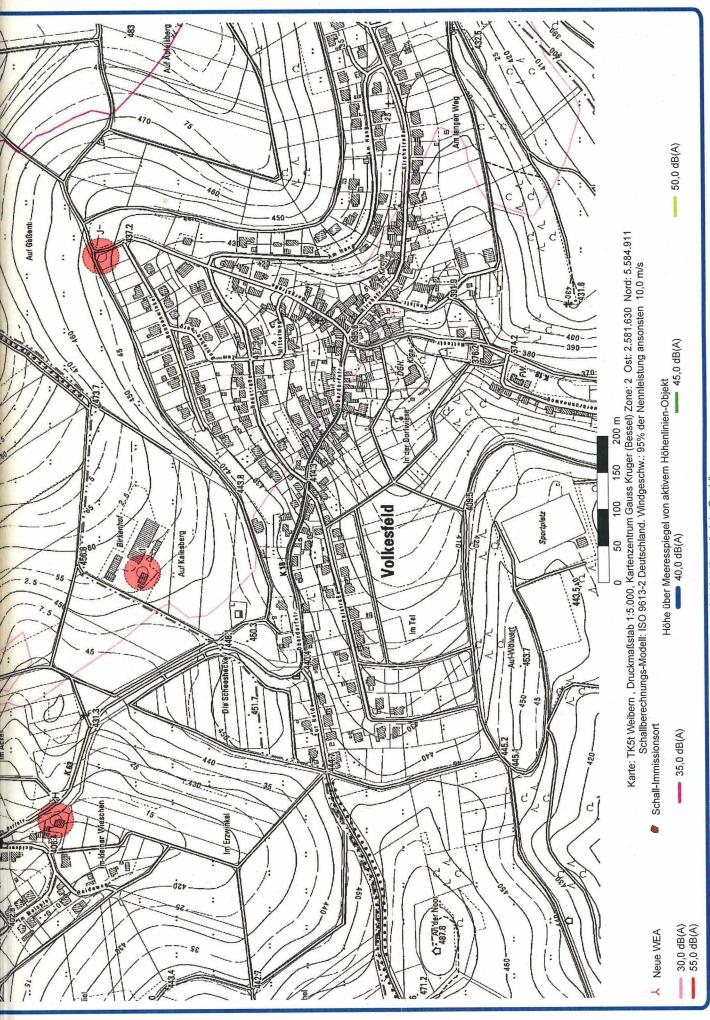

Summe 36,17

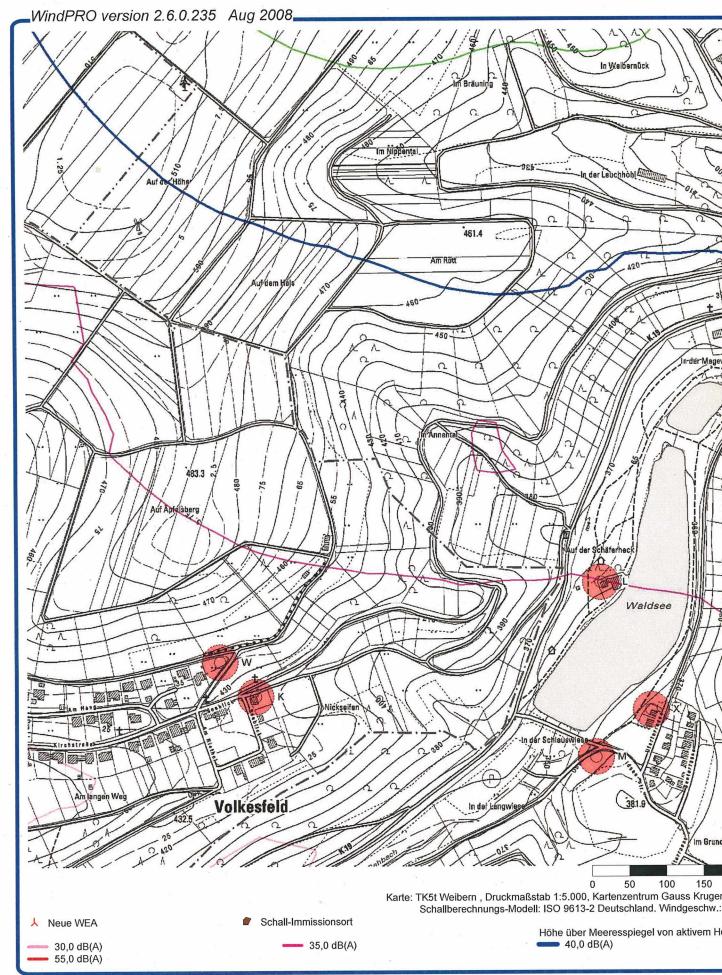

Ausdruck/Seite
08.03.2010 14:47 / 1
Lizenzlerter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

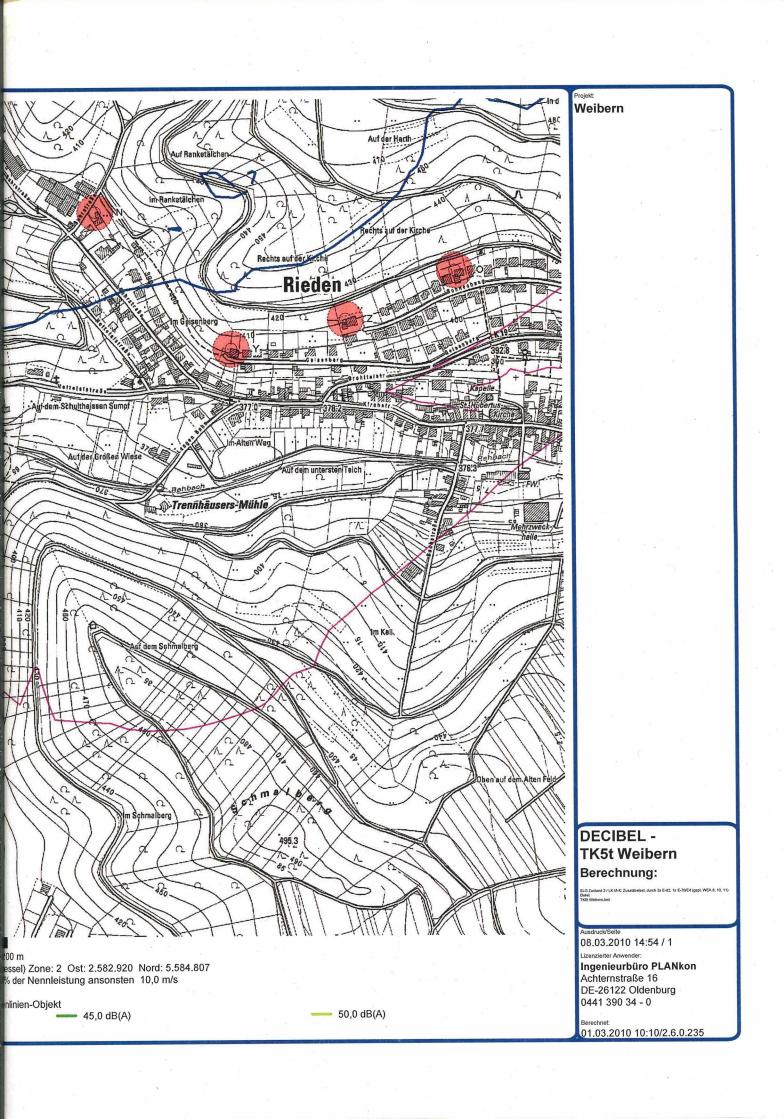
01.03.2010 10:10/2.6.0.235


DECIBEL - TK5t Weibern

Berechnung: SLG Zustand 2 / LK M-K: Zusatzbelast. durch 2x E-82, 1x E-70/E4 (gepl. WEA-8, 10, 11) Datei: TK5t Weibern.bmi




VindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tei. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk



entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Weibern

08.03.2010 11:05 / 1

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:12/2.6.0.235

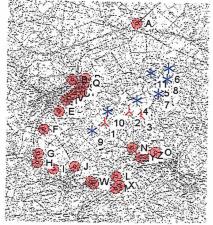
DECIBEL - Hauptergebnis

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Detaillierte Prognose nach TA-Lärm / DIN ISO 9613-2

Die Berechnung basiert auf der internationalen Norm ISO 9613-2 "Acoustics - Attenuation of sound during propagation outdoors"

Windgeschw. in 10 m Höhe: 10,0 m/s


Faktor für Meteorologischen Dämpfungskoeffizient, C0: 0,0 dB

Die gültigen Nacht-Immissionsrichtwerte sind entsprechend TA-Lärm festgesetzt auf:

Industriegebiet: 70 dB(A)

Dorf- und Mischgebiet, Außenbereich: 45 dB(A)

Reines Wohngebiet: 35 dB(A) Gewerbegebiet: 50 dB(A) Allgemeines Wohngebiet: 40 dB(A) Kur- und Feriengebiet: 35 dB(A)

Neue WEA

Maßstab 1:75.000 * Existierende WEA

Schall-Immissionsort

WEA

GK (Bessel) Zo Ost	ne: 2 Nord	z	Beschreibung	WEA-1 Aktuell		Generatortyp	Nenn-	Rotordurchmesser	Nabenhöhe	Schallwerte : Quelle Name	Windgeschw.	Lw∆ raf	Einzel
2 2.58 3 2.58 4 2.58 5 2.58 6 2.58 7 2.58 8 2.55 9 2.58 10 2.58	2.561 5.585.70 1.056 5.585.94 1.302 5.585.86 1.217 5.586.18 1.645 5.586.86 1.665 5.586.86 1.661 5.586.63 1.683 5.586.63 1.684 5.586.63 1.684 5.585.53 1.684 5.585.53 1.684 5.585.53	8 525 2 515 8 515 4 536 0 536 5 524 8 530 8 515 6 533	5 gepl. WEA 8 0 gepl. WEA 10 0 gepl. WEA 11 0 vorh. WEA 2 3 vorh. WEA 3 8 vorh. WEA 4 4 vorh. WEA 5 1 vorh. WEA 6 8 beantr. WEA 7 8 beantr. WEA 9 0 beantr. WEA 12	Ja Ja Ja Ja Ja Ja	ENERCON ENERCON VESTAS VESTAS VESTAS VESTAS ENERCON ENERCON	E-82-2.000 E-70 E4 2,3 MW-2.300 E-82-2.000 V47-660/200 V47-660/200 V47-660/200 V47-660/200 V47-660/200 E-82-2.000 E-82-2.000 E-70 E4 2,3 MW-2.300	leistung [kW] 2.000 2.300 2.000 660 660 660 660 2.000 2.000	[m] 82,0 71,0 82,0 47,0 47,0 47,0 47,0 47,0 82,0 82,0 71.0	[m] 108,4 113,5 108,4 65,0 65,0 65,0 65,0 65,0 108,4	USER Volllast 103,8 + Sicherheit 2,09 S-A USER Volllast 104,2 + Sicherheit 2,0 S-A USER Volllast 103,8 + Sicherheit 2,09 S-A USER WT 802/98 USER WT 802/98 USER WT 802/98 USER WT 802/98 USER WT 802/98 USER Ted. 1000kW + Sicherheit 2,6 S-A USER red. 1000kW + Sicherheit 2,6 S-A USER VISER VISER VISER 100 S-A USER VISER V	[m/s] 10,0	[dB(A)] 105,9 106,2 105,9 105,3 105,3 105,3 105,3 101,3	tone O dB O d

Berechnungsergebnisse

Beurteilungspegel

Schall-Immissionsort		GK (Besse	el) Zone: 2			Anforderungen	Baurtailunganagal	Anforderungen erfüllt?
Nr. Name		Ost	Nord	Z	Aufpunkthöhe	Schall	Von WEA	Schall
				[m]	[m]	[dB(A)]	[dB(A)]	Schail
A Whs. Appental		2.583.186	5.587.779	468,6	5,0	45.0		Ĭ-
B Whs. Winkelwe	eg 10, Weibern	2.581.879	5.586.583	427,5	5,0	40,0	1-	Ja
C Whs. Waldstr.	2, Weibern		5.586.291			45,0	1000000	Ja
D Whs. Waldstr.	32, Weibern	2.581.761	5.586.154	431,0	5.0	45,0		Ja
E Whs. Kirchstr.		2.581.618	5.585.918	443,3	5,0	45,0	36,6	Ja
F Whs. Im Wiese	engrund 13, Weibern	2.581.306	5.585.546	415,7	5,0	45,0	35,0	Ja
G Whs. Dorfstr. 1	0, Wabern		5.585.035		5,0	45,0	32,3	Ja
H Whs. Heideweg	g 6a, Wabern		5.584.848		5,0	40,0		Ja '-
I Whs. Birkenhot	f, Volkesfeld		5.584.728		5,0	45,0	31,5	Ja
J Baugrundstück	Sonnenwinkel, Volkesfeld	2.581.953			5,0		33,4	Ja
K Whs. Seeblick	1, Volkesfeld		5.584.430		5,0	40,0 40.0	35,6	Ja
L Hotel Eifler See	∍hütte, Rieden		5.584.586		5,0	40,0	35,0 37.0	Ja
M Whs. Waldsees	str. 8, Rieden	2.582.807			5,0	40,0	37,0 35.2	Ja
N Whs. Suhrstr. 2	24, Rieden	2.583.134	5.585.188	400.0	7,5	45,0	35,2	Ja
O Whs. Am Sonne	enhang 24, Rieden	2.583.624			7,5		42,9	Ja
P Whs. Bahnhofs	tr. 111, Weibern	2.582.149			5,0	40,0	38,7	Ja
Q Whs. Löhstr. 5,	Weibern	2.582.117			5,0	45,0	39,6	Ja
R Whs. Löhstr. 6,	Weibern	2.582.106	5.586.464	427.3	5,0	45,0	39,6	Ja
S Whs. Konnstr. 4	11, Weibern	2.582.046			5,0	45,0	39,2	Ja
T Whs. Tannenwe		2.582.071				40,0	38,6	Ja
U Whs. Konnstr. 2	25, Weibern	2.581.935			5,0	40,0	40,0	Nein
V Whs. Buchenwe		2.581.812			5,0	40,0	39,1	Ja
W Baugrundstück		2.582.296			5,0	40,0	38,5	Ja
X Uferterrasse 3,		2.582.882			5,0	40,0	34,5	Ja
Y Whs. Geisenber	no super and or	2.583.318			5,0	40,0	35,8	Ja
Z Whs. Am Sonne					7,5	40,0	39,4	Ja
	Amang 10, Modell	2.583.474	5.565.04 (410,9	7,5	40,0	38,6	Ja

08.03.2010 11:05 / 2 Lizenzierter Anwender: Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg

Berechnet: 01.03.2010 10:12/2.6.0.235

0441 390 34 - 0

DECIBEL - Hauptergebnis

VA/E A

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Abstände (m)

	WEA										
Schall-Immissionsort	1	2	3	4	5	6	7	8	9	10	11
Α	2167	1835	1920	1590	1289	1136	1529	1313	2409	1927	1062
В	1113	1337	1595	1395	1766	1996	1801	1957	1127	985	1626
C	775	1056	1317	1165	1613	1886	1605	1812	792	667	1513
D	918	1311	1568	1456	1930	2210	1907	2129	819	887	1838
E	967	1438	1685	1621	2130	2427	2083	2331	781	1003	2058
F	1265	1796	2022	2017	2556	2869	2481	2755	995	1372	2505
G	1518	2070	2261	2325	2891	3224	2781	3086	1212	1684	2874
H	1623	2173	2350	2437	3008	3346	2886	3200	1314	1804	3003
I	1427	1962	2113	2239	2815	3163	2672	3001	1125	1635	2836
J	1106	1607	1730	1893	2466	2819	2304	2645	834	1335	2512
K	1291	1676	1722	1962	2507	2861	2307	2663	1108	1531	2601
L	1146	1384	1367	1653	2156	2502	1935	2292	1082	1364	2281
M	1379	1621	1595	1887	2380	2724	2155	2511	1294	1600	2512
N	771	764	695	1004	1477	1821	1253	1610	904	907	1616
0	1218	1015	821	1155	1467	1769	1219	1545	1391	1301	1661
Р	998	1124	1376	1149	1497	1724	1539	1686	1085	825	1355
Q	928	1099	1355	1149	1530	1772	1556	1723	997	770	1400
R	886	1081	1339	1145	1543	1794	1562	1738	946	738	1421
S	887	1117	1376	1195	1606	1860	1618	1801	924	755	1487
T	789	1054	1314	1154	1595	1864	1591	1793	817	672	1491
U	867	1176	1436	1287	1732	1999	1726	1929	848	778	1626
V	902	1270	1529	1405	1869	2145	1853	2068	829	853	1772
W	1254	1656	1712	1943	2493	2848	2297	2653	1061	1494	2581
Х	1332	1547	1511	1809	2294	2636	2067	2422	1268	1547	2431
Υ	1033	983	862	1192	1607	1935	1368	1717	1150	1166	1771
Z	1128	999	839	1176	1543	1859	1298	1637	1274	1237	1722

08.03.2010 11:05 / 3 Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Annahmen

Berechneter L(DW) = LWA,ref + K + Dc - (Adiv + Aatm + Agr + Abar + Amisc) - Cmet (Wenn mit Bodeneffekt gerechnet ist Dc = Domega)

LWA,ref:

Schalldruckpegel an WEA

K:

Einzeltöne

Dc:

Richtwirkungskorrektur

Adiv:

Dämpfung aufgrund geometrischer Ausbreitung

Aatm: Agr:

Dämpfung aufgrund von Luftabsorption Dämpfung aufgrund des Bodeneffekts

Abar:

Dämpfung aufgrund von Abschirmung

Amisc:

Dämpfung aufgrund verschiedener anderer Effekte

Cmet:

Meteorologische Korrektur

Berechnungsergebnisse

Schall-Immissionsort: A Whs. Appentalerhof

WE	4				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	2.167	2.174	64,8	Ja	23,26	105,9	3,01	77,74	4,13	3,78	0.00	0.00	85.65	0.00
2	1.835	1.843	60,2	Ja	25,72	106,2	3,01	76,31	3,50	3,68	0,00	0,00	83,49	0.00
3	1.920	1.926	46,3	Nein	23,76	105,9	3,01	76,69	3,66	4,80	0,00	0,00	85,15	0.00
4	1.590	1.595	29,8	Nein	25,43	105,3	3,01	75,05	3,03	4,80	0,00	0,00	82.88	0.00
5	1.289	1.296	33,1	Ja	28,68	105,3	3,01	73,25	2,46	3,92	0,00	0,00	79,63	0.00
6	1.136	1.144	44,4	Ja	30,50	105,3	3,01	72,17	2,17	3,46	0,00	0,00	77.81	0.00
7	1.529	1.534	23,3	Nein	25,88	105,3	3,01	74,72	2,91	4,80	0,00	0,00	82,43	0.00
8	1.313	1.319	32,2	Ja	28,44	105,3	3,01	73,40	2,51	3,96	0,00	0,00	79.87	0.00
9	2.409	2.414	56,2	Ja	17,07	101,3	3,01	78,66	4,59	4,00	0,00	0,00	87,24	0,00
10	1.927	1.935	74,3	Ja	20,41	101,3	3,01	76,73	3,68	3,48	0,00	0,00	83,89	0,00
11	1.062	1.080	72,8	Ja	33,01	106,2	3,01	71,67	2,05	2,47	0,00	0,00	76,19	0,00

Summe 37,98

Schall-Immissionsort: B Whs. Winkelweg 10, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.113	1.131	54,2	Ja	31,54	105,9	3,01	72,07	2,15	3,14	0,00	0,00	77.37	0,00
2	1.337	1.353	69,9	Ja	29,99	106,2	3,01	73,63	2,57	3,02	0,00	0,00	79.22	0.00
3	1.595	1.607	56,8	Ja	27,15	105,9	3,01	75,12	3,05	3,58	0,00	0.00	81.76	0.00
4	1.395	1.403	49,1	Ja	28,11	105,3	3,01	73,94	2,67	3,60	0.00	0.00	80.20	0.00
5	1.766	1.774	42,9	Nein	24,16	105,3	3,01	75,98	3,37	4,80	0,00		84.15	0.00
6	1.996	2.003	17,4	Nein	22,67	105,3	3,01	77,03	3,81	4,80	0.00	0.00	85,64	0.00
7	1.801	1.808	42,1	Ja	24,73	105,3	3,01	76,14	3,43	4.00	0.00	,	83.58	0.00
8	1.957	1.964	29,9	Nein	22,92	105,3	3,01	76,86	3,73	4.80	0.00	30 A 30 CO	85.39	0,00
9	1.127	1.143	60,7	Ja	27,00	101,3	3,01	72,16	2.17	2.97	0.00		77.30	0.00
10	985	1.007	64,1	Ja	28,74	101,3	3,01	71,06	1,91	2.60	0.00		75.57	0.00
11	1.626	1.643	61,9	Ja	27,27	106,2	3,01	75,31	3,12		0,00		81,94	0,00

Schall-Immissionsort: C Whs. Waldstr. 2, Weibern

WE					95% der Ne									
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]		[dB]	[dB]	[dB]	[dB]	[dB]
1	775	800	34,4	Ja	35,01	105,9	3,00	69,06	1,52	3,31	0,00	0,00	73,89	0,00
2	1.056	1.076	43,8	Nein	30,73	106,2	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
3	1.317	1.330	31,4	Nein	28,10	105,9	3,01	73,48	2,53	4,80	0,00	0,00	80,81	0,00
4	1.165	1.174	31,7	Nein	28,89	105,3	3,01	72,39	2,23	4,80	0,00	0,00	79,42	0,00

ortsetzung auf nächster Seite.

08.03.2010 11:05 / 4

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Fo	rtsetzung	von der vor	igen Seite											
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
5	1.613	1.622	47,8	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
6	1.886	1.894	32,7	Nein	23,37	105,3	3,01	76,55	3,60	4,80	0,00	0,00	84,94	0,00
7	1.605	1.612	29,2	Nein	25,30	105,3	3,01	75,15	3,06	4,80	0,00	0,00	83,01	0,00
8	1.812	1.819	37,9	Nein	23,86	105,3	3,01	76,20	3,46	4,80	0,00	0,00	84,45	0,00
9	792	814	42,2	Ja	30,54	101,3	3,00	69,22	1,55	3,00	0,00	0,00	73,76	0,00
10	667	698	41,3	Ja	32,35	101,3	3,00	67,88	1,33	2,74	0,00	0,00	71,95	0,00
11	1.513	1.531	76,6	Nein	26,80	106,2	3,01	74,70	2,91	4,80	0,00	0,00	82,41	0,00

Summe 40,10

Schall-Immissionsort: D Whs. Waldstr. 32, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	918	941	42,9	Ja	33,42	105,9	3,00	70,47	1,79	3,22	0,00	0,00	75,48	0,00
2		1.328	36,9	Nein	28,42	106,2	3,01	73,46	2,52	4,80	0,00	0,00	80,79	0,00
3	1.568	1.580	23,4	Nein	26,13	105,9	3,01	74,97	3,00	4,80	0,00	0,00	82,78	0,00
4	1.456	1.464	27,1	Nein	26,42	105,3	3,01	74,31	2,78	4,80	0,00	0,00	81,89	0,00
5	1.930	1.938	47,1	Ja	23,91	105,3	3,01	76,75	3,68	3,97	0,00	0,00	84,40	0,00
6	2.210	2.217	38,4	Ja	21,98	105,3	3,01	77,91	4,21	4,21	0,00	0,00	86,33	0,00
7	1.907	1.914	27,4	Nein	23,23	105,3	3,01	76,64	3,64	4,80	0,00	0,00	85,08	0,00
8	2.129	2.136	38,5	Ja	22,48	105,3	3,01	77,59	4,06	4,18	0,00	0,00	85,83	0,00
9	819	842	45,7	Ja	30,28	101,3	3,00	69,51	1,60	2,92	0,00	0,00	74,02	0,00
10	887	912	45,9	Ja	29,31	101,3	3,00	70,20	1,73	3,06	0,00	0,00	74,99	0,00
11	1.838	1.853	81,7	Ja	26,05	106,2	3,01	76,36	3,52	3,29	0,00	0,00	83,16	0,00

Summe 38,36

Schall-Immissionsort: E Whs. Kirchstr. 27, Weibern

VV E	4				95% der Ne	ennleistui	าg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	967	985	43,6	Nein	31,36	105,9	3,01	70,87	1,87	4,80	0,00	0,00	77,54	0.00
2	1.438	1.451	32,7	Nein	27,42	106,2	3,01	74,23	2,76	4,80	0,00	0,00	81,79	0,00
3	1.685	1.694	23,7	Nein	25,31	105,9	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
4	1.621	1.627	18,3	Nein	25,19	105,3	3,01	75,23	3,09	4,80	0,00	0,00	83,12	0.00
5	2.130	2.136	38,0	Nein	21,86	105,3	3,01	77,59	4,06	4,80	0,00	0,00	86,45	0,00
6	2.427	2.432	40,8	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88.14	0.00
7	2.083	2.088	20,7	Nein	22,15	105,3	3,01	77,39	3,97	4,80	0,00	0,00	86,16	0,00
8	2.331	2.336	30,7	Nein	20,70	105,3	3,01	78,37	4,44	4,80	0,00	0,00	87,61	0.00
9	781	801	56,7	Nein	28,90	101,3	3,00	69,08	1,52	4,80	0,00	0,00	75,40	0.00
10	1.003	1.022	43,3	Nein	26,37	101,3	3,01	71,19	1,94	4,80	0.00	0.00	77.93	0.00
11	2.058	2.070	84,1	Nein	23,16	106,2	3,01	77,32	3,93	4,80	0,00	0,00	86,05	0,00
													0.5%	

Summe 36,58

Schall-Immissionsort: F Whs. Im Wiesengrund 13, Weibern

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.265	1.284	57,0	Ja	30,02	105,9	3,01	73,17	2,44	3,27	0,00	0,00	78,89	0,00
2	1.796	1.810	40,3	Ja	25,58	106,2	3,01	76,15	3,44	4,03	0,00	0,00	83,63	0,00
3	2.022	2.032	33,7	Ja	23,66	105,9	3,01	77,16	3,86	4,23	0,00	0,00	85,25	0,00
4	2.017	2.023	10,5	Nein	22,54	105,3	3,01	77,12	3,84	4,80	0,00	0,00	85,77	0,00
5	2.556	2.563	22,0	Nein	19,47	105,3	3,01	79,17	4,87	4,80	0,00	0,00	88,84	0,00
6	2.869	2.875	20,3	Nein	17,88	105,3	3,01	80,17	5,46	4,80	0,00	0,00	90,43	0,00
7	2.481	2.487	9,6	Nein	19,87	105,3	3,01	78,91	4,73	4,80	0,00	0,00	88,44	0,00
8	2.755	2.761	14,7	Nein	18,44	105,3	3,01	79,82	5,25	4,80	0,00	0,00	89,87	0,00
9	995	1.017	61,6	Ja	28,52	101,3	3,01	71,15	1,93	2,71	0,00	0,00	75,78	0,00
10	1.372	1.391	53,2	Ja	24,32	101,3	3,01	73,86	2,64	3,48	0,00	0,00	79,99	0,00

Fortsetzung auf nächster Seite.

08.03.2010 11:05 / 5 Lizenzierter Anwender. Ingenieurbüro PLANkon

Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

..Fortsetzung von der vorigen Seite

95% der Nennleistung

Nr. Abstand Schallweg Mittlere Höhe Sichtbar Berechnet LwA,ref Dc Adiv Aatm Agr Abar Amisc [m] [m] [m] [dB(A)] [dB(A)] [dB] [dB] [dB] [dB] [dB] [dB] [dB] Cmet [m] 2.517 [dB] [m] 2.505 [dB] Nein 20,61 106,2 3,01 79,02 4,78 4,80 0,00 0,00 88,60 0,00

Summe 35,04

Schall-Immissionsort: G Whs. Dorfstr. 10, Wabern

	WE	4				95% der Ne	ennieistur	ng								
	Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet	
		[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	
	1	1.518	1.533	42,0	Nein	26,48	105,9	3,01	74,71	2,91	4,80	0,00	0,00	82,43	0,00	
ļ	2	2.070	2.082	33,3	Nein	23,08	106,2	3,01	77,37	3,96	4,80	0,00	0,00	86,12	0,00	
I	3	2.261	2.270	32,2	Nein	21,68	105,9	3,01	78,12	4,31	4,80	0,00	0,00	87,23	0,00	
ı	4	2.325	2.331	3,4	Nein	20,73	105,3	3,01	78,35	4,43	4,80	0,00	0,00	87,58	0,00	
	5	2.891	2.897	15,7	Nein	17,77	105,3	3,01	80,24	5,50	4,80	0,00	0,00	90,54	0,00	
	6	3.224	3.229	17,0	Nein	16,19	105,3	3,01	81,18	6,13	4,80	0,00	0,00	92,12	0,00	
	7	2.781	2.786	3,1	Nein	18,32	105,3	3,01	79,90	5,29	4,80	0,00	0,00	89,99	0,00	
	8	3.086	3.091	7,6	Nein	16,84	105,3	3,01	80,80	5,87	4,80	0,00	0,00	91,47	0,00	
	9	1.212	1.229	43,8	Ja	25,61	101,3	3,01	72,79	2,34	3,57	0,00	0,00	78,70	0,00	
	10	1.684	1.699	47,7	Nein	20,68	101,3	3,01	75,60	3,23	4,80	0,00	0,00	83,63	0,00	
	11	2.874	2.885	58,7	Nein	18,73	106,2	3,01	80,20	5,48	4,80	0,00	0,00	90,48	0,00	

Summe 32,27

Schall-Immissionsort: H Whs. Heideweg 6a, Wabern

VV E	Α.				95 % del No	emmeistui	ıy							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.623	1.637	40,6	Nein	25,72	105,9	3,01	75,28	3,11	4,80	0,00	0,00	83,19	0,00
2	2.173	2.184	33,7	Nein	22,47	106,2	3,01	77,79	4,15	4,80	0,00	0,00	86,74	0,00
3	2.350	2.359	35,2	Nein	21,17	105,9	3,01	78,45	4,48	4,80	0,00	0,00	87,74	0,00
4	2.437	2.442	0,6	Nein	20,12	105,3	3,01	78,75	4,64	4,80	0,00	0,00	88,19	0,00
5	3.008	3.013	10,3	Nein	17,20	105,3	3,01	80,58	5,73	4,80	0,00	0,00	91,11	0,00
6	3.346	3.351	11,7	Nein	15,64	105,3	3,01	81,50	6,37	4,80	0,00	0,00	92,67	0,00
7	2.886	2.891	3,4	Nein	17,80	105,3	3,01	80,22	5,49	4,80	0,00	0,00	90,51	0,00
8	3.200	3.205	3,4	Nein	16,30	105,3	3,01	81,12	6,09	4,80	0,00	0,00	92,01	0,00
9	1.314	1.330	43,1	Ja	24,62	101,3	3,01	73,48	2,53	3,68	0,00	0,00	79,69	0,00
10	1.804	1.818	43,8	Nein	19,87	101,3	3,01	76,19	3,45	4,80	0,00	0,00	84,44	0,00
11	3.003	3.013	53,4	Nein	18,11	106,2	3,01	80,58	5,72	4,80	0,00	0,00	91,10	0,00

Summe 31,54

Schall-Immissionsort: I Whs. Birkenhof, Volkesfeld

WE	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.427	1.438	46,0	Ja	28,32	105,9	3,01	74,15	2,73	3,70	0,00	0,00	80,58	0,00
2	1.962	1.970	48,2	Nein	23,77	106,2	3,01	76,89	3,74	4,80	0,00	0,00	85,44	0,00
3	2.113	2.119	53,2	Nein	22,56	105,9	3,01	77,52	4,03	4,80	0,00	0,00	86,35	0,00
4	2.239	2.243	11,3	Nein	21,23	105,3	3,01	78,01	4,26	4,80	0,00	0,00	87,08	0,00
5	2.815	2.819	19,6	Nein	18,15	105,3	3,01	80,00	5,36	4,80	0,00	0,00	90,16	0,00
6	3.163	3.166	17,1	Nein	16,49	105,3	3,01	81,01	6,02	4,80	0,00	0,00	91,82	0,00
7	2.672	2.675	22,6	Nein	18,88	105,3	3,01	79,55	5,08	4,80	0,00	0,00	89,43	0,00
8	3.001	3.005	17,2	Nein	17,25	105,3	3,01	80,56	5,71	4,80	0,00	0,00	91,06	0,00
9	1.125	1.138	47,1	Ja	26,65	101,3	3,01	72,12	2,16	3,37	0,00	0,00	77,65	0,00
10	1.635	1.645	46,2	Ja	22,02	101,3	3,01	75,32	3,13	3,84	0,00	0,00	82,29	0,00
11	2.836	2.844	56,0	Nein	18,93	106,2	3,01	80,08	5,40	4,80	0,00	0,00	90,28	0,00

Summe 33,37

Ausdruck/Seite 08.03.2010 11:05 / 6 Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet:

01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

		100				and the same of th	dia rediction	OUT OF REAL PROPERTY.		de la composición de				A STATE OF THE PARTY OF THE PAR
Scl	nall-Imn	nissions	ort: J Baugi	rundstü	ck Sonne	enwinke	L Vo	lkesf	hle					
WE			<u> </u>						CIG					
	107				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.106	1.121	41,8	Nein	29,99	105,9	3,01	71,99	2,13	4.80	0.00	0.00	78.92	
2	1.607	1.618	,-	Nein	26,16	106,2	3,01	75,18	3.07	4,80		200		0.00
3	1.730	1.738	63,3	Nein	25,01	105,9	3,01	75,80		4,80		-,	,	0,00
4	1.893	1.897	17,0	Nein	23,34	105,3	3.01	76.56	2000	4.80	0.00	0.000		•
5	2.466	2.471	25,6	Nein	19,96	105,3	3,01	78.86		4.80	0.00	557.52.5		-1
6	2.819	2.823	20,5	Nein	18,13	105.3	3.01	80.01		4.80	-1	-,	90.18	0.00
7	2.304	2.308	31,5	Nein	20,86	105,3	3.01	78.26		4.80	0.00			0.00
8	2.645	2.648	23,6	Nein	19,02	105,3		79.46			0.00			0,00
9	834	852	39,7	Ja	29,90	101.3	2.0			3,18		100.000	74.41	0.00
10	1.335	1.349	38,2	Nein	23.35	101,3	- 1	73.60			0.00		80.96	0.00
11	2.512	2.521	51,4	Nein	20,59	106,2		79.03		4.80				200 200 0
			01,1	TTOIT	20,00	100,2	5,01	19,03	4,79	4,80	0,00	0,00	88,62	0,00

Summe 35,58

Schall-Immissionsort: K Whs. Seeblick 1, Volkesfeld

WE					95% der No	ennleistui	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.291	1.307	59,2	Ja	29,86	105,9	3,01	73,33	-	3,24		0.00	79.05	0.00
2	1.676	1.689	81,0	Ja	27,29	106,2	3,01	75,55	1111		0,00		81.91	0.00
3	1.722	1.733	82,1	Ja	26,67	105,9	3,01	75,78		3,17		.3° 8 6	82,24	0.00
4	1.962	1.968	43,2	Nein	22,89	105,3	3,01	76,88	3,74	4,80	0,00		85,42	0,00
5	2.507	2.513	44,6	Ja	20,34	105,3	3,01	79,00	4,77	4.19	0.00		87.97	0.00
6	2.861	2.866	38,0	Ja	18,37	105,3	3,01	80,15	5,45	4,35	0.00		89.94	0.00
7	2.307	2.313	51,3	Ja	21,59	105,3	3,01	78,28	4,39	4,04	0.00		86.72	0.00
8	2.663	2.668	43,1	Ja	19,47	105,3	3,01	79,52	5,07	4,25	0.00	and Android	88.84	0.00
9	1.108	1.125	43,9	Nein	25,35	101,3	3,01	72,02	2,14	4,80	0.00		78,96	0.00
10	1.531	1.545	54,7	Nein	21,79	101,3	3,01	74,78				00-000000000000000000000000000000000000	82.51	0.00
11	2.601	2.611	72,7	Ja	21,07	106,2	3,01	79,34			0,00		88.14	0.00

Summe 35,04

Schall-Immissionsort: L Hotel Eifler Seehütte, Rieden

VVE					95% der Ne	ennleistur	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.146	1.175	60,6	Ja	31,25	105,9	3,01	72,40		3,02		0.00	77.66	0.00
2	1.384	1.409	75,4	Ja	29,59	106,2	3,01	73.98		2-11/2 No. 10/2-10-10	0,00			0.00
3	1.367	1.389	78,2	Ja	29,55	105,9	3,01	73,86			0.00	345 5	79.36	0.00
4	1.653	1.665	31,6	Ja	25,57	105,3	3,01	75.43					82.74	0.00
5	2.156	2.167	32,7	Nein	21,67	105,3	3.01	77.72		5.00	0.00	4.00	86.64	0.00
6	2.502	2.512	21,9	Nein	19,74	105,3	3.01	79,00			0,00		88.57	0.00
7	1.935	1.947	36,7	Ja	23,67	105.3	and the same of	76,79	200 200	200 (12)	0,00		84,64	0.00
8	2.292	2.303	26,8	Nein	20.89			78,25	4,38				87.42	0.00
9	1.082	1.110	46.8	Ja	26,94			71.91		3,34			77.36	0.00
10	1.364	1.390	55,5	Ja	24,38	101.3		73.86	100 miles	3,43			79.93	0,00
11	2.281	2.300	56,8	Ja	22,65	106,2	2000	78,23	4,37				86,56	0.00
			N 88800				-,	. 0,20	.,07	0,00	0,00	0,00	00,00	0,00

Summe 37,04

Schall-Immissionsort: M Whs. Waldseestr. 8, Rieden

WE	4				95% der Ne		na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.379	1.405	66,2	Ja	29,11	105,9	3,01	73,95	2,67	3,18	0,00	0,00	79,80	0.00
2	1.621	1.644	82,0	Ja	27,68	106,2	3,01	75,32	3,12	3,08	0,00	0,00	81,52	0,00
3	1.595	1.615	83,8	Ja	27,66	105,9	3,01	75,16	3,07	3,02	0,00	0,00	81,25	0.00
4	1.887	1.899	38,1	Ja	24,02	105,3	3,01	76,57	3,61	4,11	0,00	0,00	84,29	0.00
5	2.380	2.392	37,2	Ja	20,92	105,3	3,01	78,57	4,54	4,27	0,00	0,00	87,39	0,00
6	2.724	2.734	26,6	Nein	18,58	105,3	3,01	79,74	5,19	4,80	0,00	0,00	89,73	0,00
Forts	etzung au	ıf nächster :	Seite											

Summe

Summe

38,68

08.03.2010 11:05 / 7

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Fc	rtsetzung	von der vor	igen Seite											
WE.	A				95% der No	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
7	2.155	2.167	40,8	Ja	22,32	105,3	3,01	77,72	4,12	4,15	0,00	0,00	85,99	0,00
8	2.511	2.522	31,2	Nein	19,68	105,3	3,01	79,03	4,79	4,80	0,00	0,00	88,63	0,00
9	1.294	1.320	55,5	Ja	25,04	101,3	3,01	73,41	2,51	3,35	0,00	0,00	79,27	0,00
10	1.600	1.624	61,6	Ja	22,52	101,3	3,01	75,21	3,08	3,50	0,00	0,00	81,79	0,00
11	2.512	2.530	64,7	Ja	21,42	106,2	3,01	79,06	4,81	3,93	0,00	0,00	87,79	0,00
Sui	mme 3	35,23												

Schall-Immissionsort: N Whs. Suhrstr. 24, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	771	804	71,5	Ja	36,56	105,9	3,00	69,10	1,53	1,71	0,00	0,00	72,34	0,00
2	764	798	54,4	Ja	36,21	106,2	3,00	69,04	1,52	2,43	0,00	0,00	72,99	0,00
3	695	728	60,2	Ja	37,36	105,9	3,00	68,24	1,38	1,92	0,00	0,00	71,54	0,00
4	1.004	1.018	23,5	Ja	31,21	105,3	3,01	71,16	1,93	4,00	0,00	0,00	77,09	0,00
5	1.477	1.490	15,0	Nein	26,21	105,3	3,01	74,46	2,83	4,80	0,00	0,00	82,09	0,00
6	1.821	1.831	7,3	Nein	23,77	105,3	3,01	76,26	3,48	4,80	0,00	0,00	84,54	0,00
7	1.253	1.267	19,5	Nein	28,05	105,3	3,01	73,05	2,41	4,80	0,00	0,00	80,26	0,00
8	1.610	1.621	11,5	Nein	25,23	105,3	3,01	75,20	3,08	4,80	0,00	0,00	83,08	0,00
9	904	929	54,2	Ja	29,39	101,3	3,00	70,36	1,77	2,78	0,00	0.00	74.91	0.00
10	907	937	62,2	Ja	29,59	101,3	3,00	70,43	1,78	2,50	0,00	0,00	74,71	0,00
11	1.616	1.636	46,5	Nein	26,03	106,2	3,01	75,27	3,11	4,80	0,00	0,00	83,18	0,00

Schall-Immissionsort: O Whs. Am Sonnenhang 24, Rieden

WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.218	1.237	74,8	Nein	28,91	105,9	3,01	72,85	2,35	4,80	0,00	0,00	80,00	0,00
2	1.015	1.038	49,5	Nein	31,11	106,2	3,00	71,32	1,97	4,80	0,00	0,00	78,09	0,00
3	821	845	39,1	Nein	32,95	105,9	3,00	69,54	1,61	4,80	0,00	0,00	75,95	0,00
4	1.155	1.166	8,1	Nein	28,96	105,3	3,01	72,33	2,22	4,80	0,00	0,00	79,35	0,00
5	1.467	1.478	20,3	Nein	26,30	105,3	3,01	74,40	2,81	4,80	0,00	0,00	82,00	0,00
6	1.769	1.778	9,1	Nein	24,13	105,3	3,01	76,00	3,38	4,80	0,00	0,00	84,17	0,00
7	1.219	1.230	21,7	Nein	28,37	105,3	3,01	72,80	2,34	4,80	0,00	0,00	79,94	0,00
8	1.545	1.555	10,0	Nein	25,72	105,3	3,01	74,84	2,95	4,80	0,00	0,00	82,59	0,00
9	1.391	1.406	71,6	Nein	22,88	101,3	3,01	73,96	2,67	4,80	0,00	0,00	81,43	0,00
10	1.301	1.319	59,7	Nein	23,59	101,3	3,01	73,41	2,51	4,80	0,00	0,00	80,71	0,00
11	1.661	1.678	45,5	Nein	25,72	106,2	3,01	75,50	3,19	4,80	0,00	0,00	83,49	0,00

Scl	nall-lmn	nissions	ort: P Whs.	Bahnho	ofstr. 111	, Weibe	rn							
WE	A				95% der Ne	ennleistui	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	998	1.018	45,9	Ja	32,58	105,9	3,01	71,16	1,93	3,24	0,00	0,00	76,33	0,00
2	1.124	1.143	71,6	Ja	32,24	106,2	3,01	72,16	2,17	2,64	0,00	0,00	76,97	0,00
3	1.376	1.389	53,5	Ja	28,94	105,9	3,01	73,85	2,64	3,47	0,00	0,00	79,96	0,00
4	1.149	1.159	37,6	Ja	30,15	105,3	3,01	72,28	2,20	3,68	0,00	0,00	78,16	0,00
5	1.497	1.506	30,8	Nein	26,09	105,3	3,01	74,56	2,86	4,80	0,00	0,00	82,22	0,00
6	1.724	1.733	6,1	Nein	24,44	105,3	3,01	75,77	3,29	4,80	0,00	0,00	83,87	0,00
7	1.539	1.547	28,2	Nein	25,78	105,3	3,01	74,79	2,94	4,80	0,00	0,00	82,53	0,00
8	1.686	1.694	18,3	Nein	24,71	105,3	3,01	75,58	3,22	4,80	0,00	0,00	83,60	0,00
9	1.085	1.102	48,3	Ja	27,09	101,3	3,01	71,84	2,09	3,29	0,00	0,00	77,22	0,00
10	825	851	66,3	Ja	31,00	101,3	3,00	69,60	1,62	2,10	0,00	0,00	73,31	0,00
11	1.355	1.374	49,7	Nein	28,04	106,2	3,01	73,76	2,61	4,80	0,00	0,00	81,17	0,00
Sur	nme 3	9.58												

Ausdruck/Seite

08.03.2010 11:05 / 8

Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet: 01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Scl	hall-lmn	nissions	ort: Q Whs.	Löhstr.	5, Weibe	ern								
WE	-				95% der Ne	ennleistui	ng							
Nr.		Schallweg	Mittlere Höhe		Berechnet		Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	928	952	34,3	Ja	32,97	105,9	3,00	70,57	1,81	3,55		0.00	75.93	0.00
2		1.119	63,2	Ja	32,25	106,2	3,01	71,98	2,13	2,85	0,00	0,00	76,95	0.00
3	1.355	1.369	49,2	Ja	29,01	105,9	3,01	73,73	2,60	3,56	0,00	0,00	79,89	0.00
4		1.159	37,9	Ja	30,15	105,3	3,01	72,28	2,20	3,67	0,00	0,00	78,16	0,00
5	1.530	1.540	39,0	Nein	25,84	105,3	3,01	74,75	2,93	4,80	0,00	0,00	82,47	0,00
6	1.772	1.781	12,3	Nein	24,11	105,3	3,01	76,01	3,38	4,80	0,00	0,00	84,20	0,00
7	1.556	1.565	32,4	Ja	26,36	105,3	3,01	74,89	2,97	4,09	0,00	0,00	81,95	0.00
8	1.723	1.731	25,9	Nein	24,45	105,3	0.000	75,77	3,29	4,80	0,00	0,00	83,85	0,00
9	997	1.017	41,3	Nein	26,43	101,3	33.4.3 S	71,15	1,93	4,80	0,00	0,00	77,88	0,00
10	770	800	52,0	Ja	31,17	101,3		69,06	1,52	2,54	0,00	0,00	73,13	0,00
11	1.400	1.420	56,7	Nein	27,66	106,2	3,01	74,05	2,70	4,80	0,00	0,00	81,54	0,00

Summe 39,63

Schall-Immissionsort: R Whs. Löhstr. 6, Weibern

				_011011	o, escibe	-111								
WE	7				95% der Ne	ennleistu	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	886	910	34,4	Nein	32,20	105,9				4,80		0.00	76.71	0.00
2	1.081	1.101	59,0	Nein	30,48			71,84		- A		22.4.2.3	78.73	0.00
3	1.339	1.353	45,9	Nein	27,91	105,9	1000	70. St. 20. Co.	100		1		81.00	0.00
4	1.145	1.155	39,1	Nein	29,06	105,3		72.25				- 1	79.24	0.00
5	1.543	1.553	44,0	Ja	26,71	105,3	3.01		1				81.60	0.00
6	1.794	1.802	20,2	Nein	23,97	105,3		76,12					84,34	0.00
7	1.562	1.570	35,4	Nein	25,61	105,3	3,01	74,92					82,70	0.00
8	1.738	1.746	32,3	Nein	24,35			75.84			0.00		83.96	0.00
9	946	966	42,8	Nein	26,97	101,3		70.70	-,	4,80	0.00		77.33	0.00
10	738	767	49,5	Ja	31,59	101,3	000000000000000000000000000000000000000	300 CO 100 CO			0,00		72.72	0,00
11	1.421	1.440	64,9	Ja	29,05	106,2		(10)	2,74		0.00		80.15	0.00
											,	-,00	, .0	0,00

Summe 39,19

Schall-Immissionsort: S Whs. Konnstr. 41, Weibern

WE					95% der Ne	ennleistur	na							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	887	912	33,6	Nein	32,18	105.9		70.20		4,80		0.00	76.73	0.00
2	1.117	1.137	52,0	Nein	30,13	106,2	3.01	72.12		a Process		50.000	79.08	0,00
3	1.376	1.391	39,3	Nein	27,60	105,9		73,86		,			81.31	0.00
4	1.195	1.205	34,2	Nein	28,60	105.3		72.62		14,0000		100 100 100	79.71	0.00
5	1.606	1.615	43,0	Nein	25,28	105,3		75.16	-,	4,80	0.00		83.03	0.00
6	1.860	1.869	22,0	Nein	23,53	105,3		76,43	3,55		0.00		84,78	0.00
7	1.618	1.626	33,0	Nein	25,20	105.3	10000	75,22			0.00		83.11	0.00
8	1.801	1.809	31,9	Nein	23,92	105,3	confident to	76,15	500000000000000000000000000000000000000		0.00			
9	924	945	45.0	Ja	28.85	101.3		70,13		3.15	-1-		84,39	0,00
10	755	786	44,7	Nein	29.10	101,3		68.91		130			75,46	0,00
11	1.487	1.506	66,6	Nein	26,99	106,2		74.56	- SA 5 6 6 6 7	4,80	0,00		75,20	0,00
	9 1990		00,0	Nem	20,00	100,2	5,01	14,50	2,86	4,80	0,00	0,00	82,22	0,00

Summe 38,57

Schall-Immissionsort: T Whs. Tannenweg 6, Weibern

WE	4				95% der Ne	ennleistur	nα							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA.ref	Dc	Adiv	Aatm	Agr	Ahar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	789	814	33,6	Ja	34,77	105,9	3,00					0.00	74.13	0.00
2	1.054	1.073	46,9	Nein	30,75	106,2	3,01	71,62				1000 (1000)	78.46	
3	1.314	1.328	34,5	Nein	28,12	105,9	3,01	73,46	2,52	4,80	0,00	and harrow	80.79	0.00
4	1.154	1.163	33,0	Nein	28,98	105,3	3,01	72,31	2,21	4,80	0,00	0,00	79,33	0.00
5	1.595	1.603	48,1	Nein	25,36	105,3	3,01	75,10	3,05	4,80	0,00	0,00	82,95	0.00
6	1.864	1.872	30,3	Nein	23,51	105,3	3,01	76,44	3,56	4,80	0,00	0,00	84,80	0,00
Forts	etzung au	ıf nächster S	Seite											

Projekt:

Weibern

Ausdruck/Seite

08.03.2010 11:05 / 9

Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternetraße 16

Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet

01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

F0	rtsetzung	von der vor	igen Seite											
WE	4				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
7	1.591	1.598	31,4	Nein	25,40	105,3	3,01	75,07	3,04	4,80	0,00	0,00	82,91	0,00
8	1.793	1.800	37,6	Nein	23,99	105,3	3,01	76,10	3,42	4,80	0,00	0,00	84,32	0,00
9	817	839	43,4	Ja	30,24	101,3	3,00	69,47	1,59	3,00	0,00	0,00	74,07	0,00
10	672	703	41,6	Ja	32,28	101,3	3,00	67,94	1,34	2,74	0,00	0,00	72,02	0,00
11	1.491	1.509	74,4	Nein	26,97	106,2	3,01	74,57	2,87	4,80	0,00	0,00	82,24	0,00

Summe 40,02

Schall-Immissionsort: U Whs. Konnstr. 25, Weibern

VVE/	4				95% der Ne	ennieistui	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	867	892	37,4	Ja	33,86	105,9	3,00	70,00	1,69	3,34	0,00	0,00	75,04	0,00
2	1.176	1.195	44,6	Nein	29,59	106,2	3,01	72,55	2,27	4,80	0,00	0,00	79,62	0,00
3	1.436	1.450	31,2	Nein	27,13	105,9	3,01	74,23	2,75	4,80	0,00	0,00	81,78	0,00
4	1.287	1.296	32,4	Nein	27,79	105,3	3,01	73,26	2,46	4,80	0,00	0,00	80,52	0,00
5	1.732	1.740	47,1	Nein	24,39	105,3	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00
6	1.999	2.007	29,4	Nein	22,64	105,3	3,01	77,05	3,81	4,80	0,00	0,00	85,67	0,00
7	1.726	1.734	30,2	Nein	24,43	105,3	3,01	75,78	3,29	4,80	0,00	0,00	83,88	0,00
8	1.929	1.937	36,7	Nein	23,09	105,3	3,01	76,74	3,68	4,80	0,00	0,00	85,22	0,00
9	848	871	43,7	Ja	29,79	101,3	3,00	69,80	1,65	3,06	0,00	0,00	74,51	0,00
10	778	808	46,8	Ja	30,84	101,3	3,00	69,14	1,53	2,79	0,00	0,00	73,46	0,00
11	1.626	1.644	73,3	Ja	27,50	106,2	3,01	75,32	3,12	3,27	0,00	0,00	81,71	0,00

Schall-Immissionsort: V Whs. Buchenweg 1, Weibern

WE	- Toyle del Melling													
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	902	928	38,6	Ja	33,44	105,9	3,00	70,35	1,76	3,36	0,00	0,00	75,47	0,00
2	1.270	1.289	37,8	Nein	28,75	106,2	3,01	73,21	2,45	4,80	0,00	0,00	80,45	0,00
3	1.529	1.543	23,7	Nein	26,41	105,9	3,01	74,76	2,93	4,80	0,00	0,00	82,50	0,00
4	1.405	1.414	26,8	Nein	26,81	105,3	3,01	74,01	2,69	4,80	0,00	0,00	81,50	0,00
5	1.869	1.878	45,8	Ja	24,30	105,3	3,01	76,47	3,57	3,96	0,00	0,00	84,01	0,00
6	2.145	2.152	33,2	Nein	21,76	105,3	3,01	77,66	4,09	4,80	0,00	0,00	86,55	0,00
7	1.853	1.860	25,6	Nein	23,58	105,3	3,01	76,39	3,53	4,80	0,00	0,00	84,73	0,00
8	2.068	2.076	36,6	Nein	22,22	105,3	3,01	77,34	3,94	4,80	0,00	0,00	86,09	0,00
9	829	853	46,6	Ja	30,16	101,3	3,00	69,62	1,62	2,91	0,00	0,00	74,15	0,00
10	853	881	43,3	Ja	29,63	101,3	3,00	69,90	1,67	3,10	0,00	0,00	74,67	0,00
11	1.772	1.789	76,6	Ja	26,43	106,2	3,01	76,05	3,40	3,33	0,00	0,00	82,78	0,00

Summe 38,50

Summe

39,10

Schall-Immissionsort: W Baugrundstück Am Hang, Volkesfeld

WEA	A				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.254	1.269	56,8	Nein	28,63	105,9	3,01	73,07	2,41	4,80	0,00	0,00	80,28	0,00
2	1.656	1.667	81,7	Nein	25,80	106,2	3,01	75,44	3,17	4,80	0,00	0,00	83,41	0,00
3	1.712	1.721	80,8	Ja	26,74	105,9	3,01	75,72	3,27	3,19	0,00	0,00	82,17	0,00
4	1.943	1.948	44,1	Nein	23,02	105,3	3,01	76,79	3,70	4,80	0,00	0,00	85,29	0,00
5	2.493	2.498	45,4	Nein	19,81	105,3	3,01	78,95	4,75	4,80	0,00	0,00	88,50	0,00
6	2.848	2.852	38,6	Nein	17,99	105,3	3,01	80,10	5,42	4,80	0,00	0,00	90,32	0,00
7	2.297	2.302	50,3	Nein	20,89	105,3	3,01	78,24	4,37	4,80	0,00	0,00	87,42	0,00
8	2.653	2.657	42,5	Nein	18,97	105,3	3,01	79,49	5,05	4,80	0,00	0,00	89,34	0,00
9	1.061	1.076	43,1	Nein	25,83	101,3	3,01	71,64	2,04	4,80	0,00	0,00	78,48	0,00
10	1.494	1.507	52,7	Nein	22,08	101,3	3,01	74,56	2,86	4,80	0,00	0,00	82,23	0,00
11	2.581	2.590	74,6	Nein	20,22	106,2	3,01	79,27	4,92	4,80	0,00	0,00	88,99	0,00
Sur	nme 3	4,46												

08.03.2010 11:05 / 10

Lizenzierter Anwender:

Ingenieurbüro PLANkon Achternstraße 16 DE-26122 Oldenburg 0441 390 34 - 0

Berechnet: 01.03.2010 10:12/2.6.0.235

DECIBEL - Detaillierte Ergebnisse

Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5 y

Schall-Immissionsort: X Uferterrasse 3, Rieden

					33 % del 146	emmeistur	ıg							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.332	1.357	72,9	Ja	29,73	105,9	3,01	73,65	2,58	2,95	0,00	0,00	79.18	0.00
2	1.547	1.570	85,1	Ja	28,37	106,2	3,01	74,92	2,98	2,94	0,00	0,00	80,83	0.00
3	1.511	1.531	83,8	Ja	28,38	105,9	3,01	74,70	2,91	2,92	0,00	0,00	80,53	0.00
4	1.809	1.820	39,7	Ja	24,60	105,3	3,01	76,20	3,46	4,05	0,00	0,00	83,71	0.00
5	2.294	2.305	35,6	Ja	21,40	105,3	3,01	78,25	4,38	4,27	0,00	0,00	86,91	0,00
6	2.636	2.646	25,8	Nein	19,03	105,3	3,01	79,45	5,03	4,80	0,00	0,00	89,28	0.00
7	2.067	2.078	39,6	Ja	22,86	105,3	3,01	77,35	3,95	4,15	0,00	0,00	85,45	0.00
8	2.422	2.432	30,4	Nein	20,17	105,3	3,01	78,72	4,62	4,80	0,00	0,00	88,14	0.00
9	1.268	1.292	59,1	Ja	25,40	101,3	3,01	73,23	2,46	3,22	0.00	0.00	78.91	0.00
10	1.547	1.570	67,9	Ja	23,09	101,3	3,01	74,92	2,98	3,31	0.00	0.00	81.21	0.00
11	2.431	2.448	66,8	Ja	21,92	106,2	3,01	78,78	3.00	3,87			87,29	0,00

Summe

Schall-Immissionsort: Y Whs. Geisenberg 19, Rieden

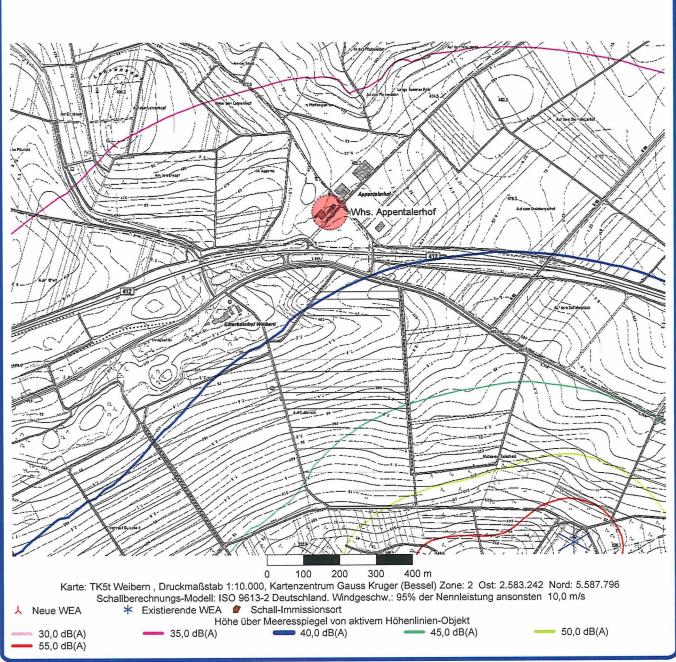
WE	4				95% der Ne	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.033	1.058	82,8	Ja	33,31	105,9	3,00	71,49	2,01	2,09	0,00	0,00	75,59	0.00
2	983	1.010	64,4	Nein	31,39	106,2	3,00	71,09	1,92	4,80	0,00	0,00	77,81	0,00
3	862	889	50,2	Nein	32,44	105,9	3,00	69,98	1,69	4,80	0,00	0,00	76,46	0,00
4	1.192	1.204	18,3	Nein	28,60	105,3	3,01	72,62	2,29	4,80	0,00	0,00	79,70	0.00
5	1.607	1.619	15,1	Nein	25,25	105,3	3,01	75,18	3,08	4,80	0,00	0,00	83,06	0,00
6	1.935	1.945	8,8	Nein	23,03	105,3	3,01	76,78	3,70	4,80	0,00	0,00	85,28	0,00
7	1.368	1.381	18,7	Nein	27,08	105,3	3,01	73,80	2,62	4,80	0,00	0,00	81,22	0,00
8	1.717	1.727	9,3	Nein	24,48	105,3	3,01	75,75	3,28	4,80	0,00	0,00	83,83	0.00
9	1.150	1.171	70,0	Ja	26,98	101,3	3,01	72,37	2,22	2,74	0,00	0,00	77,33	0,00
10	1.166	1.190	71,1	Ja	26,80	101,3	3,01	72,51	2,26	2,74	0,00	0,00	77,51	0.00
11	1.771	1.790	42,5	Nein	24,95	106,2	3,01	76,05	3,40	4,80	0.00	0.00	84.25	0.00

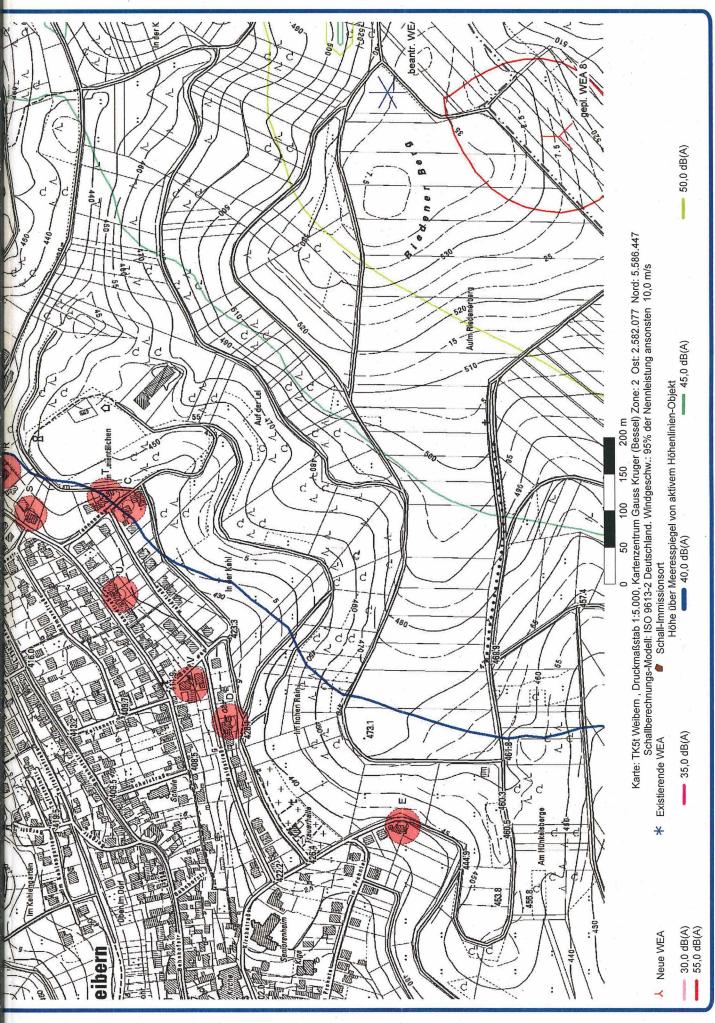
Summe 39,35

Schall-Immissionsort: Z Whs. Am Sonnenhang 40, Rieden

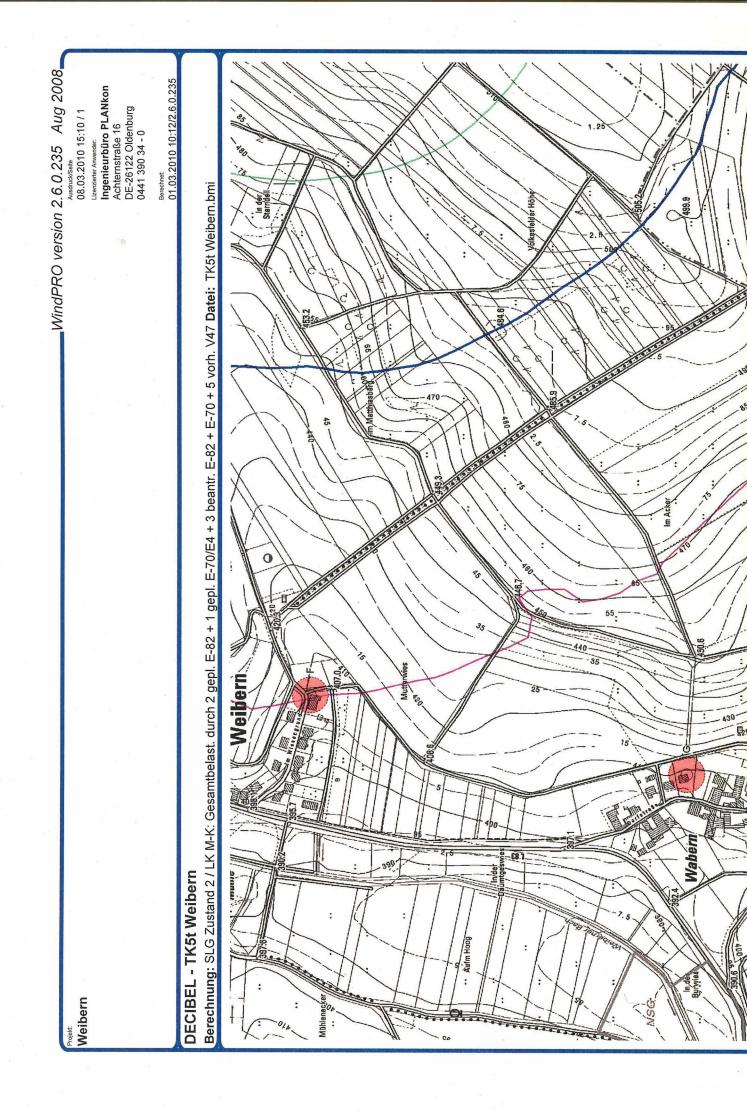
WE	A				95% der No	ennleistur	ng							
Nr.	Abstand	Schallweg	Mittlere Höhe	Sichtbar	Berechnet	LwA,ref	Dc	Adiv	Aatm	Agr	Abar	Amisc	Α	Cmet
	[m]	[m]	[m]		[dB(A)]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
1	1.128	1.149	80,6	Nein	29,72	105,9	3,00	72,21	2,18	4,80	0,00	0,00	79,19	0,00
2	999	1.023	59,2	Nein	31,26	106,2	3,00	71,20	1,94	4,80	0,00	0,00	77,95	0,00
3	839	864	42,9	Nein	32,72	105,9	3,00	69,73	1,64	4,80	0,00	0,00	76,18	0,00
4	1.176	1.187	11,2	Nein	28,76	105,3	3,01	72,49	2,26	4,80	0,00	0,00	79,55	0,00
5	1.543	1.554	16,9	Nein	25,73	105,3	3,01	74,83	2,95	4,80	0,00	0,00	82,58	0,00
6	1.859	1.868	8,9	Nein	23,53	105,3	3,01	76,43	3,55	4,80	0,00	0,00	84,78	0,00
7	1.298	1.310	19,1	Nein	27,68	105,3	3,01	73,34	2,49	4,80	0,00	0,00	80,63	0,00
8	1.637	1.647	9,3	Nein	25,05	105,3	3,01	75,33	3,13	4,80	0,00	0,00	83,26	0,00
9	1.274	1.291	71,3	Nein	23,84	101,3	3,01	73,22	2,45	4,80	0,00	0,00	80,47	0,00
10	1.237	1.257	67,1	Nein	24,13	101,3	3,01	72,99	2,39	4,80	0,00	0,00	80,17	0,00
11	1.722	1.740	42,5	Nein	25,29	106,2	3,01	75,81	3,31	4,80	0,00	0,00	83,92	0,00

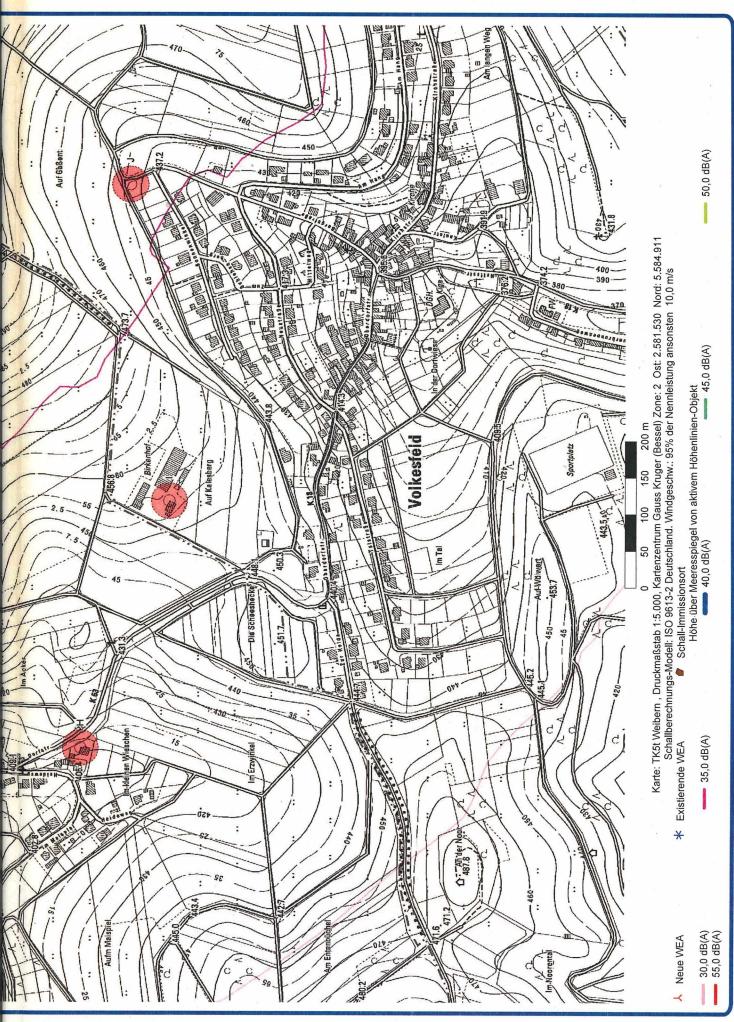
Summe 38,60

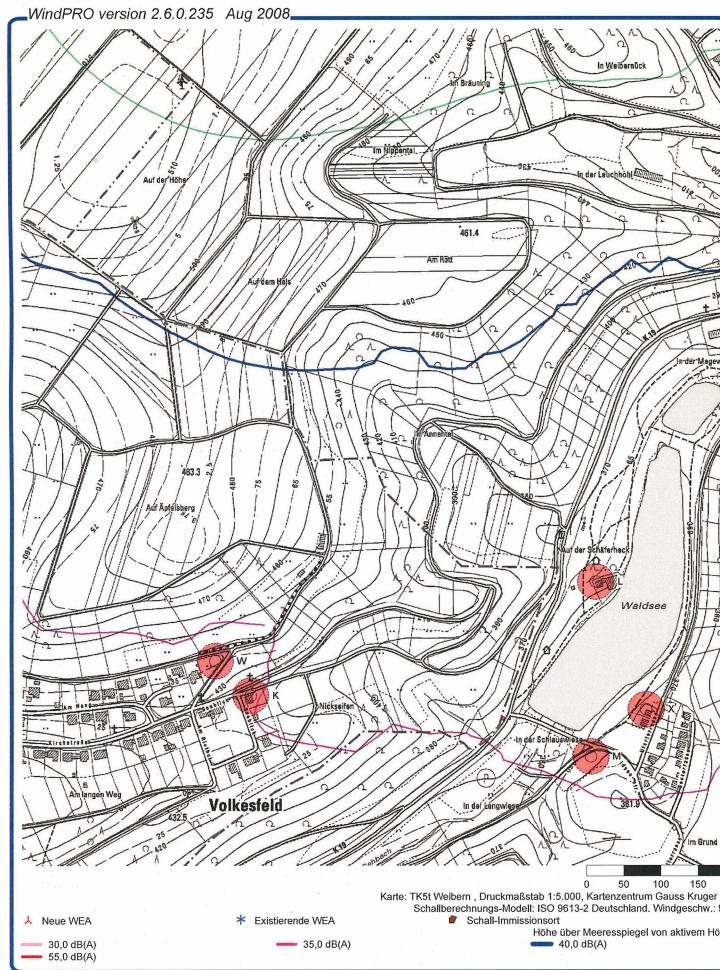

WindPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

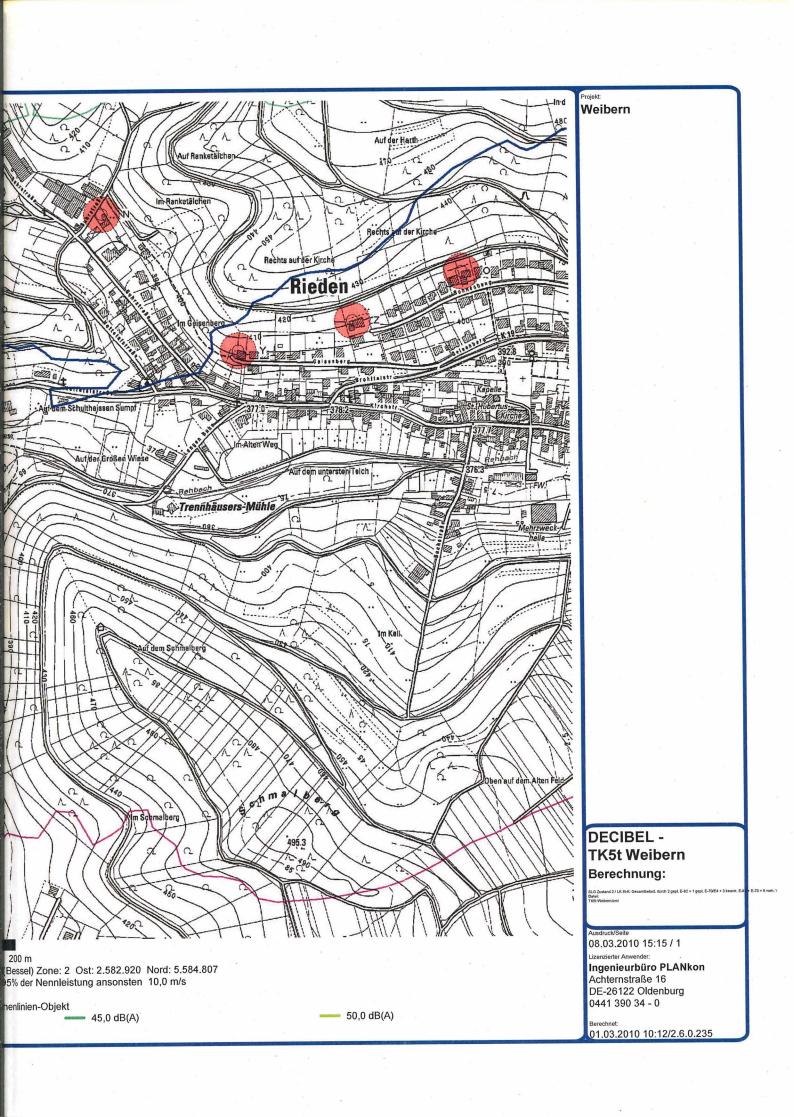

Ausdruck/Seite
08.03.2010 17:00 / 1
Lizenzierter Anwender:
Ingenieurbüro PLANkon
Achternstraße 16
DE-26122 Oldenburg
0441 390 34 - 0

Berechnet: 01.03.2010 10:12/2.6.0.235


DECIBEL - TK5t Weibern


Berechnung: SLG Zustand 2 / LK M-K: Gesamtbelast. durch 2 gepl. E-82 + 1 gepl. E-70/E4 + 3 beantr. E-82 + E-70 + 5




VindPRO entwickelt von EMD International AVS, Niels Jernesvej 10, DK-9220 Aalborg Ø, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

MndPRO entwickelt von EMD International A/S, Niels Jernesvej 10, DK-9220 Aalborg 0, Tel. +45 96 35 44 44, Fax +45 96 35 44 46, e-mail: windpro@emd.dk

Auszug aus dem Prüfbericht

Seite 1/1

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 16 vom 01. Juli 2005 (Herausgeber: Fördergesellschaft Windenergie e. V. Stresemannplatz. 4, D-24103 Kiel)

Auszug aus dem Prüfbericht WICO 314SEA05/01

zur Schallemission der Windenergieanlage vom Typ ENERCON E-70 E4 2.3 MW (Betrieb II)

Allgemeine Angaben			Technische Daten (Herstellera	ngaben)	
Anlagenhersteller:	ENERCON Gmb	Н	Nennleistung (Generator):	2300 kW	
	Dreekamp 5		Rotordurchmesser:	71,0 m	
	D-26605 AURICH		Nabenhöhe über Grund:	99,0 m	
Seriennummer:	702320	RW 25.94.632	Turmbauart:	Kon. Stahlrohr	
WEA-Standort (ca.):	WP Holtriem	HW 59.43.726	Leistungsregelung:	<u>Pitch</u>	
Ergänzende Daten zum	Rotor (Herstellera	ngaben)	Erg. Daten zu Getriebe und Ge	nerator (Herstellerangaben)	
Rotorblatthersteller:	ENERCO	ON GmbH	Getriebehersteller:	entfällt	
Typenbezeichnung Blatt	t: 70-4		Typenbezeichnung Getriebe:	entfällt	
Blatteinstellwinkel:	variabel		Generatorhersteller:	ENERCON GmbH	
Rotorblattanzahl 3		Typenbezeichnung Generator:	E-70		
Rotornenndrehzahl/-ber	eich: 6 – 21 m	in ⁻¹ (Betrieb II)	Generatornenndrehzahl: 6 – 21 min ⁻¹ (Betrieb II)		

Prüfbericht zur Leistungskurve: berechnete Kurve v. 23.05.2005

Lwa P 78,4 82,7 86,3 89,7 92,0 93,7 92,2 95,4 95,6 93,4 92,6 93 Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 100 Lwa P 91,7 92,1 91,2 89,9 88,3 86,2 83,2 81,4 78,8 75,6 73,4 72 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A) Frequenz 63 125 250 500 1000 2000 4000 8000						Refer	enzpu	ınk	t		Sc		missions ameter	-	1	Beme	rkun	gen
Schallleistungs-				ν	Vindgesch	windigkeit		-		=								
9,6 ms ⁻¹	Pegel	ngs-			7 m 8 m 9 m	ns ⁻¹ ns ⁻¹ ns ⁻¹		1 1 2	215 kW 714 kW 2048 kW			100,9 102,9 104,1	dB(A) dB(A) dB(A)					
Tonzuschlag für den Nahbereich KTN 9 ms-1 1215 kW 0 dB bei - Hz 10 ms-1 2247 kW 0 dB bei - Hz 10 ms-1 2247 kW 0 dB bei - Hz 10 ms-1 2247 kW 0 dB bei - Hz 10 ms-1 2247 kW 0 dB bei - Hz 10 ms-1 2247 kW 0 dB bei - Hz 10 ms-1 2247 kW 0 dB bei - Hz 10 ms-1 1215 kW 0 dB bei - Hz 10 ms-1 1215 kW 0 dB bei - Hz 1215 kW 0 dB					10 n 9,6 i	ns ⁻¹											(1)	
Impulszuschlag für den Nahbereich Kin	den Nahbe				7 m 8 m 9 m 10 n 9,6 i	ns ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹		1 1 2 2	215 kW 714 kW 2048 kW 2247 kW		0 d 0 d 0 d	B B B	bei - Hz bei - Hz bei - Hz bei - Hz				(1)	
Frequenz 50 63 80 100 125 160 200 250 315 400 500 63 LwA P 78,4 82,7 86,3 89,7 92,0 93,7 92,2 95,4 95,6 93,4 92,6 93 Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 100 LwA P 91,7 92,1 91,2 89,9 88,3 86,2 83,2 81,4 78,8 75,6 73,4 72 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A) Frequenz 63 125 250 500 1000 2000 4000 8000	für den Nah				7 m 8 m 9 m 10 n	ns ⁻¹ ns ⁻¹ ns ⁻¹ ns ⁻¹		1 1 2 2	215 kW 714 kW 2048 kW 2247 kW			0) dB) dB) dB) dB				(1)	
Lwa P 78,4 82,7 86,3 89,7 92,0 93,7 92,2 95,4 95,6 93,4 92,6 93 Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 100 Lwa,P 91,7 92,1 91,2 89,9 88,3 86,2 83,2 81,4 78,8 75,6 73,4 72 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A) Frequenz 63 125 250 500 1000 2000 4000 8000					Terz-Sch	allleistunç	gspege	el R	Referenzp	unkt v ₁₀	= 10 n	ns ⁻¹ i	n dB(A)					
Frequenz 800 1000 1250 1600 2000 2500 3150 4000 5000 6300 8000 100 LwA P 91,7 92,1 91,2 89,9 88,3 86,2 83,2 81,4 78,8 75,6 73,4 72 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A) Frequenz 63 125 250 500 1000 2000 4000 8000	Frequenz	50	63	3	80	100	125		160	200	2	50	315	4	100	50	0	630
L _{WA,P} 91,7 92,1 91,2 89,9 88,3 86,2 83,2 81,4 78,8 75,6 73,4 72 Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A) Frequenz 63 125 250 500 1000 2000 4000 8000	L _{WA} P	78,4	82,	,7	86,3	89,7	92,0		93,7	92,2	95	5,4	95,6	9	3,4	92,	6	93,5
Oktav-Schallleistungspegel Referenzpunkt v ₁₀ = 10 ms ⁻¹ in dB(A) Frequenz 63 125 250 500 1000 2000 4000 8000	Frequenz	800	100	00	1250	1600	2000		2500	3150	40	00	5000	6	300	800	0	10000
Frequenz 63 125 250 500 1000 2000 4000 8000	L _{WAP}	91,7	92,				0.000					- 2		7	5,6	73,	4	72,2
							gspeg	el l				_						
	Frequenz	63	_		125	250			500	100	0		2000		4000		8	3000

LwAP 88,3 96,9 99,4 98,0 96,5 93,2 86,3 78,7

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 07.11.2005. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

(1) Schallleistungspegel bei 95% der Nennleistung der WEA.

- PDF-Dokument wurde elektronisch unterschrieben -

Gemessen durch: WIND-consult GmbH

Reuterstraße 9 D-18211 Bargeshagen

Datum: 21.11.2005

Desutables Aktorial Rational R

Unterschrift Dipl.-Ing. A. Petersen Unterschrift
Dipl.-Ing. J.Schwabe

Auszug aus dem Prüfbericht

Stammblatt "Geräusche", entsprechend den "Technischen Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte"

Rev. 18 vom 01. Februar 2008 (Herausgeber: Fördergesellschaft Windenergie e.V., Stresemannplatz 4, D-24103 Kiel)

Auszug aus dem Prüfbericht 135208gs01 vom 22.06.2009

zur Schallemission der Windenergieanlage vom Typ ENERCON E-70/E4

Allgemeine Angaben	Take 12 are	en de la companya de	Technische Daten (Herstellera	ngaben)		
Anlagenhersteller:	ENERCON	GmbH	Nennleistung (Generator):	2.300 kW (Betrieb II)		
	Dreekamp	5	Rotordurchmesser:	71 m		
	26605 Auri	ch	Nabenhöhe über Grund:	64 m		
Seriennummer:	781960		Turmbauart:	konischer Rohrturm		
WEA-Standort (ca.):			Leistungsregelung:	Pitch		
Ergänzende Daten zu	ım Rotor (He	erstellerangaben)	Erg. Daten zu Getriebe und Generator (Herstellerang.)			
Rotorblatthersteller:		ENERCON GmbH	Getriebehersteller:			
Typenbezeichnung Bla	att:	E-70/E4	Typenbezeichnung Getriebe:			
Blatteinstellwinkel:		variabel °	Generatorhersteller:	ENERCON GmbH		
Rotorblattanzahl:		3	Typenbezeichnung Generator:	E-70		
Rotordrehzahlbereich:		6 – 21 U/min	Generatornenndrehzahl:	6 – 21 U/min		

Prüfbericht zur Leistungskurve: von der Enercon GmbH berechnete Leistungskurve

				Referenz	punkt			Schallemi param		Bem	erkunge	1
		Wind	andardisi geschwir i 10 m Hö	digkeit		trische leistung						
			8 m/s		1.64	40 kW		103,4	dB(A)			
			9 m/s			1.960 kW		103,8	dB(A)			
Schallleistun	gspegel		10 m/s		2.17	75 kW		104,1	dB(A)			
$L_{WA,P}$			11 m/s		2.33	30 kW		104,2	dB(A)			
			12 m/s		2.33	30 kW		104,1	dB(A)			
			13 m/s		2.33	30 kW		104,0	dB(A)			
			8 m/s		1.64	10 kW		0 dl	3			
			9 m/s		1.96	30 kW		0 dl	3			
Tonzuschlag			10 m/s		2.17	75 kW		0 dl	3			
Nahbereich K _{TN} 11 m/s			2.33	30 kW		0 dB						
			12 m/s		2.33	30 kW		0 dl	3			
			13 m/s		2.33	30 kW		0 dl	3			
			8 m/s		1.64	10 kW		0 dl	3			
			9 m/s		1.96	30 kW		0 dl	3			
Impulszusch			10 m/s		2.175 kW			0 dl	3			
Nahbereich I	K_{IN}		11 m/s		2.330 kW			0 dB				
			12 m/s		2.33	30 kW		0 dl	3			
			13 m/s		2.33	30 kW		0 dl	3			
			Terz-	Schallleis	tungspe	gel für v _s	= 10,3 r	n/s in dB(A)			
Frequenz	8	10	12,5	16	20	25	31,5	40	50	63	80	100
L _{WA,P}	35,3	43,8	50,6	56,2	62,7	68,1	71,0	75,2	79,4	81,7	84,4	85,8
Frequenz	125	160	200	250	315	400	500	630	800	1 k	1,25 k	1,6 k
L _{WA,P}	87,9	91,9	87,3	89,5	91,8	92,4	94,1	94,1	95,0	94,2	93,4	92,0
Frequenz	2 k	2,5 k	3,15 k	4 k	5 k	6,3 k	8 k	10 k	12,5 k	16 k	20 k	,-
L _{WA,P}	90,6	89,6	88,1	84,5	82,5		_	-	-	-	-	
	-	· · · · · · · · · · · · · · · · · · ·	Oktav-	· · ·	<u> </u>	gel für v	= 10,3	m/s in dB	(A)	-		
Frequenz	31.5	Τε	3	125	250	50	00	1000	2000	40	000	8000

Dieser Auszug aus dem Prüfbericht gilt nur in Verbindung mit der Herstellerbescheinigung vom 19.11.2008. Die Angaben ersetzen nicht den o. g. Prüfbericht (insbesondere bei Schallimmissionsprognosen). FÜR AKU

98,4

99,0

95,6

94,7

Bemerkungen:

77,2

Gemessen durch:

INGENIEURBÜRO FÜR AKUSTIK

94,1

BUSCH GMBH

87,1

Datum:

L_{WA,P}

22.06.2009

Stempel und Unterschrif

§§ 26, 28 BlmSchG zur Ermittlung von

und -immissionen

73 Molfsee

Geräuschemis

90,4

mittlerer Schalleistungspegel für E-70/E4, 2,3MW

olllast	Standardnormalvariable 90% Standardabweichung Sigma Lwa Lwa, 90	ь У	1,28 0,16 0,61 104,98		SigmaR 0,5 Standard	ca = S SigmaP 0,16 Sigma p = 1,2 bei Einzelmessung		inkl Prognoseunsicherheit 1,5 dB	inkl. Eaktor 1 28 für 90 % Wahrscheinlichkeit als Vertrauensbereich
MW, Volllast	Standardnormalvariable 9	~	1,28			ca		inkl Prognoseunsicherheit	inkl. Faktor 1.28 für 90 %
E-70/E4, 2,3MW		Lwa	104,2	104,0	104,4		104,20	1,59	106,2
WEA-Typ:			Busch 135208gs01	WICO 141SE707/02	WICO 314SEA05/01		Lwa(Mittel)	Zuschlag:	Rechenwert:

Westas		V47	660/200 kW Scha	lltechnisches Gutacht	en,Bredebro	
Date: 29. Jan 1998	Class:	1	Item no.:	94312 3. R0	Page:	1 of 23

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Schalltechnisches Gutachten zur Windenergieanlage V47 660/200 kW in Bredebro/Dänemark

Meßdatum: 20.10.1997 und 23.10.1997

Januar 1998

Bericht WT 802/98

Durch das DAP Deutsches Akkreditierungssystem Prüfwesen akkreditiertes Prüflaboratorium

Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

943124.R0 8

4 Zusammenfassung und Bewertung

Im Auftrag der Vestas Wind Systems A/S, DK - 6940 Lem, wurde von der WINDTEST Kaiser-Wilhelm-Koog GmbH die Geräuschabstrahlung der WEA V47 660/200 kW mit einer Nabenhöhe von $h_N = 45,3$ m zuzüglich $h_F = 0,5$ m Fundamenthöhe nach Länderrichtlinie /5/ untersucht. Grundlage für die Messungen und schalltechnische Beurteilung der WEA hinsichlich des Schalleistungspegels ist die IEA-Richtlinie /1/, für die Bestimmung der Tonhaltigkeit im Nahfeld der WEA die DIN 45681 /3/ bzw. für die Bewertung von Impulshaltigkeiten die DIN 45645 /2/. Die Berechnung basiert auf der im Anhang 7 dargestellten Leistungskurve.

Die Messungen ergeben für die V47 660/200 kW für eine gemessene Windgeschwindigkeit von 5 m/s in 10 m Höhe einen Schalleistungspegel von

$$L_{WA, P, 5 \text{ m/s}} = 95,1 \text{ dB}$$

und für eine Windgeschwindigkeit von 10 m/s in 10 m Höhe (entspricht ca. 95 % der Nennleistung) von

$$L_{WA, P, 10 \text{ m/s}} = 101,9 \text{ dB}.$$

Bezüglich der Schalleistungspegel $L_{WA,\,P}$ ist für jede der Messungen eine Meßunsicherheit festgestellt worden von:

$$s_{tot} = 1.8 dB.$$

Eine Impulshaltigkeit nach DIN 45645 /3/ liegt nicht vor, d.h. der bewertete Impulszuschlag beträgt demnach

$$K_{IN} = 0 dB$$
.

Es wurde keine Tonhaltigkeit im Sinne der DIN 45681 /3/ in dem in 75 m Entfernung gemessenen Anlagengeräusch festgestellt. Es ergibt sich in beiden Windgeschwindigkeitsbereichen ein Tonzuschlag von

$$K_{TN} = 0 dB$$
.

Eine ausgeprägte Richtungscharakteristik des Anlagengeräusches ist bei dieser Windenergieanlage nicht festgestellt worden.

Einzelereignisse, die den Mittelungspegel bei 8 m/s Windgeschwindigkeit in 10 m Höhe um mehr als 10 dB überschreiten, wurden nicht festgestellt.

Es wird versichert, daß das Gutachten gemäß dem Stand von Wissenschaft und Technik unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

WINDTEST

Kaiser-Wilhelm-Koog GmbH

Schalltechnisches Gutachten zu einer Windenergieanlage des Typs V47 660/200 kW in Bredebro / Dänemark

Messdatum: 1997-10-20 und 1997-10-23

Februar 2005

1. Nachtrag zu Bericht WT 802/98

1 Aufgabenstellung

Die WINDTEST Kaiser-Wilhelm-Koog GmbH (WINDTEST) wurde am 2005-02-04 von der Vestas Deutschland GmbH beauftragt, zusätzlich zum Bericht WT 802/98 die Schallleistungspegel für die Windgeschwindigkeit von 4 m/s bis 10 m/s anzugeben. Als Datenbasis für die in diesem Nachtrag dargestellten Schallleistungspegel werden die bei den Schallemissionsmessungen vom 1997-10-20 und 1997-10-23 aufgezeichneten Daten verwendet.

Für die V47 660/200 kW ergeben sich in der vorliegenden Konfiguration die in Tabelle 1 dargestellten, immissionsrelevanten Schallleistungspegel.

Tabelle 1: Immissionsrelevanter Schallleistungspegel als Funktion der berechneten WG

WG in 10 m Höhe [m/s]	4	5	6	7	8	9	10
Schallleistungspegel L _{WA,k} [dB]	94,2	95,1	99,7	100,3	100,8	101,4	101,9

Die in diesem Nachtrag dargestellten Ergebnisse sind eine Ergänzung des Berichtes WT 802 / 98.

Es wird versichert, dass das Gutachten gemäß dem Stand der Technik unparteilsch und nach bestem Wissen und Gewissen erstellt wurde.

2 Anhang

Messbericht zur Geräuschvorbelastung in Weibern durch Betriebe die zur Nachtzelt arbeiten

AUFTRAGGEBER:

Gamesa Energie
Deutschland GmbH
Staulinie 14-17
26122 Oldenburg

27.11.2009

AUFTRAG VOM:

13771 / 1209

BEARBEITER:

S. Heusler

SEITENZAHL:

21

7

ANHÄNGE:

3.5 Messpunkte

Die Auswahl der Messpunkte erfolgte gemäß den Anforderungen aus schalltechnischer Sicht (möglichst Sichtverbindung zu Firma Wolfcraft), ggfs. auch Sichtverbindung auf Dachbereiche der Firma Wolfcraft. Unter diesen Randbedingungen sowie in Anlehnung an die Empfehlungen der Genehmigungsbehörde wurden die nachfolgenden 4 Aufpunkte gewählt:

Messpunkt 1 (AA):

südöstlich des Wohnhauses Löhstraße 5 auf

dem Privatweg zu einem südlich angrenzen-

den möglichen Wohnhaus

Messpunkt 2 (Z):

südöstlich des Wohnhauses Löhstraße 9 auf

der Parzelle 281/2 unterhalb des Sportplat-

zes des TUS Weibern

Messpunkt 3 (C):

südöstlich neben dem Wohnhaus Tannen-

weg 6. Von diesem unterhalb des Sportplat-

zes gelegenen Messpunkt besteht keine freie

Sichtverbindung mehr zur Firma Wolfcraft

aufgrund des höher gelegenen Sportplatzes

Messpunkt 4 (AC):

seitlich neben dem Wohnhaus Bahnhofstra-

ße 111 mit freier Sichtverbindung auf das

Betriebsgebäude der Firma Wolfcraft aus

nördlicher Richtung

An den Messpunkten wurde oberhalb der Erdgeschosse ca. 4 m über Boden gemessen.

Von den Messpunkten 1 und 4 bestand freie Sichtverbindung zu dem Betriebsgebäude der Firma Wolfcraft.

Am Messpunkt 2 wurde die freie Sichtverbindung durch Bewuchs auf die sehr viel tiefer gelegene Halle der Firma Wolfcraft unterbrochen.

Von Messpunkt 3 (neben dem Wohnhaus Tannenweg 6) aus besteht keine Sichtverbindung zur Firma Wolfcraft, da diese durch den Bergrücken unterbrochen wird.

Die Messpunkte sind im Plotausdruck im Anhang 2 des Gutachtens gekennzeichnet.

4. Messergebnisse

4.1 Betriebssituation während der Geräuschmessung

Für die Geräuschmessung wurde in Absprache mit der Firma Wolfcraft sichergestellt, dass in dem Betrieb kontinuierlich gearbeitet wurde. Des Weiteren wurden auch die Abluftventilatoren im Dach der Halle eingesetzt, damit eine vergleichbare Geräuschsituation vorherrscht, wie sie auch in den Sommermonaten bei höheren Temperaturen vorliegt. Die Rolltore, Fenster und Türen der Produktionshalle der Firma Wolfcraft waren zu den Zeitpunkten der Geräuschmessungen geschlossen. Dies stellt auch einen üblichen Betriebszustand in den Sommermonaten dar.

4.2 Ergebnisse der Geräuschmessung

Wie die Geräuschmessung zeigte, traten aus der Produktionshalle auch in Überlagerung mit den Geräuschimmissionen der Abluftventilatoren auf dem Dach der Halle keine impulshaltigen Geräuschimmissionen auf. Jedoch wurden am Messpunkt 1 zwischen 22.00 und 23.00 Uhr 4 PKW-Bewegungen von Mitarbeitern registriert, wobei impulshaltige Geräuschimmissionen durch Türenschlagen und Starten der Motoren abgestrahlt wurden. Aus diesem Grunde wird im folgenden der mittlere Taktmaximalpegel mit einer Taktzeit von 5 sek. von LAFTeq ausgewertet.

Messpunkt 1 (AA):

Am Messpunkt 1 wurde die Geräuschsituation in der Anfangsphase kurz nach 22.00 Uhr durch die 4 Mitarbeiter-PKW-Bewegungen geprägt. Diese Park- und Abfahrvorgänge etwa mittig südwestlich vor der Firma Wolfcraft verursachten Spitzenpegel bis zu 53 dB(A) während den Parkvorgängen. Im Laufe der Messzeit für die "lauteste Nachtstunde" von 22.00 bis 23.00 Uhr sank der mittlere Taktmaximalpegel bis zum Messende hin auf 34 dB(A) ab. Dieser Immissionspegel repräsentiert die Geräuschimmissionen zur "lautesten Nachtstunde" am ungünstigsten Immissionsort. Während der Geräuschmessung wurde weiter festgestellt, dass die Betriebsgeräuschimmissionen aus der Halle bei geschlossenen Rolltoren und Fenstern und niedrigen Hintergrundgeräuschpegeln zwischen 28 bis 30 dB(A) in Abhängigkeit von Windrichtung und Geschwindigkeit betrugen.

Messpunkt 2 (Z):

An Messpunkt 2 südlich oberhalb des Messpunktes 1 und unterhalb des Sportplatzniveaus des TUS Weibern bestand aufgrund des Bewuchses keine freie Sichtverbindung zum Betriebsgelände der Firma Wolfcraft.

Lediglich die Beleuchtungen auf dem Betriebsgelände konnten erkannt werden. An diesem Messpunkt konnten nur bei absolut geringen Hintergrundgeräuschpegeln Betriebs- und Lüftergeräusche aus dem Betriebsgebäude der Firma Wolfcraft gemessen werden. Der mittlere Taktmaximalpegel durch die Betriebsgeräusche betrug an diesem Messpunkt 31 dB(A), wobei Hintergrundgeräusche durch Blättrauschen selbst bei geringen Windgeschwindigkeiten nicht voll ausgeblendet werden konnten. Einzelne Geräuschspitzen betrugen an diesem Messpunkt max. 36 dB(A) und rührten hier aus gelegentlichen Anschlaggeräuschen innerhalb der Halle. Auch an diesem Messpunkt konnten keine tonhaltigen Anlagengeräusche aus dem Betriebsbereich der Firma Wolfcraft wahrgenommen oder messtechnisch erfasst werden.

Messpunkt 3 (C):

An Messpunkt 3 seitlich neben dem Wohnhaus Tannenweg 6 konnten selbst bei geringen Hintergrundgeräuschpegeln keine Betriebsgeräuschimmissionen aus dem Bereich der Firma Wolfcraft wahrgenommen oder messtechnisch erfasst werden. Hier wurde die Geräuschsituation ausschließlich durch Fernlärm und Blattrauschen bei auffrischenden Winden bestimmt. Diese Hintergrundgeräuschpegel betrugen über den Messzeitraum zwischen 23 und 33 dB(A). Da die Betriebsgeräuschimmissionen selbst bei den niedrigeren Hintergrundgeräuschpegeln weder wahrgenommen, noch messtechnisch erfasst werden konnten, liegen hier die Betriebsgeräuschimmissionen der Firma Wolfcraft auch zur Nachtzeit deutlich unterhalb 30 dB(A). Auch hier konnten keine tonhaltigen Geräuschimmissionen aus Richtung der Firma Wolfcraft wahrgenommen oder gemessen werden.

Messpunkt 4 (AC):

An dem Messpunkt 4 nordwestlich der Firma Wolfcraft bestand freie Sichtverbindung auf das Betriebsgebäude der Firma Wolfcraft. An diesem Messpunkt konnten bei niedrigen Hintergrundgeräuschpegeln Produktionsgeräusche und Anschlaggeräusche wahrgenommen und messtechnisch erfasst werden. Der mittlere Taktmaximalpegel über die Messzeit betrug hier 31 dB(A). Maximale Spitzen durch Anschlaggeräusche erreichten Werte bis 35 dB(A). Auch an diesem Messpunkt konnten keine tonalen Anlagenkomponenten auf dem Betriebsgelände der Firma Wolfcraft wahrgenommen oder messtechnisch erfasst werden.

Die Messergebnisse können dem Anhang 3, 4, 5 und 6 des Messberichtes entnommen werden.

5. <u>Beurteilung der Messergebnisse</u>

Wie die Geräuschmessungen im Umfeld der Firma Wolfcraft ergaben, wurden keine tonhaltigen Geräuschimmissionen im Zusammenhang mit dem Betriebsablauf wahrgenommen oder messtechnisch erfasst. Dies gilt auch für die Abluftanlagen auf dem Dach der Produktionshalle der Firma. Daher wird in der nachfolgenden Beurteilung kein Tonzuschlag berücksichtigt.

Da die Betriebsgeräuschimmissionen der Firma Wolfcraft kontinuierlich über den gesamten Nachtzeitraum vorliegen, stellen die Messwerte an den Immissionsorten gleichzeitig den Beurteilungspegel für die "lauteste Nachtstunde" gemäß TA Lärm dar. Hiernach ergeben sich an den Messpunkten nachfolgende Beurteilungspegel für die "lauteste Nachtstunde":

Messpunkt 1 (AA):

Südwestlich unmittelbar im Nahbereich der Firma Wolfcraft.

 $L_{r,nacht} = 34 dB(A)$

Messpunkt2 (Z):

Weiter südlich des Betriebes im ansteigenden Gelände unterhalb des südlich gelegenen Sportplatzes des TUS Weibern.

 $L_{r,nacht} = 31 dB(A)$

Messpunkt 3 (C):

Seitlich neben dem Wohnhaus Tannenweg 6. Aufgrund der Geländetopographie und des höher gelegenen Sportplatzes des TUS Weibern besteht keine direkte Sichtverbindung zur Firma Wolfcraft.

 $L_{r,nacht} = < 30 dB(A)$

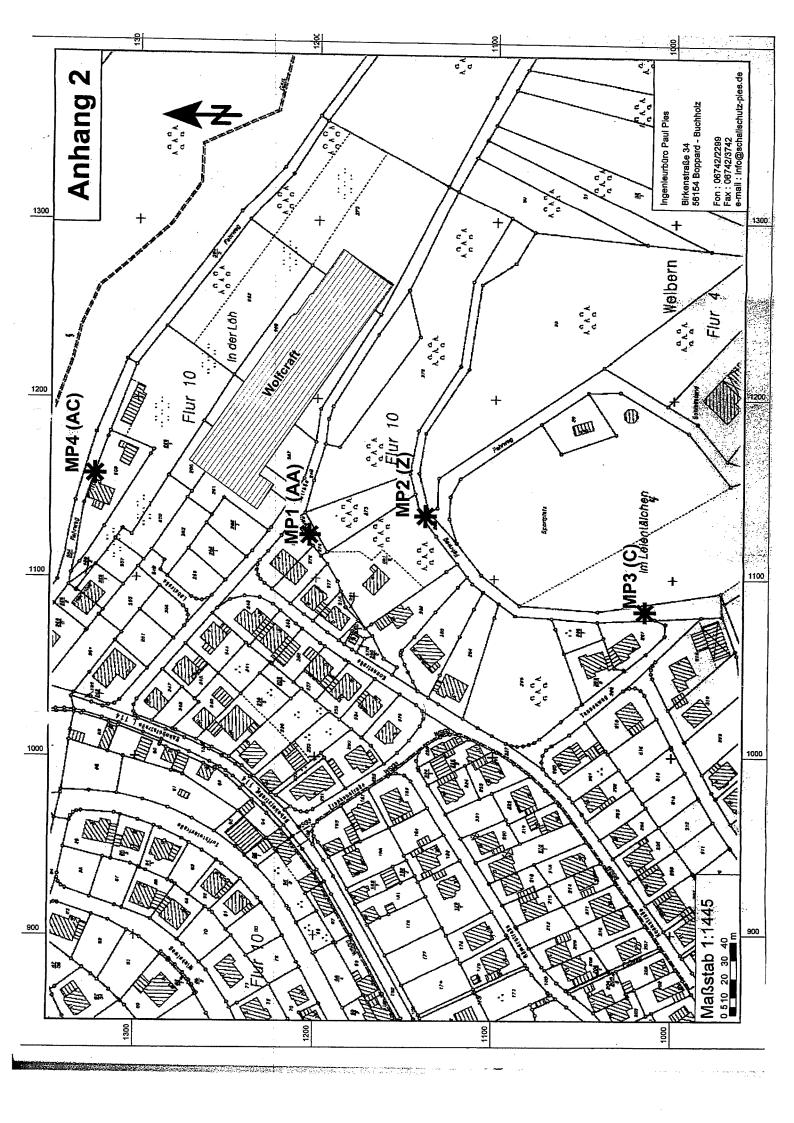
(Betriebsgeräusche weder mess- noch wahrnehmbar)

Messpunkt 4 (AC):

Seitlich neben dem Wohnhaus Bahnhofstraße 111 im ansteigenden Gelände mit freier Sichtverbindung auf die Betriebshalle der Firma Wolfcraft.

 $L_{r,nacht} = 31 dB(A)$

Wie die Beurteilungspegel zeigen, wird an den Messpunkten MP 1, MP 2 und MP 4 der zulässige Nachtimmissionsrichtwert eines Mischgebietes von 45 dB(A) sicher eingehalten, bzw. um mehr als 10 dB(A) unterschritten.


An dem weiter südlich gelegenen Messpunkt 3 am Tannenweg wird der zulässige Nachtimmissionsrichtwert eines allgemeinen Wohngebietes von 40 dB(A) ebenfalls sicher eingehalten, bzw. um mehr als 10 dB(A) unterschritten.

Neben der Überprüfung auf Einhaltung der Immissionsrichtwerte ist gemäß TA Lärm weiter zu prüfen, ob unzulässig hohe Spitzenpegel im Zusammenhang mit dem Betriebsablauf zur Nachtzeit auftreten (nachts sollte der zulässige Nachtimmissionsrichtwert auch durch kurzzeitige Anschlaggeräusche, etc. um nicht mehr als 20 dB(A) überschritten werden). Hier ist festzustellen, dass Spitzenwertüberschreitungen im Zusammenhang mit dem Nachtschichtbetrieb der Firma Wolfcraft aufgrund ausreichender Schutzabstände nicht auftraten.

Fahr- und Verladetätigkeiten von LKW finden zur Nachtzeit nicht statt. Auch treten nachts keine geräuschintensiven Produktionsarbeiten außerhalb der geschlossenen Halle auf.

6. Qualität der Messung

Zur Beurteilung der Betriebsgeräuschimmissionen auf der sicheren Seite wurde der mittlere Taktmaximalpegel mit einer Taktzeit von 5 sek. für die Beurteilung herangezogen (die Pegeldifferenz zwischen dem mittleren Taktmaximalpegel L_{AFTeq} und dem energieäquivalenten Dauerschallpegel L_{AFeq} betrug weniger als 2 dB(A), sodass eine Beurteilung der Geräuschimmissionen mit dem energieäquivalenten Dauerschallpegel L_{AFeq} ausreichend wäre. Für die Beurteilung wurde auf die meteorologische Korrektur C_{met} verzichtet. Eine Hintergrundgeräuschkorrektur für Blattrauschen und Fernlärm (teilweise nur geringfügig unterhalb der Betriebsgeräuschimmissionen) wurde nicht vorgenommen.

Windpark Weibern

Gesamtbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP P (Whs. Bahnhofstr. 111, Weibern)

et. Dämpfungskoeffizient Co:

					Pegeländer-
			Teilpegel		ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		39,57	9057,33	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
40,14

Windpark Weibern

Gesamtbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP Q (Whs. Löhstr. 5, Weibern)

t. Dämpfungskoeffizient Co: 0

			Teilpegel		Pegeländer- ung mit
Nr.	AnlBez.	Pegel WEA	Lp.i	Hilfswerte	Vorzeichen
1	WEAs		39,63	9183,33	
2	Wolfcraft		34,00	2511,89	

Summe aus
Teilpegeln
Lr
40,68

Windpark Weibern

Gesamtbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP R (Whs. Löhstr. 6, Weibern)

et. Dämpfungskoeffizient Co: 0

			Teilpegel		Pegeländer- ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
		I egel WEA	-P,J	Illisweite	VOIZEICHEH
1	WEAs		39,19	8298,51	
2	Wolfcraft		31,00	1258,93	

Summe aus
Teilpegeln
Lr
39,80

Windpark Weibern

Gesamtbelastung: 11 WEA + Gewerbe

Immissionspunkt: IP S (Whs. Konnstr. 41, Weibern)

Met. Dämpfungskoeffizient Co: 0

					Pegeländer-
			Teilpegel		ung mit
Nr.	AnlBez.	Pegel WEA	Lp,j	Hilfswerte	Vorzeichen
1	WEAs		38,57	7194,49	
2	Wolfcraft		31,00	1258,93	

Г	Summe aus
	Teilpegeln
	Lr
Γ	39,27

Seite 11 zum Bericht Nr. 207542-02.02

6.) <u>Ergebniszusammenfassung für die Nabenhöhe 108 m</u>

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen Seite 1 von 2 Auf der Basis von mindestens drei Messungen nach der "Technischen Richtlinie für Windenergieanlagen" [1] besteht die Möglichkeit die Schallemissionswerte eines Anlagentyps gemäß [2] anzugeben, um die schalltechnische Planungssicherheit zu erhöhen. Anlagendaten Hersteller Enercon GmbH Anlagenbezeichnung E-82 Nennleistung in kW 2.000 (Betrieb I) Nabenhöhe in m 108 Rotordurchmesser in m 82 Messung-Nr. Angaben zur Einzelmessung 2 3 Seriennummer 82001 82004 82258 Standort Ihlow / Simonswolde Bimolten Sulingen vermessene Nabenhöhe (m) 108 108 KÖTTER Consulting KÖTTER Consulting Messinstitut Müller-BBM GmbH Engineers KG Engineers KG Prüfbericht M65 333/1 207041-01.01 207542-01.01 Datum 21.04.2006 19.04.2007 28.04.2008 Getriebetyp Generatortyp E-82 E-82 E-82 Rotorblatttyp 82 - 1 82 - 1 82 - 1

Schallemissionsparameter: Messwerte (Prüfbericht Leistungskurve: Berechnete Kennlinie Rev. 1.0, Januar 2005, Nennleistung 2.000 kW; Enercon E-82)

Schallleistungspegel LWA.P:

Messung			W	indgeschwindig	keit in 10 m Höl	ne	
ĺ	Wicosung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7,7 m/s ²⁾
	1 ¹⁾	100,9 dB(A)	103,1 dB(A)	103,4 dB(A)	dB(A)	dB(A)	103,4 dB(A)
	2	100,7 dB(A)	103,4 dB(A)	103,7 dB(A)	dB(A)	dB(A)	103,8 dB(A)
	3	100,9 dB(A)	103,6 dB(A)	104,1 dB(A)	103,7 dB(A)	dB(A)	104,1 dB(A)
	Mittelwert \overline{L}_{W}	100,8 dB(A)	103,4 dB(A)	103,8 dB(A)	dB(A)	dB(A)	103,8 dB(A)
	Standardab- weichung S	0,1 dB	0,2 dB	0,4 dB	dB	dB	0,4 dB
	K nach [2] $\sigma_R = 0.5 \text{ dB}$	1,0 dB	1,1 dB	1,2 dB	dB	dB	1,2 dB

^[1] Technische Richtlinien für Windenergieanlagen, Teil 1: Bestimmung der Schallemissionswerte, Revision 18, Herausgeber: Fördergesellschaft Windenergie e. V., Stresemannplatz 4, 24103 Kiel

^[2] IEC 61400-14 TS ed. 1, Declaration of Sound Power Level and Tonality Values of Wind Turbines, 2005-03

Seite 12 zum Bericht Nr. 207542-02.02

Bestimmung der Schallleistungspegel aus mehreren Einzelmessungen

Seite 2 von 2

3	Schallemiss	sionspa	rameter	r: Zusch	läge								Para Internal
٦	onzuschlag	bei vern	nessene	r Naben	höhe K _{TN}	:							
	Messung					Windges	chwindig	keit in 10	m Höhe				
	Wessung	6 m/s		7 m/s		8 m/s		9 m/s		10 m/s		7,7 m/s ²⁾	
	1	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	dB	Hz	0 dB	Hz
	2	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	dB	Hz	0 dB	Hz
	3	0 dB	Hz	0 dB	Hz	0 dB	Hz	0 dB	Hz	dB	Hz	0 dB	Hz

In	npulszuschl	ag K _{IN} :					
	Messung			Windgeschwindig	keit in 10 m Höhe	Э	
	wessung	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	7,7 m/s ²⁾
-	1	0 dB	0 dB	0 dB	dB	dB	0 dB
	2	0 dB	0 dB	0 dB	dB	dB	0 dB
	3	0 dB	0 dB	0 dB	0 dB	dB	0 dB

Terz-Schal	Terz-Schallleistungspegel (Mittel aus drei Messungen) Referenzpunkt v _{10LWA,Pmax} in dB(A) 3)													
Frequenz 50 63 80 100 125 160 200 250 315 400 500 63												630		
$L_{WA,P}$	75,8	78,7	81,5	83,0	87,7	86,8	87,1	89,9	91,5	93,1	94,5	94,7		
Frequenz	800	1.000	1.250	1.600	2.000	2.500	3.150	4.000	5.000	6.300	8.000	10.000		
$L_{WA,P}$	94,9	95,2	93,7	91,6	89,4	85,6	81,6	77,5	73,7 4)	73,2 4)	71,4 4)	73,0 ⁴⁾		

Oktav-Scha	allleistungspe	gel (Mittel au	ıs drei Messu	ngen) Refere	nzpunkt v _{10LV}	VA,Pmax in dB(A	A) 3)	
Frequenz	63	125	250	500	1.000	2.000	4.000	8.000
L _{WA,P}	84,0	91,0	94,6	98,9	99,5	94,3	83,4 4)	77,4 ⁴⁾

Die Angaben ersetzen nicht die o. g. Prüfberichte (insbesondere bei Schallimmissionsprognosen).

Bemerkungen:

- Schallleistungspegel bei umgerechneter Nabenhöhe
- 2) Entspricht 95 % der Nennleistung

Entspricht v_{s,95%} = 7,7 m/s und der maximalen Schallleistung

Aufgrund von elektrischen Einflüssen durch die WEA bei der dritten Messung basieren die Terz- und Oktavpegel ab 5 kHz lediglich auf den ersten beiden Messungen.

Ausgestellt durch:

KÖTTER Consulting Engineers KG

Bonifatiusstraße 400

48432 Rheine

Datum: 18.09.2008

Jiga Winhin i. V. Dipl.-Ing. Oliver Bunk

i. A. Dipl.-Ing. Jürgen Weinheimer

Bonifatiusstraße 400 · 48432 Rheine Tel. 0 59 71 - 97 10.0 - Fax 0 59 71 - 97 10.43

~
2007
05.
68330.doc:02.
e_2d
PBe
P:\hkm\68\68330\01

Teil 1: Bes													
Rev. 17 vom 0	1. Juli 2006 (F	terausgeber		uszug aus)				
	Tur Caha	llomiosis		ndenergi									
Allgemeine A		mernissic	in der vv	ndenergi	eanlage			lerstellerar	achen)				
Anlagenherst		Enero	on GmbH		4000		tung (Gene		gaven)	1000 kl	N (reduzier	71)	
runagamicisi	onor.		amp 5				chmesser:	iator).		82 m	(reduziei	ij	
			Aurich				he über Gr	und:		108 m			
Seriennumme	er:	53001	1			Turmbau	art:			Rohrtur	m		
WEA-Stando	rt (ca.):	RW:	34.81.1	04		Material:				Stahl			
		HW:	58.48.3				sregelung:			pitch			
rgánzende D				en)		_		be und Ge	nerator (He	erstelleran	gaben)		
Rotorblatthen			on GmbH				nersteller:			***			
Typenbezeich	•	82-1					zeichnung						
Blatteinstellw Rotorblattanz		variat 3	oei .				rhersteller:			Enercoi E-82	n GmbH		
Rotordrehzah			6 min-1 (re	duried)			zeichnung rennenndre	Generator:		-	min-1 (red	(l)	
Průľbericht zu				SmbH: Ben	achnoto no				E-82 vom			uzieri)	
T TOIDENCIA ZE	n coloraligor	divo.	I			anne lottering		nissions-	L-02 VOIII				
			5 ×	Referen	zpunkt			meter		Bemei	rkungen		
			Standa	rdisierte	- C	trische							
Windgeschwindigke in 10 m Höhe					Wirkleistung								
		6	m/s	842	kW	98,7	dB(A)						
			7	CHANGE C		kW	98,6	dB(A)					
Schallleistungs-	Pegel Lws P			m/s		kW	(30)	dB(A)					
	- 1110,1			m/s	kW		dB(A)		[2]				
				m/s		kW	dB(A)		[2]				
			_	m/s		kW		98.7 dB (A)		[1]			
				6 m/s 842 7 m/s 963		kW	dB dB						
Fonzuschlag für	r den Nahbere	ich		m/s		kW	1	dB	1				
Kin			1 1	m/s	992 kW		dB		[2]				
				m/s		kW	dB		[2]				
				m/s	22400	kW		dB			[1]		
			6	m/s	842	kW	dB						
				m/s		kW		dB					
mpulszuschlag	für den Nahbe	ereich		m/s		kW		dB					
K _{IN}			1 .	m/s		kW		dB			[5]		
				m/s		kW	ı	dB			[2]		
				m/s		kW		dB			<u> </u>	-	
	T			Istungspeg					0.0				
requenz	72,7	63 75,8	77,7	100 79.7	125 81,2	160 81,6	200 82,5	250 83,9	315 84.9	400 86,3	500 87,7	630	
requenz	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	87,9 1000	
-WA.P.Terz	88.6	89,1	89.9	89.4	87,0	85,0	82,8	80.4	76.2	68,7	61,4	65,3	
WA_P_Terz	1 00.0			Istungspeg				00.4	10,2	00.7	01,4	00.0	
requenz	63	125	250	500	1000	2000	4000	8000					
WAPCHEN	80.6	85,7	88.6	92.1	94,0	92,3	85,3	70.9					

Gemessenen von:

Müller-BBM GmbH

Niederlassung Gelsenkirchen Am Bugapark 1 D-45 899 Gelsenkirchen MÜLLER-BBM GMBH NIEDERLASSUNG GELSENKIRCHEN A M B U G A P A R K 1 45899 GELSENKIRCHEN TELEFON (0209) 9 83 08 - 0

Datum:

27.04.2007

al receive

[1] Der Schallleistungspegel bei 95% ger Nennleistung wurde bei Berücksichtung der Umgebungsbedingungen am Messtag, der verwendeten Leistungskurve und der vermessenen Nabenhöhe bei einer stand. Windgeschwindigkeit von 6,8 m/s festgesteilt.

Dipl.-Ing. (FH) D. Hinkelmann

[2] In dieser Windklasse konnten aufgrund der Wetterbedingungen am Messtag keine Daten erfasst werden.

fall

Dipl.-Ing. (FH) M. Köhl

Accredited Test Laboratory according to ISO/IEC 17025

Schallemissio,

fonformitats